blob: 285fd9bc61be1b089441663b587f34ff409fb1ba [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com>
3 * Nicer crc32 functions/docs submitted by linux@horizon.com. Thanks!
4 * Code was from the public domain, copyright abandoned. Code was
5 * subsequently included in the kernel, thus was re-licensed under the
6 * GNU GPL v2.
7 *
8 * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com>
9 * Same crc32 function was used in 5 other places in the kernel.
10 * I made one version, and deleted the others.
11 * There are various incantations of crc32(). Some use a seed of 0 or ~0.
12 * Some xor at the end with ~0. The generic crc32() function takes
13 * seed as an argument, and doesn't xor at the end. Then individual
14 * users can do whatever they need.
15 * drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
16 * fs/jffs2 uses seed 0, doesn't xor with ~0.
17 * fs/partitions/efi.c uses seed ~0, xor's with ~0.
18 *
19 * This source code is licensed under the GNU General Public License,
20 * Version 2. See the file COPYING for more details.
21 */
22
23#include <linux/crc32.h>
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/compiler.h>
27#include <linux/types.h>
28#include <linux/slab.h>
29#include <linux/init.h>
30#include <asm/atomic.h>
31#include "crc32defs.h"
32#if CRC_LE_BITS == 8
33#define tole(x) __constant_cpu_to_le32(x)
34#define tobe(x) __constant_cpu_to_be32(x)
35#else
36#define tole(x) (x)
37#define tobe(x) (x)
38#endif
39#include "crc32table.h"
40
41MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
42MODULE_DESCRIPTION("Ethernet CRC32 calculations");
43MODULE_LICENSE("GPL");
44
Randy Dunlap2f721002006-06-25 05:48:59 -070045/**
46 * crc32_le() - Calculate bitwise little-endian Ethernet AUTODIN II CRC32
47 * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for
48 * other uses, or the previous crc32 value if computing incrementally.
49 * @p: pointer to buffer over which CRC is run
50 * @len: length of buffer @p
51 */
52u32 __attribute_pure__ crc32_le(u32 crc, unsigned char const *p, size_t len);
53
Linus Torvalds1da177e2005-04-16 15:20:36 -070054#if CRC_LE_BITS == 1
55/*
56 * In fact, the table-based code will work in this case, but it can be
57 * simplified by inlining the table in ?: form.
58 */
59
Linus Torvalds1da177e2005-04-16 15:20:36 -070060u32 __attribute_pure__ crc32_le(u32 crc, unsigned char const *p, size_t len)
61{
62 int i;
63 while (len--) {
64 crc ^= *p++;
65 for (i = 0; i < 8; i++)
66 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
67 }
68 return crc;
69}
70#else /* Table-based approach */
71
Linus Torvalds1da177e2005-04-16 15:20:36 -070072u32 __attribute_pure__ crc32_le(u32 crc, unsigned char const *p, size_t len)
73{
74# if CRC_LE_BITS == 8
75 const u32 *b =(u32 *)p;
76 const u32 *tab = crc32table_le;
77
78# ifdef __LITTLE_ENDIAN
79# define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8)
80# else
81# define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8)
82# endif
83
84 crc = __cpu_to_le32(crc);
85 /* Align it */
86 if(unlikely(((long)b)&3 && len)){
87 do {
88 u8 *p = (u8 *)b;
89 DO_CRC(*p++);
90 b = (void *)p;
91 } while ((--len) && ((long)b)&3 );
92 }
93 if(likely(len >= 4)){
94 /* load data 32 bits wide, xor data 32 bits wide. */
95 size_t save_len = len & 3;
96 len = len >> 2;
97 --b; /* use pre increment below(*++b) for speed */
98 do {
99 crc ^= *++b;
100 DO_CRC(0);
101 DO_CRC(0);
102 DO_CRC(0);
103 DO_CRC(0);
104 } while (--len);
105 b++; /* point to next byte(s) */
106 len = save_len;
107 }
108 /* And the last few bytes */
109 if(len){
110 do {
111 u8 *p = (u8 *)b;
112 DO_CRC(*p++);
113 b = (void *)p;
114 } while (--len);
115 }
116
117 return __le32_to_cpu(crc);
118#undef ENDIAN_SHIFT
119#undef DO_CRC
120
121# elif CRC_LE_BITS == 4
122 while (len--) {
123 crc ^= *p++;
124 crc = (crc >> 4) ^ crc32table_le[crc & 15];
125 crc = (crc >> 4) ^ crc32table_le[crc & 15];
126 }
127 return crc;
128# elif CRC_LE_BITS == 2
129 while (len--) {
130 crc ^= *p++;
131 crc = (crc >> 2) ^ crc32table_le[crc & 3];
132 crc = (crc >> 2) ^ crc32table_le[crc & 3];
133 crc = (crc >> 2) ^ crc32table_le[crc & 3];
134 crc = (crc >> 2) ^ crc32table_le[crc & 3];
135 }
136 return crc;
137# endif
138}
139#endif
140
Randy Dunlap2f721002006-06-25 05:48:59 -0700141/**
142 * crc32_be() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
143 * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for
144 * other uses, or the previous crc32 value if computing incrementally.
145 * @p: pointer to buffer over which CRC is run
146 * @len: length of buffer @p
147 */
148u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len);
149
Linus Torvalds1da177e2005-04-16 15:20:36 -0700150#if CRC_BE_BITS == 1
151/*
152 * In fact, the table-based code will work in this case, but it can be
153 * simplified by inlining the table in ?: form.
154 */
155
Linus Torvalds1da177e2005-04-16 15:20:36 -0700156u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len)
157{
158 int i;
159 while (len--) {
160 crc ^= *p++ << 24;
161 for (i = 0; i < 8; i++)
162 crc =
163 (crc << 1) ^ ((crc & 0x80000000) ? CRCPOLY_BE :
164 0);
165 }
166 return crc;
167}
168
169#else /* Table-based approach */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700170u32 __attribute_pure__ crc32_be(u32 crc, unsigned char const *p, size_t len)
171{
172# if CRC_BE_BITS == 8
173 const u32 *b =(u32 *)p;
174 const u32 *tab = crc32table_be;
175
176# ifdef __LITTLE_ENDIAN
177# define DO_CRC(x) crc = tab[ (crc ^ (x)) & 255 ] ^ (crc>>8)
178# else
179# define DO_CRC(x) crc = tab[ ((crc >> 24) ^ (x)) & 255] ^ (crc<<8)
180# endif
181
182 crc = __cpu_to_be32(crc);
183 /* Align it */
184 if(unlikely(((long)b)&3 && len)){
185 do {
186 u8 *p = (u8 *)b;
187 DO_CRC(*p++);
188 b = (u32 *)p;
189 } while ((--len) && ((long)b)&3 );
190 }
191 if(likely(len >= 4)){
192 /* load data 32 bits wide, xor data 32 bits wide. */
193 size_t save_len = len & 3;
194 len = len >> 2;
195 --b; /* use pre increment below(*++b) for speed */
196 do {
197 crc ^= *++b;
198 DO_CRC(0);
199 DO_CRC(0);
200 DO_CRC(0);
201 DO_CRC(0);
202 } while (--len);
203 b++; /* point to next byte(s) */
204 len = save_len;
205 }
206 /* And the last few bytes */
207 if(len){
208 do {
209 u8 *p = (u8 *)b;
210 DO_CRC(*p++);
211 b = (void *)p;
212 } while (--len);
213 }
214 return __be32_to_cpu(crc);
215#undef ENDIAN_SHIFT
216#undef DO_CRC
217
218# elif CRC_BE_BITS == 4
219 while (len--) {
220 crc ^= *p++ << 24;
221 crc = (crc << 4) ^ crc32table_be[crc >> 28];
222 crc = (crc << 4) ^ crc32table_be[crc >> 28];
223 }
224 return crc;
225# elif CRC_BE_BITS == 2
226 while (len--) {
227 crc ^= *p++ << 24;
228 crc = (crc << 2) ^ crc32table_be[crc >> 30];
229 crc = (crc << 2) ^ crc32table_be[crc >> 30];
230 crc = (crc << 2) ^ crc32table_be[crc >> 30];
231 crc = (crc << 2) ^ crc32table_be[crc >> 30];
232 }
233 return crc;
234# endif
235}
236#endif
237
Randy Dunlap2f721002006-06-25 05:48:59 -0700238/**
239 * bitreverse - reverse the order of bits in a u32 value
240 * @x: value to be bit-reversed
241 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700242u32 bitreverse(u32 x)
243{
244 x = (x >> 16) | (x << 16);
245 x = (x >> 8 & 0x00ff00ff) | (x << 8 & 0xff00ff00);
246 x = (x >> 4 & 0x0f0f0f0f) | (x << 4 & 0xf0f0f0f0);
247 x = (x >> 2 & 0x33333333) | (x << 2 & 0xcccccccc);
248 x = (x >> 1 & 0x55555555) | (x << 1 & 0xaaaaaaaa);
249 return x;
250}
251
252EXPORT_SYMBOL(crc32_le);
253EXPORT_SYMBOL(crc32_be);
254EXPORT_SYMBOL(bitreverse);
255
256/*
257 * A brief CRC tutorial.
258 *
259 * A CRC is a long-division remainder. You add the CRC to the message,
260 * and the whole thing (message+CRC) is a multiple of the given
261 * CRC polynomial. To check the CRC, you can either check that the
262 * CRC matches the recomputed value, *or* you can check that the
263 * remainder computed on the message+CRC is 0. This latter approach
264 * is used by a lot of hardware implementations, and is why so many
265 * protocols put the end-of-frame flag after the CRC.
266 *
267 * It's actually the same long division you learned in school, except that
268 * - We're working in binary, so the digits are only 0 and 1, and
269 * - When dividing polynomials, there are no carries. Rather than add and
270 * subtract, we just xor. Thus, we tend to get a bit sloppy about
271 * the difference between adding and subtracting.
272 *
273 * A 32-bit CRC polynomial is actually 33 bits long. But since it's
274 * 33 bits long, bit 32 is always going to be set, so usually the CRC
275 * is written in hex with the most significant bit omitted. (If you're
276 * familiar with the IEEE 754 floating-point format, it's the same idea.)
277 *
278 * Note that a CRC is computed over a string of *bits*, so you have
279 * to decide on the endianness of the bits within each byte. To get
280 * the best error-detecting properties, this should correspond to the
281 * order they're actually sent. For example, standard RS-232 serial is
282 * little-endian; the most significant bit (sometimes used for parity)
283 * is sent last. And when appending a CRC word to a message, you should
284 * do it in the right order, matching the endianness.
285 *
286 * Just like with ordinary division, the remainder is always smaller than
287 * the divisor (the CRC polynomial) you're dividing by. Each step of the
288 * division, you take one more digit (bit) of the dividend and append it
289 * to the current remainder. Then you figure out the appropriate multiple
290 * of the divisor to subtract to being the remainder back into range.
291 * In binary, it's easy - it has to be either 0 or 1, and to make the
292 * XOR cancel, it's just a copy of bit 32 of the remainder.
293 *
294 * When computing a CRC, we don't care about the quotient, so we can
295 * throw the quotient bit away, but subtract the appropriate multiple of
296 * the polynomial from the remainder and we're back to where we started,
297 * ready to process the next bit.
298 *
299 * A big-endian CRC written this way would be coded like:
300 * for (i = 0; i < input_bits; i++) {
301 * multiple = remainder & 0x80000000 ? CRCPOLY : 0;
302 * remainder = (remainder << 1 | next_input_bit()) ^ multiple;
303 * }
304 * Notice how, to get at bit 32 of the shifted remainder, we look
305 * at bit 31 of the remainder *before* shifting it.
306 *
307 * But also notice how the next_input_bit() bits we're shifting into
308 * the remainder don't actually affect any decision-making until
309 * 32 bits later. Thus, the first 32 cycles of this are pretty boring.
310 * Also, to add the CRC to a message, we need a 32-bit-long hole for it at
311 * the end, so we have to add 32 extra cycles shifting in zeros at the
312 * end of every message,
313 *
314 * So the standard trick is to rearrage merging in the next_input_bit()
315 * until the moment it's needed. Then the first 32 cycles can be precomputed,
316 * and merging in the final 32 zero bits to make room for the CRC can be
317 * skipped entirely.
318 * This changes the code to:
319 * for (i = 0; i < input_bits; i++) {
320 * remainder ^= next_input_bit() << 31;
321 * multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
322 * remainder = (remainder << 1) ^ multiple;
323 * }
324 * With this optimization, the little-endian code is simpler:
325 * for (i = 0; i < input_bits; i++) {
326 * remainder ^= next_input_bit();
327 * multiple = (remainder & 1) ? CRCPOLY : 0;
328 * remainder = (remainder >> 1) ^ multiple;
329 * }
330 *
331 * Note that the other details of endianness have been hidden in CRCPOLY
332 * (which must be bit-reversed) and next_input_bit().
333 *
334 * However, as long as next_input_bit is returning the bits in a sensible
335 * order, we can actually do the merging 8 or more bits at a time rather
336 * than one bit at a time:
337 * for (i = 0; i < input_bytes; i++) {
338 * remainder ^= next_input_byte() << 24;
339 * for (j = 0; j < 8; j++) {
340 * multiple = (remainder & 0x80000000) ? CRCPOLY : 0;
341 * remainder = (remainder << 1) ^ multiple;
342 * }
343 * }
344 * Or in little-endian:
345 * for (i = 0; i < input_bytes; i++) {
346 * remainder ^= next_input_byte();
347 * for (j = 0; j < 8; j++) {
348 * multiple = (remainder & 1) ? CRCPOLY : 0;
349 * remainder = (remainder << 1) ^ multiple;
350 * }
351 * }
352 * If the input is a multiple of 32 bits, you can even XOR in a 32-bit
353 * word at a time and increase the inner loop count to 32.
354 *
355 * You can also mix and match the two loop styles, for example doing the
356 * bulk of a message byte-at-a-time and adding bit-at-a-time processing
357 * for any fractional bytes at the end.
358 *
359 * The only remaining optimization is to the byte-at-a-time table method.
360 * Here, rather than just shifting one bit of the remainder to decide
361 * in the correct multiple to subtract, we can shift a byte at a time.
362 * This produces a 40-bit (rather than a 33-bit) intermediate remainder,
363 * but again the multiple of the polynomial to subtract depends only on
364 * the high bits, the high 8 bits in this case.
365 *
366 * The multile we need in that case is the low 32 bits of a 40-bit
367 * value whose high 8 bits are given, and which is a multiple of the
368 * generator polynomial. This is simply the CRC-32 of the given
369 * one-byte message.
370 *
371 * Two more details: normally, appending zero bits to a message which
372 * is already a multiple of a polynomial produces a larger multiple of that
373 * polynomial. To enable a CRC to detect this condition, it's common to
374 * invert the CRC before appending it. This makes the remainder of the
375 * message+crc come out not as zero, but some fixed non-zero value.
376 *
377 * The same problem applies to zero bits prepended to the message, and
378 * a similar solution is used. Instead of starting with a remainder of
379 * 0, an initial remainder of all ones is used. As long as you start
380 * the same way on decoding, it doesn't make a difference.
381 */
382
383#ifdef UNITTEST
384
385#include <stdlib.h>
386#include <stdio.h>
387
388#if 0 /*Not used at present */
389static void
390buf_dump(char const *prefix, unsigned char const *buf, size_t len)
391{
392 fputs(prefix, stdout);
393 while (len--)
394 printf(" %02x", *buf++);
395 putchar('\n');
396
397}
398#endif
399
400static void bytereverse(unsigned char *buf, size_t len)
401{
402 while (len--) {
403 unsigned char x = *buf;
404 x = (x >> 4) | (x << 4);
405 x = (x >> 2 & 0x33) | (x << 2 & 0xcc);
406 x = (x >> 1 & 0x55) | (x << 1 & 0xaa);
407 *buf++ = x;
408 }
409}
410
411static void random_garbage(unsigned char *buf, size_t len)
412{
413 while (len--)
414 *buf++ = (unsigned char) random();
415}
416
417#if 0 /* Not used at present */
418static void store_le(u32 x, unsigned char *buf)
419{
420 buf[0] = (unsigned char) x;
421 buf[1] = (unsigned char) (x >> 8);
422 buf[2] = (unsigned char) (x >> 16);
423 buf[3] = (unsigned char) (x >> 24);
424}
425#endif
426
427static void store_be(u32 x, unsigned char *buf)
428{
429 buf[0] = (unsigned char) (x >> 24);
430 buf[1] = (unsigned char) (x >> 16);
431 buf[2] = (unsigned char) (x >> 8);
432 buf[3] = (unsigned char) x;
433}
434
435/*
436 * This checks that CRC(buf + CRC(buf)) = 0, and that
437 * CRC commutes with bit-reversal. This has the side effect
438 * of bytewise bit-reversing the input buffer, and returns
439 * the CRC of the reversed buffer.
440 */
441static u32 test_step(u32 init, unsigned char *buf, size_t len)
442{
443 u32 crc1, crc2;
444 size_t i;
445
446 crc1 = crc32_be(init, buf, len);
447 store_be(crc1, buf + len);
448 crc2 = crc32_be(init, buf, len + 4);
449 if (crc2)
450 printf("\nCRC cancellation fail: 0x%08x should be 0\n",
451 crc2);
452
453 for (i = 0; i <= len + 4; i++) {
454 crc2 = crc32_be(init, buf, i);
455 crc2 = crc32_be(crc2, buf + i, len + 4 - i);
456 if (crc2)
457 printf("\nCRC split fail: 0x%08x\n", crc2);
458 }
459
460 /* Now swap it around for the other test */
461
462 bytereverse(buf, len + 4);
463 init = bitreverse(init);
464 crc2 = bitreverse(crc1);
465 if (crc1 != bitreverse(crc2))
Dominik Hacklcfc646f2005-08-07 09:42:53 -0700466 printf("\nBit reversal fail: 0x%08x -> 0x%08x -> 0x%08x\n",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700467 crc1, crc2, bitreverse(crc2));
468 crc1 = crc32_le(init, buf, len);
469 if (crc1 != crc2)
470 printf("\nCRC endianness fail: 0x%08x != 0x%08x\n", crc1,
471 crc2);
472 crc2 = crc32_le(init, buf, len + 4);
473 if (crc2)
474 printf("\nCRC cancellation fail: 0x%08x should be 0\n",
475 crc2);
476
477 for (i = 0; i <= len + 4; i++) {
478 crc2 = crc32_le(init, buf, i);
479 crc2 = crc32_le(crc2, buf + i, len + 4 - i);
480 if (crc2)
481 printf("\nCRC split fail: 0x%08x\n", crc2);
482 }
483
484 return crc1;
485}
486
487#define SIZE 64
488#define INIT1 0
489#define INIT2 0
490
491int main(void)
492{
493 unsigned char buf1[SIZE + 4];
494 unsigned char buf2[SIZE + 4];
495 unsigned char buf3[SIZE + 4];
496 int i, j;
497 u32 crc1, crc2, crc3;
498
499 for (i = 0; i <= SIZE; i++) {
500 printf("\rTesting length %d...", i);
501 fflush(stdout);
502 random_garbage(buf1, i);
503 random_garbage(buf2, i);
504 for (j = 0; j < i; j++)
505 buf3[j] = buf1[j] ^ buf2[j];
506
507 crc1 = test_step(INIT1, buf1, i);
508 crc2 = test_step(INIT2, buf2, i);
509 /* Now check that CRC(buf1 ^ buf2) = CRC(buf1) ^ CRC(buf2) */
510 crc3 = test_step(INIT1 ^ INIT2, buf3, i);
511 if (crc3 != (crc1 ^ crc2))
512 printf("CRC XOR fail: 0x%08x != 0x%08x ^ 0x%08x\n",
513 crc3, crc1, crc2);
514 }
515 printf("\nAll test complete. No failures expected.\n");
516 return 0;
517}
518
519#endif /* UNITTEST */