blob: b7a7ceb67f47e50c019dbffb46d014abe4363b12 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*******************************************************************************
2
3
4 Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/* e1000_hw.c
30 * Shared functions for accessing and configuring the MAC
31 */
32
33#include "e1000_hw.h"
34
35static int32_t e1000_set_phy_type(struct e1000_hw *hw);
36static void e1000_phy_init_script(struct e1000_hw *hw);
37static int32_t e1000_setup_copper_link(struct e1000_hw *hw);
38static int32_t e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
39static int32_t e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
40static int32_t e1000_phy_force_speed_duplex(struct e1000_hw *hw);
41static int32_t e1000_config_mac_to_phy(struct e1000_hw *hw);
42static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
43static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
44static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data,
45 uint16_t count);
46static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw);
47static int32_t e1000_phy_reset_dsp(struct e1000_hw *hw);
48static int32_t e1000_write_eeprom_spi(struct e1000_hw *hw, uint16_t offset,
49 uint16_t words, uint16_t *data);
50static int32_t e1000_write_eeprom_microwire(struct e1000_hw *hw,
51 uint16_t offset, uint16_t words,
52 uint16_t *data);
53static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw);
54static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
55static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
56static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data,
57 uint16_t count);
58static int32_t e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
59 uint16_t phy_data);
60static int32_t e1000_read_phy_reg_ex(struct e1000_hw *hw,uint32_t reg_addr,
61 uint16_t *phy_data);
62static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count);
63static int32_t e1000_acquire_eeprom(struct e1000_hw *hw);
64static void e1000_release_eeprom(struct e1000_hw *hw);
65static void e1000_standby_eeprom(struct e1000_hw *hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -070066static int32_t e1000_set_vco_speed(struct e1000_hw *hw);
67static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw);
68static int32_t e1000_set_phy_mode(struct e1000_hw *hw);
Malli Chilakala2d7edb92005-04-28 19:43:52 -070069static int32_t e1000_host_if_read_cookie(struct e1000_hw *hw, uint8_t *buffer);
70static uint8_t e1000_calculate_mng_checksum(char *buffer, uint32_t length);
Linus Torvalds1da177e2005-04-16 15:20:36 -070071
72/* IGP cable length table */
73static const
74uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
75 { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
76 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
77 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
78 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
79 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
80 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
81 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
82 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
83
Malli Chilakala2d7edb92005-04-28 19:43:52 -070084static const
85uint16_t e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
86 { 8, 13, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43,
87 22, 24, 27, 30, 32, 35, 37, 40, 42, 44, 47, 49, 51, 54, 56, 58,
88 32, 35, 38, 41, 44, 47, 50, 53, 55, 58, 61, 63, 66, 69, 71, 74,
89 43, 47, 51, 54, 58, 61, 64, 67, 71, 74, 77, 80, 82, 85, 88, 90,
90 57, 62, 66, 70, 74, 77, 81, 85, 88, 91, 94, 97, 100, 103, 106, 108,
91 73, 78, 82, 87, 91, 95, 98, 102, 105, 109, 112, 114, 117, 119, 122, 124,
92 91, 96, 101, 105, 109, 113, 116, 119, 122, 125, 127, 128, 128, 128, 128, 128,
93 108, 113, 117, 121, 124, 127, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128};
94
Linus Torvalds1da177e2005-04-16 15:20:36 -070095
96/******************************************************************************
97 * Set the phy type member in the hw struct.
98 *
99 * hw - Struct containing variables accessed by shared code
100 *****************************************************************************/
101int32_t
102e1000_set_phy_type(struct e1000_hw *hw)
103{
104 DEBUGFUNC("e1000_set_phy_type");
105
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700106 if(hw->mac_type == e1000_undefined)
107 return -E1000_ERR_PHY_TYPE;
108
Linus Torvalds1da177e2005-04-16 15:20:36 -0700109 switch(hw->phy_id) {
110 case M88E1000_E_PHY_ID:
111 case M88E1000_I_PHY_ID:
112 case M88E1011_I_PHY_ID:
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700113 case M88E1111_I_PHY_ID:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700114 hw->phy_type = e1000_phy_m88;
115 break;
116 case IGP01E1000_I_PHY_ID:
117 if(hw->mac_type == e1000_82541 ||
118 hw->mac_type == e1000_82541_rev_2 ||
119 hw->mac_type == e1000_82547 ||
120 hw->mac_type == e1000_82547_rev_2) {
121 hw->phy_type = e1000_phy_igp;
122 break;
123 }
124 /* Fall Through */
125 default:
126 /* Should never have loaded on this device */
127 hw->phy_type = e1000_phy_undefined;
128 return -E1000_ERR_PHY_TYPE;
129 }
130
131 return E1000_SUCCESS;
132}
133
134/******************************************************************************
135 * IGP phy init script - initializes the GbE PHY
136 *
137 * hw - Struct containing variables accessed by shared code
138 *****************************************************************************/
139static void
140e1000_phy_init_script(struct e1000_hw *hw)
141{
142 uint32_t ret_val;
143 uint16_t phy_saved_data;
144
145 DEBUGFUNC("e1000_phy_init_script");
146
147
148 if(hw->phy_init_script) {
149 msec_delay(20);
150
151 /* Save off the current value of register 0x2F5B to be restored at
152 * the end of this routine. */
153 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
154
155 /* Disabled the PHY transmitter */
156 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
157
158 msec_delay(20);
159
160 e1000_write_phy_reg(hw,0x0000,0x0140);
161
162 msec_delay(5);
163
164 switch(hw->mac_type) {
165 case e1000_82541:
166 case e1000_82547:
167 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
168
169 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
170
171 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
172
173 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
174
175 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
176
177 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
178
179 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
180
181 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
182
183 e1000_write_phy_reg(hw, 0x2010, 0x0008);
184 break;
185
186 case e1000_82541_rev_2:
187 case e1000_82547_rev_2:
188 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
189 break;
190 default:
191 break;
192 }
193
194 e1000_write_phy_reg(hw, 0x0000, 0x3300);
195
196 msec_delay(20);
197
198 /* Now enable the transmitter */
199 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
200
201 if(hw->mac_type == e1000_82547) {
202 uint16_t fused, fine, coarse;
203
204 /* Move to analog registers page */
205 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
206
207 if(!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
208 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
209
210 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
211 coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
212
213 if(coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
214 coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
215 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
216 } else if(coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
217 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
218
219 fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
220 (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
221 (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
222
223 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
224 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
225 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
226 }
227 }
228 }
229}
230
231/******************************************************************************
232 * Set the mac type member in the hw struct.
233 *
234 * hw - Struct containing variables accessed by shared code
235 *****************************************************************************/
236int32_t
237e1000_set_mac_type(struct e1000_hw *hw)
238{
239 DEBUGFUNC("e1000_set_mac_type");
240
241 switch (hw->device_id) {
242 case E1000_DEV_ID_82542:
243 switch (hw->revision_id) {
244 case E1000_82542_2_0_REV_ID:
245 hw->mac_type = e1000_82542_rev2_0;
246 break;
247 case E1000_82542_2_1_REV_ID:
248 hw->mac_type = e1000_82542_rev2_1;
249 break;
250 default:
251 /* Invalid 82542 revision ID */
252 return -E1000_ERR_MAC_TYPE;
253 }
254 break;
255 case E1000_DEV_ID_82543GC_FIBER:
256 case E1000_DEV_ID_82543GC_COPPER:
257 hw->mac_type = e1000_82543;
258 break;
259 case E1000_DEV_ID_82544EI_COPPER:
260 case E1000_DEV_ID_82544EI_FIBER:
261 case E1000_DEV_ID_82544GC_COPPER:
262 case E1000_DEV_ID_82544GC_LOM:
263 hw->mac_type = e1000_82544;
264 break;
265 case E1000_DEV_ID_82540EM:
266 case E1000_DEV_ID_82540EM_LOM:
267 case E1000_DEV_ID_82540EP:
268 case E1000_DEV_ID_82540EP_LOM:
269 case E1000_DEV_ID_82540EP_LP:
270 hw->mac_type = e1000_82540;
271 break;
272 case E1000_DEV_ID_82545EM_COPPER:
273 case E1000_DEV_ID_82545EM_FIBER:
274 hw->mac_type = e1000_82545;
275 break;
276 case E1000_DEV_ID_82545GM_COPPER:
277 case E1000_DEV_ID_82545GM_FIBER:
278 case E1000_DEV_ID_82545GM_SERDES:
279 hw->mac_type = e1000_82545_rev_3;
280 break;
281 case E1000_DEV_ID_82546EB_COPPER:
282 case E1000_DEV_ID_82546EB_FIBER:
283 case E1000_DEV_ID_82546EB_QUAD_COPPER:
284 hw->mac_type = e1000_82546;
285 break;
286 case E1000_DEV_ID_82546GB_COPPER:
287 case E1000_DEV_ID_82546GB_FIBER:
288 case E1000_DEV_ID_82546GB_SERDES:
289 case E1000_DEV_ID_82546GB_PCIE:
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700290 case E1000_DEV_ID_82546GB_QUAD_COPPER:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700291 hw->mac_type = e1000_82546_rev_3;
292 break;
293 case E1000_DEV_ID_82541EI:
294 case E1000_DEV_ID_82541EI_MOBILE:
295 hw->mac_type = e1000_82541;
296 break;
297 case E1000_DEV_ID_82541ER:
298 case E1000_DEV_ID_82541GI:
299 case E1000_DEV_ID_82541GI_LF:
300 case E1000_DEV_ID_82541GI_MOBILE:
301 hw->mac_type = e1000_82541_rev_2;
302 break;
303 case E1000_DEV_ID_82547EI:
304 hw->mac_type = e1000_82547;
305 break;
306 case E1000_DEV_ID_82547GI:
307 hw->mac_type = e1000_82547_rev_2;
308 break;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700309 case E1000_DEV_ID_82573E:
310 case E1000_DEV_ID_82573E_IAMT:
311 hw->mac_type = e1000_82573;
312 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700313 default:
314 /* Should never have loaded on this device */
315 return -E1000_ERR_MAC_TYPE;
316 }
317
318 switch(hw->mac_type) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700319 case e1000_82573:
320 hw->eeprom_semaphore_present = TRUE;
321 /* fall through */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700322 case e1000_82541:
323 case e1000_82547:
324 case e1000_82541_rev_2:
325 case e1000_82547_rev_2:
326 hw->asf_firmware_present = TRUE;
327 break;
328 default:
329 break;
330 }
331
332 return E1000_SUCCESS;
333}
334
335/*****************************************************************************
336 * Set media type and TBI compatibility.
337 *
338 * hw - Struct containing variables accessed by shared code
339 * **************************************************************************/
340void
341e1000_set_media_type(struct e1000_hw *hw)
342{
343 uint32_t status;
344
345 DEBUGFUNC("e1000_set_media_type");
346
347 if(hw->mac_type != e1000_82543) {
348 /* tbi_compatibility is only valid on 82543 */
349 hw->tbi_compatibility_en = FALSE;
350 }
351
352 switch (hw->device_id) {
353 case E1000_DEV_ID_82545GM_SERDES:
354 case E1000_DEV_ID_82546GB_SERDES:
355 hw->media_type = e1000_media_type_internal_serdes;
356 break;
357 default:
358 if(hw->mac_type >= e1000_82543) {
359 status = E1000_READ_REG(hw, STATUS);
360 if(status & E1000_STATUS_TBIMODE) {
361 hw->media_type = e1000_media_type_fiber;
362 /* tbi_compatibility not valid on fiber */
363 hw->tbi_compatibility_en = FALSE;
364 } else {
365 hw->media_type = e1000_media_type_copper;
366 }
367 } else {
368 /* This is an 82542 (fiber only) */
369 hw->media_type = e1000_media_type_fiber;
370 }
371 }
372}
373
374/******************************************************************************
375 * Reset the transmit and receive units; mask and clear all interrupts.
376 *
377 * hw - Struct containing variables accessed by shared code
378 *****************************************************************************/
379int32_t
380e1000_reset_hw(struct e1000_hw *hw)
381{
382 uint32_t ctrl;
383 uint32_t ctrl_ext;
384 uint32_t icr;
385 uint32_t manc;
386 uint32_t led_ctrl;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700387 uint32_t timeout;
388 uint32_t extcnf_ctrl;
389 int32_t ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700390
391 DEBUGFUNC("e1000_reset_hw");
392
393 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
394 if(hw->mac_type == e1000_82542_rev2_0) {
395 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
396 e1000_pci_clear_mwi(hw);
397 }
398
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700399 if(hw->bus_type == e1000_bus_type_pci_express) {
400 /* Prevent the PCI-E bus from sticking if there is no TLP connection
401 * on the last TLP read/write transaction when MAC is reset.
402 */
403 if(e1000_disable_pciex_master(hw) != E1000_SUCCESS) {
404 DEBUGOUT("PCI-E Master disable polling has failed.\n");
405 }
406 }
407
Linus Torvalds1da177e2005-04-16 15:20:36 -0700408 /* Clear interrupt mask to stop board from generating interrupts */
409 DEBUGOUT("Masking off all interrupts\n");
410 E1000_WRITE_REG(hw, IMC, 0xffffffff);
411
412 /* Disable the Transmit and Receive units. Then delay to allow
413 * any pending transactions to complete before we hit the MAC with
414 * the global reset.
415 */
416 E1000_WRITE_REG(hw, RCTL, 0);
417 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
418 E1000_WRITE_FLUSH(hw);
419
420 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
421 hw->tbi_compatibility_on = FALSE;
422
423 /* Delay to allow any outstanding PCI transactions to complete before
424 * resetting the device
425 */
426 msec_delay(10);
427
428 ctrl = E1000_READ_REG(hw, CTRL);
429
430 /* Must reset the PHY before resetting the MAC */
431 if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700432 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700433 msec_delay(5);
434 }
435
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700436 /* Must acquire the MDIO ownership before MAC reset.
437 * Ownership defaults to firmware after a reset. */
438 if(hw->mac_type == e1000_82573) {
439 timeout = 10;
440
441 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
442 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
443
444 do {
445 E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
446 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
447
448 if(extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
449 break;
450 else
451 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
452
453 msec_delay(2);
454 timeout--;
455 } while(timeout);
456 }
457
Linus Torvalds1da177e2005-04-16 15:20:36 -0700458 /* Issue a global reset to the MAC. This will reset the chip's
459 * transmit, receive, DMA, and link units. It will not effect
460 * the current PCI configuration. The global reset bit is self-
461 * clearing, and should clear within a microsecond.
462 */
463 DEBUGOUT("Issuing a global reset to MAC\n");
464
465 switch(hw->mac_type) {
466 case e1000_82544:
467 case e1000_82540:
468 case e1000_82545:
469 case e1000_82546:
470 case e1000_82541:
471 case e1000_82541_rev_2:
472 /* These controllers can't ack the 64-bit write when issuing the
473 * reset, so use IO-mapping as a workaround to issue the reset */
474 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
475 break;
476 case e1000_82545_rev_3:
477 case e1000_82546_rev_3:
478 /* Reset is performed on a shadow of the control register */
479 E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
480 break;
481 default:
482 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
483 break;
484 }
485
486 /* After MAC reset, force reload of EEPROM to restore power-on settings to
487 * device. Later controllers reload the EEPROM automatically, so just wait
488 * for reload to complete.
489 */
490 switch(hw->mac_type) {
491 case e1000_82542_rev2_0:
492 case e1000_82542_rev2_1:
493 case e1000_82543:
494 case e1000_82544:
495 /* Wait for reset to complete */
496 udelay(10);
497 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
498 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
499 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
500 E1000_WRITE_FLUSH(hw);
501 /* Wait for EEPROM reload */
502 msec_delay(2);
503 break;
504 case e1000_82541:
505 case e1000_82541_rev_2:
506 case e1000_82547:
507 case e1000_82547_rev_2:
508 /* Wait for EEPROM reload */
509 msec_delay(20);
510 break;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700511 case e1000_82573:
512 udelay(10);
513 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
514 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
515 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
516 E1000_WRITE_FLUSH(hw);
517 /* fall through */
518 ret_val = e1000_get_auto_rd_done(hw);
519 if(ret_val)
520 /* We don't want to continue accessing MAC registers. */
521 return ret_val;
522 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700523 default:
524 /* Wait for EEPROM reload (it happens automatically) */
525 msec_delay(5);
526 break;
527 }
528
529 /* Disable HW ARPs on ASF enabled adapters */
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700530 if(hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700531 manc = E1000_READ_REG(hw, MANC);
532 manc &= ~(E1000_MANC_ARP_EN);
533 E1000_WRITE_REG(hw, MANC, manc);
534 }
535
536 if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
537 e1000_phy_init_script(hw);
538
539 /* Configure activity LED after PHY reset */
540 led_ctrl = E1000_READ_REG(hw, LEDCTL);
541 led_ctrl &= IGP_ACTIVITY_LED_MASK;
542 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
543 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
544 }
545
546 /* Clear interrupt mask to stop board from generating interrupts */
547 DEBUGOUT("Masking off all interrupts\n");
548 E1000_WRITE_REG(hw, IMC, 0xffffffff);
549
550 /* Clear any pending interrupt events. */
551 icr = E1000_READ_REG(hw, ICR);
552
553 /* If MWI was previously enabled, reenable it. */
554 if(hw->mac_type == e1000_82542_rev2_0) {
555 if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
556 e1000_pci_set_mwi(hw);
557 }
558
559 return E1000_SUCCESS;
560}
561
562/******************************************************************************
563 * Performs basic configuration of the adapter.
564 *
565 * hw - Struct containing variables accessed by shared code
566 *
567 * Assumes that the controller has previously been reset and is in a
568 * post-reset uninitialized state. Initializes the receive address registers,
569 * multicast table, and VLAN filter table. Calls routines to setup link
570 * configuration and flow control settings. Clears all on-chip counters. Leaves
571 * the transmit and receive units disabled and uninitialized.
572 *****************************************************************************/
573int32_t
574e1000_init_hw(struct e1000_hw *hw)
575{
576 uint32_t ctrl;
577 uint32_t i;
578 int32_t ret_val;
579 uint16_t pcix_cmd_word;
580 uint16_t pcix_stat_hi_word;
581 uint16_t cmd_mmrbc;
582 uint16_t stat_mmrbc;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700583 uint32_t mta_size;
584
Linus Torvalds1da177e2005-04-16 15:20:36 -0700585 DEBUGFUNC("e1000_init_hw");
586
587 /* Initialize Identification LED */
588 ret_val = e1000_id_led_init(hw);
589 if(ret_val) {
590 DEBUGOUT("Error Initializing Identification LED\n");
591 return ret_val;
592 }
593
594 /* Set the media type and TBI compatibility */
595 e1000_set_media_type(hw);
596
597 /* Disabling VLAN filtering. */
598 DEBUGOUT("Initializing the IEEE VLAN\n");
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700599 if (hw->mac_type < e1000_82545_rev_3)
600 E1000_WRITE_REG(hw, VET, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700601 e1000_clear_vfta(hw);
602
603 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
604 if(hw->mac_type == e1000_82542_rev2_0) {
605 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
606 e1000_pci_clear_mwi(hw);
607 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
608 E1000_WRITE_FLUSH(hw);
609 msec_delay(5);
610 }
611
612 /* Setup the receive address. This involves initializing all of the Receive
613 * Address Registers (RARs 0 - 15).
614 */
615 e1000_init_rx_addrs(hw);
616
617 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
618 if(hw->mac_type == e1000_82542_rev2_0) {
619 E1000_WRITE_REG(hw, RCTL, 0);
620 E1000_WRITE_FLUSH(hw);
621 msec_delay(1);
622 if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
623 e1000_pci_set_mwi(hw);
624 }
625
626 /* Zero out the Multicast HASH table */
627 DEBUGOUT("Zeroing the MTA\n");
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700628 mta_size = E1000_MC_TBL_SIZE;
629 for(i = 0; i < mta_size; i++)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700630 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
631
632 /* Set the PCI priority bit correctly in the CTRL register. This
633 * determines if the adapter gives priority to receives, or if it
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700634 * gives equal priority to transmits and receives. Valid only on
635 * 82542 and 82543 silicon.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700636 */
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700637 if(hw->dma_fairness && hw->mac_type <= e1000_82543) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700638 ctrl = E1000_READ_REG(hw, CTRL);
639 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
640 }
641
642 switch(hw->mac_type) {
643 case e1000_82545_rev_3:
644 case e1000_82546_rev_3:
645 break;
646 default:
647 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
648 if(hw->bus_type == e1000_bus_type_pcix) {
649 e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
650 e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI,
651 &pcix_stat_hi_word);
652 cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
653 PCIX_COMMAND_MMRBC_SHIFT;
654 stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
655 PCIX_STATUS_HI_MMRBC_SHIFT;
656 if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
657 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
658 if(cmd_mmrbc > stat_mmrbc) {
659 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
660 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
661 e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER,
662 &pcix_cmd_word);
663 }
664 }
665 break;
666 }
667
668 /* Call a subroutine to configure the link and setup flow control. */
669 ret_val = e1000_setup_link(hw);
670
671 /* Set the transmit descriptor write-back policy */
672 if(hw->mac_type > e1000_82544) {
673 ctrl = E1000_READ_REG(hw, TXDCTL);
674 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700675 switch (hw->mac_type) {
676 default:
677 break;
678 case e1000_82573:
679 ctrl |= E1000_TXDCTL_COUNT_DESC;
680 break;
681 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700682 E1000_WRITE_REG(hw, TXDCTL, ctrl);
683 }
684
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700685 if (hw->mac_type == e1000_82573) {
686 e1000_enable_tx_pkt_filtering(hw);
687 }
688
689
Linus Torvalds1da177e2005-04-16 15:20:36 -0700690 /* Clear all of the statistics registers (clear on read). It is
691 * important that we do this after we have tried to establish link
692 * because the symbol error count will increment wildly if there
693 * is no link.
694 */
695 e1000_clear_hw_cntrs(hw);
696
697 return ret_val;
698}
699
700/******************************************************************************
701 * Adjust SERDES output amplitude based on EEPROM setting.
702 *
703 * hw - Struct containing variables accessed by shared code.
704 *****************************************************************************/
705static int32_t
706e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
707{
708 uint16_t eeprom_data;
709 int32_t ret_val;
710
711 DEBUGFUNC("e1000_adjust_serdes_amplitude");
712
713 if(hw->media_type != e1000_media_type_internal_serdes)
714 return E1000_SUCCESS;
715
716 switch(hw->mac_type) {
717 case e1000_82545_rev_3:
718 case e1000_82546_rev_3:
719 break;
720 default:
721 return E1000_SUCCESS;
722 }
723
724 ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
725 if (ret_val) {
726 return ret_val;
727 }
728
729 if(eeprom_data != EEPROM_RESERVED_WORD) {
730 /* Adjust SERDES output amplitude only. */
731 eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
732 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
733 if(ret_val)
734 return ret_val;
735 }
736
737 return E1000_SUCCESS;
738}
739
740/******************************************************************************
741 * Configures flow control and link settings.
742 *
743 * hw - Struct containing variables accessed by shared code
744 *
745 * Determines which flow control settings to use. Calls the apropriate media-
746 * specific link configuration function. Configures the flow control settings.
747 * Assuming the adapter has a valid link partner, a valid link should be
748 * established. Assumes the hardware has previously been reset and the
749 * transmitter and receiver are not enabled.
750 *****************************************************************************/
751int32_t
752e1000_setup_link(struct e1000_hw *hw)
753{
754 uint32_t ctrl_ext;
755 int32_t ret_val;
756 uint16_t eeprom_data;
757
758 DEBUGFUNC("e1000_setup_link");
759
760 /* Read and store word 0x0F of the EEPROM. This word contains bits
761 * that determine the hardware's default PAUSE (flow control) mode,
762 * a bit that determines whether the HW defaults to enabling or
763 * disabling auto-negotiation, and the direction of the
764 * SW defined pins. If there is no SW over-ride of the flow
765 * control setting, then the variable hw->fc will
766 * be initialized based on a value in the EEPROM.
767 */
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700768 if(e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700769 DEBUGOUT("EEPROM Read Error\n");
770 return -E1000_ERR_EEPROM;
771 }
772
773 if(hw->fc == e1000_fc_default) {
774 if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
775 hw->fc = e1000_fc_none;
776 else if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
777 EEPROM_WORD0F_ASM_DIR)
778 hw->fc = e1000_fc_tx_pause;
779 else
780 hw->fc = e1000_fc_full;
781 }
782
783 /* We want to save off the original Flow Control configuration just
784 * in case we get disconnected and then reconnected into a different
785 * hub or switch with different Flow Control capabilities.
786 */
787 if(hw->mac_type == e1000_82542_rev2_0)
788 hw->fc &= (~e1000_fc_tx_pause);
789
790 if((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
791 hw->fc &= (~e1000_fc_rx_pause);
792
793 hw->original_fc = hw->fc;
794
795 DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
796
797 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
798 * polarity value for the SW controlled pins, and setup the
799 * Extended Device Control reg with that info.
800 * This is needed because one of the SW controlled pins is used for
801 * signal detection. So this should be done before e1000_setup_pcs_link()
802 * or e1000_phy_setup() is called.
803 */
804 if(hw->mac_type == e1000_82543) {
805 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
806 SWDPIO__EXT_SHIFT);
807 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
808 }
809
810 /* Call the necessary subroutine to configure the link. */
811 ret_val = (hw->media_type == e1000_media_type_copper) ?
812 e1000_setup_copper_link(hw) :
813 e1000_setup_fiber_serdes_link(hw);
814
815 /* Initialize the flow control address, type, and PAUSE timer
816 * registers to their default values. This is done even if flow
817 * control is disabled, because it does not hurt anything to
818 * initialize these registers.
819 */
820 DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
821
822 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
823 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
824 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700825
Linus Torvalds1da177e2005-04-16 15:20:36 -0700826 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
827
828 /* Set the flow control receive threshold registers. Normally,
829 * these registers will be set to a default threshold that may be
830 * adjusted later by the driver's runtime code. However, if the
831 * ability to transmit pause frames in not enabled, then these
832 * registers will be set to 0.
833 */
834 if(!(hw->fc & e1000_fc_tx_pause)) {
835 E1000_WRITE_REG(hw, FCRTL, 0);
836 E1000_WRITE_REG(hw, FCRTH, 0);
837 } else {
838 /* We need to set up the Receive Threshold high and low water marks
839 * as well as (optionally) enabling the transmission of XON frames.
840 */
841 if(hw->fc_send_xon) {
842 E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
843 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
844 } else {
845 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
846 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
847 }
848 }
849 return ret_val;
850}
851
852/******************************************************************************
853 * Sets up link for a fiber based or serdes based adapter
854 *
855 * hw - Struct containing variables accessed by shared code
856 *
857 * Manipulates Physical Coding Sublayer functions in order to configure
858 * link. Assumes the hardware has been previously reset and the transmitter
859 * and receiver are not enabled.
860 *****************************************************************************/
861static int32_t
862e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
863{
864 uint32_t ctrl;
865 uint32_t status;
866 uint32_t txcw = 0;
867 uint32_t i;
868 uint32_t signal = 0;
869 int32_t ret_val;
870
871 DEBUGFUNC("e1000_setup_fiber_serdes_link");
872
873 /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
874 * set when the optics detect a signal. On older adapters, it will be
875 * cleared when there is a signal. This applies to fiber media only.
876 * If we're on serdes media, adjust the output amplitude to value set in
877 * the EEPROM.
878 */
879 ctrl = E1000_READ_REG(hw, CTRL);
880 if(hw->media_type == e1000_media_type_fiber)
881 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
882
883 ret_val = e1000_adjust_serdes_amplitude(hw);
884 if(ret_val)
885 return ret_val;
886
887 /* Take the link out of reset */
888 ctrl &= ~(E1000_CTRL_LRST);
889
890 /* Adjust VCO speed to improve BER performance */
891 ret_val = e1000_set_vco_speed(hw);
892 if(ret_val)
893 return ret_val;
894
895 e1000_config_collision_dist(hw);
896
897 /* Check for a software override of the flow control settings, and setup
898 * the device accordingly. If auto-negotiation is enabled, then software
899 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
900 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
901 * auto-negotiation is disabled, then software will have to manually
902 * configure the two flow control enable bits in the CTRL register.
903 *
904 * The possible values of the "fc" parameter are:
905 * 0: Flow control is completely disabled
906 * 1: Rx flow control is enabled (we can receive pause frames, but
907 * not send pause frames).
908 * 2: Tx flow control is enabled (we can send pause frames but we do
909 * not support receiving pause frames).
910 * 3: Both Rx and TX flow control (symmetric) are enabled.
911 */
912 switch (hw->fc) {
913 case e1000_fc_none:
914 /* Flow control is completely disabled by a software over-ride. */
915 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
916 break;
917 case e1000_fc_rx_pause:
918 /* RX Flow control is enabled and TX Flow control is disabled by a
919 * software over-ride. Since there really isn't a way to advertise
920 * that we are capable of RX Pause ONLY, we will advertise that we
921 * support both symmetric and asymmetric RX PAUSE. Later, we will
922 * disable the adapter's ability to send PAUSE frames.
923 */
924 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
925 break;
926 case e1000_fc_tx_pause:
927 /* TX Flow control is enabled, and RX Flow control is disabled, by a
928 * software over-ride.
929 */
930 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
931 break;
932 case e1000_fc_full:
933 /* Flow control (both RX and TX) is enabled by a software over-ride. */
934 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
935 break;
936 default:
937 DEBUGOUT("Flow control param set incorrectly\n");
938 return -E1000_ERR_CONFIG;
939 break;
940 }
941
942 /* Since auto-negotiation is enabled, take the link out of reset (the link
943 * will be in reset, because we previously reset the chip). This will
944 * restart auto-negotiation. If auto-neogtiation is successful then the
945 * link-up status bit will be set and the flow control enable bits (RFCE
946 * and TFCE) will be set according to their negotiated value.
947 */
948 DEBUGOUT("Auto-negotiation enabled\n");
949
950 E1000_WRITE_REG(hw, TXCW, txcw);
951 E1000_WRITE_REG(hw, CTRL, ctrl);
952 E1000_WRITE_FLUSH(hw);
953
954 hw->txcw = txcw;
955 msec_delay(1);
956
957 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
958 * indication in the Device Status Register. Time-out if a link isn't
959 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
960 * less than 500 milliseconds even if the other end is doing it in SW).
961 * For internal serdes, we just assume a signal is present, then poll.
962 */
963 if(hw->media_type == e1000_media_type_internal_serdes ||
964 (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
965 DEBUGOUT("Looking for Link\n");
966 for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
967 msec_delay(10);
968 status = E1000_READ_REG(hw, STATUS);
969 if(status & E1000_STATUS_LU) break;
970 }
971 if(i == (LINK_UP_TIMEOUT / 10)) {
972 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
973 hw->autoneg_failed = 1;
974 /* AutoNeg failed to achieve a link, so we'll call
975 * e1000_check_for_link. This routine will force the link up if
976 * we detect a signal. This will allow us to communicate with
977 * non-autonegotiating link partners.
978 */
979 ret_val = e1000_check_for_link(hw);
980 if(ret_val) {
981 DEBUGOUT("Error while checking for link\n");
982 return ret_val;
983 }
984 hw->autoneg_failed = 0;
985 } else {
986 hw->autoneg_failed = 0;
987 DEBUGOUT("Valid Link Found\n");
988 }
989 } else {
990 DEBUGOUT("No Signal Detected\n");
991 }
992 return E1000_SUCCESS;
993}
994
995/******************************************************************************
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700996* Make sure we have a valid PHY and change PHY mode before link setup.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700997*
998* hw - Struct containing variables accessed by shared code
999******************************************************************************/
1000static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001001e1000_copper_link_preconfig(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001002{
1003 uint32_t ctrl;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001004 int32_t ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001005 uint16_t phy_data;
1006
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001007 DEBUGFUNC("e1000_copper_link_preconfig");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001008
1009 ctrl = E1000_READ_REG(hw, CTRL);
1010 /* With 82543, we need to force speed and duplex on the MAC equal to what
1011 * the PHY speed and duplex configuration is. In addition, we need to
1012 * perform a hardware reset on the PHY to take it out of reset.
1013 */
1014 if(hw->mac_type > e1000_82543) {
1015 ctrl |= E1000_CTRL_SLU;
1016 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1017 E1000_WRITE_REG(hw, CTRL, ctrl);
1018 } else {
1019 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1020 E1000_WRITE_REG(hw, CTRL, ctrl);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001021 ret_val = e1000_phy_hw_reset(hw);
1022 if(ret_val)
1023 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001024 }
1025
1026 /* Make sure we have a valid PHY */
1027 ret_val = e1000_detect_gig_phy(hw);
1028 if(ret_val) {
1029 DEBUGOUT("Error, did not detect valid phy.\n");
1030 return ret_val;
1031 }
1032 DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
1033
1034 /* Set PHY to class A mode (if necessary) */
1035 ret_val = e1000_set_phy_mode(hw);
1036 if(ret_val)
1037 return ret_val;
1038
1039 if((hw->mac_type == e1000_82545_rev_3) ||
1040 (hw->mac_type == e1000_82546_rev_3)) {
1041 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1042 phy_data |= 0x00000008;
1043 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1044 }
1045
1046 if(hw->mac_type <= e1000_82543 ||
1047 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1048 hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
1049 hw->phy_reset_disable = FALSE;
1050
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001051 return E1000_SUCCESS;
1052}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001053
Linus Torvalds1da177e2005-04-16 15:20:36 -07001054
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001055/********************************************************************
1056* Copper link setup for e1000_phy_igp series.
1057*
1058* hw - Struct containing variables accessed by shared code
1059*********************************************************************/
1060static int32_t
1061e1000_copper_link_igp_setup(struct e1000_hw *hw)
1062{
1063 uint32_t led_ctrl;
1064 int32_t ret_val;
1065 uint16_t phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001066
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001067 DEBUGFUNC("e1000_copper_link_igp_setup");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001068
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001069 if (hw->phy_reset_disable)
1070 return E1000_SUCCESS;
1071
1072 ret_val = e1000_phy_reset(hw);
1073 if (ret_val) {
1074 DEBUGOUT("Error Resetting the PHY\n");
1075 return ret_val;
1076 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001077
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001078 /* Wait 10ms for MAC to configure PHY from eeprom settings */
1079 msec_delay(15);
1080
1081 /* Configure activity LED after PHY reset */
1082 led_ctrl = E1000_READ_REG(hw, LEDCTL);
1083 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1084 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1085 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
1086
1087 /* disable lplu d3 during driver init */
1088 ret_val = e1000_set_d3_lplu_state(hw, FALSE);
1089 if (ret_val) {
1090 DEBUGOUT("Error Disabling LPLU D3\n");
1091 return ret_val;
1092 }
1093
1094 /* disable lplu d0 during driver init */
1095 ret_val = e1000_set_d0_lplu_state(hw, FALSE);
1096 if (ret_val) {
1097 DEBUGOUT("Error Disabling LPLU D0\n");
1098 return ret_val;
1099 }
1100 /* Configure mdi-mdix settings */
1101 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1102 if (ret_val)
1103 return ret_val;
1104
1105 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1106 hw->dsp_config_state = e1000_dsp_config_disabled;
1107 /* Force MDI for earlier revs of the IGP PHY */
1108 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
1109 hw->mdix = 1;
1110
1111 } else {
1112 hw->dsp_config_state = e1000_dsp_config_enabled;
1113 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1114
1115 switch (hw->mdix) {
1116 case 1:
1117 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1118 break;
1119 case 2:
1120 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1121 break;
1122 case 0:
1123 default:
1124 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1125 break;
1126 }
1127 }
1128 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1129 if(ret_val)
1130 return ret_val;
1131
1132 /* set auto-master slave resolution settings */
1133 if(hw->autoneg) {
1134 e1000_ms_type phy_ms_setting = hw->master_slave;
1135
1136 if(hw->ffe_config_state == e1000_ffe_config_active)
1137 hw->ffe_config_state = e1000_ffe_config_enabled;
1138
1139 if(hw->dsp_config_state == e1000_dsp_config_activated)
1140 hw->dsp_config_state = e1000_dsp_config_enabled;
1141
1142 /* when autonegotiation advertisment is only 1000Mbps then we
1143 * should disable SmartSpeed and enable Auto MasterSlave
1144 * resolution as hardware default. */
1145 if(hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1146 /* Disable SmartSpeed */
1147 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001148 if(ret_val)
1149 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001150 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1151 ret_val = e1000_write_phy_reg(hw,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001152 IGP01E1000_PHY_PORT_CONFIG,
1153 phy_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001154 if(ret_val)
1155 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001156 /* Set auto Master/Slave resolution process */
1157 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1158 if(ret_val)
1159 return ret_val;
1160 phy_data &= ~CR_1000T_MS_ENABLE;
1161 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1162 if(ret_val)
1163 return ret_val;
1164 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001165
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001166 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1167 if(ret_val)
1168 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001169
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001170 /* load defaults for future use */
1171 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1172 ((phy_data & CR_1000T_MS_VALUE) ?
1173 e1000_ms_force_master :
1174 e1000_ms_force_slave) :
1175 e1000_ms_auto;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001176
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001177 switch (phy_ms_setting) {
1178 case e1000_ms_force_master:
1179 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1180 break;
1181 case e1000_ms_force_slave:
1182 phy_data |= CR_1000T_MS_ENABLE;
1183 phy_data &= ~(CR_1000T_MS_VALUE);
1184 break;
1185 case e1000_ms_auto:
1186 phy_data &= ~CR_1000T_MS_ENABLE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001187 default:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001188 break;
1189 }
1190 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1191 if(ret_val)
1192 return ret_val;
1193 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001194
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001195 return E1000_SUCCESS;
1196}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001197
Linus Torvalds1da177e2005-04-16 15:20:36 -07001198
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001199/********************************************************************
1200* Copper link setup for e1000_phy_m88 series.
1201*
1202* hw - Struct containing variables accessed by shared code
1203*********************************************************************/
1204static int32_t
1205e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1206{
1207 int32_t ret_val;
1208 uint16_t phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001209
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001210 DEBUGFUNC("e1000_copper_link_mgp_setup");
1211
1212 if(hw->phy_reset_disable)
1213 return E1000_SUCCESS;
1214
1215 /* Enable CRS on TX. This must be set for half-duplex operation. */
1216 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1217 if(ret_val)
1218 return ret_val;
1219
1220 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1221
1222 /* Options:
1223 * MDI/MDI-X = 0 (default)
1224 * 0 - Auto for all speeds
1225 * 1 - MDI mode
1226 * 2 - MDI-X mode
1227 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1228 */
1229 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1230
1231 switch (hw->mdix) {
1232 case 1:
1233 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1234 break;
1235 case 2:
1236 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1237 break;
1238 case 3:
1239 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1240 break;
1241 case 0:
1242 default:
1243 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1244 break;
1245 }
1246
1247 /* Options:
1248 * disable_polarity_correction = 0 (default)
1249 * Automatic Correction for Reversed Cable Polarity
1250 * 0 - Disabled
1251 * 1 - Enabled
1252 */
1253 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1254 if(hw->disable_polarity_correction == 1)
1255 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1256 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1257 if(ret_val)
1258 return ret_val;
1259
1260 /* Force TX_CLK in the Extended PHY Specific Control Register
1261 * to 25MHz clock.
1262 */
1263 ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1264 if(ret_val)
1265 return ret_val;
1266
1267 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1268
1269 if (hw->phy_revision < M88E1011_I_REV_4) {
1270 /* Configure Master and Slave downshift values */
1271 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
Linus Torvalds1da177e2005-04-16 15:20:36 -07001272 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001273 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
Linus Torvalds1da177e2005-04-16 15:20:36 -07001274 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001275 ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1276 if(ret_val)
1277 return ret_val;
1278 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001279
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001280 /* SW Reset the PHY so all changes take effect */
1281 ret_val = e1000_phy_reset(hw);
1282 if(ret_val) {
1283 DEBUGOUT("Error Resetting the PHY\n");
1284 return ret_val;
1285 }
1286
1287 return E1000_SUCCESS;
1288}
1289
1290/********************************************************************
1291* Setup auto-negotiation and flow control advertisements,
1292* and then perform auto-negotiation.
1293*
1294* hw - Struct containing variables accessed by shared code
1295*********************************************************************/
1296static int32_t
1297e1000_copper_link_autoneg(struct e1000_hw *hw)
1298{
1299 int32_t ret_val;
1300 uint16_t phy_data;
1301
1302 DEBUGFUNC("e1000_copper_link_autoneg");
1303
1304 /* Perform some bounds checking on the hw->autoneg_advertised
1305 * parameter. If this variable is zero, then set it to the default.
1306 */
1307 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1308
1309 /* If autoneg_advertised is zero, we assume it was not defaulted
1310 * by the calling code so we set to advertise full capability.
1311 */
1312 if(hw->autoneg_advertised == 0)
1313 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1314
1315 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1316 ret_val = e1000_phy_setup_autoneg(hw);
1317 if(ret_val) {
1318 DEBUGOUT("Error Setting up Auto-Negotiation\n");
1319 return ret_val;
1320 }
1321 DEBUGOUT("Restarting Auto-Neg\n");
1322
1323 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1324 * the Auto Neg Restart bit in the PHY control register.
1325 */
1326 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1327 if(ret_val)
1328 return ret_val;
1329
1330 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1331 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1332 if(ret_val)
1333 return ret_val;
1334
1335 /* Does the user want to wait for Auto-Neg to complete here, or
1336 * check at a later time (for example, callback routine).
1337 */
1338 if(hw->wait_autoneg_complete) {
1339 ret_val = e1000_wait_autoneg(hw);
1340 if(ret_val) {
1341 DEBUGOUT("Error while waiting for autoneg to complete\n");
1342 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001343 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001344 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001345
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001346 hw->get_link_status = TRUE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001347
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001348 return E1000_SUCCESS;
1349}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001350
Linus Torvalds1da177e2005-04-16 15:20:36 -07001351
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001352/******************************************************************************
1353* Config the MAC and the PHY after link is up.
1354* 1) Set up the MAC to the current PHY speed/duplex
1355* if we are on 82543. If we
1356* are on newer silicon, we only need to configure
1357* collision distance in the Transmit Control Register.
1358* 2) Set up flow control on the MAC to that established with
1359* the link partner.
1360* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
1361*
1362* hw - Struct containing variables accessed by shared code
1363******************************************************************************/
1364static int32_t
1365e1000_copper_link_postconfig(struct e1000_hw *hw)
1366{
1367 int32_t ret_val;
1368 DEBUGFUNC("e1000_copper_link_postconfig");
1369
1370 if(hw->mac_type >= e1000_82544) {
1371 e1000_config_collision_dist(hw);
1372 } else {
1373 ret_val = e1000_config_mac_to_phy(hw);
1374 if(ret_val) {
1375 DEBUGOUT("Error configuring MAC to PHY settings\n");
1376 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001377 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001378 }
1379 ret_val = e1000_config_fc_after_link_up(hw);
1380 if(ret_val) {
1381 DEBUGOUT("Error Configuring Flow Control\n");
1382 return ret_val;
1383 }
1384
1385 /* Config DSP to improve Giga link quality */
1386 if(hw->phy_type == e1000_phy_igp) {
1387 ret_val = e1000_config_dsp_after_link_change(hw, TRUE);
1388 if(ret_val) {
1389 DEBUGOUT("Error Configuring DSP after link up\n");
1390 return ret_val;
1391 }
1392 }
1393
1394 return E1000_SUCCESS;
1395}
1396
1397/******************************************************************************
1398* Detects which PHY is present and setup the speed and duplex
1399*
1400* hw - Struct containing variables accessed by shared code
1401******************************************************************************/
1402static int32_t
1403e1000_setup_copper_link(struct e1000_hw *hw)
1404{
1405 int32_t ret_val;
1406 uint16_t i;
1407 uint16_t phy_data;
1408
1409 DEBUGFUNC("e1000_setup_copper_link");
1410
1411 /* Check if it is a valid PHY and set PHY mode if necessary. */
1412 ret_val = e1000_copper_link_preconfig(hw);
1413 if(ret_val)
1414 return ret_val;
1415
1416 if (hw->phy_type == e1000_phy_igp ||
1417 hw->phy_type == e1000_phy_igp_2) {
1418 ret_val = e1000_copper_link_igp_setup(hw);
1419 if(ret_val)
1420 return ret_val;
1421 } else if (hw->phy_type == e1000_phy_m88) {
1422 ret_val = e1000_copper_link_mgp_setup(hw);
1423 if(ret_val)
1424 return ret_val;
1425 }
1426
1427 if(hw->autoneg) {
1428 /* Setup autoneg and flow control advertisement
1429 * and perform autonegotiation */
1430 ret_val = e1000_copper_link_autoneg(hw);
1431 if(ret_val)
1432 return ret_val;
1433 } else {
1434 /* PHY will be set to 10H, 10F, 100H,or 100F
1435 * depending on value from forced_speed_duplex. */
1436 DEBUGOUT("Forcing speed and duplex\n");
1437 ret_val = e1000_phy_force_speed_duplex(hw);
1438 if(ret_val) {
1439 DEBUGOUT("Error Forcing Speed and Duplex\n");
1440 return ret_val;
1441 }
1442 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001443
1444 /* Check link status. Wait up to 100 microseconds for link to become
1445 * valid.
1446 */
1447 for(i = 0; i < 10; i++) {
1448 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1449 if(ret_val)
1450 return ret_val;
1451 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1452 if(ret_val)
1453 return ret_val;
1454
1455 if(phy_data & MII_SR_LINK_STATUS) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001456 /* Config the MAC and PHY after link is up */
1457 ret_val = e1000_copper_link_postconfig(hw);
1458 if(ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001459 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001460
Linus Torvalds1da177e2005-04-16 15:20:36 -07001461 DEBUGOUT("Valid link established!!!\n");
1462 return E1000_SUCCESS;
1463 }
1464 udelay(10);
1465 }
1466
1467 DEBUGOUT("Unable to establish link!!!\n");
1468 return E1000_SUCCESS;
1469}
1470
1471/******************************************************************************
1472* Configures PHY autoneg and flow control advertisement settings
1473*
1474* hw - Struct containing variables accessed by shared code
1475******************************************************************************/
1476int32_t
1477e1000_phy_setup_autoneg(struct e1000_hw *hw)
1478{
1479 int32_t ret_val;
1480 uint16_t mii_autoneg_adv_reg;
1481 uint16_t mii_1000t_ctrl_reg;
1482
1483 DEBUGFUNC("e1000_phy_setup_autoneg");
1484
1485 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
1486 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1487 if(ret_val)
1488 return ret_val;
1489
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001490 /* Read the MII 1000Base-T Control Register (Address 9). */
1491 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1492 if(ret_val)
1493 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001494
1495 /* Need to parse both autoneg_advertised and fc and set up
1496 * the appropriate PHY registers. First we will parse for
1497 * autoneg_advertised software override. Since we can advertise
1498 * a plethora of combinations, we need to check each bit
1499 * individually.
1500 */
1501
1502 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
1503 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1504 * the 1000Base-T Control Register (Address 9).
1505 */
1506 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1507 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1508
1509 DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
1510
1511 /* Do we want to advertise 10 Mb Half Duplex? */
1512 if(hw->autoneg_advertised & ADVERTISE_10_HALF) {
1513 DEBUGOUT("Advertise 10mb Half duplex\n");
1514 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1515 }
1516
1517 /* Do we want to advertise 10 Mb Full Duplex? */
1518 if(hw->autoneg_advertised & ADVERTISE_10_FULL) {
1519 DEBUGOUT("Advertise 10mb Full duplex\n");
1520 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1521 }
1522
1523 /* Do we want to advertise 100 Mb Half Duplex? */
1524 if(hw->autoneg_advertised & ADVERTISE_100_HALF) {
1525 DEBUGOUT("Advertise 100mb Half duplex\n");
1526 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1527 }
1528
1529 /* Do we want to advertise 100 Mb Full Duplex? */
1530 if(hw->autoneg_advertised & ADVERTISE_100_FULL) {
1531 DEBUGOUT("Advertise 100mb Full duplex\n");
1532 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1533 }
1534
1535 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1536 if(hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1537 DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
1538 }
1539
1540 /* Do we want to advertise 1000 Mb Full Duplex? */
1541 if(hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1542 DEBUGOUT("Advertise 1000mb Full duplex\n");
1543 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1544 }
1545
1546 /* Check for a software override of the flow control settings, and
1547 * setup the PHY advertisement registers accordingly. If
1548 * auto-negotiation is enabled, then software will have to set the
1549 * "PAUSE" bits to the correct value in the Auto-Negotiation
1550 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
1551 *
1552 * The possible values of the "fc" parameter are:
1553 * 0: Flow control is completely disabled
1554 * 1: Rx flow control is enabled (we can receive pause frames
1555 * but not send pause frames).
1556 * 2: Tx flow control is enabled (we can send pause frames
1557 * but we do not support receiving pause frames).
1558 * 3: Both Rx and TX flow control (symmetric) are enabled.
1559 * other: No software override. The flow control configuration
1560 * in the EEPROM is used.
1561 */
1562 switch (hw->fc) {
1563 case e1000_fc_none: /* 0 */
1564 /* Flow control (RX & TX) is completely disabled by a
1565 * software over-ride.
1566 */
1567 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1568 break;
1569 case e1000_fc_rx_pause: /* 1 */
1570 /* RX Flow control is enabled, and TX Flow control is
1571 * disabled, by a software over-ride.
1572 */
1573 /* Since there really isn't a way to advertise that we are
1574 * capable of RX Pause ONLY, we will advertise that we
1575 * support both symmetric and asymmetric RX PAUSE. Later
1576 * (in e1000_config_fc_after_link_up) we will disable the
1577 *hw's ability to send PAUSE frames.
1578 */
1579 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1580 break;
1581 case e1000_fc_tx_pause: /* 2 */
1582 /* TX Flow control is enabled, and RX Flow control is
1583 * disabled, by a software over-ride.
1584 */
1585 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1586 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1587 break;
1588 case e1000_fc_full: /* 3 */
1589 /* Flow control (both RX and TX) is enabled by a software
1590 * over-ride.
1591 */
1592 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1593 break;
1594 default:
1595 DEBUGOUT("Flow control param set incorrectly\n");
1596 return -E1000_ERR_CONFIG;
1597 }
1598
1599 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1600 if(ret_val)
1601 return ret_val;
1602
1603 DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1604
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001605 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001606 if(ret_val)
1607 return ret_val;
1608
1609 return E1000_SUCCESS;
1610}
1611
1612/******************************************************************************
1613* Force PHY speed and duplex settings to hw->forced_speed_duplex
1614*
1615* hw - Struct containing variables accessed by shared code
1616******************************************************************************/
1617static int32_t
1618e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1619{
1620 uint32_t ctrl;
1621 int32_t ret_val;
1622 uint16_t mii_ctrl_reg;
1623 uint16_t mii_status_reg;
1624 uint16_t phy_data;
1625 uint16_t i;
1626
1627 DEBUGFUNC("e1000_phy_force_speed_duplex");
1628
1629 /* Turn off Flow control if we are forcing speed and duplex. */
1630 hw->fc = e1000_fc_none;
1631
1632 DEBUGOUT1("hw->fc = %d\n", hw->fc);
1633
1634 /* Read the Device Control Register. */
1635 ctrl = E1000_READ_REG(hw, CTRL);
1636
1637 /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1638 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1639 ctrl &= ~(DEVICE_SPEED_MASK);
1640
1641 /* Clear the Auto Speed Detect Enable bit. */
1642 ctrl &= ~E1000_CTRL_ASDE;
1643
1644 /* Read the MII Control Register. */
1645 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1646 if(ret_val)
1647 return ret_val;
1648
1649 /* We need to disable autoneg in order to force link and duplex. */
1650
1651 mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
1652
1653 /* Are we forcing Full or Half Duplex? */
1654 if(hw->forced_speed_duplex == e1000_100_full ||
1655 hw->forced_speed_duplex == e1000_10_full) {
1656 /* We want to force full duplex so we SET the full duplex bits in the
1657 * Device and MII Control Registers.
1658 */
1659 ctrl |= E1000_CTRL_FD;
1660 mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
1661 DEBUGOUT("Full Duplex\n");
1662 } else {
1663 /* We want to force half duplex so we CLEAR the full duplex bits in
1664 * the Device and MII Control Registers.
1665 */
1666 ctrl &= ~E1000_CTRL_FD;
1667 mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
1668 DEBUGOUT("Half Duplex\n");
1669 }
1670
1671 /* Are we forcing 100Mbps??? */
1672 if(hw->forced_speed_duplex == e1000_100_full ||
1673 hw->forced_speed_duplex == e1000_100_half) {
1674 /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1675 ctrl |= E1000_CTRL_SPD_100;
1676 mii_ctrl_reg |= MII_CR_SPEED_100;
1677 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1678 DEBUGOUT("Forcing 100mb ");
1679 } else {
1680 /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1681 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1682 mii_ctrl_reg |= MII_CR_SPEED_10;
1683 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1684 DEBUGOUT("Forcing 10mb ");
1685 }
1686
1687 e1000_config_collision_dist(hw);
1688
1689 /* Write the configured values back to the Device Control Reg. */
1690 E1000_WRITE_REG(hw, CTRL, ctrl);
1691
1692 if (hw->phy_type == e1000_phy_m88) {
1693 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1694 if(ret_val)
1695 return ret_val;
1696
1697 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1698 * forced whenever speed are duplex are forced.
1699 */
1700 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1701 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1702 if(ret_val)
1703 return ret_val;
1704
1705 DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
1706
1707 /* Need to reset the PHY or these changes will be ignored */
1708 mii_ctrl_reg |= MII_CR_RESET;
1709 } else {
1710 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1711 * forced whenever speed or duplex are forced.
1712 */
1713 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1714 if(ret_val)
1715 return ret_val;
1716
1717 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1718 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1719
1720 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1721 if(ret_val)
1722 return ret_val;
1723 }
1724
1725 /* Write back the modified PHY MII control register. */
1726 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1727 if(ret_val)
1728 return ret_val;
1729
1730 udelay(1);
1731
1732 /* The wait_autoneg_complete flag may be a little misleading here.
1733 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1734 * But we do want to delay for a period while forcing only so we
1735 * don't generate false No Link messages. So we will wait here
1736 * only if the user has set wait_autoneg_complete to 1, which is
1737 * the default.
1738 */
1739 if(hw->wait_autoneg_complete) {
1740 /* We will wait for autoneg to complete. */
1741 DEBUGOUT("Waiting for forced speed/duplex link.\n");
1742 mii_status_reg = 0;
1743
1744 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
1745 for(i = PHY_FORCE_TIME; i > 0; i--) {
1746 /* Read the MII Status Register and wait for Auto-Neg Complete bit
1747 * to be set.
1748 */
1749 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1750 if(ret_val)
1751 return ret_val;
1752
1753 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1754 if(ret_val)
1755 return ret_val;
1756
1757 if(mii_status_reg & MII_SR_LINK_STATUS) break;
1758 msec_delay(100);
1759 }
1760 if((i == 0) &&
1761 (hw->phy_type == e1000_phy_m88)) {
1762 /* We didn't get link. Reset the DSP and wait again for link. */
1763 ret_val = e1000_phy_reset_dsp(hw);
1764 if(ret_val) {
1765 DEBUGOUT("Error Resetting PHY DSP\n");
1766 return ret_val;
1767 }
1768 }
1769 /* This loop will early-out if the link condition has been met. */
1770 for(i = PHY_FORCE_TIME; i > 0; i--) {
1771 if(mii_status_reg & MII_SR_LINK_STATUS) break;
1772 msec_delay(100);
1773 /* Read the MII Status Register and wait for Auto-Neg Complete bit
1774 * to be set.
1775 */
1776 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1777 if(ret_val)
1778 return ret_val;
1779
1780 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1781 if(ret_val)
1782 return ret_val;
1783 }
1784 }
1785
1786 if (hw->phy_type == e1000_phy_m88) {
1787 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1788 * Extended PHY Specific Control Register to 25MHz clock. This value
1789 * defaults back to a 2.5MHz clock when the PHY is reset.
1790 */
1791 ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1792 if(ret_val)
1793 return ret_val;
1794
1795 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1796 ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1797 if(ret_val)
1798 return ret_val;
1799
1800 /* In addition, because of the s/w reset above, we need to enable CRS on
1801 * TX. This must be set for both full and half duplex operation.
1802 */
1803 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1804 if(ret_val)
1805 return ret_val;
1806
1807 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1808 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1809 if(ret_val)
1810 return ret_val;
1811
1812 if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
1813 (!hw->autoneg) &&
1814 (hw->forced_speed_duplex == e1000_10_full ||
1815 hw->forced_speed_duplex == e1000_10_half)) {
1816 ret_val = e1000_polarity_reversal_workaround(hw);
1817 if(ret_val)
1818 return ret_val;
1819 }
1820 }
1821 return E1000_SUCCESS;
1822}
1823
1824/******************************************************************************
1825* Sets the collision distance in the Transmit Control register
1826*
1827* hw - Struct containing variables accessed by shared code
1828*
1829* Link should have been established previously. Reads the speed and duplex
1830* information from the Device Status register.
1831******************************************************************************/
1832void
1833e1000_config_collision_dist(struct e1000_hw *hw)
1834{
1835 uint32_t tctl;
1836
1837 DEBUGFUNC("e1000_config_collision_dist");
1838
1839 tctl = E1000_READ_REG(hw, TCTL);
1840
1841 tctl &= ~E1000_TCTL_COLD;
1842 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
1843
1844 E1000_WRITE_REG(hw, TCTL, tctl);
1845 E1000_WRITE_FLUSH(hw);
1846}
1847
1848/******************************************************************************
1849* Sets MAC speed and duplex settings to reflect the those in the PHY
1850*
1851* hw - Struct containing variables accessed by shared code
1852* mii_reg - data to write to the MII control register
1853*
1854* The contents of the PHY register containing the needed information need to
1855* be passed in.
1856******************************************************************************/
1857static int32_t
1858e1000_config_mac_to_phy(struct e1000_hw *hw)
1859{
1860 uint32_t ctrl;
1861 int32_t ret_val;
1862 uint16_t phy_data;
1863
1864 DEBUGFUNC("e1000_config_mac_to_phy");
1865
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001866 /* 82544 or newer MAC, Auto Speed Detection takes care of
1867 * MAC speed/duplex configuration.*/
1868 if (hw->mac_type >= e1000_82544)
1869 return E1000_SUCCESS;
1870
Linus Torvalds1da177e2005-04-16 15:20:36 -07001871 /* Read the Device Control Register and set the bits to Force Speed
1872 * and Duplex.
1873 */
1874 ctrl = E1000_READ_REG(hw, CTRL);
1875 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1876 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1877
1878 /* Set up duplex in the Device Control and Transmit Control
1879 * registers depending on negotiated values.
1880 */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001881 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1882 if(ret_val)
1883 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001884
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001885 if(phy_data & M88E1000_PSSR_DPLX)
1886 ctrl |= E1000_CTRL_FD;
1887 else
1888 ctrl &= ~E1000_CTRL_FD;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001889
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001890 e1000_config_collision_dist(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001891
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001892 /* Set up speed in the Device Control register depending on
1893 * negotiated values.
1894 */
1895 if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1896 ctrl |= E1000_CTRL_SPD_1000;
1897 else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
1898 ctrl |= E1000_CTRL_SPD_100;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001899
Linus Torvalds1da177e2005-04-16 15:20:36 -07001900 /* Write the configured values back to the Device Control Reg. */
1901 E1000_WRITE_REG(hw, CTRL, ctrl);
1902 return E1000_SUCCESS;
1903}
1904
1905/******************************************************************************
1906 * Forces the MAC's flow control settings.
1907 *
1908 * hw - Struct containing variables accessed by shared code
1909 *
1910 * Sets the TFCE and RFCE bits in the device control register to reflect
1911 * the adapter settings. TFCE and RFCE need to be explicitly set by
1912 * software when a Copper PHY is used because autonegotiation is managed
1913 * by the PHY rather than the MAC. Software must also configure these
1914 * bits when link is forced on a fiber connection.
1915 *****************************************************************************/
1916int32_t
1917e1000_force_mac_fc(struct e1000_hw *hw)
1918{
1919 uint32_t ctrl;
1920
1921 DEBUGFUNC("e1000_force_mac_fc");
1922
1923 /* Get the current configuration of the Device Control Register */
1924 ctrl = E1000_READ_REG(hw, CTRL);
1925
1926 /* Because we didn't get link via the internal auto-negotiation
1927 * mechanism (we either forced link or we got link via PHY
1928 * auto-neg), we have to manually enable/disable transmit an
1929 * receive flow control.
1930 *
1931 * The "Case" statement below enables/disable flow control
1932 * according to the "hw->fc" parameter.
1933 *
1934 * The possible values of the "fc" parameter are:
1935 * 0: Flow control is completely disabled
1936 * 1: Rx flow control is enabled (we can receive pause
1937 * frames but not send pause frames).
1938 * 2: Tx flow control is enabled (we can send pause frames
1939 * frames but we do not receive pause frames).
1940 * 3: Both Rx and TX flow control (symmetric) is enabled.
1941 * other: No other values should be possible at this point.
1942 */
1943
1944 switch (hw->fc) {
1945 case e1000_fc_none:
1946 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1947 break;
1948 case e1000_fc_rx_pause:
1949 ctrl &= (~E1000_CTRL_TFCE);
1950 ctrl |= E1000_CTRL_RFCE;
1951 break;
1952 case e1000_fc_tx_pause:
1953 ctrl &= (~E1000_CTRL_RFCE);
1954 ctrl |= E1000_CTRL_TFCE;
1955 break;
1956 case e1000_fc_full:
1957 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1958 break;
1959 default:
1960 DEBUGOUT("Flow control param set incorrectly\n");
1961 return -E1000_ERR_CONFIG;
1962 }
1963
1964 /* Disable TX Flow Control for 82542 (rev 2.0) */
1965 if(hw->mac_type == e1000_82542_rev2_0)
1966 ctrl &= (~E1000_CTRL_TFCE);
1967
1968 E1000_WRITE_REG(hw, CTRL, ctrl);
1969 return E1000_SUCCESS;
1970}
1971
1972/******************************************************************************
1973 * Configures flow control settings after link is established
1974 *
1975 * hw - Struct containing variables accessed by shared code
1976 *
1977 * Should be called immediately after a valid link has been established.
1978 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
1979 * and autonegotiation is enabled, the MAC flow control settings will be set
1980 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
1981 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
1982 *****************************************************************************/
1983int32_t
1984e1000_config_fc_after_link_up(struct e1000_hw *hw)
1985{
1986 int32_t ret_val;
1987 uint16_t mii_status_reg;
1988 uint16_t mii_nway_adv_reg;
1989 uint16_t mii_nway_lp_ability_reg;
1990 uint16_t speed;
1991 uint16_t duplex;
1992
1993 DEBUGFUNC("e1000_config_fc_after_link_up");
1994
1995 /* Check for the case where we have fiber media and auto-neg failed
1996 * so we had to force link. In this case, we need to force the
1997 * configuration of the MAC to match the "fc" parameter.
1998 */
1999 if(((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
2000 ((hw->media_type == e1000_media_type_internal_serdes) && (hw->autoneg_failed)) ||
2001 ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) {
2002 ret_val = e1000_force_mac_fc(hw);
2003 if(ret_val) {
2004 DEBUGOUT("Error forcing flow control settings\n");
2005 return ret_val;
2006 }
2007 }
2008
2009 /* Check for the case where we have copper media and auto-neg is
2010 * enabled. In this case, we need to check and see if Auto-Neg
2011 * has completed, and if so, how the PHY and link partner has
2012 * flow control configured.
2013 */
2014 if((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2015 /* Read the MII Status Register and check to see if AutoNeg
2016 * has completed. We read this twice because this reg has
2017 * some "sticky" (latched) bits.
2018 */
2019 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2020 if(ret_val)
2021 return ret_val;
2022 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2023 if(ret_val)
2024 return ret_val;
2025
2026 if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2027 /* The AutoNeg process has completed, so we now need to
2028 * read both the Auto Negotiation Advertisement Register
2029 * (Address 4) and the Auto_Negotiation Base Page Ability
2030 * Register (Address 5) to determine how flow control was
2031 * negotiated.
2032 */
2033 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2034 &mii_nway_adv_reg);
2035 if(ret_val)
2036 return ret_val;
2037 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2038 &mii_nway_lp_ability_reg);
2039 if(ret_val)
2040 return ret_val;
2041
2042 /* Two bits in the Auto Negotiation Advertisement Register
2043 * (Address 4) and two bits in the Auto Negotiation Base
2044 * Page Ability Register (Address 5) determine flow control
2045 * for both the PHY and the link partner. The following
2046 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
2047 * 1999, describes these PAUSE resolution bits and how flow
2048 * control is determined based upon these settings.
2049 * NOTE: DC = Don't Care
2050 *
2051 * LOCAL DEVICE | LINK PARTNER
2052 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2053 *-------|---------|-------|---------|--------------------
2054 * 0 | 0 | DC | DC | e1000_fc_none
2055 * 0 | 1 | 0 | DC | e1000_fc_none
2056 * 0 | 1 | 1 | 0 | e1000_fc_none
2057 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
2058 * 1 | 0 | 0 | DC | e1000_fc_none
2059 * 1 | DC | 1 | DC | e1000_fc_full
2060 * 1 | 1 | 0 | 0 | e1000_fc_none
2061 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
2062 *
2063 */
2064 /* Are both PAUSE bits set to 1? If so, this implies
2065 * Symmetric Flow Control is enabled at both ends. The
2066 * ASM_DIR bits are irrelevant per the spec.
2067 *
2068 * For Symmetric Flow Control:
2069 *
2070 * LOCAL DEVICE | LINK PARTNER
2071 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2072 *-------|---------|-------|---------|--------------------
2073 * 1 | DC | 1 | DC | e1000_fc_full
2074 *
2075 */
2076 if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2077 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2078 /* Now we need to check if the user selected RX ONLY
2079 * of pause frames. In this case, we had to advertise
2080 * FULL flow control because we could not advertise RX
2081 * ONLY. Hence, we must now check to see if we need to
2082 * turn OFF the TRANSMISSION of PAUSE frames.
2083 */
2084 if(hw->original_fc == e1000_fc_full) {
2085 hw->fc = e1000_fc_full;
2086 DEBUGOUT("Flow Control = FULL.\r\n");
2087 } else {
2088 hw->fc = e1000_fc_rx_pause;
2089 DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
2090 }
2091 }
2092 /* For receiving PAUSE frames ONLY.
2093 *
2094 * LOCAL DEVICE | LINK PARTNER
2095 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2096 *-------|---------|-------|---------|--------------------
2097 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
2098 *
2099 */
2100 else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2101 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2102 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2103 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2104 hw->fc = e1000_fc_tx_pause;
2105 DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
2106 }
2107 /* For transmitting PAUSE frames ONLY.
2108 *
2109 * LOCAL DEVICE | LINK PARTNER
2110 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2111 *-------|---------|-------|---------|--------------------
2112 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
2113 *
2114 */
2115 else if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2116 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2117 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2118 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
2119 hw->fc = e1000_fc_rx_pause;
2120 DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
2121 }
2122 /* Per the IEEE spec, at this point flow control should be
2123 * disabled. However, we want to consider that we could
2124 * be connected to a legacy switch that doesn't advertise
2125 * desired flow control, but can be forced on the link
2126 * partner. So if we advertised no flow control, that is
2127 * what we will resolve to. If we advertised some kind of
2128 * receive capability (Rx Pause Only or Full Flow Control)
2129 * and the link partner advertised none, we will configure
2130 * ourselves to enable Rx Flow Control only. We can do
2131 * this safely for two reasons: If the link partner really
2132 * didn't want flow control enabled, and we enable Rx, no
2133 * harm done since we won't be receiving any PAUSE frames
2134 * anyway. If the intent on the link partner was to have
2135 * flow control enabled, then by us enabling RX only, we
2136 * can at least receive pause frames and process them.
2137 * This is a good idea because in most cases, since we are
2138 * predominantly a server NIC, more times than not we will
2139 * be asked to delay transmission of packets than asking
2140 * our link partner to pause transmission of frames.
2141 */
2142 else if((hw->original_fc == e1000_fc_none ||
2143 hw->original_fc == e1000_fc_tx_pause) ||
2144 hw->fc_strict_ieee) {
2145 hw->fc = e1000_fc_none;
2146 DEBUGOUT("Flow Control = NONE.\r\n");
2147 } else {
2148 hw->fc = e1000_fc_rx_pause;
2149 DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
2150 }
2151
2152 /* Now we need to do one last check... If we auto-
2153 * negotiated to HALF DUPLEX, flow control should not be
2154 * enabled per IEEE 802.3 spec.
2155 */
2156 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
2157 if(ret_val) {
2158 DEBUGOUT("Error getting link speed and duplex\n");
2159 return ret_val;
2160 }
2161
2162 if(duplex == HALF_DUPLEX)
2163 hw->fc = e1000_fc_none;
2164
2165 /* Now we call a subroutine to actually force the MAC
2166 * controller to use the correct flow control settings.
2167 */
2168 ret_val = e1000_force_mac_fc(hw);
2169 if(ret_val) {
2170 DEBUGOUT("Error forcing flow control settings\n");
2171 return ret_val;
2172 }
2173 } else {
2174 DEBUGOUT("Copper PHY and Auto Neg has not completed.\r\n");
2175 }
2176 }
2177 return E1000_SUCCESS;
2178}
2179
2180/******************************************************************************
2181 * Checks to see if the link status of the hardware has changed.
2182 *
2183 * hw - Struct containing variables accessed by shared code
2184 *
2185 * Called by any function that needs to check the link status of the adapter.
2186 *****************************************************************************/
2187int32_t
2188e1000_check_for_link(struct e1000_hw *hw)
2189{
2190 uint32_t rxcw = 0;
2191 uint32_t ctrl;
2192 uint32_t status;
2193 uint32_t rctl;
2194 uint32_t icr;
2195 uint32_t signal = 0;
2196 int32_t ret_val;
2197 uint16_t phy_data;
2198
2199 DEBUGFUNC("e1000_check_for_link");
2200
2201 ctrl = E1000_READ_REG(hw, CTRL);
2202 status = E1000_READ_REG(hw, STATUS);
2203
2204 /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
2205 * set when the optics detect a signal. On older adapters, it will be
2206 * cleared when there is a signal. This applies to fiber media only.
2207 */
2208 if((hw->media_type == e1000_media_type_fiber) ||
2209 (hw->media_type == e1000_media_type_internal_serdes)) {
2210 rxcw = E1000_READ_REG(hw, RXCW);
2211
2212 if(hw->media_type == e1000_media_type_fiber) {
2213 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2214 if(status & E1000_STATUS_LU)
2215 hw->get_link_status = FALSE;
2216 }
2217 }
2218
2219 /* If we have a copper PHY then we only want to go out to the PHY
2220 * registers to see if Auto-Neg has completed and/or if our link
2221 * status has changed. The get_link_status flag will be set if we
2222 * receive a Link Status Change interrupt or we have Rx Sequence
2223 * Errors.
2224 */
2225 if((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2226 /* First we want to see if the MII Status Register reports
2227 * link. If so, then we want to get the current speed/duplex
2228 * of the PHY.
2229 * Read the register twice since the link bit is sticky.
2230 */
2231 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2232 if(ret_val)
2233 return ret_val;
2234 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2235 if(ret_val)
2236 return ret_val;
2237
2238 if(phy_data & MII_SR_LINK_STATUS) {
2239 hw->get_link_status = FALSE;
2240 /* Check if there was DownShift, must be checked immediately after
2241 * link-up */
2242 e1000_check_downshift(hw);
2243
2244 /* If we are on 82544 or 82543 silicon and speed/duplex
2245 * are forced to 10H or 10F, then we will implement the polarity
2246 * reversal workaround. We disable interrupts first, and upon
2247 * returning, place the devices interrupt state to its previous
2248 * value except for the link status change interrupt which will
2249 * happen due to the execution of this workaround.
2250 */
2251
2252 if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
2253 (!hw->autoneg) &&
2254 (hw->forced_speed_duplex == e1000_10_full ||
2255 hw->forced_speed_duplex == e1000_10_half)) {
2256 E1000_WRITE_REG(hw, IMC, 0xffffffff);
2257 ret_val = e1000_polarity_reversal_workaround(hw);
2258 icr = E1000_READ_REG(hw, ICR);
2259 E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC));
2260 E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK);
2261 }
2262
2263 } else {
2264 /* No link detected */
2265 e1000_config_dsp_after_link_change(hw, FALSE);
2266 return 0;
2267 }
2268
2269 /* If we are forcing speed/duplex, then we simply return since
2270 * we have already determined whether we have link or not.
2271 */
2272 if(!hw->autoneg) return -E1000_ERR_CONFIG;
2273
2274 /* optimize the dsp settings for the igp phy */
2275 e1000_config_dsp_after_link_change(hw, TRUE);
2276
2277 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
2278 * have Si on board that is 82544 or newer, Auto
2279 * Speed Detection takes care of MAC speed/duplex
2280 * configuration. So we only need to configure Collision
2281 * Distance in the MAC. Otherwise, we need to force
2282 * speed/duplex on the MAC to the current PHY speed/duplex
2283 * settings.
2284 */
2285 if(hw->mac_type >= e1000_82544)
2286 e1000_config_collision_dist(hw);
2287 else {
2288 ret_val = e1000_config_mac_to_phy(hw);
2289 if(ret_val) {
2290 DEBUGOUT("Error configuring MAC to PHY settings\n");
2291 return ret_val;
2292 }
2293 }
2294
2295 /* Configure Flow Control now that Auto-Neg has completed. First, we
2296 * need to restore the desired flow control settings because we may
2297 * have had to re-autoneg with a different link partner.
2298 */
2299 ret_val = e1000_config_fc_after_link_up(hw);
2300 if(ret_val) {
2301 DEBUGOUT("Error configuring flow control\n");
2302 return ret_val;
2303 }
2304
2305 /* At this point we know that we are on copper and we have
2306 * auto-negotiated link. These are conditions for checking the link
2307 * partner capability register. We use the link speed to determine if
2308 * TBI compatibility needs to be turned on or off. If the link is not
2309 * at gigabit speed, then TBI compatibility is not needed. If we are
2310 * at gigabit speed, we turn on TBI compatibility.
2311 */
2312 if(hw->tbi_compatibility_en) {
2313 uint16_t speed, duplex;
2314 e1000_get_speed_and_duplex(hw, &speed, &duplex);
2315 if(speed != SPEED_1000) {
2316 /* If link speed is not set to gigabit speed, we do not need
2317 * to enable TBI compatibility.
2318 */
2319 if(hw->tbi_compatibility_on) {
2320 /* If we previously were in the mode, turn it off. */
2321 rctl = E1000_READ_REG(hw, RCTL);
2322 rctl &= ~E1000_RCTL_SBP;
2323 E1000_WRITE_REG(hw, RCTL, rctl);
2324 hw->tbi_compatibility_on = FALSE;
2325 }
2326 } else {
2327 /* If TBI compatibility is was previously off, turn it on. For
2328 * compatibility with a TBI link partner, we will store bad
2329 * packets. Some frames have an additional byte on the end and
2330 * will look like CRC errors to to the hardware.
2331 */
2332 if(!hw->tbi_compatibility_on) {
2333 hw->tbi_compatibility_on = TRUE;
2334 rctl = E1000_READ_REG(hw, RCTL);
2335 rctl |= E1000_RCTL_SBP;
2336 E1000_WRITE_REG(hw, RCTL, rctl);
2337 }
2338 }
2339 }
2340 }
2341 /* If we don't have link (auto-negotiation failed or link partner cannot
2342 * auto-negotiate), the cable is plugged in (we have signal), and our
2343 * link partner is not trying to auto-negotiate with us (we are receiving
2344 * idles or data), we need to force link up. We also need to give
2345 * auto-negotiation time to complete, in case the cable was just plugged
2346 * in. The autoneg_failed flag does this.
2347 */
2348 else if((((hw->media_type == e1000_media_type_fiber) &&
2349 ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
2350 (hw->media_type == e1000_media_type_internal_serdes)) &&
2351 (!(status & E1000_STATUS_LU)) &&
2352 (!(rxcw & E1000_RXCW_C))) {
2353 if(hw->autoneg_failed == 0) {
2354 hw->autoneg_failed = 1;
2355 return 0;
2356 }
2357 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
2358
2359 /* Disable auto-negotiation in the TXCW register */
2360 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2361
2362 /* Force link-up and also force full-duplex. */
2363 ctrl = E1000_READ_REG(hw, CTRL);
2364 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2365 E1000_WRITE_REG(hw, CTRL, ctrl);
2366
2367 /* Configure Flow Control after forcing link up. */
2368 ret_val = e1000_config_fc_after_link_up(hw);
2369 if(ret_val) {
2370 DEBUGOUT("Error configuring flow control\n");
2371 return ret_val;
2372 }
2373 }
2374 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
2375 * auto-negotiation in the TXCW register and disable forced link in the
2376 * Device Control register in an attempt to auto-negotiate with our link
2377 * partner.
2378 */
2379 else if(((hw->media_type == e1000_media_type_fiber) ||
2380 (hw->media_type == e1000_media_type_internal_serdes)) &&
2381 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2382 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
2383 E1000_WRITE_REG(hw, TXCW, hw->txcw);
2384 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
2385
2386 hw->serdes_link_down = FALSE;
2387 }
2388 /* If we force link for non-auto-negotiation switch, check link status
2389 * based on MAC synchronization for internal serdes media type.
2390 */
2391 else if((hw->media_type == e1000_media_type_internal_serdes) &&
2392 !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
2393 /* SYNCH bit and IV bit are sticky. */
2394 udelay(10);
2395 if(E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
2396 if(!(rxcw & E1000_RXCW_IV)) {
2397 hw->serdes_link_down = FALSE;
2398 DEBUGOUT("SERDES: Link is up.\n");
2399 }
2400 } else {
2401 hw->serdes_link_down = TRUE;
2402 DEBUGOUT("SERDES: Link is down.\n");
2403 }
2404 }
2405 if((hw->media_type == e1000_media_type_internal_serdes) &&
2406 (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
2407 hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
2408 }
2409 return E1000_SUCCESS;
2410}
2411
2412/******************************************************************************
2413 * Detects the current speed and duplex settings of the hardware.
2414 *
2415 * hw - Struct containing variables accessed by shared code
2416 * speed - Speed of the connection
2417 * duplex - Duplex setting of the connection
2418 *****************************************************************************/
2419int32_t
2420e1000_get_speed_and_duplex(struct e1000_hw *hw,
2421 uint16_t *speed,
2422 uint16_t *duplex)
2423{
2424 uint32_t status;
2425 int32_t ret_val;
2426 uint16_t phy_data;
2427
2428 DEBUGFUNC("e1000_get_speed_and_duplex");
2429
2430 if(hw->mac_type >= e1000_82543) {
2431 status = E1000_READ_REG(hw, STATUS);
2432 if(status & E1000_STATUS_SPEED_1000) {
2433 *speed = SPEED_1000;
2434 DEBUGOUT("1000 Mbs, ");
2435 } else if(status & E1000_STATUS_SPEED_100) {
2436 *speed = SPEED_100;
2437 DEBUGOUT("100 Mbs, ");
2438 } else {
2439 *speed = SPEED_10;
2440 DEBUGOUT("10 Mbs, ");
2441 }
2442
2443 if(status & E1000_STATUS_FD) {
2444 *duplex = FULL_DUPLEX;
2445 DEBUGOUT("Full Duplex\r\n");
2446 } else {
2447 *duplex = HALF_DUPLEX;
2448 DEBUGOUT(" Half Duplex\r\n");
2449 }
2450 } else {
2451 DEBUGOUT("1000 Mbs, Full Duplex\r\n");
2452 *speed = SPEED_1000;
2453 *duplex = FULL_DUPLEX;
2454 }
2455
2456 /* IGP01 PHY may advertise full duplex operation after speed downgrade even
2457 * if it is operating at half duplex. Here we set the duplex settings to
2458 * match the duplex in the link partner's capabilities.
2459 */
2460 if(hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2461 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2462 if(ret_val)
2463 return ret_val;
2464
2465 if(!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2466 *duplex = HALF_DUPLEX;
2467 else {
2468 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2469 if(ret_val)
2470 return ret_val;
2471 if((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
2472 (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2473 *duplex = HALF_DUPLEX;
2474 }
2475 }
2476
2477 return E1000_SUCCESS;
2478}
2479
2480/******************************************************************************
2481* Blocks until autoneg completes or times out (~4.5 seconds)
2482*
2483* hw - Struct containing variables accessed by shared code
2484******************************************************************************/
2485int32_t
2486e1000_wait_autoneg(struct e1000_hw *hw)
2487{
2488 int32_t ret_val;
2489 uint16_t i;
2490 uint16_t phy_data;
2491
2492 DEBUGFUNC("e1000_wait_autoneg");
2493 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
2494
2495 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2496 for(i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2497 /* Read the MII Status Register and wait for Auto-Neg
2498 * Complete bit to be set.
2499 */
2500 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2501 if(ret_val)
2502 return ret_val;
2503 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2504 if(ret_val)
2505 return ret_val;
2506 if(phy_data & MII_SR_AUTONEG_COMPLETE) {
2507 return E1000_SUCCESS;
2508 }
2509 msec_delay(100);
2510 }
2511 return E1000_SUCCESS;
2512}
2513
2514/******************************************************************************
2515* Raises the Management Data Clock
2516*
2517* hw - Struct containing variables accessed by shared code
2518* ctrl - Device control register's current value
2519******************************************************************************/
2520static void
2521e1000_raise_mdi_clk(struct e1000_hw *hw,
2522 uint32_t *ctrl)
2523{
2524 /* Raise the clock input to the Management Data Clock (by setting the MDC
2525 * bit), and then delay 10 microseconds.
2526 */
2527 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
2528 E1000_WRITE_FLUSH(hw);
2529 udelay(10);
2530}
2531
2532/******************************************************************************
2533* Lowers the Management Data Clock
2534*
2535* hw - Struct containing variables accessed by shared code
2536* ctrl - Device control register's current value
2537******************************************************************************/
2538static void
2539e1000_lower_mdi_clk(struct e1000_hw *hw,
2540 uint32_t *ctrl)
2541{
2542 /* Lower the clock input to the Management Data Clock (by clearing the MDC
2543 * bit), and then delay 10 microseconds.
2544 */
2545 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
2546 E1000_WRITE_FLUSH(hw);
2547 udelay(10);
2548}
2549
2550/******************************************************************************
2551* Shifts data bits out to the PHY
2552*
2553* hw - Struct containing variables accessed by shared code
2554* data - Data to send out to the PHY
2555* count - Number of bits to shift out
2556*
2557* Bits are shifted out in MSB to LSB order.
2558******************************************************************************/
2559static void
2560e1000_shift_out_mdi_bits(struct e1000_hw *hw,
2561 uint32_t data,
2562 uint16_t count)
2563{
2564 uint32_t ctrl;
2565 uint32_t mask;
2566
2567 /* We need to shift "count" number of bits out to the PHY. So, the value
2568 * in the "data" parameter will be shifted out to the PHY one bit at a
2569 * time. In order to do this, "data" must be broken down into bits.
2570 */
2571 mask = 0x01;
2572 mask <<= (count - 1);
2573
2574 ctrl = E1000_READ_REG(hw, CTRL);
2575
2576 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2577 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2578
2579 while(mask) {
2580 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
2581 * then raising and lowering the Management Data Clock. A "0" is
2582 * shifted out to the PHY by setting the MDIO bit to "0" and then
2583 * raising and lowering the clock.
2584 */
2585 if(data & mask) ctrl |= E1000_CTRL_MDIO;
2586 else ctrl &= ~E1000_CTRL_MDIO;
2587
2588 E1000_WRITE_REG(hw, CTRL, ctrl);
2589 E1000_WRITE_FLUSH(hw);
2590
2591 udelay(10);
2592
2593 e1000_raise_mdi_clk(hw, &ctrl);
2594 e1000_lower_mdi_clk(hw, &ctrl);
2595
2596 mask = mask >> 1;
2597 }
2598}
2599
2600/******************************************************************************
2601* Shifts data bits in from the PHY
2602*
2603* hw - Struct containing variables accessed by shared code
2604*
2605* Bits are shifted in in MSB to LSB order.
2606******************************************************************************/
2607static uint16_t
2608e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2609{
2610 uint32_t ctrl;
2611 uint16_t data = 0;
2612 uint8_t i;
2613
2614 /* In order to read a register from the PHY, we need to shift in a total
2615 * of 18 bits from the PHY. The first two bit (turnaround) times are used
2616 * to avoid contention on the MDIO pin when a read operation is performed.
2617 * These two bits are ignored by us and thrown away. Bits are "shifted in"
2618 * by raising the input to the Management Data Clock (setting the MDC bit),
2619 * and then reading the value of the MDIO bit.
2620 */
2621 ctrl = E1000_READ_REG(hw, CTRL);
2622
2623 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
2624 ctrl &= ~E1000_CTRL_MDIO_DIR;
2625 ctrl &= ~E1000_CTRL_MDIO;
2626
2627 E1000_WRITE_REG(hw, CTRL, ctrl);
2628 E1000_WRITE_FLUSH(hw);
2629
2630 /* Raise and Lower the clock before reading in the data. This accounts for
2631 * the turnaround bits. The first clock occurred when we clocked out the
2632 * last bit of the Register Address.
2633 */
2634 e1000_raise_mdi_clk(hw, &ctrl);
2635 e1000_lower_mdi_clk(hw, &ctrl);
2636
2637 for(data = 0, i = 0; i < 16; i++) {
2638 data = data << 1;
2639 e1000_raise_mdi_clk(hw, &ctrl);
2640 ctrl = E1000_READ_REG(hw, CTRL);
2641 /* Check to see if we shifted in a "1". */
2642 if(ctrl & E1000_CTRL_MDIO) data |= 1;
2643 e1000_lower_mdi_clk(hw, &ctrl);
2644 }
2645
2646 e1000_raise_mdi_clk(hw, &ctrl);
2647 e1000_lower_mdi_clk(hw, &ctrl);
2648
2649 return data;
2650}
2651
2652/*****************************************************************************
2653* Reads the value from a PHY register, if the value is on a specific non zero
2654* page, sets the page first.
2655* hw - Struct containing variables accessed by shared code
2656* reg_addr - address of the PHY register to read
2657******************************************************************************/
2658int32_t
2659e1000_read_phy_reg(struct e1000_hw *hw,
2660 uint32_t reg_addr,
2661 uint16_t *phy_data)
2662{
2663 uint32_t ret_val;
2664
2665 DEBUGFUNC("e1000_read_phy_reg");
2666
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002667 if((hw->phy_type == e1000_phy_igp ||
2668 hw->phy_type == e1000_phy_igp_2) &&
Linus Torvalds1da177e2005-04-16 15:20:36 -07002669 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2670 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2671 (uint16_t)reg_addr);
2672 if(ret_val) {
2673 return ret_val;
2674 }
2675 }
2676
2677 ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2678 phy_data);
2679
2680 return ret_val;
2681}
2682
2683int32_t
2684e1000_read_phy_reg_ex(struct e1000_hw *hw,
2685 uint32_t reg_addr,
2686 uint16_t *phy_data)
2687{
2688 uint32_t i;
2689 uint32_t mdic = 0;
2690 const uint32_t phy_addr = 1;
2691
2692 DEBUGFUNC("e1000_read_phy_reg_ex");
2693
2694 if(reg_addr > MAX_PHY_REG_ADDRESS) {
2695 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
2696 return -E1000_ERR_PARAM;
2697 }
2698
2699 if(hw->mac_type > e1000_82543) {
2700 /* Set up Op-code, Phy Address, and register address in the MDI
2701 * Control register. The MAC will take care of interfacing with the
2702 * PHY to retrieve the desired data.
2703 */
2704 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2705 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2706 (E1000_MDIC_OP_READ));
2707
2708 E1000_WRITE_REG(hw, MDIC, mdic);
2709
2710 /* Poll the ready bit to see if the MDI read completed */
2711 for(i = 0; i < 64; i++) {
2712 udelay(50);
2713 mdic = E1000_READ_REG(hw, MDIC);
2714 if(mdic & E1000_MDIC_READY) break;
2715 }
2716 if(!(mdic & E1000_MDIC_READY)) {
2717 DEBUGOUT("MDI Read did not complete\n");
2718 return -E1000_ERR_PHY;
2719 }
2720 if(mdic & E1000_MDIC_ERROR) {
2721 DEBUGOUT("MDI Error\n");
2722 return -E1000_ERR_PHY;
2723 }
2724 *phy_data = (uint16_t) mdic;
2725 } else {
2726 /* We must first send a preamble through the MDIO pin to signal the
2727 * beginning of an MII instruction. This is done by sending 32
2728 * consecutive "1" bits.
2729 */
2730 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2731
2732 /* Now combine the next few fields that are required for a read
2733 * operation. We use this method instead of calling the
2734 * e1000_shift_out_mdi_bits routine five different times. The format of
2735 * a MII read instruction consists of a shift out of 14 bits and is
2736 * defined as follows:
2737 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2738 * followed by a shift in of 18 bits. This first two bits shifted in
2739 * are TurnAround bits used to avoid contention on the MDIO pin when a
2740 * READ operation is performed. These two bits are thrown away
2741 * followed by a shift in of 16 bits which contains the desired data.
2742 */
2743 mdic = ((reg_addr) | (phy_addr << 5) |
2744 (PHY_OP_READ << 10) | (PHY_SOF << 12));
2745
2746 e1000_shift_out_mdi_bits(hw, mdic, 14);
2747
2748 /* Now that we've shifted out the read command to the MII, we need to
2749 * "shift in" the 16-bit value (18 total bits) of the requested PHY
2750 * register address.
2751 */
2752 *phy_data = e1000_shift_in_mdi_bits(hw);
2753 }
2754 return E1000_SUCCESS;
2755}
2756
2757/******************************************************************************
2758* Writes a value to a PHY register
2759*
2760* hw - Struct containing variables accessed by shared code
2761* reg_addr - address of the PHY register to write
2762* data - data to write to the PHY
2763******************************************************************************/
2764int32_t
2765e1000_write_phy_reg(struct e1000_hw *hw,
2766 uint32_t reg_addr,
2767 uint16_t phy_data)
2768{
2769 uint32_t ret_val;
2770
2771 DEBUGFUNC("e1000_write_phy_reg");
2772
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002773 if((hw->phy_type == e1000_phy_igp ||
2774 hw->phy_type == e1000_phy_igp_2) &&
Linus Torvalds1da177e2005-04-16 15:20:36 -07002775 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2776 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2777 (uint16_t)reg_addr);
2778 if(ret_val) {
2779 return ret_val;
2780 }
2781 }
2782
2783 ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2784 phy_data);
2785
2786 return ret_val;
2787}
2788
2789int32_t
2790e1000_write_phy_reg_ex(struct e1000_hw *hw,
2791 uint32_t reg_addr,
2792 uint16_t phy_data)
2793{
2794 uint32_t i;
2795 uint32_t mdic = 0;
2796 const uint32_t phy_addr = 1;
2797
2798 DEBUGFUNC("e1000_write_phy_reg_ex");
2799
2800 if(reg_addr > MAX_PHY_REG_ADDRESS) {
2801 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
2802 return -E1000_ERR_PARAM;
2803 }
2804
2805 if(hw->mac_type > e1000_82543) {
2806 /* Set up Op-code, Phy Address, register address, and data intended
2807 * for the PHY register in the MDI Control register. The MAC will take
2808 * care of interfacing with the PHY to send the desired data.
2809 */
2810 mdic = (((uint32_t) phy_data) |
2811 (reg_addr << E1000_MDIC_REG_SHIFT) |
2812 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2813 (E1000_MDIC_OP_WRITE));
2814
2815 E1000_WRITE_REG(hw, MDIC, mdic);
2816
2817 /* Poll the ready bit to see if the MDI read completed */
2818 for(i = 0; i < 640; i++) {
2819 udelay(5);
2820 mdic = E1000_READ_REG(hw, MDIC);
2821 if(mdic & E1000_MDIC_READY) break;
2822 }
2823 if(!(mdic & E1000_MDIC_READY)) {
2824 DEBUGOUT("MDI Write did not complete\n");
2825 return -E1000_ERR_PHY;
2826 }
2827 } else {
2828 /* We'll need to use the SW defined pins to shift the write command
2829 * out to the PHY. We first send a preamble to the PHY to signal the
2830 * beginning of the MII instruction. This is done by sending 32
2831 * consecutive "1" bits.
2832 */
2833 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2834
2835 /* Now combine the remaining required fields that will indicate a
2836 * write operation. We use this method instead of calling the
2837 * e1000_shift_out_mdi_bits routine for each field in the command. The
2838 * format of a MII write instruction is as follows:
2839 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
2840 */
2841 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
2842 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
2843 mdic <<= 16;
2844 mdic |= (uint32_t) phy_data;
2845
2846 e1000_shift_out_mdi_bits(hw, mdic, 32);
2847 }
2848
2849 return E1000_SUCCESS;
2850}
2851
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002852
Linus Torvalds1da177e2005-04-16 15:20:36 -07002853/******************************************************************************
2854* Returns the PHY to the power-on reset state
2855*
2856* hw - Struct containing variables accessed by shared code
2857******************************************************************************/
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002858int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07002859e1000_phy_hw_reset(struct e1000_hw *hw)
2860{
2861 uint32_t ctrl, ctrl_ext;
2862 uint32_t led_ctrl;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002863 int32_t ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002864
2865 DEBUGFUNC("e1000_phy_hw_reset");
2866
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002867 /* In the case of the phy reset being blocked, it's not an error, we
2868 * simply return success without performing the reset. */
2869 ret_val = e1000_check_phy_reset_block(hw);
2870 if (ret_val)
2871 return E1000_SUCCESS;
2872
Linus Torvalds1da177e2005-04-16 15:20:36 -07002873 DEBUGOUT("Resetting Phy...\n");
2874
2875 if(hw->mac_type > e1000_82543) {
2876 /* Read the device control register and assert the E1000_CTRL_PHY_RST
2877 * bit. Then, take it out of reset.
2878 */
2879 ctrl = E1000_READ_REG(hw, CTRL);
2880 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
2881 E1000_WRITE_FLUSH(hw);
2882 msec_delay(10);
2883 E1000_WRITE_REG(hw, CTRL, ctrl);
2884 E1000_WRITE_FLUSH(hw);
2885 } else {
2886 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
2887 * bit to put the PHY into reset. Then, take it out of reset.
2888 */
2889 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
2890 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
2891 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
2892 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2893 E1000_WRITE_FLUSH(hw);
2894 msec_delay(10);
2895 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
2896 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
2897 E1000_WRITE_FLUSH(hw);
2898 }
2899 udelay(150);
2900
2901 if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
2902 /* Configure activity LED after PHY reset */
2903 led_ctrl = E1000_READ_REG(hw, LEDCTL);
2904 led_ctrl &= IGP_ACTIVITY_LED_MASK;
2905 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
2906 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
2907 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002908
2909 /* Wait for FW to finish PHY configuration. */
2910 ret_val = e1000_get_phy_cfg_done(hw);
2911
2912 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002913}
2914
2915/******************************************************************************
2916* Resets the PHY
2917*
2918* hw - Struct containing variables accessed by shared code
2919*
2920* Sets bit 15 of the MII Control regiser
2921******************************************************************************/
2922int32_t
2923e1000_phy_reset(struct e1000_hw *hw)
2924{
2925 int32_t ret_val;
2926 uint16_t phy_data;
2927
2928 DEBUGFUNC("e1000_phy_reset");
2929
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002930 /* In the case of the phy reset being blocked, it's not an error, we
2931 * simply return success without performing the reset. */
2932 ret_val = e1000_check_phy_reset_block(hw);
2933 if (ret_val)
2934 return E1000_SUCCESS;
2935
2936 switch (hw->mac_type) {
2937 case e1000_82541_rev_2:
2938 ret_val = e1000_phy_hw_reset(hw);
2939 if(ret_val)
2940 return ret_val;
2941 break;
2942 default:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002943 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
2944 if(ret_val)
2945 return ret_val;
2946
2947 phy_data |= MII_CR_RESET;
2948 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
2949 if(ret_val)
2950 return ret_val;
2951
2952 udelay(1);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002953 break;
2954 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002955
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002956 if(hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002957 e1000_phy_init_script(hw);
2958
2959 return E1000_SUCCESS;
2960}
2961
2962/******************************************************************************
2963* Probes the expected PHY address for known PHY IDs
2964*
2965* hw - Struct containing variables accessed by shared code
2966******************************************************************************/
2967int32_t
2968e1000_detect_gig_phy(struct e1000_hw *hw)
2969{
2970 int32_t phy_init_status, ret_val;
2971 uint16_t phy_id_high, phy_id_low;
2972 boolean_t match = FALSE;
2973
2974 DEBUGFUNC("e1000_detect_gig_phy");
2975
2976 /* Read the PHY ID Registers to identify which PHY is onboard. */
2977 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
2978 if(ret_val)
2979 return ret_val;
2980
2981 hw->phy_id = (uint32_t) (phy_id_high << 16);
2982 udelay(20);
2983 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
2984 if(ret_val)
2985 return ret_val;
2986
2987 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
2988 hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
2989
2990 switch(hw->mac_type) {
2991 case e1000_82543:
2992 if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
2993 break;
2994 case e1000_82544:
2995 if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
2996 break;
2997 case e1000_82540:
2998 case e1000_82545:
2999 case e1000_82545_rev_3:
3000 case e1000_82546:
3001 case e1000_82546_rev_3:
3002 if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
3003 break;
3004 case e1000_82541:
3005 case e1000_82541_rev_2:
3006 case e1000_82547:
3007 case e1000_82547_rev_2:
3008 if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
3009 break;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003010 case e1000_82573:
3011 if(hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
3012 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003013 default:
3014 DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
3015 return -E1000_ERR_CONFIG;
3016 }
3017 phy_init_status = e1000_set_phy_type(hw);
3018
3019 if ((match) && (phy_init_status == E1000_SUCCESS)) {
3020 DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
3021 return E1000_SUCCESS;
3022 }
3023 DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
3024 return -E1000_ERR_PHY;
3025}
3026
3027/******************************************************************************
3028* Resets the PHY's DSP
3029*
3030* hw - Struct containing variables accessed by shared code
3031******************************************************************************/
3032static int32_t
3033e1000_phy_reset_dsp(struct e1000_hw *hw)
3034{
3035 int32_t ret_val;
3036 DEBUGFUNC("e1000_phy_reset_dsp");
3037
3038 do {
3039 ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3040 if(ret_val) break;
3041 ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3042 if(ret_val) break;
3043 ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3044 if(ret_val) break;
3045 ret_val = E1000_SUCCESS;
3046 } while(0);
3047
3048 return ret_val;
3049}
3050
3051/******************************************************************************
3052* Get PHY information from various PHY registers for igp PHY only.
3053*
3054* hw - Struct containing variables accessed by shared code
3055* phy_info - PHY information structure
3056******************************************************************************/
3057int32_t
3058e1000_phy_igp_get_info(struct e1000_hw *hw,
3059 struct e1000_phy_info *phy_info)
3060{
3061 int32_t ret_val;
3062 uint16_t phy_data, polarity, min_length, max_length, average;
3063
3064 DEBUGFUNC("e1000_phy_igp_get_info");
3065
3066 /* The downshift status is checked only once, after link is established,
3067 * and it stored in the hw->speed_downgraded parameter. */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003068 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003069
3070 /* IGP01E1000 does not need to support it. */
3071 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
3072
3073 /* IGP01E1000 always correct polarity reversal */
3074 phy_info->polarity_correction = e1000_polarity_reversal_enabled;
3075
3076 /* Check polarity status */
3077 ret_val = e1000_check_polarity(hw, &polarity);
3078 if(ret_val)
3079 return ret_val;
3080
3081 phy_info->cable_polarity = polarity;
3082
3083 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3084 if(ret_val)
3085 return ret_val;
3086
3087 phy_info->mdix_mode = (phy_data & IGP01E1000_PSSR_MDIX) >>
3088 IGP01E1000_PSSR_MDIX_SHIFT;
3089
3090 if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3091 IGP01E1000_PSSR_SPEED_1000MBPS) {
3092 /* Local/Remote Receiver Information are only valid at 1000 Mbps */
3093 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3094 if(ret_val)
3095 return ret_val;
3096
3097 phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3098 SR_1000T_LOCAL_RX_STATUS_SHIFT;
3099 phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3100 SR_1000T_REMOTE_RX_STATUS_SHIFT;
3101
3102 /* Get cable length */
3103 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3104 if(ret_val)
3105 return ret_val;
3106
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003107 /* Translate to old method */
Linus Torvalds1da177e2005-04-16 15:20:36 -07003108 average = (max_length + min_length) / 2;
3109
3110 if(average <= e1000_igp_cable_length_50)
3111 phy_info->cable_length = e1000_cable_length_50;
3112 else if(average <= e1000_igp_cable_length_80)
3113 phy_info->cable_length = e1000_cable_length_50_80;
3114 else if(average <= e1000_igp_cable_length_110)
3115 phy_info->cable_length = e1000_cable_length_80_110;
3116 else if(average <= e1000_igp_cable_length_140)
3117 phy_info->cable_length = e1000_cable_length_110_140;
3118 else
3119 phy_info->cable_length = e1000_cable_length_140;
3120 }
3121
3122 return E1000_SUCCESS;
3123}
3124
3125/******************************************************************************
3126* Get PHY information from various PHY registers fot m88 PHY only.
3127*
3128* hw - Struct containing variables accessed by shared code
3129* phy_info - PHY information structure
3130******************************************************************************/
3131int32_t
3132e1000_phy_m88_get_info(struct e1000_hw *hw,
3133 struct e1000_phy_info *phy_info)
3134{
3135 int32_t ret_val;
3136 uint16_t phy_data, polarity;
3137
3138 DEBUGFUNC("e1000_phy_m88_get_info");
3139
3140 /* The downshift status is checked only once, after link is established,
3141 * and it stored in the hw->speed_downgraded parameter. */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003142 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003143
3144 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3145 if(ret_val)
3146 return ret_val;
3147
3148 phy_info->extended_10bt_distance =
3149 (phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
3150 M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT;
3151 phy_info->polarity_correction =
3152 (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
3153 M88E1000_PSCR_POLARITY_REVERSAL_SHIFT;
3154
3155 /* Check polarity status */
3156 ret_val = e1000_check_polarity(hw, &polarity);
3157 if(ret_val)
3158 return ret_val;
3159 phy_info->cable_polarity = polarity;
3160
3161 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3162 if(ret_val)
3163 return ret_val;
3164
3165 phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >>
3166 M88E1000_PSSR_MDIX_SHIFT;
3167
3168 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3169 /* Cable Length Estimation and Local/Remote Receiver Information
3170 * are only valid at 1000 Mbps.
3171 */
3172 phy_info->cable_length = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
3173 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
3174
3175 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3176 if(ret_val)
3177 return ret_val;
3178
3179 phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3180 SR_1000T_LOCAL_RX_STATUS_SHIFT;
3181
3182 phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3183 SR_1000T_REMOTE_RX_STATUS_SHIFT;
3184 }
3185
3186 return E1000_SUCCESS;
3187}
3188
3189/******************************************************************************
3190* Get PHY information from various PHY registers
3191*
3192* hw - Struct containing variables accessed by shared code
3193* phy_info - PHY information structure
3194******************************************************************************/
3195int32_t
3196e1000_phy_get_info(struct e1000_hw *hw,
3197 struct e1000_phy_info *phy_info)
3198{
3199 int32_t ret_val;
3200 uint16_t phy_data;
3201
3202 DEBUGFUNC("e1000_phy_get_info");
3203
3204 phy_info->cable_length = e1000_cable_length_undefined;
3205 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3206 phy_info->cable_polarity = e1000_rev_polarity_undefined;
3207 phy_info->downshift = e1000_downshift_undefined;
3208 phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3209 phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3210 phy_info->local_rx = e1000_1000t_rx_status_undefined;
3211 phy_info->remote_rx = e1000_1000t_rx_status_undefined;
3212
3213 if(hw->media_type != e1000_media_type_copper) {
3214 DEBUGOUT("PHY info is only valid for copper media\n");
3215 return -E1000_ERR_CONFIG;
3216 }
3217
3218 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3219 if(ret_val)
3220 return ret_val;
3221
3222 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3223 if(ret_val)
3224 return ret_val;
3225
3226 if((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
3227 DEBUGOUT("PHY info is only valid if link is up\n");
3228 return -E1000_ERR_CONFIG;
3229 }
3230
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003231 if(hw->phy_type == e1000_phy_igp ||
3232 hw->phy_type == e1000_phy_igp_2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003233 return e1000_phy_igp_get_info(hw, phy_info);
3234 else
3235 return e1000_phy_m88_get_info(hw, phy_info);
3236}
3237
3238int32_t
3239e1000_validate_mdi_setting(struct e1000_hw *hw)
3240{
3241 DEBUGFUNC("e1000_validate_mdi_settings");
3242
3243 if(!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
3244 DEBUGOUT("Invalid MDI setting detected\n");
3245 hw->mdix = 1;
3246 return -E1000_ERR_CONFIG;
3247 }
3248 return E1000_SUCCESS;
3249}
3250
3251
3252/******************************************************************************
3253 * Sets up eeprom variables in the hw struct. Must be called after mac_type
3254 * is configured.
3255 *
3256 * hw - Struct containing variables accessed by shared code
3257 *****************************************************************************/
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003258int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07003259e1000_init_eeprom_params(struct e1000_hw *hw)
3260{
3261 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3262 uint32_t eecd = E1000_READ_REG(hw, EECD);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003263 int32_t ret_val = E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003264 uint16_t eeprom_size;
3265
3266 DEBUGFUNC("e1000_init_eeprom_params");
3267
3268 switch (hw->mac_type) {
3269 case e1000_82542_rev2_0:
3270 case e1000_82542_rev2_1:
3271 case e1000_82543:
3272 case e1000_82544:
3273 eeprom->type = e1000_eeprom_microwire;
3274 eeprom->word_size = 64;
3275 eeprom->opcode_bits = 3;
3276 eeprom->address_bits = 6;
3277 eeprom->delay_usec = 50;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003278 eeprom->use_eerd = FALSE;
3279 eeprom->use_eewr = FALSE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003280 break;
3281 case e1000_82540:
3282 case e1000_82545:
3283 case e1000_82545_rev_3:
3284 case e1000_82546:
3285 case e1000_82546_rev_3:
3286 eeprom->type = e1000_eeprom_microwire;
3287 eeprom->opcode_bits = 3;
3288 eeprom->delay_usec = 50;
3289 if(eecd & E1000_EECD_SIZE) {
3290 eeprom->word_size = 256;
3291 eeprom->address_bits = 8;
3292 } else {
3293 eeprom->word_size = 64;
3294 eeprom->address_bits = 6;
3295 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003296 eeprom->use_eerd = FALSE;
3297 eeprom->use_eewr = FALSE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003298 break;
3299 case e1000_82541:
3300 case e1000_82541_rev_2:
3301 case e1000_82547:
3302 case e1000_82547_rev_2:
3303 if (eecd & E1000_EECD_TYPE) {
3304 eeprom->type = e1000_eeprom_spi;
3305 eeprom->opcode_bits = 8;
3306 eeprom->delay_usec = 1;
3307 if (eecd & E1000_EECD_ADDR_BITS) {
3308 eeprom->page_size = 32;
3309 eeprom->address_bits = 16;
3310 } else {
3311 eeprom->page_size = 8;
3312 eeprom->address_bits = 8;
3313 }
3314 } else {
3315 eeprom->type = e1000_eeprom_microwire;
3316 eeprom->opcode_bits = 3;
3317 eeprom->delay_usec = 50;
3318 if (eecd & E1000_EECD_ADDR_BITS) {
3319 eeprom->word_size = 256;
3320 eeprom->address_bits = 8;
3321 } else {
3322 eeprom->word_size = 64;
3323 eeprom->address_bits = 6;
3324 }
3325 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003326 eeprom->use_eerd = FALSE;
3327 eeprom->use_eewr = FALSE;
3328 break;
3329 case e1000_82573:
3330 eeprom->type = e1000_eeprom_spi;
3331 eeprom->opcode_bits = 8;
3332 eeprom->delay_usec = 1;
3333 if (eecd & E1000_EECD_ADDR_BITS) {
3334 eeprom->page_size = 32;
3335 eeprom->address_bits = 16;
3336 } else {
3337 eeprom->page_size = 8;
3338 eeprom->address_bits = 8;
3339 }
3340 eeprom->use_eerd = TRUE;
3341 eeprom->use_eewr = TRUE;
3342 if(e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
3343 eeprom->type = e1000_eeprom_flash;
3344 eeprom->word_size = 2048;
3345
3346 /* Ensure that the Autonomous FLASH update bit is cleared due to
3347 * Flash update issue on parts which use a FLASH for NVM. */
3348 eecd &= ~E1000_EECD_AUPDEN;
3349 E1000_WRITE_REG(hw, EECD, eecd);
3350 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003351 break;
3352 default:
3353 break;
3354 }
3355
3356 if (eeprom->type == e1000_eeprom_spi) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003357 /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
3358 * 32KB (incremented by powers of 2).
3359 */
3360 if(hw->mac_type <= e1000_82547_rev_2) {
3361 /* Set to default value for initial eeprom read. */
3362 eeprom->word_size = 64;
3363 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3364 if(ret_val)
3365 return ret_val;
3366 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
3367 /* 256B eeprom size was not supported in earlier hardware, so we
3368 * bump eeprom_size up one to ensure that "1" (which maps to 256B)
3369 * is never the result used in the shifting logic below. */
3370 if(eeprom_size)
3371 eeprom_size++;
3372 } else {
3373 eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >>
3374 E1000_EECD_SIZE_EX_SHIFT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003375 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003376
3377 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003378 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003379 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003380}
3381
3382/******************************************************************************
3383 * Raises the EEPROM's clock input.
3384 *
3385 * hw - Struct containing variables accessed by shared code
3386 * eecd - EECD's current value
3387 *****************************************************************************/
3388static void
3389e1000_raise_ee_clk(struct e1000_hw *hw,
3390 uint32_t *eecd)
3391{
3392 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
3393 * wait <delay> microseconds.
3394 */
3395 *eecd = *eecd | E1000_EECD_SK;
3396 E1000_WRITE_REG(hw, EECD, *eecd);
3397 E1000_WRITE_FLUSH(hw);
3398 udelay(hw->eeprom.delay_usec);
3399}
3400
3401/******************************************************************************
3402 * Lowers the EEPROM's clock input.
3403 *
3404 * hw - Struct containing variables accessed by shared code
3405 * eecd - EECD's current value
3406 *****************************************************************************/
3407static void
3408e1000_lower_ee_clk(struct e1000_hw *hw,
3409 uint32_t *eecd)
3410{
3411 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
3412 * wait 50 microseconds.
3413 */
3414 *eecd = *eecd & ~E1000_EECD_SK;
3415 E1000_WRITE_REG(hw, EECD, *eecd);
3416 E1000_WRITE_FLUSH(hw);
3417 udelay(hw->eeprom.delay_usec);
3418}
3419
3420/******************************************************************************
3421 * Shift data bits out to the EEPROM.
3422 *
3423 * hw - Struct containing variables accessed by shared code
3424 * data - data to send to the EEPROM
3425 * count - number of bits to shift out
3426 *****************************************************************************/
3427static void
3428e1000_shift_out_ee_bits(struct e1000_hw *hw,
3429 uint16_t data,
3430 uint16_t count)
3431{
3432 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3433 uint32_t eecd;
3434 uint32_t mask;
3435
3436 /* We need to shift "count" bits out to the EEPROM. So, value in the
3437 * "data" parameter will be shifted out to the EEPROM one bit at a time.
3438 * In order to do this, "data" must be broken down into bits.
3439 */
3440 mask = 0x01 << (count - 1);
3441 eecd = E1000_READ_REG(hw, EECD);
3442 if (eeprom->type == e1000_eeprom_microwire) {
3443 eecd &= ~E1000_EECD_DO;
3444 } else if (eeprom->type == e1000_eeprom_spi) {
3445 eecd |= E1000_EECD_DO;
3446 }
3447 do {
3448 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
3449 * and then raising and then lowering the clock (the SK bit controls
3450 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
3451 * by setting "DI" to "0" and then raising and then lowering the clock.
3452 */
3453 eecd &= ~E1000_EECD_DI;
3454
3455 if(data & mask)
3456 eecd |= E1000_EECD_DI;
3457
3458 E1000_WRITE_REG(hw, EECD, eecd);
3459 E1000_WRITE_FLUSH(hw);
3460
3461 udelay(eeprom->delay_usec);
3462
3463 e1000_raise_ee_clk(hw, &eecd);
3464 e1000_lower_ee_clk(hw, &eecd);
3465
3466 mask = mask >> 1;
3467
3468 } while(mask);
3469
3470 /* We leave the "DI" bit set to "0" when we leave this routine. */
3471 eecd &= ~E1000_EECD_DI;
3472 E1000_WRITE_REG(hw, EECD, eecd);
3473}
3474
3475/******************************************************************************
3476 * Shift data bits in from the EEPROM
3477 *
3478 * hw - Struct containing variables accessed by shared code
3479 *****************************************************************************/
3480static uint16_t
3481e1000_shift_in_ee_bits(struct e1000_hw *hw,
3482 uint16_t count)
3483{
3484 uint32_t eecd;
3485 uint32_t i;
3486 uint16_t data;
3487
3488 /* In order to read a register from the EEPROM, we need to shift 'count'
3489 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
3490 * input to the EEPROM (setting the SK bit), and then reading the value of
3491 * the "DO" bit. During this "shifting in" process the "DI" bit should
3492 * always be clear.
3493 */
3494
3495 eecd = E1000_READ_REG(hw, EECD);
3496
3497 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3498 data = 0;
3499
3500 for(i = 0; i < count; i++) {
3501 data = data << 1;
3502 e1000_raise_ee_clk(hw, &eecd);
3503
3504 eecd = E1000_READ_REG(hw, EECD);
3505
3506 eecd &= ~(E1000_EECD_DI);
3507 if(eecd & E1000_EECD_DO)
3508 data |= 1;
3509
3510 e1000_lower_ee_clk(hw, &eecd);
3511 }
3512
3513 return data;
3514}
3515
3516/******************************************************************************
3517 * Prepares EEPROM for access
3518 *
3519 * hw - Struct containing variables accessed by shared code
3520 *
3521 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3522 * function should be called before issuing a command to the EEPROM.
3523 *****************************************************************************/
3524static int32_t
3525e1000_acquire_eeprom(struct e1000_hw *hw)
3526{
3527 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3528 uint32_t eecd, i=0;
3529
3530 DEBUGFUNC("e1000_acquire_eeprom");
3531
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003532 if(e1000_get_hw_eeprom_semaphore(hw))
3533 return -E1000_ERR_EEPROM;
3534
Linus Torvalds1da177e2005-04-16 15:20:36 -07003535 eecd = E1000_READ_REG(hw, EECD);
3536
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003537 if (hw->mac_type != e1000_82573) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003538 /* Request EEPROM Access */
3539 if(hw->mac_type > e1000_82544) {
3540 eecd |= E1000_EECD_REQ;
3541 E1000_WRITE_REG(hw, EECD, eecd);
3542 eecd = E1000_READ_REG(hw, EECD);
3543 while((!(eecd & E1000_EECD_GNT)) &&
3544 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3545 i++;
3546 udelay(5);
3547 eecd = E1000_READ_REG(hw, EECD);
3548 }
3549 if(!(eecd & E1000_EECD_GNT)) {
3550 eecd &= ~E1000_EECD_REQ;
3551 E1000_WRITE_REG(hw, EECD, eecd);
3552 DEBUGOUT("Could not acquire EEPROM grant\n");
3553 return -E1000_ERR_EEPROM;
3554 }
3555 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003556 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003557
3558 /* Setup EEPROM for Read/Write */
3559
3560 if (eeprom->type == e1000_eeprom_microwire) {
3561 /* Clear SK and DI */
3562 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3563 E1000_WRITE_REG(hw, EECD, eecd);
3564
3565 /* Set CS */
3566 eecd |= E1000_EECD_CS;
3567 E1000_WRITE_REG(hw, EECD, eecd);
3568 } else if (eeprom->type == e1000_eeprom_spi) {
3569 /* Clear SK and CS */
3570 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3571 E1000_WRITE_REG(hw, EECD, eecd);
3572 udelay(1);
3573 }
3574
3575 return E1000_SUCCESS;
3576}
3577
3578/******************************************************************************
3579 * Returns EEPROM to a "standby" state
3580 *
3581 * hw - Struct containing variables accessed by shared code
3582 *****************************************************************************/
3583static void
3584e1000_standby_eeprom(struct e1000_hw *hw)
3585{
3586 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3587 uint32_t eecd;
3588
3589 eecd = E1000_READ_REG(hw, EECD);
3590
3591 if(eeprom->type == e1000_eeprom_microwire) {
3592 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3593 E1000_WRITE_REG(hw, EECD, eecd);
3594 E1000_WRITE_FLUSH(hw);
3595 udelay(eeprom->delay_usec);
3596
3597 /* Clock high */
3598 eecd |= E1000_EECD_SK;
3599 E1000_WRITE_REG(hw, EECD, eecd);
3600 E1000_WRITE_FLUSH(hw);
3601 udelay(eeprom->delay_usec);
3602
3603 /* Select EEPROM */
3604 eecd |= E1000_EECD_CS;
3605 E1000_WRITE_REG(hw, EECD, eecd);
3606 E1000_WRITE_FLUSH(hw);
3607 udelay(eeprom->delay_usec);
3608
3609 /* Clock low */
3610 eecd &= ~E1000_EECD_SK;
3611 E1000_WRITE_REG(hw, EECD, eecd);
3612 E1000_WRITE_FLUSH(hw);
3613 udelay(eeprom->delay_usec);
3614 } else if(eeprom->type == e1000_eeprom_spi) {
3615 /* Toggle CS to flush commands */
3616 eecd |= E1000_EECD_CS;
3617 E1000_WRITE_REG(hw, EECD, eecd);
3618 E1000_WRITE_FLUSH(hw);
3619 udelay(eeprom->delay_usec);
3620 eecd &= ~E1000_EECD_CS;
3621 E1000_WRITE_REG(hw, EECD, eecd);
3622 E1000_WRITE_FLUSH(hw);
3623 udelay(eeprom->delay_usec);
3624 }
3625}
3626
3627/******************************************************************************
3628 * Terminates a command by inverting the EEPROM's chip select pin
3629 *
3630 * hw - Struct containing variables accessed by shared code
3631 *****************************************************************************/
3632static void
3633e1000_release_eeprom(struct e1000_hw *hw)
3634{
3635 uint32_t eecd;
3636
3637 DEBUGFUNC("e1000_release_eeprom");
3638
3639 eecd = E1000_READ_REG(hw, EECD);
3640
3641 if (hw->eeprom.type == e1000_eeprom_spi) {
3642 eecd |= E1000_EECD_CS; /* Pull CS high */
3643 eecd &= ~E1000_EECD_SK; /* Lower SCK */
3644
3645 E1000_WRITE_REG(hw, EECD, eecd);
3646
3647 udelay(hw->eeprom.delay_usec);
3648 } else if(hw->eeprom.type == e1000_eeprom_microwire) {
3649 /* cleanup eeprom */
3650
3651 /* CS on Microwire is active-high */
3652 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
3653
3654 E1000_WRITE_REG(hw, EECD, eecd);
3655
3656 /* Rising edge of clock */
3657 eecd |= E1000_EECD_SK;
3658 E1000_WRITE_REG(hw, EECD, eecd);
3659 E1000_WRITE_FLUSH(hw);
3660 udelay(hw->eeprom.delay_usec);
3661
3662 /* Falling edge of clock */
3663 eecd &= ~E1000_EECD_SK;
3664 E1000_WRITE_REG(hw, EECD, eecd);
3665 E1000_WRITE_FLUSH(hw);
3666 udelay(hw->eeprom.delay_usec);
3667 }
3668
3669 /* Stop requesting EEPROM access */
3670 if(hw->mac_type > e1000_82544) {
3671 eecd &= ~E1000_EECD_REQ;
3672 E1000_WRITE_REG(hw, EECD, eecd);
3673 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003674
3675 e1000_put_hw_eeprom_semaphore(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003676}
3677
3678/******************************************************************************
3679 * Reads a 16 bit word from the EEPROM.
3680 *
3681 * hw - Struct containing variables accessed by shared code
3682 *****************************************************************************/
3683int32_t
3684e1000_spi_eeprom_ready(struct e1000_hw *hw)
3685{
3686 uint16_t retry_count = 0;
3687 uint8_t spi_stat_reg;
3688
3689 DEBUGFUNC("e1000_spi_eeprom_ready");
3690
3691 /* Read "Status Register" repeatedly until the LSB is cleared. The
3692 * EEPROM will signal that the command has been completed by clearing
3693 * bit 0 of the internal status register. If it's not cleared within
3694 * 5 milliseconds, then error out.
3695 */
3696 retry_count = 0;
3697 do {
3698 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3699 hw->eeprom.opcode_bits);
3700 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
3701 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3702 break;
3703
3704 udelay(5);
3705 retry_count += 5;
3706
3707 e1000_standby_eeprom(hw);
3708 } while(retry_count < EEPROM_MAX_RETRY_SPI);
3709
3710 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3711 * only 0-5mSec on 5V devices)
3712 */
3713 if(retry_count >= EEPROM_MAX_RETRY_SPI) {
3714 DEBUGOUT("SPI EEPROM Status error\n");
3715 return -E1000_ERR_EEPROM;
3716 }
3717
3718 return E1000_SUCCESS;
3719}
3720
3721/******************************************************************************
3722 * Reads a 16 bit word from the EEPROM.
3723 *
3724 * hw - Struct containing variables accessed by shared code
3725 * offset - offset of word in the EEPROM to read
3726 * data - word read from the EEPROM
3727 * words - number of words to read
3728 *****************************************************************************/
3729int32_t
3730e1000_read_eeprom(struct e1000_hw *hw,
3731 uint16_t offset,
3732 uint16_t words,
3733 uint16_t *data)
3734{
3735 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3736 uint32_t i = 0;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003737 int32_t ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003738
3739 DEBUGFUNC("e1000_read_eeprom");
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003740
Linus Torvalds1da177e2005-04-16 15:20:36 -07003741 /* A check for invalid values: offset too large, too many words, and not
3742 * enough words.
3743 */
3744 if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
3745 (words == 0)) {
3746 DEBUGOUT("\"words\" parameter out of bounds\n");
3747 return -E1000_ERR_EEPROM;
3748 }
3749
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003750 /* FLASH reads without acquiring the semaphore are safe in 82573-based
3751 * controllers.
3752 */
3753 if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) ||
3754 (hw->mac_type != e1000_82573)) {
3755 /* Prepare the EEPROM for reading */
3756 if(e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3757 return -E1000_ERR_EEPROM;
3758 }
3759
3760 if(eeprom->use_eerd == TRUE) {
3761 ret_val = e1000_read_eeprom_eerd(hw, offset, words, data);
3762 if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) ||
3763 (hw->mac_type != e1000_82573))
3764 e1000_release_eeprom(hw);
3765 return ret_val;
3766 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003767
3768 if(eeprom->type == e1000_eeprom_spi) {
3769 uint16_t word_in;
3770 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
3771
3772 if(e1000_spi_eeprom_ready(hw)) {
3773 e1000_release_eeprom(hw);
3774 return -E1000_ERR_EEPROM;
3775 }
3776
3777 e1000_standby_eeprom(hw);
3778
3779 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
3780 if((eeprom->address_bits == 8) && (offset >= 128))
3781 read_opcode |= EEPROM_A8_OPCODE_SPI;
3782
3783 /* Send the READ command (opcode + addr) */
3784 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3785 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
3786
3787 /* Read the data. The address of the eeprom internally increments with
3788 * each byte (spi) being read, saving on the overhead of eeprom setup
3789 * and tear-down. The address counter will roll over if reading beyond
3790 * the size of the eeprom, thus allowing the entire memory to be read
3791 * starting from any offset. */
3792 for (i = 0; i < words; i++) {
3793 word_in = e1000_shift_in_ee_bits(hw, 16);
3794 data[i] = (word_in >> 8) | (word_in << 8);
3795 }
3796 } else if(eeprom->type == e1000_eeprom_microwire) {
3797 for (i = 0; i < words; i++) {
3798 /* Send the READ command (opcode + addr) */
3799 e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
3800 eeprom->opcode_bits);
3801 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
3802 eeprom->address_bits);
3803
3804 /* Read the data. For microwire, each word requires the overhead
3805 * of eeprom setup and tear-down. */
3806 data[i] = e1000_shift_in_ee_bits(hw, 16);
3807 e1000_standby_eeprom(hw);
3808 }
3809 }
3810
3811 /* End this read operation */
3812 e1000_release_eeprom(hw);
3813
3814 return E1000_SUCCESS;
3815}
3816
3817/******************************************************************************
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003818 * Reads a 16 bit word from the EEPROM using the EERD register.
3819 *
3820 * hw - Struct containing variables accessed by shared code
3821 * offset - offset of word in the EEPROM to read
3822 * data - word read from the EEPROM
3823 * words - number of words to read
3824 *****************************************************************************/
3825int32_t
3826e1000_read_eeprom_eerd(struct e1000_hw *hw,
3827 uint16_t offset,
3828 uint16_t words,
3829 uint16_t *data)
3830{
3831 uint32_t i, eerd = 0;
3832 int32_t error = 0;
3833
3834 for (i = 0; i < words; i++) {
3835 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
3836 E1000_EEPROM_RW_REG_START;
3837
3838 E1000_WRITE_REG(hw, EERD, eerd);
3839 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
3840
3841 if(error) {
3842 break;
3843 }
3844 data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
3845
3846 }
3847
3848 return error;
3849}
3850
3851/******************************************************************************
3852 * Writes a 16 bit word from the EEPROM using the EEWR register.
3853 *
3854 * hw - Struct containing variables accessed by shared code
3855 * offset - offset of word in the EEPROM to read
3856 * data - word read from the EEPROM
3857 * words - number of words to read
3858 *****************************************************************************/
3859int32_t
3860e1000_write_eeprom_eewr(struct e1000_hw *hw,
3861 uint16_t offset,
3862 uint16_t words,
3863 uint16_t *data)
3864{
3865 uint32_t register_value = 0;
3866 uint32_t i = 0;
3867 int32_t error = 0;
3868
3869 for (i = 0; i < words; i++) {
3870 register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
3871 ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
3872 E1000_EEPROM_RW_REG_START;
3873
3874 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
3875 if(error) {
3876 break;
3877 }
3878
3879 E1000_WRITE_REG(hw, EEWR, register_value);
3880
3881 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
3882
3883 if(error) {
3884 break;
3885 }
3886 }
3887
3888 return error;
3889}
3890
3891/******************************************************************************
3892 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
3893 *
3894 * hw - Struct containing variables accessed by shared code
3895 *****************************************************************************/
3896int32_t
3897e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
3898{
3899 uint32_t attempts = 100000;
3900 uint32_t i, reg = 0;
3901 int32_t done = E1000_ERR_EEPROM;
3902
3903 for(i = 0; i < attempts; i++) {
3904 if(eerd == E1000_EEPROM_POLL_READ)
3905 reg = E1000_READ_REG(hw, EERD);
3906 else
3907 reg = E1000_READ_REG(hw, EEWR);
3908
3909 if(reg & E1000_EEPROM_RW_REG_DONE) {
3910 done = E1000_SUCCESS;
3911 break;
3912 }
3913 udelay(5);
3914 }
3915
3916 return done;
3917}
3918
3919/***************************************************************************
3920* Description: Determines if the onboard NVM is FLASH or EEPROM.
3921*
3922* hw - Struct containing variables accessed by shared code
3923****************************************************************************/
3924boolean_t
3925e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
3926{
3927 uint32_t eecd = 0;
3928
3929 if(hw->mac_type == e1000_82573) {
3930 eecd = E1000_READ_REG(hw, EECD);
3931
3932 /* Isolate bits 15 & 16 */
3933 eecd = ((eecd >> 15) & 0x03);
3934
3935 /* If both bits are set, device is Flash type */
3936 if(eecd == 0x03) {
3937 return FALSE;
3938 }
3939 }
3940 return TRUE;
3941}
3942
3943/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07003944 * Verifies that the EEPROM has a valid checksum
3945 *
3946 * hw - Struct containing variables accessed by shared code
3947 *
3948 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
3949 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
3950 * valid.
3951 *****************************************************************************/
3952int32_t
3953e1000_validate_eeprom_checksum(struct e1000_hw *hw)
3954{
3955 uint16_t checksum = 0;
3956 uint16_t i, eeprom_data;
3957
3958 DEBUGFUNC("e1000_validate_eeprom_checksum");
3959
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003960 if ((hw->mac_type == e1000_82573) &&
3961 (e1000_is_onboard_nvm_eeprom(hw) == FALSE)) {
3962 /* Check bit 4 of word 10h. If it is 0, firmware is done updating
3963 * 10h-12h. Checksum may need to be fixed. */
3964 e1000_read_eeprom(hw, 0x10, 1, &eeprom_data);
3965 if ((eeprom_data & 0x10) == 0) {
3966 /* Read 0x23 and check bit 15. This bit is a 1 when the checksum
3967 * has already been fixed. If the checksum is still wrong and this
3968 * bit is a 1, we need to return bad checksum. Otherwise, we need
3969 * to set this bit to a 1 and update the checksum. */
3970 e1000_read_eeprom(hw, 0x23, 1, &eeprom_data);
3971 if ((eeprom_data & 0x8000) == 0) {
3972 eeprom_data |= 0x8000;
3973 e1000_write_eeprom(hw, 0x23, 1, &eeprom_data);
3974 e1000_update_eeprom_checksum(hw);
3975 }
3976 }
3977 }
3978
Linus Torvalds1da177e2005-04-16 15:20:36 -07003979 for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
3980 if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
3981 DEBUGOUT("EEPROM Read Error\n");
3982 return -E1000_ERR_EEPROM;
3983 }
3984 checksum += eeprom_data;
3985 }
3986
3987 if(checksum == (uint16_t) EEPROM_SUM)
3988 return E1000_SUCCESS;
3989 else {
3990 DEBUGOUT("EEPROM Checksum Invalid\n");
3991 return -E1000_ERR_EEPROM;
3992 }
3993}
3994
3995/******************************************************************************
3996 * Calculates the EEPROM checksum and writes it to the EEPROM
3997 *
3998 * hw - Struct containing variables accessed by shared code
3999 *
4000 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
4001 * Writes the difference to word offset 63 of the EEPROM.
4002 *****************************************************************************/
4003int32_t
4004e1000_update_eeprom_checksum(struct e1000_hw *hw)
4005{
4006 uint16_t checksum = 0;
4007 uint16_t i, eeprom_data;
4008
4009 DEBUGFUNC("e1000_update_eeprom_checksum");
4010
4011 for(i = 0; i < EEPROM_CHECKSUM_REG; i++) {
4012 if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4013 DEBUGOUT("EEPROM Read Error\n");
4014 return -E1000_ERR_EEPROM;
4015 }
4016 checksum += eeprom_data;
4017 }
4018 checksum = (uint16_t) EEPROM_SUM - checksum;
4019 if(e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
4020 DEBUGOUT("EEPROM Write Error\n");
4021 return -E1000_ERR_EEPROM;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004022 } else if (hw->eeprom.type == e1000_eeprom_flash) {
4023 e1000_commit_shadow_ram(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004024 }
4025 return E1000_SUCCESS;
4026}
4027
4028/******************************************************************************
4029 * Parent function for writing words to the different EEPROM types.
4030 *
4031 * hw - Struct containing variables accessed by shared code
4032 * offset - offset within the EEPROM to be written to
4033 * words - number of words to write
4034 * data - 16 bit word to be written to the EEPROM
4035 *
4036 * If e1000_update_eeprom_checksum is not called after this function, the
4037 * EEPROM will most likely contain an invalid checksum.
4038 *****************************************************************************/
4039int32_t
4040e1000_write_eeprom(struct e1000_hw *hw,
4041 uint16_t offset,
4042 uint16_t words,
4043 uint16_t *data)
4044{
4045 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4046 int32_t status = 0;
4047
4048 DEBUGFUNC("e1000_write_eeprom");
4049
4050 /* A check for invalid values: offset too large, too many words, and not
4051 * enough words.
4052 */
4053 if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
4054 (words == 0)) {
4055 DEBUGOUT("\"words\" parameter out of bounds\n");
4056 return -E1000_ERR_EEPROM;
4057 }
4058
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004059 /* 82573 reads only through eerd */
4060 if(eeprom->use_eewr == TRUE)
4061 return e1000_write_eeprom_eewr(hw, offset, words, data);
4062
Linus Torvalds1da177e2005-04-16 15:20:36 -07004063 /* Prepare the EEPROM for writing */
4064 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4065 return -E1000_ERR_EEPROM;
4066
4067 if(eeprom->type == e1000_eeprom_microwire) {
4068 status = e1000_write_eeprom_microwire(hw, offset, words, data);
4069 } else {
4070 status = e1000_write_eeprom_spi(hw, offset, words, data);
4071 msec_delay(10);
4072 }
4073
4074 /* Done with writing */
4075 e1000_release_eeprom(hw);
4076
4077 return status;
4078}
4079
4080/******************************************************************************
4081 * Writes a 16 bit word to a given offset in an SPI EEPROM.
4082 *
4083 * hw - Struct containing variables accessed by shared code
4084 * offset - offset within the EEPROM to be written to
4085 * words - number of words to write
4086 * data - pointer to array of 8 bit words to be written to the EEPROM
4087 *
4088 *****************************************************************************/
4089int32_t
4090e1000_write_eeprom_spi(struct e1000_hw *hw,
4091 uint16_t offset,
4092 uint16_t words,
4093 uint16_t *data)
4094{
4095 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4096 uint16_t widx = 0;
4097
4098 DEBUGFUNC("e1000_write_eeprom_spi");
4099
4100 while (widx < words) {
4101 uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;
4102
4103 if(e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
4104
4105 e1000_standby_eeprom(hw);
4106
4107 /* Send the WRITE ENABLE command (8 bit opcode ) */
4108 e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4109 eeprom->opcode_bits);
4110
4111 e1000_standby_eeprom(hw);
4112
4113 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
4114 if((eeprom->address_bits == 8) && (offset >= 128))
4115 write_opcode |= EEPROM_A8_OPCODE_SPI;
4116
4117 /* Send the Write command (8-bit opcode + addr) */
4118 e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
4119
4120 e1000_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2),
4121 eeprom->address_bits);
4122
4123 /* Send the data */
4124
4125 /* Loop to allow for up to whole page write (32 bytes) of eeprom */
4126 while (widx < words) {
4127 uint16_t word_out = data[widx];
4128 word_out = (word_out >> 8) | (word_out << 8);
4129 e1000_shift_out_ee_bits(hw, word_out, 16);
4130 widx++;
4131
4132 /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
4133 * operation, while the smaller eeproms are capable of an 8-byte
4134 * PAGE WRITE operation. Break the inner loop to pass new address
4135 */
4136 if((((offset + widx)*2) % eeprom->page_size) == 0) {
4137 e1000_standby_eeprom(hw);
4138 break;
4139 }
4140 }
4141 }
4142
4143 return E1000_SUCCESS;
4144}
4145
4146/******************************************************************************
4147 * Writes a 16 bit word to a given offset in a Microwire EEPROM.
4148 *
4149 * hw - Struct containing variables accessed by shared code
4150 * offset - offset within the EEPROM to be written to
4151 * words - number of words to write
4152 * data - pointer to array of 16 bit words to be written to the EEPROM
4153 *
4154 *****************************************************************************/
4155int32_t
4156e1000_write_eeprom_microwire(struct e1000_hw *hw,
4157 uint16_t offset,
4158 uint16_t words,
4159 uint16_t *data)
4160{
4161 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4162 uint32_t eecd;
4163 uint16_t words_written = 0;
4164 uint16_t i = 0;
4165
4166 DEBUGFUNC("e1000_write_eeprom_microwire");
4167
4168 /* Send the write enable command to the EEPROM (3-bit opcode plus
4169 * 6/8-bit dummy address beginning with 11). It's less work to include
4170 * the 11 of the dummy address as part of the opcode than it is to shift
4171 * it over the correct number of bits for the address. This puts the
4172 * EEPROM into write/erase mode.
4173 */
4174 e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4175 (uint16_t)(eeprom->opcode_bits + 2));
4176
4177 e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
4178
4179 /* Prepare the EEPROM */
4180 e1000_standby_eeprom(hw);
4181
4182 while (words_written < words) {
4183 /* Send the Write command (3-bit opcode + addr) */
4184 e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4185 eeprom->opcode_bits);
4186
4187 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + words_written),
4188 eeprom->address_bits);
4189
4190 /* Send the data */
4191 e1000_shift_out_ee_bits(hw, data[words_written], 16);
4192
4193 /* Toggle the CS line. This in effect tells the EEPROM to execute
4194 * the previous command.
4195 */
4196 e1000_standby_eeprom(hw);
4197
4198 /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will
4199 * signal that the command has been completed by raising the DO signal.
4200 * If DO does not go high in 10 milliseconds, then error out.
4201 */
4202 for(i = 0; i < 200; i++) {
4203 eecd = E1000_READ_REG(hw, EECD);
4204 if(eecd & E1000_EECD_DO) break;
4205 udelay(50);
4206 }
4207 if(i == 200) {
4208 DEBUGOUT("EEPROM Write did not complete\n");
4209 return -E1000_ERR_EEPROM;
4210 }
4211
4212 /* Recover from write */
4213 e1000_standby_eeprom(hw);
4214
4215 words_written++;
4216 }
4217
4218 /* Send the write disable command to the EEPROM (3-bit opcode plus
4219 * 6/8-bit dummy address beginning with 10). It's less work to include
4220 * the 10 of the dummy address as part of the opcode than it is to shift
4221 * it over the correct number of bits for the address. This takes the
4222 * EEPROM out of write/erase mode.
4223 */
4224 e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4225 (uint16_t)(eeprom->opcode_bits + 2));
4226
4227 e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
4228
4229 return E1000_SUCCESS;
4230}
4231
4232/******************************************************************************
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004233 * Flushes the cached eeprom to NVM. This is done by saving the modified values
4234 * in the eeprom cache and the non modified values in the currently active bank
4235 * to the new bank.
4236 *
4237 * hw - Struct containing variables accessed by shared code
4238 * offset - offset of word in the EEPROM to read
4239 * data - word read from the EEPROM
4240 * words - number of words to read
4241 *****************************************************************************/
4242int32_t
4243e1000_commit_shadow_ram(struct e1000_hw *hw)
4244{
4245 uint32_t attempts = 100000;
4246 uint32_t eecd = 0;
4247 uint32_t flop = 0;
4248 uint32_t i = 0;
4249 int32_t error = E1000_SUCCESS;
4250
4251 /* The flop register will be used to determine if flash type is STM */
4252 flop = E1000_READ_REG(hw, FLOP);
4253
4254 if (hw->mac_type == e1000_82573) {
4255 for (i=0; i < attempts; i++) {
4256 eecd = E1000_READ_REG(hw, EECD);
4257 if ((eecd & E1000_EECD_FLUPD) == 0) {
4258 break;
4259 }
4260 udelay(5);
4261 }
4262
4263 if (i == attempts) {
4264 return -E1000_ERR_EEPROM;
4265 }
4266
4267 /* If STM opcode located in bits 15:8 of flop, reset firmware */
4268 if ((flop & 0xFF00) == E1000_STM_OPCODE) {
4269 E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET);
4270 }
4271
4272 /* Perform the flash update */
4273 E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD);
4274
4275 for (i=0; i < attempts; i++) {
4276 eecd = E1000_READ_REG(hw, EECD);
4277 if ((eecd & E1000_EECD_FLUPD) == 0) {
4278 break;
4279 }
4280 udelay(5);
4281 }
4282
4283 if (i == attempts) {
4284 return -E1000_ERR_EEPROM;
4285 }
4286 }
4287
4288 return error;
4289}
4290
4291/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07004292 * Reads the adapter's part number from the EEPROM
4293 *
4294 * hw - Struct containing variables accessed by shared code
4295 * part_num - Adapter's part number
4296 *****************************************************************************/
4297int32_t
4298e1000_read_part_num(struct e1000_hw *hw,
4299 uint32_t *part_num)
4300{
4301 uint16_t offset = EEPROM_PBA_BYTE_1;
4302 uint16_t eeprom_data;
4303
4304 DEBUGFUNC("e1000_read_part_num");
4305
4306 /* Get word 0 from EEPROM */
4307 if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4308 DEBUGOUT("EEPROM Read Error\n");
4309 return -E1000_ERR_EEPROM;
4310 }
4311 /* Save word 0 in upper half of part_num */
4312 *part_num = (uint32_t) (eeprom_data << 16);
4313
4314 /* Get word 1 from EEPROM */
4315 if(e1000_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) {
4316 DEBUGOUT("EEPROM Read Error\n");
4317 return -E1000_ERR_EEPROM;
4318 }
4319 /* Save word 1 in lower half of part_num */
4320 *part_num |= eeprom_data;
4321
4322 return E1000_SUCCESS;
4323}
4324
4325/******************************************************************************
4326 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4327 * second function of dual function devices
4328 *
4329 * hw - Struct containing variables accessed by shared code
4330 *****************************************************************************/
4331int32_t
4332e1000_read_mac_addr(struct e1000_hw * hw)
4333{
4334 uint16_t offset;
4335 uint16_t eeprom_data, i;
4336
4337 DEBUGFUNC("e1000_read_mac_addr");
4338
4339 for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4340 offset = i >> 1;
4341 if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4342 DEBUGOUT("EEPROM Read Error\n");
4343 return -E1000_ERR_EEPROM;
4344 }
4345 hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
4346 hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
4347 }
4348 if(((hw->mac_type == e1000_82546) || (hw->mac_type == e1000_82546_rev_3)) &&
4349 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1))
4350 hw->perm_mac_addr[5] ^= 0x01;
4351
4352 for(i = 0; i < NODE_ADDRESS_SIZE; i++)
4353 hw->mac_addr[i] = hw->perm_mac_addr[i];
4354 return E1000_SUCCESS;
4355}
4356
4357/******************************************************************************
4358 * Initializes receive address filters.
4359 *
4360 * hw - Struct containing variables accessed by shared code
4361 *
4362 * Places the MAC address in receive address register 0 and clears the rest
4363 * of the receive addresss registers. Clears the multicast table. Assumes
4364 * the receiver is in reset when the routine is called.
4365 *****************************************************************************/
4366void
4367e1000_init_rx_addrs(struct e1000_hw *hw)
4368{
4369 uint32_t i;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004370 uint32_t rar_num;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004371
4372 DEBUGFUNC("e1000_init_rx_addrs");
4373
4374 /* Setup the receive address. */
4375 DEBUGOUT("Programming MAC Address into RAR[0]\n");
4376
4377 e1000_rar_set(hw, hw->mac_addr, 0);
4378
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004379 rar_num = E1000_RAR_ENTRIES;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004380 /* Zero out the other 15 receive addresses. */
4381 DEBUGOUT("Clearing RAR[1-15]\n");
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004382 for(i = 1; i < rar_num; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004383 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4384 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4385 }
4386}
4387
4388/******************************************************************************
4389 * Updates the MAC's list of multicast addresses.
4390 *
4391 * hw - Struct containing variables accessed by shared code
4392 * mc_addr_list - the list of new multicast addresses
4393 * mc_addr_count - number of addresses
4394 * pad - number of bytes between addresses in the list
4395 * rar_used_count - offset where to start adding mc addresses into the RAR's
4396 *
4397 * The given list replaces any existing list. Clears the last 15 receive
4398 * address registers and the multicast table. Uses receive address registers
4399 * for the first 15 multicast addresses, and hashes the rest into the
4400 * multicast table.
4401 *****************************************************************************/
4402void
4403e1000_mc_addr_list_update(struct e1000_hw *hw,
4404 uint8_t *mc_addr_list,
4405 uint32_t mc_addr_count,
4406 uint32_t pad,
4407 uint32_t rar_used_count)
4408{
4409 uint32_t hash_value;
4410 uint32_t i;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004411 uint32_t num_rar_entry;
4412 uint32_t num_mta_entry;
4413
Linus Torvalds1da177e2005-04-16 15:20:36 -07004414 DEBUGFUNC("e1000_mc_addr_list_update");
4415
4416 /* Set the new number of MC addresses that we are being requested to use. */
4417 hw->num_mc_addrs = mc_addr_count;
4418
4419 /* Clear RAR[1-15] */
4420 DEBUGOUT(" Clearing RAR[1-15]\n");
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004421 num_rar_entry = E1000_RAR_ENTRIES;
4422 for(i = rar_used_count; i < num_rar_entry; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004423 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4424 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4425 }
4426
4427 /* Clear the MTA */
4428 DEBUGOUT(" Clearing MTA\n");
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004429 num_mta_entry = E1000_NUM_MTA_REGISTERS;
4430 for(i = 0; i < num_mta_entry; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004431 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
4432 }
4433
4434 /* Add the new addresses */
4435 for(i = 0; i < mc_addr_count; i++) {
4436 DEBUGOUT(" Adding the multicast addresses:\n");
4437 DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i,
4438 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)],
4439 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1],
4440 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2],
4441 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3],
4442 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4],
4443 mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]);
4444
4445 hash_value = e1000_hash_mc_addr(hw,
4446 mc_addr_list +
4447 (i * (ETH_LENGTH_OF_ADDRESS + pad)));
4448
4449 DEBUGOUT1(" Hash value = 0x%03X\n", hash_value);
4450
4451 /* Place this multicast address in the RAR if there is room, *
4452 * else put it in the MTA
4453 */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004454 if (rar_used_count < num_rar_entry) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004455 e1000_rar_set(hw,
4456 mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)),
4457 rar_used_count);
4458 rar_used_count++;
4459 } else {
4460 e1000_mta_set(hw, hash_value);
4461 }
4462 }
4463 DEBUGOUT("MC Update Complete\n");
4464}
4465
4466/******************************************************************************
4467 * Hashes an address to determine its location in the multicast table
4468 *
4469 * hw - Struct containing variables accessed by shared code
4470 * mc_addr - the multicast address to hash
4471 *****************************************************************************/
4472uint32_t
4473e1000_hash_mc_addr(struct e1000_hw *hw,
4474 uint8_t *mc_addr)
4475{
4476 uint32_t hash_value = 0;
4477
4478 /* The portion of the address that is used for the hash table is
4479 * determined by the mc_filter_type setting.
4480 */
4481 switch (hw->mc_filter_type) {
4482 /* [0] [1] [2] [3] [4] [5]
4483 * 01 AA 00 12 34 56
4484 * LSB MSB
4485 */
4486 case 0:
4487 /* [47:36] i.e. 0x563 for above example address */
4488 hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
4489 break;
4490 case 1:
4491 /* [46:35] i.e. 0xAC6 for above example address */
4492 hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
4493 break;
4494 case 2:
4495 /* [45:34] i.e. 0x5D8 for above example address */
4496 hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
4497 break;
4498 case 3:
4499 /* [43:32] i.e. 0x634 for above example address */
4500 hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
4501 break;
4502 }
4503
4504 hash_value &= 0xFFF;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004505
Linus Torvalds1da177e2005-04-16 15:20:36 -07004506 return hash_value;
4507}
4508
4509/******************************************************************************
4510 * Sets the bit in the multicast table corresponding to the hash value.
4511 *
4512 * hw - Struct containing variables accessed by shared code
4513 * hash_value - Multicast address hash value
4514 *****************************************************************************/
4515void
4516e1000_mta_set(struct e1000_hw *hw,
4517 uint32_t hash_value)
4518{
4519 uint32_t hash_bit, hash_reg;
4520 uint32_t mta;
4521 uint32_t temp;
4522
4523 /* The MTA is a register array of 128 32-bit registers.
4524 * It is treated like an array of 4096 bits. We want to set
4525 * bit BitArray[hash_value]. So we figure out what register
4526 * the bit is in, read it, OR in the new bit, then write
4527 * back the new value. The register is determined by the
4528 * upper 7 bits of the hash value and the bit within that
4529 * register are determined by the lower 5 bits of the value.
4530 */
4531 hash_reg = (hash_value >> 5) & 0x7F;
4532 hash_bit = hash_value & 0x1F;
4533
4534 mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
4535
4536 mta |= (1 << hash_bit);
4537
4538 /* If we are on an 82544 and we are trying to write an odd offset
4539 * in the MTA, save off the previous entry before writing and
4540 * restore the old value after writing.
4541 */
4542 if((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
4543 temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
4544 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
4545 E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
4546 } else {
4547 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
4548 }
4549}
4550
4551/******************************************************************************
4552 * Puts an ethernet address into a receive address register.
4553 *
4554 * hw - Struct containing variables accessed by shared code
4555 * addr - Address to put into receive address register
4556 * index - Receive address register to write
4557 *****************************************************************************/
4558void
4559e1000_rar_set(struct e1000_hw *hw,
4560 uint8_t *addr,
4561 uint32_t index)
4562{
4563 uint32_t rar_low, rar_high;
4564
4565 /* HW expects these in little endian so we reverse the byte order
4566 * from network order (big endian) to little endian
4567 */
4568 rar_low = ((uint32_t) addr[0] |
4569 ((uint32_t) addr[1] << 8) |
4570 ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
4571
4572 rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8) | E1000_RAH_AV);
4573
4574 E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4575 E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4576}
4577
4578/******************************************************************************
4579 * Writes a value to the specified offset in the VLAN filter table.
4580 *
4581 * hw - Struct containing variables accessed by shared code
4582 * offset - Offset in VLAN filer table to write
4583 * value - Value to write into VLAN filter table
4584 *****************************************************************************/
4585void
4586e1000_write_vfta(struct e1000_hw *hw,
4587 uint32_t offset,
4588 uint32_t value)
4589{
4590 uint32_t temp;
4591
4592 if((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4593 temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4594 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4595 E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4596 } else {
4597 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4598 }
4599}
4600
4601/******************************************************************************
4602 * Clears the VLAN filer table
4603 *
4604 * hw - Struct containing variables accessed by shared code
4605 *****************************************************************************/
4606void
4607e1000_clear_vfta(struct e1000_hw *hw)
4608{
4609 uint32_t offset;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004610 uint32_t vfta_value = 0;
4611 uint32_t vfta_offset = 0;
4612 uint32_t vfta_bit_in_reg = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004613
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004614 if (hw->mac_type == e1000_82573) {
4615 if (hw->mng_cookie.vlan_id != 0) {
4616 /* The VFTA is a 4096b bit-field, each identifying a single VLAN
4617 * ID. The following operations determine which 32b entry
4618 * (i.e. offset) into the array we want to set the VLAN ID
4619 * (i.e. bit) of the manageability unit. */
4620 vfta_offset = (hw->mng_cookie.vlan_id >>
4621 E1000_VFTA_ENTRY_SHIFT) &
4622 E1000_VFTA_ENTRY_MASK;
4623 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
4624 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
4625 }
4626 }
4627 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4628 /* If the offset we want to clear is the same offset of the
4629 * manageability VLAN ID, then clear all bits except that of the
4630 * manageability unit */
4631 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
4632 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
4633 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004634}
4635
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004636int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07004637e1000_id_led_init(struct e1000_hw * hw)
4638{
4639 uint32_t ledctl;
4640 const uint32_t ledctl_mask = 0x000000FF;
4641 const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4642 const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4643 uint16_t eeprom_data, i, temp;
4644 const uint16_t led_mask = 0x0F;
4645
4646 DEBUGFUNC("e1000_id_led_init");
4647
4648 if(hw->mac_type < e1000_82540) {
4649 /* Nothing to do */
4650 return E1000_SUCCESS;
4651 }
4652
4653 ledctl = E1000_READ_REG(hw, LEDCTL);
4654 hw->ledctl_default = ledctl;
4655 hw->ledctl_mode1 = hw->ledctl_default;
4656 hw->ledctl_mode2 = hw->ledctl_default;
4657
4658 if(e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
4659 DEBUGOUT("EEPROM Read Error\n");
4660 return -E1000_ERR_EEPROM;
4661 }
4662 if((eeprom_data== ID_LED_RESERVED_0000) ||
4663 (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT;
4664 for(i = 0; i < 4; i++) {
4665 temp = (eeprom_data >> (i << 2)) & led_mask;
4666 switch(temp) {
4667 case ID_LED_ON1_DEF2:
4668 case ID_LED_ON1_ON2:
4669 case ID_LED_ON1_OFF2:
4670 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4671 hw->ledctl_mode1 |= ledctl_on << (i << 3);
4672 break;
4673 case ID_LED_OFF1_DEF2:
4674 case ID_LED_OFF1_ON2:
4675 case ID_LED_OFF1_OFF2:
4676 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4677 hw->ledctl_mode1 |= ledctl_off << (i << 3);
4678 break;
4679 default:
4680 /* Do nothing */
4681 break;
4682 }
4683 switch(temp) {
4684 case ID_LED_DEF1_ON2:
4685 case ID_LED_ON1_ON2:
4686 case ID_LED_OFF1_ON2:
4687 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4688 hw->ledctl_mode2 |= ledctl_on << (i << 3);
4689 break;
4690 case ID_LED_DEF1_OFF2:
4691 case ID_LED_ON1_OFF2:
4692 case ID_LED_OFF1_OFF2:
4693 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4694 hw->ledctl_mode2 |= ledctl_off << (i << 3);
4695 break;
4696 default:
4697 /* Do nothing */
4698 break;
4699 }
4700 }
4701 return E1000_SUCCESS;
4702}
4703
4704/******************************************************************************
4705 * Prepares SW controlable LED for use and saves the current state of the LED.
4706 *
4707 * hw - Struct containing variables accessed by shared code
4708 *****************************************************************************/
4709int32_t
4710e1000_setup_led(struct e1000_hw *hw)
4711{
4712 uint32_t ledctl;
4713 int32_t ret_val = E1000_SUCCESS;
4714
4715 DEBUGFUNC("e1000_setup_led");
4716
4717 switch(hw->mac_type) {
4718 case e1000_82542_rev2_0:
4719 case e1000_82542_rev2_1:
4720 case e1000_82543:
4721 case e1000_82544:
4722 /* No setup necessary */
4723 break;
4724 case e1000_82541:
4725 case e1000_82547:
4726 case e1000_82541_rev_2:
4727 case e1000_82547_rev_2:
4728 /* Turn off PHY Smart Power Down (if enabled) */
4729 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4730 &hw->phy_spd_default);
4731 if(ret_val)
4732 return ret_val;
4733 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4734 (uint16_t)(hw->phy_spd_default &
4735 ~IGP01E1000_GMII_SPD));
4736 if(ret_val)
4737 return ret_val;
4738 /* Fall Through */
4739 default:
4740 if(hw->media_type == e1000_media_type_fiber) {
4741 ledctl = E1000_READ_REG(hw, LEDCTL);
4742 /* Save current LEDCTL settings */
4743 hw->ledctl_default = ledctl;
4744 /* Turn off LED0 */
4745 ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4746 E1000_LEDCTL_LED0_BLINK |
4747 E1000_LEDCTL_LED0_MODE_MASK);
4748 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4749 E1000_LEDCTL_LED0_MODE_SHIFT);
4750 E1000_WRITE_REG(hw, LEDCTL, ledctl);
4751 } else if(hw->media_type == e1000_media_type_copper)
4752 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
4753 break;
4754 }
4755
4756 return E1000_SUCCESS;
4757}
4758
4759/******************************************************************************
4760 * Restores the saved state of the SW controlable LED.
4761 *
4762 * hw - Struct containing variables accessed by shared code
4763 *****************************************************************************/
4764int32_t
4765e1000_cleanup_led(struct e1000_hw *hw)
4766{
4767 int32_t ret_val = E1000_SUCCESS;
4768
4769 DEBUGFUNC("e1000_cleanup_led");
4770
4771 switch(hw->mac_type) {
4772 case e1000_82542_rev2_0:
4773 case e1000_82542_rev2_1:
4774 case e1000_82543:
4775 case e1000_82544:
4776 /* No cleanup necessary */
4777 break;
4778 case e1000_82541:
4779 case e1000_82547:
4780 case e1000_82541_rev_2:
4781 case e1000_82547_rev_2:
4782 /* Turn on PHY Smart Power Down (if previously enabled) */
4783 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4784 hw->phy_spd_default);
4785 if(ret_val)
4786 return ret_val;
4787 /* Fall Through */
4788 default:
4789 /* Restore LEDCTL settings */
4790 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
4791 break;
4792 }
4793
4794 return E1000_SUCCESS;
4795}
4796
4797/******************************************************************************
4798 * Turns on the software controllable LED
4799 *
4800 * hw - Struct containing variables accessed by shared code
4801 *****************************************************************************/
4802int32_t
4803e1000_led_on(struct e1000_hw *hw)
4804{
4805 uint32_t ctrl = E1000_READ_REG(hw, CTRL);
4806
4807 DEBUGFUNC("e1000_led_on");
4808
4809 switch(hw->mac_type) {
4810 case e1000_82542_rev2_0:
4811 case e1000_82542_rev2_1:
4812 case e1000_82543:
4813 /* Set SW Defineable Pin 0 to turn on the LED */
4814 ctrl |= E1000_CTRL_SWDPIN0;
4815 ctrl |= E1000_CTRL_SWDPIO0;
4816 break;
4817 case e1000_82544:
4818 if(hw->media_type == e1000_media_type_fiber) {
4819 /* Set SW Defineable Pin 0 to turn on the LED */
4820 ctrl |= E1000_CTRL_SWDPIN0;
4821 ctrl |= E1000_CTRL_SWDPIO0;
4822 } else {
4823 /* Clear SW Defineable Pin 0 to turn on the LED */
4824 ctrl &= ~E1000_CTRL_SWDPIN0;
4825 ctrl |= E1000_CTRL_SWDPIO0;
4826 }
4827 break;
4828 default:
4829 if(hw->media_type == e1000_media_type_fiber) {
4830 /* Clear SW Defineable Pin 0 to turn on the LED */
4831 ctrl &= ~E1000_CTRL_SWDPIN0;
4832 ctrl |= E1000_CTRL_SWDPIO0;
4833 } else if(hw->media_type == e1000_media_type_copper) {
4834 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
4835 return E1000_SUCCESS;
4836 }
4837 break;
4838 }
4839
4840 E1000_WRITE_REG(hw, CTRL, ctrl);
4841
4842 return E1000_SUCCESS;
4843}
4844
4845/******************************************************************************
4846 * Turns off the software controllable LED
4847 *
4848 * hw - Struct containing variables accessed by shared code
4849 *****************************************************************************/
4850int32_t
4851e1000_led_off(struct e1000_hw *hw)
4852{
4853 uint32_t ctrl = E1000_READ_REG(hw, CTRL);
4854
4855 DEBUGFUNC("e1000_led_off");
4856
4857 switch(hw->mac_type) {
4858 case e1000_82542_rev2_0:
4859 case e1000_82542_rev2_1:
4860 case e1000_82543:
4861 /* Clear SW Defineable Pin 0 to turn off the LED */
4862 ctrl &= ~E1000_CTRL_SWDPIN0;
4863 ctrl |= E1000_CTRL_SWDPIO0;
4864 break;
4865 case e1000_82544:
4866 if(hw->media_type == e1000_media_type_fiber) {
4867 /* Clear SW Defineable Pin 0 to turn off the LED */
4868 ctrl &= ~E1000_CTRL_SWDPIN0;
4869 ctrl |= E1000_CTRL_SWDPIO0;
4870 } else {
4871 /* Set SW Defineable Pin 0 to turn off the LED */
4872 ctrl |= E1000_CTRL_SWDPIN0;
4873 ctrl |= E1000_CTRL_SWDPIO0;
4874 }
4875 break;
4876 default:
4877 if(hw->media_type == e1000_media_type_fiber) {
4878 /* Set SW Defineable Pin 0 to turn off the LED */
4879 ctrl |= E1000_CTRL_SWDPIN0;
4880 ctrl |= E1000_CTRL_SWDPIO0;
4881 } else if(hw->media_type == e1000_media_type_copper) {
4882 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
4883 return E1000_SUCCESS;
4884 }
4885 break;
4886 }
4887
4888 E1000_WRITE_REG(hw, CTRL, ctrl);
4889
4890 return E1000_SUCCESS;
4891}
4892
4893/******************************************************************************
4894 * Clears all hardware statistics counters.
4895 *
4896 * hw - Struct containing variables accessed by shared code
4897 *****************************************************************************/
4898void
4899e1000_clear_hw_cntrs(struct e1000_hw *hw)
4900{
4901 volatile uint32_t temp;
4902
4903 temp = E1000_READ_REG(hw, CRCERRS);
4904 temp = E1000_READ_REG(hw, SYMERRS);
4905 temp = E1000_READ_REG(hw, MPC);
4906 temp = E1000_READ_REG(hw, SCC);
4907 temp = E1000_READ_REG(hw, ECOL);
4908 temp = E1000_READ_REG(hw, MCC);
4909 temp = E1000_READ_REG(hw, LATECOL);
4910 temp = E1000_READ_REG(hw, COLC);
4911 temp = E1000_READ_REG(hw, DC);
4912 temp = E1000_READ_REG(hw, SEC);
4913 temp = E1000_READ_REG(hw, RLEC);
4914 temp = E1000_READ_REG(hw, XONRXC);
4915 temp = E1000_READ_REG(hw, XONTXC);
4916 temp = E1000_READ_REG(hw, XOFFRXC);
4917 temp = E1000_READ_REG(hw, XOFFTXC);
4918 temp = E1000_READ_REG(hw, FCRUC);
4919 temp = E1000_READ_REG(hw, PRC64);
4920 temp = E1000_READ_REG(hw, PRC127);
4921 temp = E1000_READ_REG(hw, PRC255);
4922 temp = E1000_READ_REG(hw, PRC511);
4923 temp = E1000_READ_REG(hw, PRC1023);
4924 temp = E1000_READ_REG(hw, PRC1522);
4925 temp = E1000_READ_REG(hw, GPRC);
4926 temp = E1000_READ_REG(hw, BPRC);
4927 temp = E1000_READ_REG(hw, MPRC);
4928 temp = E1000_READ_REG(hw, GPTC);
4929 temp = E1000_READ_REG(hw, GORCL);
4930 temp = E1000_READ_REG(hw, GORCH);
4931 temp = E1000_READ_REG(hw, GOTCL);
4932 temp = E1000_READ_REG(hw, GOTCH);
4933 temp = E1000_READ_REG(hw, RNBC);
4934 temp = E1000_READ_REG(hw, RUC);
4935 temp = E1000_READ_REG(hw, RFC);
4936 temp = E1000_READ_REG(hw, ROC);
4937 temp = E1000_READ_REG(hw, RJC);
4938 temp = E1000_READ_REG(hw, TORL);
4939 temp = E1000_READ_REG(hw, TORH);
4940 temp = E1000_READ_REG(hw, TOTL);
4941 temp = E1000_READ_REG(hw, TOTH);
4942 temp = E1000_READ_REG(hw, TPR);
4943 temp = E1000_READ_REG(hw, TPT);
4944 temp = E1000_READ_REG(hw, PTC64);
4945 temp = E1000_READ_REG(hw, PTC127);
4946 temp = E1000_READ_REG(hw, PTC255);
4947 temp = E1000_READ_REG(hw, PTC511);
4948 temp = E1000_READ_REG(hw, PTC1023);
4949 temp = E1000_READ_REG(hw, PTC1522);
4950 temp = E1000_READ_REG(hw, MPTC);
4951 temp = E1000_READ_REG(hw, BPTC);
4952
4953 if(hw->mac_type < e1000_82543) return;
4954
4955 temp = E1000_READ_REG(hw, ALGNERRC);
4956 temp = E1000_READ_REG(hw, RXERRC);
4957 temp = E1000_READ_REG(hw, TNCRS);
4958 temp = E1000_READ_REG(hw, CEXTERR);
4959 temp = E1000_READ_REG(hw, TSCTC);
4960 temp = E1000_READ_REG(hw, TSCTFC);
4961
4962 if(hw->mac_type <= e1000_82544) return;
4963
4964 temp = E1000_READ_REG(hw, MGTPRC);
4965 temp = E1000_READ_REG(hw, MGTPDC);
4966 temp = E1000_READ_REG(hw, MGTPTC);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004967
4968 if(hw->mac_type <= e1000_82547_rev_2) return;
4969
4970 temp = E1000_READ_REG(hw, IAC);
4971 temp = E1000_READ_REG(hw, ICRXOC);
4972 temp = E1000_READ_REG(hw, ICRXPTC);
4973 temp = E1000_READ_REG(hw, ICRXATC);
4974 temp = E1000_READ_REG(hw, ICTXPTC);
4975 temp = E1000_READ_REG(hw, ICTXATC);
4976 temp = E1000_READ_REG(hw, ICTXQEC);
4977 temp = E1000_READ_REG(hw, ICTXQMTC);
4978 temp = E1000_READ_REG(hw, ICRXDMTC);
4979
Linus Torvalds1da177e2005-04-16 15:20:36 -07004980}
4981
4982/******************************************************************************
4983 * Resets Adaptive IFS to its default state.
4984 *
4985 * hw - Struct containing variables accessed by shared code
4986 *
4987 * Call this after e1000_init_hw. You may override the IFS defaults by setting
4988 * hw->ifs_params_forced to TRUE. However, you must initialize hw->
4989 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
4990 * before calling this function.
4991 *****************************************************************************/
4992void
4993e1000_reset_adaptive(struct e1000_hw *hw)
4994{
4995 DEBUGFUNC("e1000_reset_adaptive");
4996
4997 if(hw->adaptive_ifs) {
4998 if(!hw->ifs_params_forced) {
4999 hw->current_ifs_val = 0;
5000 hw->ifs_min_val = IFS_MIN;
5001 hw->ifs_max_val = IFS_MAX;
5002 hw->ifs_step_size = IFS_STEP;
5003 hw->ifs_ratio = IFS_RATIO;
5004 }
5005 hw->in_ifs_mode = FALSE;
5006 E1000_WRITE_REG(hw, AIT, 0);
5007 } else {
5008 DEBUGOUT("Not in Adaptive IFS mode!\n");
5009 }
5010}
5011
5012/******************************************************************************
5013 * Called during the callback/watchdog routine to update IFS value based on
5014 * the ratio of transmits to collisions.
5015 *
5016 * hw - Struct containing variables accessed by shared code
5017 * tx_packets - Number of transmits since last callback
5018 * total_collisions - Number of collisions since last callback
5019 *****************************************************************************/
5020void
5021e1000_update_adaptive(struct e1000_hw *hw)
5022{
5023 DEBUGFUNC("e1000_update_adaptive");
5024
5025 if(hw->adaptive_ifs) {
5026 if((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
5027 if(hw->tx_packet_delta > MIN_NUM_XMITS) {
5028 hw->in_ifs_mode = TRUE;
5029 if(hw->current_ifs_val < hw->ifs_max_val) {
5030 if(hw->current_ifs_val == 0)
5031 hw->current_ifs_val = hw->ifs_min_val;
5032 else
5033 hw->current_ifs_val += hw->ifs_step_size;
5034 E1000_WRITE_REG(hw, AIT, hw->current_ifs_val);
5035 }
5036 }
5037 } else {
5038 if(hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
5039 hw->current_ifs_val = 0;
5040 hw->in_ifs_mode = FALSE;
5041 E1000_WRITE_REG(hw, AIT, 0);
5042 }
5043 }
5044 } else {
5045 DEBUGOUT("Not in Adaptive IFS mode!\n");
5046 }
5047}
5048
5049/******************************************************************************
5050 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
5051 *
5052 * hw - Struct containing variables accessed by shared code
5053 * frame_len - The length of the frame in question
5054 * mac_addr - The Ethernet destination address of the frame in question
5055 *****************************************************************************/
5056void
5057e1000_tbi_adjust_stats(struct e1000_hw *hw,
5058 struct e1000_hw_stats *stats,
5059 uint32_t frame_len,
5060 uint8_t *mac_addr)
5061{
5062 uint64_t carry_bit;
5063
5064 /* First adjust the frame length. */
5065 frame_len--;
5066 /* We need to adjust the statistics counters, since the hardware
5067 * counters overcount this packet as a CRC error and undercount
5068 * the packet as a good packet
5069 */
5070 /* This packet should not be counted as a CRC error. */
5071 stats->crcerrs--;
5072 /* This packet does count as a Good Packet Received. */
5073 stats->gprc++;
5074
5075 /* Adjust the Good Octets received counters */
5076 carry_bit = 0x80000000 & stats->gorcl;
5077 stats->gorcl += frame_len;
5078 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
5079 * Received Count) was one before the addition,
5080 * AND it is zero after, then we lost the carry out,
5081 * need to add one to Gorch (Good Octets Received Count High).
5082 * This could be simplified if all environments supported
5083 * 64-bit integers.
5084 */
5085 if(carry_bit && ((stats->gorcl & 0x80000000) == 0))
5086 stats->gorch++;
5087 /* Is this a broadcast or multicast? Check broadcast first,
5088 * since the test for a multicast frame will test positive on
5089 * a broadcast frame.
5090 */
5091 if((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
5092 /* Broadcast packet */
5093 stats->bprc++;
5094 else if(*mac_addr & 0x01)
5095 /* Multicast packet */
5096 stats->mprc++;
5097
5098 if(frame_len == hw->max_frame_size) {
5099 /* In this case, the hardware has overcounted the number of
5100 * oversize frames.
5101 */
5102 if(stats->roc > 0)
5103 stats->roc--;
5104 }
5105
5106 /* Adjust the bin counters when the extra byte put the frame in the
5107 * wrong bin. Remember that the frame_len was adjusted above.
5108 */
5109 if(frame_len == 64) {
5110 stats->prc64++;
5111 stats->prc127--;
5112 } else if(frame_len == 127) {
5113 stats->prc127++;
5114 stats->prc255--;
5115 } else if(frame_len == 255) {
5116 stats->prc255++;
5117 stats->prc511--;
5118 } else if(frame_len == 511) {
5119 stats->prc511++;
5120 stats->prc1023--;
5121 } else if(frame_len == 1023) {
5122 stats->prc1023++;
5123 stats->prc1522--;
5124 } else if(frame_len == 1522) {
5125 stats->prc1522++;
5126 }
5127}
5128
5129/******************************************************************************
5130 * Gets the current PCI bus type, speed, and width of the hardware
5131 *
5132 * hw - Struct containing variables accessed by shared code
5133 *****************************************************************************/
5134void
5135e1000_get_bus_info(struct e1000_hw *hw)
5136{
5137 uint32_t status;
5138
5139 switch (hw->mac_type) {
5140 case e1000_82542_rev2_0:
5141 case e1000_82542_rev2_1:
5142 hw->bus_type = e1000_bus_type_unknown;
5143 hw->bus_speed = e1000_bus_speed_unknown;
5144 hw->bus_width = e1000_bus_width_unknown;
5145 break;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005146 case e1000_82573:
5147 hw->bus_type = e1000_bus_type_pci_express;
5148 hw->bus_speed = e1000_bus_speed_2500;
5149 hw->bus_width = e1000_bus_width_pciex_4;
5150 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005151 default:
5152 status = E1000_READ_REG(hw, STATUS);
5153 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5154 e1000_bus_type_pcix : e1000_bus_type_pci;
5155
5156 if(hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
5157 hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
5158 e1000_bus_speed_66 : e1000_bus_speed_120;
5159 } else if(hw->bus_type == e1000_bus_type_pci) {
5160 hw->bus_speed = (status & E1000_STATUS_PCI66) ?
5161 e1000_bus_speed_66 : e1000_bus_speed_33;
5162 } else {
5163 switch (status & E1000_STATUS_PCIX_SPEED) {
5164 case E1000_STATUS_PCIX_SPEED_66:
5165 hw->bus_speed = e1000_bus_speed_66;
5166 break;
5167 case E1000_STATUS_PCIX_SPEED_100:
5168 hw->bus_speed = e1000_bus_speed_100;
5169 break;
5170 case E1000_STATUS_PCIX_SPEED_133:
5171 hw->bus_speed = e1000_bus_speed_133;
5172 break;
5173 default:
5174 hw->bus_speed = e1000_bus_speed_reserved;
5175 break;
5176 }
5177 }
5178 hw->bus_width = (status & E1000_STATUS_BUS64) ?
5179 e1000_bus_width_64 : e1000_bus_width_32;
5180 break;
5181 }
5182}
5183/******************************************************************************
5184 * Reads a value from one of the devices registers using port I/O (as opposed
5185 * memory mapped I/O). Only 82544 and newer devices support port I/O.
5186 *
5187 * hw - Struct containing variables accessed by shared code
5188 * offset - offset to read from
5189 *****************************************************************************/
5190uint32_t
5191e1000_read_reg_io(struct e1000_hw *hw,
5192 uint32_t offset)
5193{
5194 unsigned long io_addr = hw->io_base;
5195 unsigned long io_data = hw->io_base + 4;
5196
5197 e1000_io_write(hw, io_addr, offset);
5198 return e1000_io_read(hw, io_data);
5199}
5200
5201/******************************************************************************
5202 * Writes a value to one of the devices registers using port I/O (as opposed to
5203 * memory mapped I/O). Only 82544 and newer devices support port I/O.
5204 *
5205 * hw - Struct containing variables accessed by shared code
5206 * offset - offset to write to
5207 * value - value to write
5208 *****************************************************************************/
5209void
5210e1000_write_reg_io(struct e1000_hw *hw,
5211 uint32_t offset,
5212 uint32_t value)
5213{
5214 unsigned long io_addr = hw->io_base;
5215 unsigned long io_data = hw->io_base + 4;
5216
5217 e1000_io_write(hw, io_addr, offset);
5218 e1000_io_write(hw, io_data, value);
5219}
5220
5221
5222/******************************************************************************
5223 * Estimates the cable length.
5224 *
5225 * hw - Struct containing variables accessed by shared code
5226 * min_length - The estimated minimum length
5227 * max_length - The estimated maximum length
5228 *
5229 * returns: - E1000_ERR_XXX
5230 * E1000_SUCCESS
5231 *
5232 * This function always returns a ranged length (minimum & maximum).
5233 * So for M88 phy's, this function interprets the one value returned from the
5234 * register to the minimum and maximum range.
5235 * For IGP phy's, the function calculates the range by the AGC registers.
5236 *****************************************************************************/
5237int32_t
5238e1000_get_cable_length(struct e1000_hw *hw,
5239 uint16_t *min_length,
5240 uint16_t *max_length)
5241{
5242 int32_t ret_val;
5243 uint16_t agc_value = 0;
5244 uint16_t cur_agc, min_agc = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
5245 uint16_t i, phy_data;
5246 uint16_t cable_length;
5247
5248 DEBUGFUNC("e1000_get_cable_length");
5249
5250 *min_length = *max_length = 0;
5251
5252 /* Use old method for Phy older than IGP */
5253 if(hw->phy_type == e1000_phy_m88) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005254
Linus Torvalds1da177e2005-04-16 15:20:36 -07005255 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5256 &phy_data);
5257 if(ret_val)
5258 return ret_val;
5259 cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
5260 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
5261
5262 /* Convert the enum value to ranged values */
5263 switch (cable_length) {
5264 case e1000_cable_length_50:
5265 *min_length = 0;
5266 *max_length = e1000_igp_cable_length_50;
5267 break;
5268 case e1000_cable_length_50_80:
5269 *min_length = e1000_igp_cable_length_50;
5270 *max_length = e1000_igp_cable_length_80;
5271 break;
5272 case e1000_cable_length_80_110:
5273 *min_length = e1000_igp_cable_length_80;
5274 *max_length = e1000_igp_cable_length_110;
5275 break;
5276 case e1000_cable_length_110_140:
5277 *min_length = e1000_igp_cable_length_110;
5278 *max_length = e1000_igp_cable_length_140;
5279 break;
5280 case e1000_cable_length_140:
5281 *min_length = e1000_igp_cable_length_140;
5282 *max_length = e1000_igp_cable_length_170;
5283 break;
5284 default:
5285 return -E1000_ERR_PHY;
5286 break;
5287 }
5288 } else if(hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
5289 uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
5290 {IGP01E1000_PHY_AGC_A,
5291 IGP01E1000_PHY_AGC_B,
5292 IGP01E1000_PHY_AGC_C,
5293 IGP01E1000_PHY_AGC_D};
5294 /* Read the AGC registers for all channels */
5295 for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5296
5297 ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
5298 if(ret_val)
5299 return ret_val;
5300
5301 cur_agc = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
5302
5303 /* Array bound check. */
5304 if((cur_agc >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
5305 (cur_agc == 0))
5306 return -E1000_ERR_PHY;
5307
5308 agc_value += cur_agc;
5309
5310 /* Update minimal AGC value. */
5311 if(min_agc > cur_agc)
5312 min_agc = cur_agc;
5313 }
5314
5315 /* Remove the minimal AGC result for length < 50m */
5316 if(agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
5317 agc_value -= min_agc;
5318
5319 /* Get the average length of the remaining 3 channels */
5320 agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
5321 } else {
5322 /* Get the average length of all the 4 channels. */
5323 agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
5324 }
5325
5326 /* Set the range of the calculated length. */
5327 *min_length = ((e1000_igp_cable_length_table[agc_value] -
5328 IGP01E1000_AGC_RANGE) > 0) ?
5329 (e1000_igp_cable_length_table[agc_value] -
5330 IGP01E1000_AGC_RANGE) : 0;
5331 *max_length = e1000_igp_cable_length_table[agc_value] +
5332 IGP01E1000_AGC_RANGE;
5333 }
5334
5335 return E1000_SUCCESS;
5336}
5337
5338/******************************************************************************
5339 * Check the cable polarity
5340 *
5341 * hw - Struct containing variables accessed by shared code
5342 * polarity - output parameter : 0 - Polarity is not reversed
5343 * 1 - Polarity is reversed.
5344 *
5345 * returns: - E1000_ERR_XXX
5346 * E1000_SUCCESS
5347 *
5348 * For phy's older then IGP, this function simply reads the polarity bit in the
5349 * Phy Status register. For IGP phy's, this bit is valid only if link speed is
5350 * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
5351 * return 0. If the link speed is 1000 Mbps the polarity status is in the
5352 * IGP01E1000_PHY_PCS_INIT_REG.
5353 *****************************************************************************/
5354int32_t
5355e1000_check_polarity(struct e1000_hw *hw,
5356 uint16_t *polarity)
5357{
5358 int32_t ret_val;
5359 uint16_t phy_data;
5360
5361 DEBUGFUNC("e1000_check_polarity");
5362
5363 if(hw->phy_type == e1000_phy_m88) {
5364 /* return the Polarity bit in the Status register. */
5365 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5366 &phy_data);
5367 if(ret_val)
5368 return ret_val;
5369 *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >>
5370 M88E1000_PSSR_REV_POLARITY_SHIFT;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005371 } else if(hw->phy_type == e1000_phy_igp ||
5372 hw->phy_type == e1000_phy_igp_2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005373 /* Read the Status register to check the speed */
5374 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5375 &phy_data);
5376 if(ret_val)
5377 return ret_val;
5378
5379 /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
5380 * find the polarity status */
5381 if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5382 IGP01E1000_PSSR_SPEED_1000MBPS) {
5383
5384 /* Read the GIG initialization PCS register (0x00B4) */
5385 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5386 &phy_data);
5387 if(ret_val)
5388 return ret_val;
5389
5390 /* Check the polarity bits */
5391 *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? 1 : 0;
5392 } else {
5393 /* For 10 Mbps, read the polarity bit in the status register. (for
5394 * 100 Mbps this bit is always 0) */
5395 *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED;
5396 }
5397 }
5398 return E1000_SUCCESS;
5399}
5400
5401/******************************************************************************
5402 * Check if Downshift occured
5403 *
5404 * hw - Struct containing variables accessed by shared code
5405 * downshift - output parameter : 0 - No Downshift ocured.
5406 * 1 - Downshift ocured.
5407 *
5408 * returns: - E1000_ERR_XXX
5409 * E1000_SUCCESS
5410 *
5411 * For phy's older then IGP, this function reads the Downshift bit in the Phy
5412 * Specific Status register. For IGP phy's, it reads the Downgrade bit in the
5413 * Link Health register. In IGP this bit is latched high, so the driver must
5414 * read it immediately after link is established.
5415 *****************************************************************************/
5416int32_t
5417e1000_check_downshift(struct e1000_hw *hw)
5418{
5419 int32_t ret_val;
5420 uint16_t phy_data;
5421
5422 DEBUGFUNC("e1000_check_downshift");
5423
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005424 if(hw->phy_type == e1000_phy_igp ||
5425 hw->phy_type == e1000_phy_igp_2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005426 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5427 &phy_data);
5428 if(ret_val)
5429 return ret_val;
5430
5431 hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5432 } else if(hw->phy_type == e1000_phy_m88) {
5433 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5434 &phy_data);
5435 if(ret_val)
5436 return ret_val;
5437
5438 hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
5439 M88E1000_PSSR_DOWNSHIFT_SHIFT;
5440 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005441
Linus Torvalds1da177e2005-04-16 15:20:36 -07005442 return E1000_SUCCESS;
5443}
5444
5445/*****************************************************************************
5446 *
5447 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5448 * gigabit link is achieved to improve link quality.
5449 *
5450 * hw: Struct containing variables accessed by shared code
5451 *
5452 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5453 * E1000_SUCCESS at any other case.
5454 *
5455 ****************************************************************************/
5456
5457int32_t
5458e1000_config_dsp_after_link_change(struct e1000_hw *hw,
5459 boolean_t link_up)
5460{
5461 int32_t ret_val;
5462 uint16_t phy_data, phy_saved_data, speed, duplex, i;
5463 uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
5464 {IGP01E1000_PHY_AGC_PARAM_A,
5465 IGP01E1000_PHY_AGC_PARAM_B,
5466 IGP01E1000_PHY_AGC_PARAM_C,
5467 IGP01E1000_PHY_AGC_PARAM_D};
5468 uint16_t min_length, max_length;
5469
5470 DEBUGFUNC("e1000_config_dsp_after_link_change");
5471
5472 if(hw->phy_type != e1000_phy_igp)
5473 return E1000_SUCCESS;
5474
5475 if(link_up) {
5476 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5477 if(ret_val) {
5478 DEBUGOUT("Error getting link speed and duplex\n");
5479 return ret_val;
5480 }
5481
5482 if(speed == SPEED_1000) {
5483
5484 e1000_get_cable_length(hw, &min_length, &max_length);
5485
5486 if((hw->dsp_config_state == e1000_dsp_config_enabled) &&
5487 min_length >= e1000_igp_cable_length_50) {
5488
5489 for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5490 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
5491 &phy_data);
5492 if(ret_val)
5493 return ret_val;
5494
5495 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5496
5497 ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
5498 phy_data);
5499 if(ret_val)
5500 return ret_val;
5501 }
5502 hw->dsp_config_state = e1000_dsp_config_activated;
5503 }
5504
5505 if((hw->ffe_config_state == e1000_ffe_config_enabled) &&
5506 (min_length < e1000_igp_cable_length_50)) {
5507
5508 uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5509 uint32_t idle_errs = 0;
5510
5511 /* clear previous idle error counts */
5512 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5513 &phy_data);
5514 if(ret_val)
5515 return ret_val;
5516
5517 for(i = 0; i < ffe_idle_err_timeout; i++) {
5518 udelay(1000);
5519 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5520 &phy_data);
5521 if(ret_val)
5522 return ret_val;
5523
5524 idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
5525 if(idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
5526 hw->ffe_config_state = e1000_ffe_config_active;
5527
5528 ret_val = e1000_write_phy_reg(hw,
5529 IGP01E1000_PHY_DSP_FFE,
5530 IGP01E1000_PHY_DSP_FFE_CM_CP);
5531 if(ret_val)
5532 return ret_val;
5533 break;
5534 }
5535
5536 if(idle_errs)
5537 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5538 }
5539 }
5540 }
5541 } else {
5542 if(hw->dsp_config_state == e1000_dsp_config_activated) {
5543 /* Save off the current value of register 0x2F5B to be restored at
5544 * the end of the routines. */
5545 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5546
5547 if(ret_val)
5548 return ret_val;
5549
5550 /* Disable the PHY transmitter */
5551 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5552
5553 if(ret_val)
5554 return ret_val;
5555
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005556 msec_delay_irq(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005557
5558 ret_val = e1000_write_phy_reg(hw, 0x0000,
5559 IGP01E1000_IEEE_FORCE_GIGA);
5560 if(ret_val)
5561 return ret_val;
5562 for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5563 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
5564 if(ret_val)
5565 return ret_val;
5566
5567 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5568 phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
5569
5570 ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data);
5571 if(ret_val)
5572 return ret_val;
5573 }
5574
5575 ret_val = e1000_write_phy_reg(hw, 0x0000,
5576 IGP01E1000_IEEE_RESTART_AUTONEG);
5577 if(ret_val)
5578 return ret_val;
5579
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005580 msec_delay_irq(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005581
5582 /* Now enable the transmitter */
5583 ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5584
5585 if(ret_val)
5586 return ret_val;
5587
5588 hw->dsp_config_state = e1000_dsp_config_enabled;
5589 }
5590
5591 if(hw->ffe_config_state == e1000_ffe_config_active) {
5592 /* Save off the current value of register 0x2F5B to be restored at
5593 * the end of the routines. */
5594 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5595
5596 if(ret_val)
5597 return ret_val;
5598
5599 /* Disable the PHY transmitter */
5600 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5601
5602 if(ret_val)
5603 return ret_val;
5604
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005605 msec_delay_irq(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005606
5607 ret_val = e1000_write_phy_reg(hw, 0x0000,
5608 IGP01E1000_IEEE_FORCE_GIGA);
5609 if(ret_val)
5610 return ret_val;
5611 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5612 IGP01E1000_PHY_DSP_FFE_DEFAULT);
5613 if(ret_val)
5614 return ret_val;
5615
5616 ret_val = e1000_write_phy_reg(hw, 0x0000,
5617 IGP01E1000_IEEE_RESTART_AUTONEG);
5618 if(ret_val)
5619 return ret_val;
5620
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005621 msec_delay_irq(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005622
5623 /* Now enable the transmitter */
5624 ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5625
5626 if(ret_val)
5627 return ret_val;
5628
5629 hw->ffe_config_state = e1000_ffe_config_enabled;
5630 }
5631 }
5632 return E1000_SUCCESS;
5633}
5634
5635/*****************************************************************************
5636 * Set PHY to class A mode
5637 * Assumes the following operations will follow to enable the new class mode.
5638 * 1. Do a PHY soft reset
5639 * 2. Restart auto-negotiation or force link.
5640 *
5641 * hw - Struct containing variables accessed by shared code
5642 ****************************************************************************/
5643static int32_t
5644e1000_set_phy_mode(struct e1000_hw *hw)
5645{
5646 int32_t ret_val;
5647 uint16_t eeprom_data;
5648
5649 DEBUGFUNC("e1000_set_phy_mode");
5650
5651 if((hw->mac_type == e1000_82545_rev_3) &&
5652 (hw->media_type == e1000_media_type_copper)) {
5653 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
5654 if(ret_val) {
5655 return ret_val;
5656 }
5657
5658 if((eeprom_data != EEPROM_RESERVED_WORD) &&
5659 (eeprom_data & EEPROM_PHY_CLASS_A)) {
5660 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
5661 if(ret_val)
5662 return ret_val;
5663 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
5664 if(ret_val)
5665 return ret_val;
5666
5667 hw->phy_reset_disable = FALSE;
5668 }
5669 }
5670
5671 return E1000_SUCCESS;
5672}
5673
5674/*****************************************************************************
5675 *
5676 * This function sets the lplu state according to the active flag. When
5677 * activating lplu this function also disables smart speed and vise versa.
5678 * lplu will not be activated unless the device autonegotiation advertisment
5679 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5680 * hw: Struct containing variables accessed by shared code
5681 * active - true to enable lplu false to disable lplu.
5682 *
5683 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5684 * E1000_SUCCESS at any other case.
5685 *
5686 ****************************************************************************/
5687
5688int32_t
5689e1000_set_d3_lplu_state(struct e1000_hw *hw,
5690 boolean_t active)
5691{
5692 int32_t ret_val;
5693 uint16_t phy_data;
5694 DEBUGFUNC("e1000_set_d3_lplu_state");
5695
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005696 if(hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005697 return E1000_SUCCESS;
5698
5699 /* During driver activity LPLU should not be used or it will attain link
5700 * from the lowest speeds starting from 10Mbps. The capability is used for
5701 * Dx transitions and states */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005702 if(hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
5703 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005704 if(ret_val)
5705 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005706 } else {
5707 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
5708 if(ret_val)
5709 return ret_val;
5710 }
5711
5712 if(!active) {
5713 if(hw->mac_type == e1000_82541_rev_2 ||
5714 hw->mac_type == e1000_82547_rev_2) {
5715 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5716 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
5717 if(ret_val)
5718 return ret_val;
5719 } else {
5720 phy_data &= ~IGP02E1000_PM_D3_LPLU;
5721 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
5722 phy_data);
5723 if (ret_val)
5724 return ret_val;
5725 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005726
5727 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
5728 * Dx states where the power conservation is most important. During
5729 * driver activity we should enable SmartSpeed, so performance is
5730 * maintained. */
5731 if (hw->smart_speed == e1000_smart_speed_on) {
5732 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5733 &phy_data);
5734 if(ret_val)
5735 return ret_val;
5736
5737 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5738 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5739 phy_data);
5740 if(ret_val)
5741 return ret_val;
5742 } else if (hw->smart_speed == e1000_smart_speed_off) {
5743 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5744 &phy_data);
5745 if (ret_val)
5746 return ret_val;
5747
5748 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5749 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5750 phy_data);
5751 if(ret_val)
5752 return ret_val;
5753 }
5754
5755 } else if((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
5756 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
5757 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
5758
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005759 if(hw->mac_type == e1000_82541_rev_2 ||
5760 hw->mac_type == e1000_82547_rev_2) {
5761 phy_data |= IGP01E1000_GMII_FLEX_SPD;
5762 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
5763 if(ret_val)
5764 return ret_val;
5765 } else {
5766 phy_data |= IGP02E1000_PM_D3_LPLU;
5767 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
5768 phy_data);
5769 if (ret_val)
5770 return ret_val;
5771 }
5772
5773 /* When LPLU is enabled we should disable SmartSpeed */
5774 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005775 if(ret_val)
5776 return ret_val;
5777
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005778 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5779 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
5780 if(ret_val)
5781 return ret_val;
5782
5783 }
5784 return E1000_SUCCESS;
5785}
5786
5787/*****************************************************************************
5788 *
5789 * This function sets the lplu d0 state according to the active flag. When
5790 * activating lplu this function also disables smart speed and vise versa.
5791 * lplu will not be activated unless the device autonegotiation advertisment
5792 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5793 * hw: Struct containing variables accessed by shared code
5794 * active - true to enable lplu false to disable lplu.
5795 *
5796 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5797 * E1000_SUCCESS at any other case.
5798 *
5799 ****************************************************************************/
5800
5801int32_t
5802e1000_set_d0_lplu_state(struct e1000_hw *hw,
5803 boolean_t active)
5804{
5805 int32_t ret_val;
5806 uint16_t phy_data;
5807 DEBUGFUNC("e1000_set_d0_lplu_state");
5808
5809 if(hw->mac_type <= e1000_82547_rev_2)
5810 return E1000_SUCCESS;
5811
5812 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
5813 if(ret_val)
5814 return ret_val;
5815
5816 if (!active) {
5817 phy_data &= ~IGP02E1000_PM_D0_LPLU;
5818 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
5819 if (ret_val)
5820 return ret_val;
5821
5822 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
5823 * Dx states where the power conservation is most important. During
5824 * driver activity we should enable SmartSpeed, so performance is
5825 * maintained. */
5826 if (hw->smart_speed == e1000_smart_speed_on) {
5827 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5828 &phy_data);
5829 if(ret_val)
5830 return ret_val;
5831
5832 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5833 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5834 phy_data);
5835 if(ret_val)
5836 return ret_val;
5837 } else if (hw->smart_speed == e1000_smart_speed_off) {
5838 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5839 &phy_data);
5840 if (ret_val)
5841 return ret_val;
5842
5843 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5844 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5845 phy_data);
5846 if(ret_val)
5847 return ret_val;
5848 }
5849
5850
5851 } else {
5852
5853 phy_data |= IGP02E1000_PM_D0_LPLU;
5854 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
5855 if (ret_val)
5856 return ret_val;
5857
Linus Torvalds1da177e2005-04-16 15:20:36 -07005858 /* When LPLU is enabled we should disable SmartSpeed */
5859 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
5860 if(ret_val)
5861 return ret_val;
5862
5863 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5864 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
5865 if(ret_val)
5866 return ret_val;
5867
5868 }
5869 return E1000_SUCCESS;
5870}
5871
5872/******************************************************************************
5873 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
5874 *
5875 * hw - Struct containing variables accessed by shared code
5876 *****************************************************************************/
5877static int32_t
5878e1000_set_vco_speed(struct e1000_hw *hw)
5879{
5880 int32_t ret_val;
5881 uint16_t default_page = 0;
5882 uint16_t phy_data;
5883
5884 DEBUGFUNC("e1000_set_vco_speed");
5885
5886 switch(hw->mac_type) {
5887 case e1000_82545_rev_3:
5888 case e1000_82546_rev_3:
5889 break;
5890 default:
5891 return E1000_SUCCESS;
5892 }
5893
5894 /* Set PHY register 30, page 5, bit 8 to 0 */
5895
5896 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
5897 if(ret_val)
5898 return ret_val;
5899
5900 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
5901 if(ret_val)
5902 return ret_val;
5903
5904 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5905 if(ret_val)
5906 return ret_val;
5907
5908 phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
5909 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5910 if(ret_val)
5911 return ret_val;
5912
5913 /* Set PHY register 30, page 4, bit 11 to 1 */
5914
5915 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
5916 if(ret_val)
5917 return ret_val;
5918
5919 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5920 if(ret_val)
5921 return ret_val;
5922
5923 phy_data |= M88E1000_PHY_VCO_REG_BIT11;
5924 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5925 if(ret_val)
5926 return ret_val;
5927
5928 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
5929 if(ret_val)
5930 return ret_val;
5931
5932 return E1000_SUCCESS;
5933}
5934
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005935
5936/*****************************************************************************
5937 * This function reads the cookie from ARC ram.
5938 *
5939 * returns: - E1000_SUCCESS .
5940 ****************************************************************************/
5941int32_t
5942e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer)
5943{
5944 uint8_t i;
5945 uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
5946 uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
5947
5948 length = (length >> 2);
5949 offset = (offset >> 2);
5950
5951 for (i = 0; i < length; i++) {
5952 *((uint32_t *) buffer + i) =
5953 E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
5954 }
5955 return E1000_SUCCESS;
5956}
5957
5958
5959/*****************************************************************************
5960 * This function checks whether the HOST IF is enabled for command operaton
5961 * and also checks whether the previous command is completed.
5962 * It busy waits in case of previous command is not completed.
5963 *
5964 * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
5965 * timeout
5966 * - E1000_SUCCESS for success.
5967 ****************************************************************************/
5968int32_t
5969e1000_mng_enable_host_if(struct e1000_hw * hw)
5970{
5971 uint32_t hicr;
5972 uint8_t i;
5973
5974 /* Check that the host interface is enabled. */
5975 hicr = E1000_READ_REG(hw, HICR);
5976 if ((hicr & E1000_HICR_EN) == 0) {
5977 DEBUGOUT("E1000_HOST_EN bit disabled.\n");
5978 return -E1000_ERR_HOST_INTERFACE_COMMAND;
5979 }
5980 /* check the previous command is completed */
5981 for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
5982 hicr = E1000_READ_REG(hw, HICR);
5983 if (!(hicr & E1000_HICR_C))
5984 break;
5985 msec_delay_irq(1);
5986 }
5987
5988 if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
5989 DEBUGOUT("Previous command timeout failed .\n");
5990 return -E1000_ERR_HOST_INTERFACE_COMMAND;
5991 }
5992 return E1000_SUCCESS;
5993}
5994
5995/*****************************************************************************
5996 * This function writes the buffer content at the offset given on the host if.
5997 * It also does alignment considerations to do the writes in most efficient way.
5998 * Also fills up the sum of the buffer in *buffer parameter.
5999 *
6000 * returns - E1000_SUCCESS for success.
6001 ****************************************************************************/
6002int32_t
6003e1000_mng_host_if_write(struct e1000_hw * hw, uint8_t *buffer,
6004 uint16_t length, uint16_t offset, uint8_t *sum)
6005{
6006 uint8_t *tmp;
6007 uint8_t *bufptr = buffer;
6008 uint32_t data;
6009 uint16_t remaining, i, j, prev_bytes;
6010
6011 /* sum = only sum of the data and it is not checksum */
6012
6013 if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
6014 return -E1000_ERR_PARAM;
6015 }
6016
6017 tmp = (uint8_t *)&data;
6018 prev_bytes = offset & 0x3;
6019 offset &= 0xFFFC;
6020 offset >>= 2;
6021
6022 if (prev_bytes) {
6023 data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset);
6024 for (j = prev_bytes; j < sizeof(uint32_t); j++) {
6025 *(tmp + j) = *bufptr++;
6026 *sum += *(tmp + j);
6027 }
6028 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data);
6029 length -= j - prev_bytes;
6030 offset++;
6031 }
6032
6033 remaining = length & 0x3;
6034 length -= remaining;
6035
6036 /* Calculate length in DWORDs */
6037 length >>= 2;
6038
6039 /* The device driver writes the relevant command block into the
6040 * ram area. */
6041 for (i = 0; i < length; i++) {
6042 for (j = 0; j < sizeof(uint32_t); j++) {
6043 *(tmp + j) = *bufptr++;
6044 *sum += *(tmp + j);
6045 }
6046
6047 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
6048 }
6049 if (remaining) {
6050 for (j = 0; j < sizeof(uint32_t); j++) {
6051 if (j < remaining)
6052 *(tmp + j) = *bufptr++;
6053 else
6054 *(tmp + j) = 0;
6055
6056 *sum += *(tmp + j);
6057 }
6058 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
6059 }
6060
6061 return E1000_SUCCESS;
6062}
6063
6064
6065/*****************************************************************************
6066 * This function writes the command header after does the checksum calculation.
6067 *
6068 * returns - E1000_SUCCESS for success.
6069 ****************************************************************************/
6070int32_t
6071e1000_mng_write_cmd_header(struct e1000_hw * hw,
6072 struct e1000_host_mng_command_header * hdr)
6073{
6074 uint16_t i;
6075 uint8_t sum;
6076 uint8_t *buffer;
6077
6078 /* Write the whole command header structure which includes sum of
6079 * the buffer */
6080
6081 uint16_t length = sizeof(struct e1000_host_mng_command_header);
6082
6083 sum = hdr->checksum;
6084 hdr->checksum = 0;
6085
6086 buffer = (uint8_t *) hdr;
6087 i = length;
6088 while(i--)
6089 sum += buffer[i];
6090
6091 hdr->checksum = 0 - sum;
6092
6093 length >>= 2;
6094 /* The device driver writes the relevant command block into the ram area. */
6095 for (i = 0; i < length; i++)
6096 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i));
6097
6098 return E1000_SUCCESS;
6099}
6100
6101
6102/*****************************************************************************
6103 * This function indicates to ARC that a new command is pending which completes
6104 * one write operation by the driver.
6105 *
6106 * returns - E1000_SUCCESS for success.
6107 ****************************************************************************/
6108int32_t
6109e1000_mng_write_commit(
6110 struct e1000_hw * hw)
6111{
6112 uint32_t hicr;
6113
6114 hicr = E1000_READ_REG(hw, HICR);
6115 /* Setting this bit tells the ARC that a new command is pending. */
6116 E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C);
6117
6118 return E1000_SUCCESS;
6119}
6120
6121
6122/*****************************************************************************
6123 * This function checks the mode of the firmware.
6124 *
6125 * returns - TRUE when the mode is IAMT or FALSE.
6126 ****************************************************************************/
6127boolean_t
6128e1000_check_mng_mode(
6129 struct e1000_hw *hw)
6130{
6131 uint32_t fwsm;
6132
6133 fwsm = E1000_READ_REG(hw, FWSM);
6134
6135 if((fwsm & E1000_FWSM_MODE_MASK) ==
6136 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
6137 return TRUE;
6138
6139 return FALSE;
6140}
6141
6142
6143/*****************************************************************************
6144 * This function writes the dhcp info .
6145 ****************************************************************************/
6146int32_t
6147e1000_mng_write_dhcp_info(struct e1000_hw * hw, uint8_t *buffer,
6148 uint16_t length)
6149{
6150 int32_t ret_val;
6151 struct e1000_host_mng_command_header hdr;
6152
6153 hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
6154 hdr.command_length = length;
6155 hdr.reserved1 = 0;
6156 hdr.reserved2 = 0;
6157 hdr.checksum = 0;
6158
6159 ret_val = e1000_mng_enable_host_if(hw);
6160 if (ret_val == E1000_SUCCESS) {
6161 ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr),
6162 &(hdr.checksum));
6163 if (ret_val == E1000_SUCCESS) {
6164 ret_val = e1000_mng_write_cmd_header(hw, &hdr);
6165 if (ret_val == E1000_SUCCESS)
6166 ret_val = e1000_mng_write_commit(hw);
6167 }
6168 }
6169 return ret_val;
6170}
6171
6172
6173/*****************************************************************************
6174 * This function calculates the checksum.
6175 *
6176 * returns - checksum of buffer contents.
6177 ****************************************************************************/
6178uint8_t
6179e1000_calculate_mng_checksum(char *buffer, uint32_t length)
6180{
6181 uint8_t sum = 0;
6182 uint32_t i;
6183
6184 if (!buffer)
6185 return 0;
6186
6187 for (i=0; i < length; i++)
6188 sum += buffer[i];
6189
6190 return (uint8_t) (0 - sum);
6191}
6192
6193/*****************************************************************************
6194 * This function checks whether tx pkt filtering needs to be enabled or not.
6195 *
6196 * returns - TRUE for packet filtering or FALSE.
6197 ****************************************************************************/
6198boolean_t
6199e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
6200{
6201 /* called in init as well as watchdog timer functions */
6202
6203 int32_t ret_val, checksum;
6204 boolean_t tx_filter = FALSE;
6205 struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
6206 uint8_t *buffer = (uint8_t *) &(hw->mng_cookie);
6207
6208 if (e1000_check_mng_mode(hw)) {
6209 ret_val = e1000_mng_enable_host_if(hw);
6210 if (ret_val == E1000_SUCCESS) {
6211 ret_val = e1000_host_if_read_cookie(hw, buffer);
6212 if (ret_val == E1000_SUCCESS) {
6213 checksum = hdr->checksum;
6214 hdr->checksum = 0;
6215 if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
6216 checksum == e1000_calculate_mng_checksum((char *)buffer,
6217 E1000_MNG_DHCP_COOKIE_LENGTH)) {
6218 if (hdr->status &
6219 E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
6220 tx_filter = TRUE;
6221 } else
6222 tx_filter = TRUE;
6223 } else
6224 tx_filter = TRUE;
6225 }
6226 }
6227
6228 hw->tx_pkt_filtering = tx_filter;
6229 return tx_filter;
6230}
6231
6232/******************************************************************************
6233 * Verifies the hardware needs to allow ARPs to be processed by the host
6234 *
6235 * hw - Struct containing variables accessed by shared code
6236 *
6237 * returns: - TRUE/FALSE
6238 *
6239 *****************************************************************************/
6240uint32_t
6241e1000_enable_mng_pass_thru(struct e1000_hw *hw)
6242{
6243 uint32_t manc;
6244 uint32_t fwsm, factps;
6245
6246 if (hw->asf_firmware_present) {
6247 manc = E1000_READ_REG(hw, MANC);
6248
6249 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
6250 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
6251 return FALSE;
6252 if (e1000_arc_subsystem_valid(hw) == TRUE) {
6253 fwsm = E1000_READ_REG(hw, FWSM);
6254 factps = E1000_READ_REG(hw, FACTPS);
6255
6256 if (((fwsm & E1000_FWSM_MODE_MASK) ==
6257 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT)) &&
6258 (factps & E1000_FACTPS_MNGCG))
6259 return TRUE;
6260 } else
6261 if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
6262 return TRUE;
6263 }
6264 return FALSE;
6265}
6266
Linus Torvalds1da177e2005-04-16 15:20:36 -07006267static int32_t
6268e1000_polarity_reversal_workaround(struct e1000_hw *hw)
6269{
6270 int32_t ret_val;
6271 uint16_t mii_status_reg;
6272 uint16_t i;
6273
6274 /* Polarity reversal workaround for forced 10F/10H links. */
6275
6276 /* Disable the transmitter on the PHY */
6277
6278 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
6279 if(ret_val)
6280 return ret_val;
6281 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
6282 if(ret_val)
6283 return ret_val;
6284
6285 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
6286 if(ret_val)
6287 return ret_val;
6288
6289 /* This loop will early-out if the NO link condition has been met. */
6290 for(i = PHY_FORCE_TIME; i > 0; i--) {
6291 /* Read the MII Status Register and wait for Link Status bit
6292 * to be clear.
6293 */
6294
6295 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
6296 if(ret_val)
6297 return ret_val;
6298
6299 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
6300 if(ret_val)
6301 return ret_val;
6302
6303 if((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
6304 msec_delay_irq(100);
6305 }
6306
6307 /* Recommended delay time after link has been lost */
6308 msec_delay_irq(1000);
6309
6310 /* Now we will re-enable th transmitter on the PHY */
6311
6312 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
6313 if(ret_val)
6314 return ret_val;
6315 msec_delay_irq(50);
6316 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
6317 if(ret_val)
6318 return ret_val;
6319 msec_delay_irq(50);
6320 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
6321 if(ret_val)
6322 return ret_val;
6323 msec_delay_irq(50);
6324 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
6325 if(ret_val)
6326 return ret_val;
6327
6328 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
6329 if(ret_val)
6330 return ret_val;
6331
6332 /* This loop will early-out if the link condition has been met. */
6333 for(i = PHY_FORCE_TIME; i > 0; i--) {
6334 /* Read the MII Status Register and wait for Link Status bit
6335 * to be set.
6336 */
6337
6338 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
6339 if(ret_val)
6340 return ret_val;
6341
6342 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
6343 if(ret_val)
6344 return ret_val;
6345
6346 if(mii_status_reg & MII_SR_LINK_STATUS) break;
6347 msec_delay_irq(100);
6348 }
6349 return E1000_SUCCESS;
6350}
6351
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006352/***************************************************************************
6353 *
6354 * Disables PCI-Express master access.
6355 *
6356 * hw: Struct containing variables accessed by shared code
6357 *
6358 * returns: - none.
6359 *
6360 ***************************************************************************/
6361void
6362e1000_set_pci_express_master_disable(struct e1000_hw *hw)
6363{
6364 uint32_t ctrl;
6365
6366 DEBUGFUNC("e1000_set_pci_express_master_disable");
6367
6368 if (hw->bus_type != e1000_bus_type_pci_express)
6369 return;
6370
6371 ctrl = E1000_READ_REG(hw, CTRL);
6372 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
6373 E1000_WRITE_REG(hw, CTRL, ctrl);
6374}
6375
6376/***************************************************************************
6377 *
6378 * Enables PCI-Express master access.
6379 *
6380 * hw: Struct containing variables accessed by shared code
6381 *
6382 * returns: - none.
6383 *
6384 ***************************************************************************/
6385void
6386e1000_enable_pciex_master(struct e1000_hw *hw)
6387{
6388 uint32_t ctrl;
6389
6390 DEBUGFUNC("e1000_enable_pciex_master");
6391
6392 if (hw->bus_type != e1000_bus_type_pci_express)
6393 return;
6394
6395 ctrl = E1000_READ_REG(hw, CTRL);
6396 ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE;
6397 E1000_WRITE_REG(hw, CTRL, ctrl);
6398}
6399
6400/*******************************************************************************
6401 *
6402 * Disables PCI-Express master access and verifies there are no pending requests
6403 *
6404 * hw: Struct containing variables accessed by shared code
6405 *
6406 * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
6407 * caused the master requests to be disabled.
6408 * E1000_SUCCESS master requests disabled.
6409 *
6410 ******************************************************************************/
6411int32_t
6412e1000_disable_pciex_master(struct e1000_hw *hw)
6413{
6414 int32_t timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */
6415
6416 DEBUGFUNC("e1000_disable_pciex_master");
6417
6418 if (hw->bus_type != e1000_bus_type_pci_express)
6419 return E1000_SUCCESS;
6420
6421 e1000_set_pci_express_master_disable(hw);
6422
6423 while(timeout) {
6424 if(!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
6425 break;
6426 else
6427 udelay(100);
6428 timeout--;
6429 }
6430
6431 if(!timeout) {
6432 DEBUGOUT("Master requests are pending.\n");
6433 return -E1000_ERR_MASTER_REQUESTS_PENDING;
6434 }
6435
6436 return E1000_SUCCESS;
6437}
6438
6439/*******************************************************************************
6440 *
6441 * Check for EEPROM Auto Read bit done.
6442 *
6443 * hw: Struct containing variables accessed by shared code
6444 *
6445 * returns: - E1000_ERR_RESET if fail to reset MAC
6446 * E1000_SUCCESS at any other case.
6447 *
6448 ******************************************************************************/
6449int32_t
6450e1000_get_auto_rd_done(struct e1000_hw *hw)
6451{
6452 int32_t timeout = AUTO_READ_DONE_TIMEOUT;
6453
6454 DEBUGFUNC("e1000_get_auto_rd_done");
6455
6456 switch (hw->mac_type) {
6457 default:
6458 msec_delay(5);
6459 break;
6460 case e1000_82573:
6461 while(timeout) {
6462 if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) break;
6463 else msec_delay(1);
6464 timeout--;
6465 }
6466
6467 if(!timeout) {
6468 DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
6469 return -E1000_ERR_RESET;
6470 }
6471 break;
6472 }
6473
6474 return E1000_SUCCESS;
6475}
6476
6477/***************************************************************************
6478 * Checks if the PHY configuration is done
6479 *
6480 * hw: Struct containing variables accessed by shared code
6481 *
6482 * returns: - E1000_ERR_RESET if fail to reset MAC
6483 * E1000_SUCCESS at any other case.
6484 *
6485 ***************************************************************************/
6486int32_t
6487e1000_get_phy_cfg_done(struct e1000_hw *hw)
6488{
6489 DEBUGFUNC("e1000_get_phy_cfg_done");
6490
6491 /* Simply wait for 10ms */
6492 msec_delay(10);
6493
6494 return E1000_SUCCESS;
6495}
6496
6497/***************************************************************************
6498 *
6499 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
6500 * adapter or Eeprom access.
6501 *
6502 * hw: Struct containing variables accessed by shared code
6503 *
6504 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
6505 * E1000_SUCCESS at any other case.
6506 *
6507 ***************************************************************************/
6508int32_t
6509e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
6510{
6511 int32_t timeout;
6512 uint32_t swsm;
6513
6514 DEBUGFUNC("e1000_get_hw_eeprom_semaphore");
6515
6516 if(!hw->eeprom_semaphore_present)
6517 return E1000_SUCCESS;
6518
6519
6520 /* Get the FW semaphore. */
6521 timeout = hw->eeprom.word_size + 1;
6522 while(timeout) {
6523 swsm = E1000_READ_REG(hw, SWSM);
6524 swsm |= E1000_SWSM_SWESMBI;
6525 E1000_WRITE_REG(hw, SWSM, swsm);
6526 /* if we managed to set the bit we got the semaphore. */
6527 swsm = E1000_READ_REG(hw, SWSM);
6528 if(swsm & E1000_SWSM_SWESMBI)
6529 break;
6530
6531 udelay(50);
6532 timeout--;
6533 }
6534
6535 if(!timeout) {
6536 /* Release semaphores */
6537 e1000_put_hw_eeprom_semaphore(hw);
6538 DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
6539 return -E1000_ERR_EEPROM;
6540 }
6541
6542 return E1000_SUCCESS;
6543}
6544
6545/***************************************************************************
6546 * This function clears HW semaphore bits.
6547 *
6548 * hw: Struct containing variables accessed by shared code
6549 *
6550 * returns: - None.
6551 *
6552 ***************************************************************************/
6553void
6554e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
6555{
6556 uint32_t swsm;
6557
6558 DEBUGFUNC("e1000_put_hw_eeprom_semaphore");
6559
6560 if(!hw->eeprom_semaphore_present)
6561 return;
6562
6563 swsm = E1000_READ_REG(hw, SWSM);
6564 /* Release both semaphores. */
6565 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
6566 E1000_WRITE_REG(hw, SWSM, swsm);
6567}
6568
6569/******************************************************************************
6570 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
6571 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
6572 * the caller to figure out how to deal with it.
6573 *
6574 * hw - Struct containing variables accessed by shared code
6575 *
6576 * returns: - E1000_BLK_PHY_RESET
6577 * E1000_SUCCESS
6578 *
6579 *****************************************************************************/
6580int32_t
6581e1000_check_phy_reset_block(struct e1000_hw *hw)
6582{
6583 uint32_t manc = 0;
6584 if(hw->mac_type > e1000_82547_rev_2)
6585 manc = E1000_READ_REG(hw, MANC);
6586 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
6587 E1000_BLK_PHY_RESET : E1000_SUCCESS;
6588}
6589
6590uint8_t
6591e1000_arc_subsystem_valid(struct e1000_hw *hw)
6592{
6593 uint32_t fwsm;
6594
6595 /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
6596 * may not be provided a DMA clock when no manageability features are
6597 * enabled. We do not want to perform any reads/writes to these registers
6598 * if this is the case. We read FWSM to determine the manageability mode.
6599 */
6600 switch (hw->mac_type) {
6601 case e1000_82573:
6602 fwsm = E1000_READ_REG(hw, FWSM);
6603 if((fwsm & E1000_FWSM_MODE_MASK) != 0)
6604 return TRUE;
6605 break;
6606 default:
6607 break;
6608 }
6609 return FALSE;
6610}
6611
6612
6613