blob: 28c5a3193b819752024b57941677f1dfe31df818 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*****************************************************************************/
2
3/*
4 * istallion.c -- stallion intelligent multiport serial driver.
5 *
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
8 *
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26
27/*****************************************************************************/
28
29#include <linux/config.h>
30#include <linux/module.h>
31#include <linux/slab.h>
32#include <linux/interrupt.h>
33#include <linux/tty.h>
34#include <linux/tty_flip.h>
35#include <linux/serial.h>
36#include <linux/cdk.h>
37#include <linux/comstats.h>
38#include <linux/istallion.h>
39#include <linux/ioport.h>
40#include <linux/delay.h>
41#include <linux/init.h>
42#include <linux/devfs_fs_kernel.h>
43#include <linux/device.h>
44#include <linux/wait.h>
45
46#include <asm/io.h>
47#include <asm/uaccess.h>
48
49#ifdef CONFIG_PCI
50#include <linux/pci.h>
51#endif
52
53/*****************************************************************************/
54
55/*
56 * Define different board types. Not all of the following board types
57 * are supported by this driver. But I will use the standard "assigned"
58 * board numbers. Currently supported boards are abbreviated as:
59 * ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
60 * STAL = Stallion.
61 */
62#define BRD_UNKNOWN 0
63#define BRD_STALLION 1
64#define BRD_BRUMBY4 2
65#define BRD_ONBOARD2 3
66#define BRD_ONBOARD 4
67#define BRD_BRUMBY8 5
68#define BRD_BRUMBY16 6
69#define BRD_ONBOARDE 7
70#define BRD_ONBOARD32 9
71#define BRD_ONBOARD2_32 10
72#define BRD_ONBOARDRS 11
73#define BRD_EASYIO 20
74#define BRD_ECH 21
75#define BRD_ECHMC 22
76#define BRD_ECP 23
77#define BRD_ECPE 24
78#define BRD_ECPMC 25
79#define BRD_ECHPCI 26
80#define BRD_ECH64PCI 27
81#define BRD_EASYIOPCI 28
82#define BRD_ECPPCI 29
83
84#define BRD_BRUMBY BRD_BRUMBY4
85
86/*
87 * Define a configuration structure to hold the board configuration.
88 * Need to set this up in the code (for now) with the boards that are
89 * to be configured into the system. This is what needs to be modified
90 * when adding/removing/modifying boards. Each line entry in the
91 * stli_brdconf[] array is a board. Each line contains io/irq/memory
92 * ranges for that board (as well as what type of board it is).
93 * Some examples:
94 * { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
95 * This line will configure an EasyConnection 8/64 at io address 2a0,
96 * and shared memory address of cc000. Multiple EasyConnection 8/64
97 * boards can share the same shared memory address space. No interrupt
98 * is required for this board type.
99 * Another example:
100 * { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
101 * This line will configure an EasyConnection 8/64 EISA in slot 5 and
102 * shared memory address of 0x80000000 (2 GByte). Multiple
103 * EasyConnection 8/64 EISA boards can share the same shared memory
104 * address space. No interrupt is required for this board type.
105 * Another example:
106 * { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
107 * This line will configure an ONboard (ISA type) at io address 240,
108 * and shared memory address of d0000. Multiple ONboards can share
109 * the same shared memory address space. No interrupt required.
110 * Another example:
111 * { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
112 * This line will configure a Brumby board (any number of ports!) at
113 * io address 360 and shared memory address of c8000. All Brumby boards
114 * configured into a system must have their own separate io and memory
115 * addresses. No interrupt is required.
116 * Another example:
117 * { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
118 * This line will configure an original Stallion board at io address 330
119 * and shared memory address d0000 (this would only be valid for a "V4.0"
120 * or Rev.O Stallion board). All Stallion boards configured into the
121 * system must have their own separate io and memory addresses. No
122 * interrupt is required.
123 */
124
125typedef struct {
126 int brdtype;
127 int ioaddr1;
128 int ioaddr2;
129 unsigned long memaddr;
130 int irq;
131 int irqtype;
132} stlconf_t;
133
134static stlconf_t stli_brdconf[] = {
135 /*{ BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },*/
136};
137
Tobias Klauserfe971072006-01-09 20:54:02 -0800138static int stli_nrbrds = ARRAY_SIZE(stli_brdconf);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700139
140/*
141 * There is some experimental EISA board detection code in this driver.
142 * By default it is disabled, but for those that want to try it out,
143 * then set the define below to be 1.
144 */
145#define STLI_EISAPROBE 0
146
147/*****************************************************************************/
148
149/*
150 * Define some important driver characteristics. Device major numbers
151 * allocated as per Linux Device Registry.
152 */
153#ifndef STL_SIOMEMMAJOR
154#define STL_SIOMEMMAJOR 28
155#endif
156#ifndef STL_SERIALMAJOR
157#define STL_SERIALMAJOR 24
158#endif
159#ifndef STL_CALLOUTMAJOR
160#define STL_CALLOUTMAJOR 25
161#endif
162
163/*****************************************************************************/
164
165/*
166 * Define our local driver identity first. Set up stuff to deal with
167 * all the local structures required by a serial tty driver.
168 */
169static char *stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
170static char *stli_drvname = "istallion";
171static char *stli_drvversion = "5.6.0";
172static char *stli_serialname = "ttyE";
173
174static struct tty_driver *stli_serial;
175
176/*
177 * We will need to allocate a temporary write buffer for chars that
178 * come direct from user space. The problem is that a copy from user
179 * space might cause a page fault (typically on a system that is
180 * swapping!). All ports will share one buffer - since if the system
181 * is already swapping a shared buffer won't make things any worse.
182 */
183static char *stli_tmpwritebuf;
184static DECLARE_MUTEX(stli_tmpwritesem);
185
186#define STLI_TXBUFSIZE 4096
187
188/*
189 * Use a fast local buffer for cooked characters. Typically a whole
190 * bunch of cooked characters come in for a port, 1 at a time. So we
191 * save those up into a local buffer, then write out the whole lot
192 * with a large memcpy. Just use 1 buffer for all ports, since its
193 * use it is only need for short periods of time by each port.
194 */
195static char *stli_txcookbuf;
196static int stli_txcooksize;
197static int stli_txcookrealsize;
198static struct tty_struct *stli_txcooktty;
199
200/*
201 * Define a local default termios struct. All ports will be created
202 * with this termios initially. Basically all it defines is a raw port
203 * at 9600 baud, 8 data bits, no parity, 1 stop bit.
204 */
205static struct termios stli_deftermios = {
206 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
207 .c_cc = INIT_C_CC,
208};
209
210/*
211 * Define global stats structures. Not used often, and can be
212 * re-used for each stats call.
213 */
214static comstats_t stli_comstats;
215static combrd_t stli_brdstats;
216static asystats_t stli_cdkstats;
217static stlibrd_t stli_dummybrd;
218static stliport_t stli_dummyport;
219
220/*****************************************************************************/
221
222static stlibrd_t *stli_brds[STL_MAXBRDS];
223
224static int stli_shared;
225
226/*
227 * Per board state flags. Used with the state field of the board struct.
228 * Not really much here... All we need to do is keep track of whether
229 * the board has been detected, and whether it is actually running a slave
230 * or not.
231 */
232#define BST_FOUND 0x1
233#define BST_STARTED 0x2
234
235/*
236 * Define the set of port state flags. These are marked for internal
237 * state purposes only, usually to do with the state of communications
238 * with the slave. Most of them need to be updated atomically, so always
239 * use the bit setting operations (unless protected by cli/sti).
240 */
241#define ST_INITIALIZING 1
242#define ST_OPENING 2
243#define ST_CLOSING 3
244#define ST_CMDING 4
245#define ST_TXBUSY 5
246#define ST_RXING 6
247#define ST_DOFLUSHRX 7
248#define ST_DOFLUSHTX 8
249#define ST_DOSIGS 9
250#define ST_RXSTOP 10
251#define ST_GETSIGS 11
252
253/*
254 * Define an array of board names as printable strings. Handy for
255 * referencing boards when printing trace and stuff.
256 */
257static char *stli_brdnames[] = {
258 "Unknown",
259 "Stallion",
260 "Brumby",
261 "ONboard-MC",
262 "ONboard",
263 "Brumby",
264 "Brumby",
265 "ONboard-EI",
266 (char *) NULL,
267 "ONboard",
268 "ONboard-MC",
269 "ONboard-MC",
270 (char *) NULL,
271 (char *) NULL,
272 (char *) NULL,
273 (char *) NULL,
274 (char *) NULL,
275 (char *) NULL,
276 (char *) NULL,
277 (char *) NULL,
278 "EasyIO",
279 "EC8/32-AT",
280 "EC8/32-MC",
281 "EC8/64-AT",
282 "EC8/64-EI",
283 "EC8/64-MC",
284 "EC8/32-PCI",
285 "EC8/64-PCI",
286 "EasyIO-PCI",
287 "EC/RA-PCI",
288};
289
290/*****************************************************************************/
291
292#ifdef MODULE
293/*
294 * Define some string labels for arguments passed from the module
295 * load line. These allow for easy board definitions, and easy
296 * modification of the io, memory and irq resoucres.
297 */
298
299static char *board0[8];
300static char *board1[8];
301static char *board2[8];
302static char *board3[8];
303
304static char **stli_brdsp[] = {
305 (char **) &board0,
306 (char **) &board1,
307 (char **) &board2,
308 (char **) &board3
309};
310
311/*
312 * Define a set of common board names, and types. This is used to
313 * parse any module arguments.
314 */
315
316typedef struct stlibrdtype {
317 char *name;
318 int type;
319} stlibrdtype_t;
320
321static stlibrdtype_t stli_brdstr[] = {
322 { "stallion", BRD_STALLION },
323 { "1", BRD_STALLION },
324 { "brumby", BRD_BRUMBY },
325 { "brumby4", BRD_BRUMBY },
326 { "brumby/4", BRD_BRUMBY },
327 { "brumby-4", BRD_BRUMBY },
328 { "brumby8", BRD_BRUMBY },
329 { "brumby/8", BRD_BRUMBY },
330 { "brumby-8", BRD_BRUMBY },
331 { "brumby16", BRD_BRUMBY },
332 { "brumby/16", BRD_BRUMBY },
333 { "brumby-16", BRD_BRUMBY },
334 { "2", BRD_BRUMBY },
335 { "onboard2", BRD_ONBOARD2 },
336 { "onboard-2", BRD_ONBOARD2 },
337 { "onboard/2", BRD_ONBOARD2 },
338 { "onboard-mc", BRD_ONBOARD2 },
339 { "onboard/mc", BRD_ONBOARD2 },
340 { "onboard-mca", BRD_ONBOARD2 },
341 { "onboard/mca", BRD_ONBOARD2 },
342 { "3", BRD_ONBOARD2 },
343 { "onboard", BRD_ONBOARD },
344 { "onboardat", BRD_ONBOARD },
345 { "4", BRD_ONBOARD },
346 { "onboarde", BRD_ONBOARDE },
347 { "onboard-e", BRD_ONBOARDE },
348 { "onboard/e", BRD_ONBOARDE },
349 { "onboard-ei", BRD_ONBOARDE },
350 { "onboard/ei", BRD_ONBOARDE },
351 { "7", BRD_ONBOARDE },
352 { "ecp", BRD_ECP },
353 { "ecpat", BRD_ECP },
354 { "ec8/64", BRD_ECP },
355 { "ec8/64-at", BRD_ECP },
356 { "ec8/64-isa", BRD_ECP },
357 { "23", BRD_ECP },
358 { "ecpe", BRD_ECPE },
359 { "ecpei", BRD_ECPE },
360 { "ec8/64-e", BRD_ECPE },
361 { "ec8/64-ei", BRD_ECPE },
362 { "24", BRD_ECPE },
363 { "ecpmc", BRD_ECPMC },
364 { "ec8/64-mc", BRD_ECPMC },
365 { "ec8/64-mca", BRD_ECPMC },
366 { "25", BRD_ECPMC },
367 { "ecppci", BRD_ECPPCI },
368 { "ec/ra", BRD_ECPPCI },
369 { "ec/ra-pc", BRD_ECPPCI },
370 { "ec/ra-pci", BRD_ECPPCI },
371 { "29", BRD_ECPPCI },
372};
373
374/*
375 * Define the module agruments.
376 */
377MODULE_AUTHOR("Greg Ungerer");
378MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
379MODULE_LICENSE("GPL");
380
381
382MODULE_PARM(board0, "1-3s");
383MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
384MODULE_PARM(board1, "1-3s");
385MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
386MODULE_PARM(board2, "1-3s");
387MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
388MODULE_PARM(board3, "1-3s");
389MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");
390
391#endif
392
393/*
394 * Set up a default memory address table for EISA board probing.
395 * The default addresses are all bellow 1Mbyte, which has to be the
396 * case anyway. They should be safe, since we only read values from
397 * them, and interrupts are disabled while we do it. If the higher
398 * memory support is compiled in then we also try probing around
399 * the 1Gb, 2Gb and 3Gb areas as well...
400 */
401static unsigned long stli_eisamemprobeaddrs[] = {
402 0xc0000, 0xd0000, 0xe0000, 0xf0000,
403 0x80000000, 0x80010000, 0x80020000, 0x80030000,
404 0x40000000, 0x40010000, 0x40020000, 0x40030000,
405 0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
406 0xff000000, 0xff010000, 0xff020000, 0xff030000,
407};
408
Tobias Klauserfe971072006-01-09 20:54:02 -0800409static int stli_eisamempsize = ARRAY_SIZE(stli_eisamemprobeaddrs);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700410
411/*
412 * Define the Stallion PCI vendor and device IDs.
413 */
414#ifdef CONFIG_PCI
415#ifndef PCI_VENDOR_ID_STALLION
416#define PCI_VENDOR_ID_STALLION 0x124d
417#endif
418#ifndef PCI_DEVICE_ID_ECRA
419#define PCI_DEVICE_ID_ECRA 0x0004
420#endif
421
422static struct pci_device_id istallion_pci_tbl[] = {
423 { PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
424 { 0 }
425};
426MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);
427
428#endif /* CONFIG_PCI */
429
430/*****************************************************************************/
431
432/*
433 * Hardware configuration info for ECP boards. These defines apply
434 * to the directly accessible io ports of the ECP. There is a set of
435 * defines for each ECP board type, ISA, EISA, MCA and PCI.
436 */
437#define ECP_IOSIZE 4
438
439#define ECP_MEMSIZE (128 * 1024)
440#define ECP_PCIMEMSIZE (256 * 1024)
441
442#define ECP_ATPAGESIZE (4 * 1024)
443#define ECP_MCPAGESIZE (4 * 1024)
444#define ECP_EIPAGESIZE (64 * 1024)
445#define ECP_PCIPAGESIZE (64 * 1024)
446
447#define STL_EISAID 0x8c4e
448
449/*
450 * Important defines for the ISA class of ECP board.
451 */
452#define ECP_ATIREG 0
453#define ECP_ATCONFR 1
454#define ECP_ATMEMAR 2
455#define ECP_ATMEMPR 3
456#define ECP_ATSTOP 0x1
457#define ECP_ATINTENAB 0x10
458#define ECP_ATENABLE 0x20
459#define ECP_ATDISABLE 0x00
460#define ECP_ATADDRMASK 0x3f000
461#define ECP_ATADDRSHFT 12
462
463/*
464 * Important defines for the EISA class of ECP board.
465 */
466#define ECP_EIIREG 0
467#define ECP_EIMEMARL 1
468#define ECP_EICONFR 2
469#define ECP_EIMEMARH 3
470#define ECP_EIENABLE 0x1
471#define ECP_EIDISABLE 0x0
472#define ECP_EISTOP 0x4
473#define ECP_EIEDGE 0x00
474#define ECP_EILEVEL 0x80
475#define ECP_EIADDRMASKL 0x00ff0000
476#define ECP_EIADDRSHFTL 16
477#define ECP_EIADDRMASKH 0xff000000
478#define ECP_EIADDRSHFTH 24
479#define ECP_EIBRDENAB 0xc84
480
481#define ECP_EISAID 0x4
482
483/*
484 * Important defines for the Micro-channel class of ECP board.
485 * (It has a lot in common with the ISA boards.)
486 */
487#define ECP_MCIREG 0
488#define ECP_MCCONFR 1
489#define ECP_MCSTOP 0x20
490#define ECP_MCENABLE 0x80
491#define ECP_MCDISABLE 0x00
492
493/*
494 * Important defines for the PCI class of ECP board.
495 * (It has a lot in common with the other ECP boards.)
496 */
497#define ECP_PCIIREG 0
498#define ECP_PCICONFR 1
499#define ECP_PCISTOP 0x01
500
501/*
502 * Hardware configuration info for ONboard and Brumby boards. These
503 * defines apply to the directly accessible io ports of these boards.
504 */
505#define ONB_IOSIZE 16
506#define ONB_MEMSIZE (64 * 1024)
507#define ONB_ATPAGESIZE (64 * 1024)
508#define ONB_MCPAGESIZE (64 * 1024)
509#define ONB_EIMEMSIZE (128 * 1024)
510#define ONB_EIPAGESIZE (64 * 1024)
511
512/*
513 * Important defines for the ISA class of ONboard board.
514 */
515#define ONB_ATIREG 0
516#define ONB_ATMEMAR 1
517#define ONB_ATCONFR 2
518#define ONB_ATSTOP 0x4
519#define ONB_ATENABLE 0x01
520#define ONB_ATDISABLE 0x00
521#define ONB_ATADDRMASK 0xff0000
522#define ONB_ATADDRSHFT 16
523
524#define ONB_MEMENABLO 0
525#define ONB_MEMENABHI 0x02
526
527/*
528 * Important defines for the EISA class of ONboard board.
529 */
530#define ONB_EIIREG 0
531#define ONB_EIMEMARL 1
532#define ONB_EICONFR 2
533#define ONB_EIMEMARH 3
534#define ONB_EIENABLE 0x1
535#define ONB_EIDISABLE 0x0
536#define ONB_EISTOP 0x4
537#define ONB_EIEDGE 0x00
538#define ONB_EILEVEL 0x80
539#define ONB_EIADDRMASKL 0x00ff0000
540#define ONB_EIADDRSHFTL 16
541#define ONB_EIADDRMASKH 0xff000000
542#define ONB_EIADDRSHFTH 24
543#define ONB_EIBRDENAB 0xc84
544
545#define ONB_EISAID 0x1
546
547/*
548 * Important defines for the Brumby boards. They are pretty simple,
549 * there is not much that is programmably configurable.
550 */
551#define BBY_IOSIZE 16
552#define BBY_MEMSIZE (64 * 1024)
553#define BBY_PAGESIZE (16 * 1024)
554
555#define BBY_ATIREG 0
556#define BBY_ATCONFR 1
557#define BBY_ATSTOP 0x4
558
559/*
560 * Important defines for the Stallion boards. They are pretty simple,
561 * there is not much that is programmably configurable.
562 */
563#define STAL_IOSIZE 16
564#define STAL_MEMSIZE (64 * 1024)
565#define STAL_PAGESIZE (64 * 1024)
566
567/*
568 * Define the set of status register values for EasyConnection panels.
569 * The signature will return with the status value for each panel. From
570 * this we can determine what is attached to the board - before we have
571 * actually down loaded any code to it.
572 */
573#define ECH_PNLSTATUS 2
574#define ECH_PNL16PORT 0x20
575#define ECH_PNLIDMASK 0x07
576#define ECH_PNLXPID 0x40
577#define ECH_PNLINTRPEND 0x80
578
579/*
580 * Define some macros to do things to the board. Even those these boards
581 * are somewhat related there is often significantly different ways of
582 * doing some operation on it (like enable, paging, reset, etc). So each
583 * board class has a set of functions which do the commonly required
584 * operations. The macros below basically just call these functions,
585 * generally checking for a NULL function - which means that the board
586 * needs nothing done to it to achieve this operation!
587 */
588#define EBRDINIT(brdp) \
589 if (brdp->init != NULL) \
590 (* brdp->init)(brdp)
591
592#define EBRDENABLE(brdp) \
593 if (brdp->enable != NULL) \
594 (* brdp->enable)(brdp);
595
596#define EBRDDISABLE(brdp) \
597 if (brdp->disable != NULL) \
598 (* brdp->disable)(brdp);
599
600#define EBRDINTR(brdp) \
601 if (brdp->intr != NULL) \
602 (* brdp->intr)(brdp);
603
604#define EBRDRESET(brdp) \
605 if (brdp->reset != NULL) \
606 (* brdp->reset)(brdp);
607
608#define EBRDGETMEMPTR(brdp,offset) \
609 (* brdp->getmemptr)(brdp, offset, __LINE__)
610
611/*
612 * Define the maximal baud rate, and the default baud base for ports.
613 */
614#define STL_MAXBAUD 460800
615#define STL_BAUDBASE 115200
616#define STL_CLOSEDELAY (5 * HZ / 10)
617
618/*****************************************************************************/
619
620/*
621 * Define macros to extract a brd or port number from a minor number.
622 */
623#define MINOR2BRD(min) (((min) & 0xc0) >> 6)
624#define MINOR2PORT(min) ((min) & 0x3f)
625
626/*
627 * Define a baud rate table that converts termios baud rate selector
628 * into the actual baud rate value. All baud rate calculations are based
629 * on the actual baud rate required.
630 */
631static unsigned int stli_baudrates[] = {
632 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800,
633 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600
634};
635
636/*****************************************************************************/
637
638/*
639 * Define some handy local macros...
640 */
641#undef MIN
642#define MIN(a,b) (((a) <= (b)) ? (a) : (b))
643
644#undef TOLOWER
645#define TOLOWER(x) ((((x) >= 'A') && ((x) <= 'Z')) ? ((x) + 0x20) : (x))
646
647/*****************************************************************************/
648
649/*
650 * Prototype all functions in this driver!
651 */
652
653#ifdef MODULE
654static void stli_argbrds(void);
655static int stli_parsebrd(stlconf_t *confp, char **argp);
656
657static unsigned long stli_atol(char *str);
658#endif
659
660int stli_init(void);
661static int stli_open(struct tty_struct *tty, struct file *filp);
662static void stli_close(struct tty_struct *tty, struct file *filp);
663static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count);
664static void stli_putchar(struct tty_struct *tty, unsigned char ch);
665static void stli_flushchars(struct tty_struct *tty);
666static int stli_writeroom(struct tty_struct *tty);
667static int stli_charsinbuffer(struct tty_struct *tty);
668static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
669static void stli_settermios(struct tty_struct *tty, struct termios *old);
670static void stli_throttle(struct tty_struct *tty);
671static void stli_unthrottle(struct tty_struct *tty);
672static void stli_stop(struct tty_struct *tty);
673static void stli_start(struct tty_struct *tty);
674static void stli_flushbuffer(struct tty_struct *tty);
675static void stli_breakctl(struct tty_struct *tty, int state);
676static void stli_waituntilsent(struct tty_struct *tty, int timeout);
677static void stli_sendxchar(struct tty_struct *tty, char ch);
678static void stli_hangup(struct tty_struct *tty);
679static int stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos);
680
681static int stli_brdinit(stlibrd_t *brdp);
682static int stli_startbrd(stlibrd_t *brdp);
683static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp);
684static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp);
685static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg);
686static void stli_brdpoll(stlibrd_t *brdp, volatile cdkhdr_t *hdrp);
687static void stli_poll(unsigned long arg);
688static int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp);
689static int stli_initopen(stlibrd_t *brdp, stliport_t *portp);
690static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait);
691static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait);
692static int stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp);
693static void stli_dohangup(void *arg);
694static int stli_setport(stliport_t *portp);
695static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
696static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback);
697static void stli_dodelaycmd(stliport_t *portp, volatile cdkctrl_t *cp);
698static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp);
699static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
700static long stli_mktiocm(unsigned long sigvalue);
701static void stli_read(stlibrd_t *brdp, stliport_t *portp);
702static int stli_getserial(stliport_t *portp, struct serial_struct __user *sp);
703static int stli_setserial(stliport_t *portp, struct serial_struct __user *sp);
704static int stli_getbrdstats(combrd_t __user *bp);
705static int stli_getportstats(stliport_t *portp, comstats_t __user *cp);
706static int stli_portcmdstats(stliport_t *portp);
707static int stli_clrportstats(stliport_t *portp, comstats_t __user *cp);
708static int stli_getportstruct(stliport_t __user *arg);
709static int stli_getbrdstruct(stlibrd_t __user *arg);
710static void *stli_memalloc(int len);
711static stlibrd_t *stli_allocbrd(void);
712
713static void stli_ecpinit(stlibrd_t *brdp);
714static void stli_ecpenable(stlibrd_t *brdp);
715static void stli_ecpdisable(stlibrd_t *brdp);
716static char *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
717static void stli_ecpreset(stlibrd_t *brdp);
718static void stli_ecpintr(stlibrd_t *brdp);
719static void stli_ecpeiinit(stlibrd_t *brdp);
720static void stli_ecpeienable(stlibrd_t *brdp);
721static void stli_ecpeidisable(stlibrd_t *brdp);
722static char *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
723static void stli_ecpeireset(stlibrd_t *brdp);
724static void stli_ecpmcenable(stlibrd_t *brdp);
725static void stli_ecpmcdisable(stlibrd_t *brdp);
726static char *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
727static void stli_ecpmcreset(stlibrd_t *brdp);
728static void stli_ecppciinit(stlibrd_t *brdp);
729static char *stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
730static void stli_ecppcireset(stlibrd_t *brdp);
731
732static void stli_onbinit(stlibrd_t *brdp);
733static void stli_onbenable(stlibrd_t *brdp);
734static void stli_onbdisable(stlibrd_t *brdp);
735static char *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
736static void stli_onbreset(stlibrd_t *brdp);
737static void stli_onbeinit(stlibrd_t *brdp);
738static void stli_onbeenable(stlibrd_t *brdp);
739static void stli_onbedisable(stlibrd_t *brdp);
740static char *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
741static void stli_onbereset(stlibrd_t *brdp);
742static void stli_bbyinit(stlibrd_t *brdp);
743static char *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
744static void stli_bbyreset(stlibrd_t *brdp);
745static void stli_stalinit(stlibrd_t *brdp);
746static char *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line);
747static void stli_stalreset(stlibrd_t *brdp);
748
749static stliport_t *stli_getport(int brdnr, int panelnr, int portnr);
750
751static int stli_initecp(stlibrd_t *brdp);
752static int stli_initonb(stlibrd_t *brdp);
753static int stli_eisamemprobe(stlibrd_t *brdp);
754static int stli_initports(stlibrd_t *brdp);
755
756#ifdef CONFIG_PCI
757static int stli_initpcibrd(int brdtype, struct pci_dev *devp);
758#endif
759
760/*****************************************************************************/
761
762/*
763 * Define the driver info for a user level shared memory device. This
764 * device will work sort of like the /dev/kmem device - except that it
765 * will give access to the shared memory on the Stallion intelligent
766 * board. This is also a very useful debugging tool.
767 */
768static struct file_operations stli_fsiomem = {
769 .owner = THIS_MODULE,
770 .read = stli_memread,
771 .write = stli_memwrite,
772 .ioctl = stli_memioctl,
773};
774
775/*****************************************************************************/
776
777/*
778 * Define a timer_list entry for our poll routine. The slave board
779 * is polled every so often to see if anything needs doing. This is
780 * much cheaper on host cpu than using interrupts. It turns out to
781 * not increase character latency by much either...
782 */
Ingo Molnar8d06afa2005-09-09 13:10:40 -0700783static DEFINE_TIMER(stli_timerlist, stli_poll, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700784
785static int stli_timeron;
786
787/*
788 * Define the calculation for the timeout routine.
789 */
790#define STLI_TIMEOUT (jiffies + 1)
791
792/*****************************************************************************/
793
gregkh@suse.deca8eca62005-03-23 09:53:09 -0800794static struct class *istallion_class;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700795
796#ifdef MODULE
797
798/*
799 * Loadable module initialization stuff.
800 */
801
802static int __init istallion_module_init(void)
803{
804 unsigned long flags;
805
806#ifdef DEBUG
807 printk("init_module()\n");
808#endif
809
810 save_flags(flags);
811 cli();
812 stli_init();
813 restore_flags(flags);
814
815 return(0);
816}
817
818/*****************************************************************************/
819
820static void __exit istallion_module_exit(void)
821{
822 stlibrd_t *brdp;
823 stliport_t *portp;
824 unsigned long flags;
825 int i, j;
826
827#ifdef DEBUG
828 printk("cleanup_module()\n");
829#endif
830
831 printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
832 stli_drvversion);
833
834 save_flags(flags);
835 cli();
836
837/*
838 * Free up all allocated resources used by the ports. This includes
839 * memory and interrupts.
840 */
841 if (stli_timeron) {
842 stli_timeron = 0;
843 del_timer(&stli_timerlist);
844 }
845
846 i = tty_unregister_driver(stli_serial);
847 if (i) {
848 printk("STALLION: failed to un-register tty driver, "
849 "errno=%d\n", -i);
850 restore_flags(flags);
851 return;
852 }
853 put_tty_driver(stli_serial);
854 for (i = 0; i < 4; i++) {
855 devfs_remove("staliomem/%d", i);
gregkh@suse.deca8eca62005-03-23 09:53:09 -0800856 class_device_destroy(istallion_class, MKDEV(STL_SIOMEMMAJOR, i));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700857 }
858 devfs_remove("staliomem");
gregkh@suse.deca8eca62005-03-23 09:53:09 -0800859 class_destroy(istallion_class);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700860 if ((i = unregister_chrdev(STL_SIOMEMMAJOR, "staliomem")))
861 printk("STALLION: failed to un-register serial memory device, "
862 "errno=%d\n", -i);
Jesper Juhl735d5662005-11-07 01:01:29 -0800863
864 kfree(stli_tmpwritebuf);
865 kfree(stli_txcookbuf);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700866
867 for (i = 0; (i < stli_nrbrds); i++) {
868 if ((brdp = stli_brds[i]) == (stlibrd_t *) NULL)
869 continue;
870 for (j = 0; (j < STL_MAXPORTS); j++) {
871 portp = brdp->ports[j];
872 if (portp != (stliport_t *) NULL) {
873 if (portp->tty != (struct tty_struct *) NULL)
874 tty_hangup(portp->tty);
875 kfree(portp);
876 }
877 }
878
879 iounmap(brdp->membase);
880 if (brdp->iosize > 0)
881 release_region(brdp->iobase, brdp->iosize);
882 kfree(brdp);
883 stli_brds[i] = (stlibrd_t *) NULL;
884 }
885
886 restore_flags(flags);
887}
888
889module_init(istallion_module_init);
890module_exit(istallion_module_exit);
891
892/*****************************************************************************/
893
894/*
895 * Check for any arguments passed in on the module load command line.
896 */
897
898static void stli_argbrds(void)
899{
900 stlconf_t conf;
901 stlibrd_t *brdp;
Tobias Klauserfe971072006-01-09 20:54:02 -0800902 int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700903
904#ifdef DEBUG
905 printk("stli_argbrds()\n");
906#endif
907
Tobias Klauserfe971072006-01-09 20:54:02 -0800908 for (i = stli_nrbrds; i < ARRAY_SIZE(stli_brdsp); i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700909 memset(&conf, 0, sizeof(conf));
910 if (stli_parsebrd(&conf, stli_brdsp[i]) == 0)
911 continue;
912 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
913 continue;
914 stli_nrbrds = i + 1;
915 brdp->brdnr = i;
916 brdp->brdtype = conf.brdtype;
917 brdp->iobase = conf.ioaddr1;
918 brdp->memaddr = conf.memaddr;
919 stli_brdinit(brdp);
920 }
921}
922
923/*****************************************************************************/
924
925/*
926 * Convert an ascii string number into an unsigned long.
927 */
928
929static unsigned long stli_atol(char *str)
930{
931 unsigned long val;
932 int base, c;
933 char *sp;
934
935 val = 0;
936 sp = str;
937 if ((*sp == '0') && (*(sp+1) == 'x')) {
938 base = 16;
939 sp += 2;
940 } else if (*sp == '0') {
941 base = 8;
942 sp++;
943 } else {
944 base = 10;
945 }
946
947 for (; (*sp != 0); sp++) {
948 c = (*sp > '9') ? (TOLOWER(*sp) - 'a' + 10) : (*sp - '0');
949 if ((c < 0) || (c >= base)) {
950 printk("STALLION: invalid argument %s\n", str);
951 val = 0;
952 break;
953 }
954 val = (val * base) + c;
955 }
956 return(val);
957}
958
959/*****************************************************************************/
960
961/*
962 * Parse the supplied argument string, into the board conf struct.
963 */
964
965static int stli_parsebrd(stlconf_t *confp, char **argp)
966{
967 char *sp;
Tobias Klauserfe971072006-01-09 20:54:02 -0800968 int i;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700969
970#ifdef DEBUG
971 printk("stli_parsebrd(confp=%x,argp=%x)\n", (int) confp, (int) argp);
972#endif
973
974 if ((argp[0] == (char *) NULL) || (*argp[0] == 0))
975 return(0);
976
977 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
978 *sp = TOLOWER(*sp);
979
Tobias Klauserfe971072006-01-09 20:54:02 -0800980 for (i = 0; i < ARRAY_SIZE(stli_brdstr); i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700981 if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
982 break;
983 }
Tobias Klauserfe971072006-01-09 20:54:02 -0800984 if (i == ARRAY_SIZE(stli_brdstr)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700985 printk("STALLION: unknown board name, %s?\n", argp[0]);
Tobias Klauserfe971072006-01-09 20:54:02 -0800986 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700987 }
988
989 confp->brdtype = stli_brdstr[i].type;
990 if ((argp[1] != (char *) NULL) && (*argp[1] != 0))
991 confp->ioaddr1 = stli_atol(argp[1]);
992 if ((argp[2] != (char *) NULL) && (*argp[2] != 0))
993 confp->memaddr = stli_atol(argp[2]);
994 return(1);
995}
996
997#endif
998
999/*****************************************************************************/
1000
1001/*
1002 * Local driver kernel malloc routine.
1003 */
1004
1005static void *stli_memalloc(int len)
1006{
1007 return((void *) kmalloc(len, GFP_KERNEL));
1008}
1009
1010/*****************************************************************************/
1011
1012static int stli_open(struct tty_struct *tty, struct file *filp)
1013{
1014 stlibrd_t *brdp;
1015 stliport_t *portp;
1016 unsigned int minordev;
1017 int brdnr, portnr, rc;
1018
1019#ifdef DEBUG
1020 printk("stli_open(tty=%x,filp=%x): device=%s\n", (int) tty,
1021 (int) filp, tty->name);
1022#endif
1023
1024 minordev = tty->index;
1025 brdnr = MINOR2BRD(minordev);
1026 if (brdnr >= stli_nrbrds)
1027 return(-ENODEV);
1028 brdp = stli_brds[brdnr];
1029 if (brdp == (stlibrd_t *) NULL)
1030 return(-ENODEV);
1031 if ((brdp->state & BST_STARTED) == 0)
1032 return(-ENODEV);
1033 portnr = MINOR2PORT(minordev);
1034 if ((portnr < 0) || (portnr > brdp->nrports))
1035 return(-ENODEV);
1036
1037 portp = brdp->ports[portnr];
1038 if (portp == (stliport_t *) NULL)
1039 return(-ENODEV);
1040 if (portp->devnr < 1)
1041 return(-ENODEV);
1042
1043
1044/*
1045 * Check if this port is in the middle of closing. If so then wait
1046 * until it is closed then return error status based on flag settings.
1047 * The sleep here does not need interrupt protection since the wakeup
1048 * for it is done with the same context.
1049 */
1050 if (portp->flags & ASYNC_CLOSING) {
1051 interruptible_sleep_on(&portp->close_wait);
1052 if (portp->flags & ASYNC_HUP_NOTIFY)
1053 return(-EAGAIN);
1054 return(-ERESTARTSYS);
1055 }
1056
1057/*
1058 * On the first open of the device setup the port hardware, and
1059 * initialize the per port data structure. Since initializing the port
1060 * requires several commands to the board we will need to wait for any
1061 * other open that is already initializing the port.
1062 */
1063 portp->tty = tty;
1064 tty->driver_data = portp;
1065 portp->refcount++;
1066
1067 wait_event_interruptible(portp->raw_wait,
1068 !test_bit(ST_INITIALIZING, &portp->state));
1069 if (signal_pending(current))
1070 return(-ERESTARTSYS);
1071
1072 if ((portp->flags & ASYNC_INITIALIZED) == 0) {
1073 set_bit(ST_INITIALIZING, &portp->state);
1074 if ((rc = stli_initopen(brdp, portp)) >= 0) {
1075 portp->flags |= ASYNC_INITIALIZED;
1076 clear_bit(TTY_IO_ERROR, &tty->flags);
1077 }
1078 clear_bit(ST_INITIALIZING, &portp->state);
1079 wake_up_interruptible(&portp->raw_wait);
1080 if (rc < 0)
1081 return(rc);
1082 }
1083
1084/*
1085 * Check if this port is in the middle of closing. If so then wait
1086 * until it is closed then return error status, based on flag settings.
1087 * The sleep here does not need interrupt protection since the wakeup
1088 * for it is done with the same context.
1089 */
1090 if (portp->flags & ASYNC_CLOSING) {
1091 interruptible_sleep_on(&portp->close_wait);
1092 if (portp->flags & ASYNC_HUP_NOTIFY)
1093 return(-EAGAIN);
1094 return(-ERESTARTSYS);
1095 }
1096
1097/*
1098 * Based on type of open being done check if it can overlap with any
1099 * previous opens still in effect. If we are a normal serial device
1100 * then also we might have to wait for carrier.
1101 */
1102 if (!(filp->f_flags & O_NONBLOCK)) {
1103 if ((rc = stli_waitcarrier(brdp, portp, filp)) != 0)
1104 return(rc);
1105 }
1106 portp->flags |= ASYNC_NORMAL_ACTIVE;
1107 return(0);
1108}
1109
1110/*****************************************************************************/
1111
1112static void stli_close(struct tty_struct *tty, struct file *filp)
1113{
1114 stlibrd_t *brdp;
1115 stliport_t *portp;
1116 unsigned long flags;
1117
1118#ifdef DEBUG
1119 printk("stli_close(tty=%x,filp=%x)\n", (int) tty, (int) filp);
1120#endif
1121
1122 portp = tty->driver_data;
1123 if (portp == (stliport_t *) NULL)
1124 return;
1125
1126 save_flags(flags);
1127 cli();
1128 if (tty_hung_up_p(filp)) {
1129 restore_flags(flags);
1130 return;
1131 }
1132 if ((tty->count == 1) && (portp->refcount != 1))
1133 portp->refcount = 1;
1134 if (portp->refcount-- > 1) {
1135 restore_flags(flags);
1136 return;
1137 }
1138
1139 portp->flags |= ASYNC_CLOSING;
1140
1141/*
1142 * May want to wait for data to drain before closing. The BUSY flag
1143 * keeps track of whether we are still transmitting or not. It is
1144 * updated by messages from the slave - indicating when all chars
1145 * really have drained.
1146 */
1147 if (tty == stli_txcooktty)
1148 stli_flushchars(tty);
1149 tty->closing = 1;
1150 if (portp->closing_wait != ASYNC_CLOSING_WAIT_NONE)
1151 tty_wait_until_sent(tty, portp->closing_wait);
1152
1153 portp->flags &= ~ASYNC_INITIALIZED;
1154 brdp = stli_brds[portp->brdnr];
1155 stli_rawclose(brdp, portp, 0, 0);
1156 if (tty->termios->c_cflag & HUPCL) {
1157 stli_mkasysigs(&portp->asig, 0, 0);
1158 if (test_bit(ST_CMDING, &portp->state))
1159 set_bit(ST_DOSIGS, &portp->state);
1160 else
1161 stli_sendcmd(brdp, portp, A_SETSIGNALS, &portp->asig,
1162 sizeof(asysigs_t), 0);
1163 }
1164 clear_bit(ST_TXBUSY, &portp->state);
1165 clear_bit(ST_RXSTOP, &portp->state);
1166 set_bit(TTY_IO_ERROR, &tty->flags);
1167 if (tty->ldisc.flush_buffer)
1168 (tty->ldisc.flush_buffer)(tty);
1169 set_bit(ST_DOFLUSHRX, &portp->state);
1170 stli_flushbuffer(tty);
1171
1172 tty->closing = 0;
1173 portp->tty = (struct tty_struct *) NULL;
1174
1175 if (portp->openwaitcnt) {
1176 if (portp->close_delay)
1177 msleep_interruptible(jiffies_to_msecs(portp->close_delay));
1178 wake_up_interruptible(&portp->open_wait);
1179 }
1180
1181 portp->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CLOSING);
1182 wake_up_interruptible(&portp->close_wait);
1183 restore_flags(flags);
1184}
1185
1186/*****************************************************************************/
1187
1188/*
1189 * Carry out first open operations on a port. This involves a number of
1190 * commands to be sent to the slave. We need to open the port, set the
1191 * notification events, set the initial port settings, get and set the
1192 * initial signal values. We sleep and wait in between each one. But
1193 * this still all happens pretty quickly.
1194 */
1195
1196static int stli_initopen(stlibrd_t *brdp, stliport_t *portp)
1197{
1198 struct tty_struct *tty;
1199 asynotify_t nt;
1200 asyport_t aport;
1201 int rc;
1202
1203#ifdef DEBUG
1204 printk("stli_initopen(brdp=%x,portp=%x)\n", (int) brdp, (int) portp);
1205#endif
1206
1207 if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
1208 return(rc);
1209
1210 memset(&nt, 0, sizeof(asynotify_t));
1211 nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
1212 nt.signal = SG_DCD;
1213 if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
1214 sizeof(asynotify_t), 0)) < 0)
1215 return(rc);
1216
1217 tty = portp->tty;
1218 if (tty == (struct tty_struct *) NULL)
1219 return(-ENODEV);
1220 stli_mkasyport(portp, &aport, tty->termios);
1221 if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
1222 sizeof(asyport_t), 0)) < 0)
1223 return(rc);
1224
1225 set_bit(ST_GETSIGS, &portp->state);
1226 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
1227 sizeof(asysigs_t), 1)) < 0)
1228 return(rc);
1229 if (test_and_clear_bit(ST_GETSIGS, &portp->state))
1230 portp->sigs = stli_mktiocm(portp->asig.sigvalue);
1231 stli_mkasysigs(&portp->asig, 1, 1);
1232 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1233 sizeof(asysigs_t), 0)) < 0)
1234 return(rc);
1235
1236 return(0);
1237}
1238
1239/*****************************************************************************/
1240
1241/*
1242 * Send an open message to the slave. This will sleep waiting for the
1243 * acknowledgement, so must have user context. We need to co-ordinate
1244 * with close events here, since we don't want open and close events
1245 * to overlap.
1246 */
1247
1248static int stli_rawopen(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
1249{
1250 volatile cdkhdr_t *hdrp;
1251 volatile cdkctrl_t *cp;
1252 volatile unsigned char *bits;
1253 unsigned long flags;
1254 int rc;
1255
1256#ifdef DEBUG
1257 printk("stli_rawopen(brdp=%x,portp=%x,arg=%x,wait=%d)\n",
1258 (int) brdp, (int) portp, (int) arg, wait);
1259#endif
1260
1261/*
1262 * Send a message to the slave to open this port.
1263 */
1264 save_flags(flags);
1265 cli();
1266
1267/*
1268 * Slave is already closing this port. This can happen if a hangup
1269 * occurs on this port. So we must wait until it is complete. The
1270 * order of opens and closes may not be preserved across shared
1271 * memory, so we must wait until it is complete.
1272 */
1273 wait_event_interruptible(portp->raw_wait,
1274 !test_bit(ST_CLOSING, &portp->state));
1275 if (signal_pending(current)) {
1276 restore_flags(flags);
1277 return -ERESTARTSYS;
1278 }
1279
1280/*
1281 * Everything is ready now, so write the open message into shared
1282 * memory. Once the message is in set the service bits to say that
1283 * this port wants service.
1284 */
1285 EBRDENABLE(brdp);
1286 cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1287 cp->openarg = arg;
1288 cp->open = 1;
1289 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1290 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1291 portp->portidx;
1292 *bits |= portp->portbit;
1293 EBRDDISABLE(brdp);
1294
1295 if (wait == 0) {
1296 restore_flags(flags);
1297 return(0);
1298 }
1299
1300/*
1301 * Slave is in action, so now we must wait for the open acknowledgment
1302 * to come back.
1303 */
1304 rc = 0;
1305 set_bit(ST_OPENING, &portp->state);
1306 wait_event_interruptible(portp->raw_wait,
1307 !test_bit(ST_OPENING, &portp->state));
1308 if (signal_pending(current))
1309 rc = -ERESTARTSYS;
1310 restore_flags(flags);
1311
1312 if ((rc == 0) && (portp->rc != 0))
1313 rc = -EIO;
1314 return(rc);
1315}
1316
1317/*****************************************************************************/
1318
1319/*
1320 * Send a close message to the slave. Normally this will sleep waiting
1321 * for the acknowledgement, but if wait parameter is 0 it will not. If
1322 * wait is true then must have user context (to sleep).
1323 */
1324
1325static int stli_rawclose(stlibrd_t *brdp, stliport_t *portp, unsigned long arg, int wait)
1326{
1327 volatile cdkhdr_t *hdrp;
1328 volatile cdkctrl_t *cp;
1329 volatile unsigned char *bits;
1330 unsigned long flags;
1331 int rc;
1332
1333#ifdef DEBUG
1334 printk("stli_rawclose(brdp=%x,portp=%x,arg=%x,wait=%d)\n",
1335 (int) brdp, (int) portp, (int) arg, wait);
1336#endif
1337
1338 save_flags(flags);
1339 cli();
1340
1341/*
1342 * Slave is already closing this port. This can happen if a hangup
1343 * occurs on this port.
1344 */
1345 if (wait) {
1346 wait_event_interruptible(portp->raw_wait,
1347 !test_bit(ST_CLOSING, &portp->state));
1348 if (signal_pending(current)) {
1349 restore_flags(flags);
1350 return -ERESTARTSYS;
1351 }
1352 }
1353
1354/*
1355 * Write the close command into shared memory.
1356 */
1357 EBRDENABLE(brdp);
1358 cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1359 cp->closearg = arg;
1360 cp->close = 1;
1361 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1362 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1363 portp->portidx;
1364 *bits |= portp->portbit;
1365 EBRDDISABLE(brdp);
1366
1367 set_bit(ST_CLOSING, &portp->state);
1368 if (wait == 0) {
1369 restore_flags(flags);
1370 return(0);
1371 }
1372
1373/*
1374 * Slave is in action, so now we must wait for the open acknowledgment
1375 * to come back.
1376 */
1377 rc = 0;
1378 wait_event_interruptible(portp->raw_wait,
1379 !test_bit(ST_CLOSING, &portp->state));
1380 if (signal_pending(current))
1381 rc = -ERESTARTSYS;
1382 restore_flags(flags);
1383
1384 if ((rc == 0) && (portp->rc != 0))
1385 rc = -EIO;
1386 return(rc);
1387}
1388
1389/*****************************************************************************/
1390
1391/*
1392 * Send a command to the slave and wait for the response. This must
1393 * have user context (it sleeps). This routine is generic in that it
1394 * can send any type of command. Its purpose is to wait for that command
1395 * to complete (as opposed to initiating the command then returning).
1396 */
1397
1398static int stli_cmdwait(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
1399{
1400 unsigned long flags;
1401
1402#ifdef DEBUG
1403 printk("stli_cmdwait(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
1404 "copyback=%d)\n", (int) brdp, (int) portp, (int) cmd,
1405 (int) arg, size, copyback);
1406#endif
1407
1408 save_flags(flags);
1409 cli();
1410 wait_event_interruptible(portp->raw_wait,
1411 !test_bit(ST_CMDING, &portp->state));
1412 if (signal_pending(current)) {
1413 restore_flags(flags);
1414 return -ERESTARTSYS;
1415 }
1416
1417 stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
1418
1419 wait_event_interruptible(portp->raw_wait,
1420 !test_bit(ST_CMDING, &portp->state));
1421 if (signal_pending(current)) {
1422 restore_flags(flags);
1423 return -ERESTARTSYS;
1424 }
1425 restore_flags(flags);
1426
1427 if (portp->rc != 0)
1428 return(-EIO);
1429 return(0);
1430}
1431
1432/*****************************************************************************/
1433
1434/*
1435 * Send the termios settings for this port to the slave. This sleeps
1436 * waiting for the command to complete - so must have user context.
1437 */
1438
1439static int stli_setport(stliport_t *portp)
1440{
1441 stlibrd_t *brdp;
1442 asyport_t aport;
1443
1444#ifdef DEBUG
1445 printk("stli_setport(portp=%x)\n", (int) portp);
1446#endif
1447
1448 if (portp == (stliport_t *) NULL)
1449 return(-ENODEV);
1450 if (portp->tty == (struct tty_struct *) NULL)
1451 return(-ENODEV);
1452 if ((portp->brdnr < 0) && (portp->brdnr >= stli_nrbrds))
1453 return(-ENODEV);
1454 brdp = stli_brds[portp->brdnr];
1455 if (brdp == (stlibrd_t *) NULL)
1456 return(-ENODEV);
1457
1458 stli_mkasyport(portp, &aport, portp->tty->termios);
1459 return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
1460}
1461
1462/*****************************************************************************/
1463
1464/*
1465 * Possibly need to wait for carrier (DCD signal) to come high. Say
1466 * maybe because if we are clocal then we don't need to wait...
1467 */
1468
1469static int stli_waitcarrier(stlibrd_t *brdp, stliport_t *portp, struct file *filp)
1470{
1471 unsigned long flags;
1472 int rc, doclocal;
1473
1474#ifdef DEBUG
1475 printk("stli_waitcarrier(brdp=%x,portp=%x,filp=%x)\n",
1476 (int) brdp, (int) portp, (int) filp);
1477#endif
1478
1479 rc = 0;
1480 doclocal = 0;
1481
1482 if (portp->tty->termios->c_cflag & CLOCAL)
1483 doclocal++;
1484
1485 save_flags(flags);
1486 cli();
1487 portp->openwaitcnt++;
1488 if (! tty_hung_up_p(filp))
1489 portp->refcount--;
1490
1491 for (;;) {
1492 stli_mkasysigs(&portp->asig, 1, 1);
1493 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS,
1494 &portp->asig, sizeof(asysigs_t), 0)) < 0)
1495 break;
1496 if (tty_hung_up_p(filp) ||
1497 ((portp->flags & ASYNC_INITIALIZED) == 0)) {
1498 if (portp->flags & ASYNC_HUP_NOTIFY)
1499 rc = -EBUSY;
1500 else
1501 rc = -ERESTARTSYS;
1502 break;
1503 }
1504 if (((portp->flags & ASYNC_CLOSING) == 0) &&
1505 (doclocal || (portp->sigs & TIOCM_CD))) {
1506 break;
1507 }
1508 if (signal_pending(current)) {
1509 rc = -ERESTARTSYS;
1510 break;
1511 }
1512 interruptible_sleep_on(&portp->open_wait);
1513 }
1514
1515 if (! tty_hung_up_p(filp))
1516 portp->refcount++;
1517 portp->openwaitcnt--;
1518 restore_flags(flags);
1519
1520 return(rc);
1521}
1522
1523/*****************************************************************************/
1524
1525/*
1526 * Write routine. Take the data and put it in the shared memory ring
1527 * queue. If port is not already sending chars then need to mark the
1528 * service bits for this port.
1529 */
1530
1531static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count)
1532{
1533 volatile cdkasy_t *ap;
1534 volatile cdkhdr_t *hdrp;
1535 volatile unsigned char *bits;
1536 unsigned char *shbuf, *chbuf;
1537 stliport_t *portp;
1538 stlibrd_t *brdp;
1539 unsigned int len, stlen, head, tail, size;
1540 unsigned long flags;
1541
1542#ifdef DEBUG
1543 printk("stli_write(tty=%x,buf=%x,count=%d)\n",
1544 (int) tty, (int) buf, count);
1545#endif
1546
1547 if ((tty == (struct tty_struct *) NULL) ||
1548 (stli_tmpwritebuf == (char *) NULL))
1549 return(0);
1550 if (tty == stli_txcooktty)
1551 stli_flushchars(tty);
1552 portp = tty->driver_data;
1553 if (portp == (stliport_t *) NULL)
1554 return(0);
1555 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1556 return(0);
1557 brdp = stli_brds[portp->brdnr];
1558 if (brdp == (stlibrd_t *) NULL)
1559 return(0);
1560 chbuf = (unsigned char *) buf;
1561
1562/*
1563 * All data is now local, shove as much as possible into shared memory.
1564 */
1565 save_flags(flags);
1566 cli();
1567 EBRDENABLE(brdp);
1568 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1569 head = (unsigned int) ap->txq.head;
1570 tail = (unsigned int) ap->txq.tail;
1571 if (tail != ((unsigned int) ap->txq.tail))
1572 tail = (unsigned int) ap->txq.tail;
1573 size = portp->txsize;
1574 if (head >= tail) {
1575 len = size - (head - tail) - 1;
1576 stlen = size - head;
1577 } else {
1578 len = tail - head - 1;
1579 stlen = len;
1580 }
1581
1582 len = MIN(len, count);
1583 count = 0;
1584 shbuf = (char *) EBRDGETMEMPTR(brdp, portp->txoffset);
1585
1586 while (len > 0) {
1587 stlen = MIN(len, stlen);
1588 memcpy((shbuf + head), chbuf, stlen);
1589 chbuf += stlen;
1590 len -= stlen;
1591 count += stlen;
1592 head += stlen;
1593 if (head >= size) {
1594 head = 0;
1595 stlen = tail;
1596 }
1597 }
1598
1599 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1600 ap->txq.head = head;
1601 if (test_bit(ST_TXBUSY, &portp->state)) {
1602 if (ap->changed.data & DT_TXEMPTY)
1603 ap->changed.data &= ~DT_TXEMPTY;
1604 }
1605 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1606 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1607 portp->portidx;
1608 *bits |= portp->portbit;
1609 set_bit(ST_TXBUSY, &portp->state);
1610 EBRDDISABLE(brdp);
1611
1612 restore_flags(flags);
1613
1614 return(count);
1615}
1616
1617/*****************************************************************************/
1618
1619/*
1620 * Output a single character. We put it into a temporary local buffer
1621 * (for speed) then write out that buffer when the flushchars routine
1622 * is called. There is a safety catch here so that if some other port
1623 * writes chars before the current buffer has been, then we write them
1624 * first them do the new ports.
1625 */
1626
1627static void stli_putchar(struct tty_struct *tty, unsigned char ch)
1628{
1629#ifdef DEBUG
1630 printk("stli_putchar(tty=%x,ch=%x)\n", (int) tty, (int) ch);
1631#endif
1632
1633 if (tty == (struct tty_struct *) NULL)
1634 return;
1635 if (tty != stli_txcooktty) {
1636 if (stli_txcooktty != (struct tty_struct *) NULL)
1637 stli_flushchars(stli_txcooktty);
1638 stli_txcooktty = tty;
1639 }
1640
1641 stli_txcookbuf[stli_txcooksize++] = ch;
1642}
1643
1644/*****************************************************************************/
1645
1646/*
1647 * Transfer characters from the local TX cooking buffer to the board.
1648 * We sort of ignore the tty that gets passed in here. We rely on the
1649 * info stored with the TX cook buffer to tell us which port to flush
1650 * the data on. In any case we clean out the TX cook buffer, for re-use
1651 * by someone else.
1652 */
1653
1654static void stli_flushchars(struct tty_struct *tty)
1655{
1656 volatile cdkhdr_t *hdrp;
1657 volatile unsigned char *bits;
1658 volatile cdkasy_t *ap;
1659 struct tty_struct *cooktty;
1660 stliport_t *portp;
1661 stlibrd_t *brdp;
1662 unsigned int len, stlen, head, tail, size, count, cooksize;
1663 unsigned char *buf, *shbuf;
1664 unsigned long flags;
1665
1666#ifdef DEBUG
1667 printk("stli_flushchars(tty=%x)\n", (int) tty);
1668#endif
1669
1670 cooksize = stli_txcooksize;
1671 cooktty = stli_txcooktty;
1672 stli_txcooksize = 0;
1673 stli_txcookrealsize = 0;
1674 stli_txcooktty = (struct tty_struct *) NULL;
1675
1676 if (tty == (struct tty_struct *) NULL)
1677 return;
1678 if (cooktty == (struct tty_struct *) NULL)
1679 return;
1680 if (tty != cooktty)
1681 tty = cooktty;
1682 if (cooksize == 0)
1683 return;
1684
1685 portp = tty->driver_data;
1686 if (portp == (stliport_t *) NULL)
1687 return;
1688 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1689 return;
1690 brdp = stli_brds[portp->brdnr];
1691 if (brdp == (stlibrd_t *) NULL)
1692 return;
1693
1694 save_flags(flags);
1695 cli();
1696 EBRDENABLE(brdp);
1697
1698 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1699 head = (unsigned int) ap->txq.head;
1700 tail = (unsigned int) ap->txq.tail;
1701 if (tail != ((unsigned int) ap->txq.tail))
1702 tail = (unsigned int) ap->txq.tail;
1703 size = portp->txsize;
1704 if (head >= tail) {
1705 len = size - (head - tail) - 1;
1706 stlen = size - head;
1707 } else {
1708 len = tail - head - 1;
1709 stlen = len;
1710 }
1711
1712 len = MIN(len, cooksize);
1713 count = 0;
1714 shbuf = (char *) EBRDGETMEMPTR(brdp, portp->txoffset);
1715 buf = stli_txcookbuf;
1716
1717 while (len > 0) {
1718 stlen = MIN(len, stlen);
1719 memcpy((shbuf + head), buf, stlen);
1720 buf += stlen;
1721 len -= stlen;
1722 count += stlen;
1723 head += stlen;
1724 if (head >= size) {
1725 head = 0;
1726 stlen = tail;
1727 }
1728 }
1729
1730 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
1731 ap->txq.head = head;
1732
1733 if (test_bit(ST_TXBUSY, &portp->state)) {
1734 if (ap->changed.data & DT_TXEMPTY)
1735 ap->changed.data &= ~DT_TXEMPTY;
1736 }
1737 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1738 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
1739 portp->portidx;
1740 *bits |= portp->portbit;
1741 set_bit(ST_TXBUSY, &portp->state);
1742
1743 EBRDDISABLE(brdp);
1744 restore_flags(flags);
1745}
1746
1747/*****************************************************************************/
1748
1749static int stli_writeroom(struct tty_struct *tty)
1750{
1751 volatile cdkasyrq_t *rp;
1752 stliport_t *portp;
1753 stlibrd_t *brdp;
1754 unsigned int head, tail, len;
1755 unsigned long flags;
1756
1757#ifdef DEBUG
1758 printk("stli_writeroom(tty=%x)\n", (int) tty);
1759#endif
1760
1761 if (tty == (struct tty_struct *) NULL)
1762 return(0);
1763 if (tty == stli_txcooktty) {
1764 if (stli_txcookrealsize != 0) {
1765 len = stli_txcookrealsize - stli_txcooksize;
1766 return(len);
1767 }
1768 }
1769
1770 portp = tty->driver_data;
1771 if (portp == (stliport_t *) NULL)
1772 return(0);
1773 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1774 return(0);
1775 brdp = stli_brds[portp->brdnr];
1776 if (brdp == (stlibrd_t *) NULL)
1777 return(0);
1778
1779 save_flags(flags);
1780 cli();
1781 EBRDENABLE(brdp);
1782 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1783 head = (unsigned int) rp->head;
1784 tail = (unsigned int) rp->tail;
1785 if (tail != ((unsigned int) rp->tail))
1786 tail = (unsigned int) rp->tail;
1787 len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
1788 len--;
1789 EBRDDISABLE(brdp);
1790 restore_flags(flags);
1791
1792 if (tty == stli_txcooktty) {
1793 stli_txcookrealsize = len;
1794 len -= stli_txcooksize;
1795 }
1796 return(len);
1797}
1798
1799/*****************************************************************************/
1800
1801/*
1802 * Return the number of characters in the transmit buffer. Normally we
1803 * will return the number of chars in the shared memory ring queue.
1804 * We need to kludge around the case where the shared memory buffer is
1805 * empty but not all characters have drained yet, for this case just
1806 * return that there is 1 character in the buffer!
1807 */
1808
1809static int stli_charsinbuffer(struct tty_struct *tty)
1810{
1811 volatile cdkasyrq_t *rp;
1812 stliport_t *portp;
1813 stlibrd_t *brdp;
1814 unsigned int head, tail, len;
1815 unsigned long flags;
1816
1817#ifdef DEBUG
1818 printk("stli_charsinbuffer(tty=%x)\n", (int) tty);
1819#endif
1820
1821 if (tty == (struct tty_struct *) NULL)
1822 return(0);
1823 if (tty == stli_txcooktty)
1824 stli_flushchars(tty);
1825 portp = tty->driver_data;
1826 if (portp == (stliport_t *) NULL)
1827 return(0);
1828 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1829 return(0);
1830 brdp = stli_brds[portp->brdnr];
1831 if (brdp == (stlibrd_t *) NULL)
1832 return(0);
1833
1834 save_flags(flags);
1835 cli();
1836 EBRDENABLE(brdp);
1837 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1838 head = (unsigned int) rp->head;
1839 tail = (unsigned int) rp->tail;
1840 if (tail != ((unsigned int) rp->tail))
1841 tail = (unsigned int) rp->tail;
1842 len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
1843 if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
1844 len = 1;
1845 EBRDDISABLE(brdp);
1846 restore_flags(flags);
1847
1848 return(len);
1849}
1850
1851/*****************************************************************************/
1852
1853/*
1854 * Generate the serial struct info.
1855 */
1856
1857static int stli_getserial(stliport_t *portp, struct serial_struct __user *sp)
1858{
1859 struct serial_struct sio;
1860 stlibrd_t *brdp;
1861
1862#ifdef DEBUG
1863 printk("stli_getserial(portp=%x,sp=%x)\n", (int) portp, (int) sp);
1864#endif
1865
1866 memset(&sio, 0, sizeof(struct serial_struct));
1867 sio.type = PORT_UNKNOWN;
1868 sio.line = portp->portnr;
1869 sio.irq = 0;
1870 sio.flags = portp->flags;
1871 sio.baud_base = portp->baud_base;
1872 sio.close_delay = portp->close_delay;
1873 sio.closing_wait = portp->closing_wait;
1874 sio.custom_divisor = portp->custom_divisor;
1875 sio.xmit_fifo_size = 0;
1876 sio.hub6 = 0;
1877
1878 brdp = stli_brds[portp->brdnr];
1879 if (brdp != (stlibrd_t *) NULL)
1880 sio.port = brdp->iobase;
1881
1882 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ?
1883 -EFAULT : 0;
1884}
1885
1886/*****************************************************************************/
1887
1888/*
1889 * Set port according to the serial struct info.
1890 * At this point we do not do any auto-configure stuff, so we will
1891 * just quietly ignore any requests to change irq, etc.
1892 */
1893
1894static int stli_setserial(stliport_t *portp, struct serial_struct __user *sp)
1895{
1896 struct serial_struct sio;
1897 int rc;
1898
1899#ifdef DEBUG
1900 printk("stli_setserial(portp=%p,sp=%p)\n", portp, sp);
1901#endif
1902
1903 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1904 return -EFAULT;
1905 if (!capable(CAP_SYS_ADMIN)) {
1906 if ((sio.baud_base != portp->baud_base) ||
1907 (sio.close_delay != portp->close_delay) ||
1908 ((sio.flags & ~ASYNC_USR_MASK) !=
1909 (portp->flags & ~ASYNC_USR_MASK)))
1910 return(-EPERM);
1911 }
1912
1913 portp->flags = (portp->flags & ~ASYNC_USR_MASK) |
1914 (sio.flags & ASYNC_USR_MASK);
1915 portp->baud_base = sio.baud_base;
1916 portp->close_delay = sio.close_delay;
1917 portp->closing_wait = sio.closing_wait;
1918 portp->custom_divisor = sio.custom_divisor;
1919
1920 if ((rc = stli_setport(portp)) < 0)
1921 return(rc);
1922 return(0);
1923}
1924
1925/*****************************************************************************/
1926
1927static int stli_tiocmget(struct tty_struct *tty, struct file *file)
1928{
1929 stliport_t *portp = tty->driver_data;
1930 stlibrd_t *brdp;
1931 int rc;
1932
1933 if (portp == (stliport_t *) NULL)
1934 return(-ENODEV);
1935 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1936 return(0);
1937 brdp = stli_brds[portp->brdnr];
1938 if (brdp == (stlibrd_t *) NULL)
1939 return(0);
1940 if (tty->flags & (1 << TTY_IO_ERROR))
1941 return(-EIO);
1942
1943 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
1944 &portp->asig, sizeof(asysigs_t), 1)) < 0)
1945 return(rc);
1946
1947 return stli_mktiocm(portp->asig.sigvalue);
1948}
1949
1950static int stli_tiocmset(struct tty_struct *tty, struct file *file,
1951 unsigned int set, unsigned int clear)
1952{
1953 stliport_t *portp = tty->driver_data;
1954 stlibrd_t *brdp;
1955 int rts = -1, dtr = -1;
1956
1957 if (portp == (stliport_t *) NULL)
1958 return(-ENODEV);
1959 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
1960 return(0);
1961 brdp = stli_brds[portp->brdnr];
1962 if (brdp == (stlibrd_t *) NULL)
1963 return(0);
1964 if (tty->flags & (1 << TTY_IO_ERROR))
1965 return(-EIO);
1966
1967 if (set & TIOCM_RTS)
1968 rts = 1;
1969 if (set & TIOCM_DTR)
1970 dtr = 1;
1971 if (clear & TIOCM_RTS)
1972 rts = 0;
1973 if (clear & TIOCM_DTR)
1974 dtr = 0;
1975
1976 stli_mkasysigs(&portp->asig, dtr, rts);
1977
1978 return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1979 sizeof(asysigs_t), 0);
1980}
1981
1982static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1983{
1984 stliport_t *portp;
1985 stlibrd_t *brdp;
1986 unsigned int ival;
1987 int rc;
1988 void __user *argp = (void __user *)arg;
1989
1990#ifdef DEBUG
1991 printk("stli_ioctl(tty=%x,file=%x,cmd=%x,arg=%x)\n",
1992 (int) tty, (int) file, cmd, (int) arg);
1993#endif
1994
1995 if (tty == (struct tty_struct *) NULL)
1996 return(-ENODEV);
1997 portp = tty->driver_data;
1998 if (portp == (stliport_t *) NULL)
1999 return(-ENODEV);
2000 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2001 return(0);
2002 brdp = stli_brds[portp->brdnr];
2003 if (brdp == (stlibrd_t *) NULL)
2004 return(0);
2005
2006 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
2007 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
2008 if (tty->flags & (1 << TTY_IO_ERROR))
2009 return(-EIO);
2010 }
2011
2012 rc = 0;
2013
2014 switch (cmd) {
2015 case TIOCGSOFTCAR:
2016 rc = put_user(((tty->termios->c_cflag & CLOCAL) ? 1 : 0),
2017 (unsigned __user *) arg);
2018 break;
2019 case TIOCSSOFTCAR:
2020 if ((rc = get_user(ival, (unsigned __user *) arg)) == 0)
2021 tty->termios->c_cflag =
2022 (tty->termios->c_cflag & ~CLOCAL) |
2023 (ival ? CLOCAL : 0);
2024 break;
2025 case TIOCGSERIAL:
2026 rc = stli_getserial(portp, argp);
2027 break;
2028 case TIOCSSERIAL:
2029 rc = stli_setserial(portp, argp);
2030 break;
2031 case STL_GETPFLAG:
2032 rc = put_user(portp->pflag, (unsigned __user *)argp);
2033 break;
2034 case STL_SETPFLAG:
2035 if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0)
2036 stli_setport(portp);
2037 break;
2038 case COM_GETPORTSTATS:
2039 rc = stli_getportstats(portp, argp);
2040 break;
2041 case COM_CLRPORTSTATS:
2042 rc = stli_clrportstats(portp, argp);
2043 break;
2044 case TIOCSERCONFIG:
2045 case TIOCSERGWILD:
2046 case TIOCSERSWILD:
2047 case TIOCSERGETLSR:
2048 case TIOCSERGSTRUCT:
2049 case TIOCSERGETMULTI:
2050 case TIOCSERSETMULTI:
2051 default:
2052 rc = -ENOIOCTLCMD;
2053 break;
2054 }
2055
2056 return(rc);
2057}
2058
2059/*****************************************************************************/
2060
2061/*
2062 * This routine assumes that we have user context and can sleep.
2063 * Looks like it is true for the current ttys implementation..!!
2064 */
2065
2066static void stli_settermios(struct tty_struct *tty, struct termios *old)
2067{
2068 stliport_t *portp;
2069 stlibrd_t *brdp;
2070 struct termios *tiosp;
2071 asyport_t aport;
2072
2073#ifdef DEBUG
2074 printk("stli_settermios(tty=%x,old=%x)\n", (int) tty, (int) old);
2075#endif
2076
2077 if (tty == (struct tty_struct *) NULL)
2078 return;
2079 portp = tty->driver_data;
2080 if (portp == (stliport_t *) NULL)
2081 return;
2082 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2083 return;
2084 brdp = stli_brds[portp->brdnr];
2085 if (brdp == (stlibrd_t *) NULL)
2086 return;
2087
2088 tiosp = tty->termios;
2089 if ((tiosp->c_cflag == old->c_cflag) &&
2090 (tiosp->c_iflag == old->c_iflag))
2091 return;
2092
2093 stli_mkasyport(portp, &aport, tiosp);
2094 stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
2095 stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
2096 stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
2097 sizeof(asysigs_t), 0);
2098 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
2099 tty->hw_stopped = 0;
2100 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
2101 wake_up_interruptible(&portp->open_wait);
2102}
2103
2104/*****************************************************************************/
2105
2106/*
2107 * Attempt to flow control who ever is sending us data. We won't really
2108 * do any flow control action here. We can't directly, and even if we
2109 * wanted to we would have to send a command to the slave. The slave
2110 * knows how to flow control, and will do so when its buffers reach its
2111 * internal high water marks. So what we will do is set a local state
2112 * bit that will stop us sending any RX data up from the poll routine
2113 * (which is the place where RX data from the slave is handled).
2114 */
2115
2116static void stli_throttle(struct tty_struct *tty)
2117{
2118 stliport_t *portp;
2119
2120#ifdef DEBUG
2121 printk("stli_throttle(tty=%x)\n", (int) tty);
2122#endif
2123
2124 if (tty == (struct tty_struct *) NULL)
2125 return;
2126 portp = tty->driver_data;
2127 if (portp == (stliport_t *) NULL)
2128 return;
2129
2130 set_bit(ST_RXSTOP, &portp->state);
2131}
2132
2133/*****************************************************************************/
2134
2135/*
2136 * Unflow control the device sending us data... That means that all
2137 * we have to do is clear the RXSTOP state bit. The next poll call
2138 * will then be able to pass the RX data back up.
2139 */
2140
2141static void stli_unthrottle(struct tty_struct *tty)
2142{
2143 stliport_t *portp;
2144
2145#ifdef DEBUG
2146 printk("stli_unthrottle(tty=%x)\n", (int) tty);
2147#endif
2148
2149 if (tty == (struct tty_struct *) NULL)
2150 return;
2151 portp = tty->driver_data;
2152 if (portp == (stliport_t *) NULL)
2153 return;
2154
2155 clear_bit(ST_RXSTOP, &portp->state);
2156}
2157
2158/*****************************************************************************/
2159
2160/*
2161 * Stop the transmitter. Basically to do this we will just turn TX
2162 * interrupts off.
2163 */
2164
2165static void stli_stop(struct tty_struct *tty)
2166{
2167 stlibrd_t *brdp;
2168 stliport_t *portp;
2169 asyctrl_t actrl;
2170
2171#ifdef DEBUG
2172 printk("stli_stop(tty=%x)\n", (int) tty);
2173#endif
2174
2175 if (tty == (struct tty_struct *) NULL)
2176 return;
2177 portp = tty->driver_data;
2178 if (portp == (stliport_t *) NULL)
2179 return;
2180 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2181 return;
2182 brdp = stli_brds[portp->brdnr];
2183 if (brdp == (stlibrd_t *) NULL)
2184 return;
2185
2186 memset(&actrl, 0, sizeof(asyctrl_t));
2187 actrl.txctrl = CT_STOPFLOW;
2188#if 0
2189 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2190#endif
2191}
2192
2193/*****************************************************************************/
2194
2195/*
2196 * Start the transmitter again. Just turn TX interrupts back on.
2197 */
2198
2199static void stli_start(struct tty_struct *tty)
2200{
2201 stliport_t *portp;
2202 stlibrd_t *brdp;
2203 asyctrl_t actrl;
2204
2205#ifdef DEBUG
2206 printk("stli_start(tty=%x)\n", (int) tty);
2207#endif
2208
2209 if (tty == (struct tty_struct *) NULL)
2210 return;
2211 portp = tty->driver_data;
2212 if (portp == (stliport_t *) NULL)
2213 return;
2214 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2215 return;
2216 brdp = stli_brds[portp->brdnr];
2217 if (brdp == (stlibrd_t *) NULL)
2218 return;
2219
2220 memset(&actrl, 0, sizeof(asyctrl_t));
2221 actrl.txctrl = CT_STARTFLOW;
2222#if 0
2223 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2224#endif
2225}
2226
2227/*****************************************************************************/
2228
2229/*
2230 * Scheduler called hang up routine. This is called from the scheduler,
2231 * not direct from the driver "poll" routine. We can't call it there
2232 * since the real local hangup code will enable/disable the board and
2233 * other things that we can't do while handling the poll. Much easier
2234 * to deal with it some time later (don't really care when, hangups
2235 * aren't that time critical).
2236 */
2237
2238static void stli_dohangup(void *arg)
2239{
2240 stliport_t *portp;
2241
2242#ifdef DEBUG
2243 printk(KERN_DEBUG "stli_dohangup(portp=%x)\n", (int) arg);
2244#endif
2245
2246 /*
2247 * FIXME: There's a module removal race here: tty_hangup
2248 * calls schedule_work which will call into this
2249 * driver later.
2250 */
2251 portp = (stliport_t *) arg;
2252 if (portp != (stliport_t *) NULL) {
2253 if (portp->tty != (struct tty_struct *) NULL) {
2254 tty_hangup(portp->tty);
2255 }
2256 }
2257}
2258
2259/*****************************************************************************/
2260
2261/*
2262 * Hangup this port. This is pretty much like closing the port, only
2263 * a little more brutal. No waiting for data to drain. Shutdown the
2264 * port and maybe drop signals. This is rather tricky really. We want
2265 * to close the port as well.
2266 */
2267
2268static void stli_hangup(struct tty_struct *tty)
2269{
2270 stliport_t *portp;
2271 stlibrd_t *brdp;
2272 unsigned long flags;
2273
2274#ifdef DEBUG
2275 printk(KERN_DEBUG "stli_hangup(tty=%x)\n", (int) tty);
2276#endif
2277
2278 if (tty == (struct tty_struct *) NULL)
2279 return;
2280 portp = tty->driver_data;
2281 if (portp == (stliport_t *) NULL)
2282 return;
2283 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2284 return;
2285 brdp = stli_brds[portp->brdnr];
2286 if (brdp == (stlibrd_t *) NULL)
2287 return;
2288
2289 portp->flags &= ~ASYNC_INITIALIZED;
2290
2291 save_flags(flags);
2292 cli();
2293 if (! test_bit(ST_CLOSING, &portp->state))
2294 stli_rawclose(brdp, portp, 0, 0);
2295 if (tty->termios->c_cflag & HUPCL) {
2296 stli_mkasysigs(&portp->asig, 0, 0);
2297 if (test_bit(ST_CMDING, &portp->state)) {
2298 set_bit(ST_DOSIGS, &portp->state);
2299 set_bit(ST_DOFLUSHTX, &portp->state);
2300 set_bit(ST_DOFLUSHRX, &portp->state);
2301 } else {
2302 stli_sendcmd(brdp, portp, A_SETSIGNALSF,
2303 &portp->asig, sizeof(asysigs_t), 0);
2304 }
2305 }
2306 restore_flags(flags);
2307
2308 clear_bit(ST_TXBUSY, &portp->state);
2309 clear_bit(ST_RXSTOP, &portp->state);
2310 set_bit(TTY_IO_ERROR, &tty->flags);
2311 portp->tty = (struct tty_struct *) NULL;
2312 portp->flags &= ~ASYNC_NORMAL_ACTIVE;
2313 portp->refcount = 0;
2314 wake_up_interruptible(&portp->open_wait);
2315}
2316
2317/*****************************************************************************/
2318
2319/*
2320 * Flush characters from the lower buffer. We may not have user context
2321 * so we cannot sleep waiting for it to complete. Also we need to check
2322 * if there is chars for this port in the TX cook buffer, and flush them
2323 * as well.
2324 */
2325
2326static void stli_flushbuffer(struct tty_struct *tty)
2327{
2328 stliport_t *portp;
2329 stlibrd_t *brdp;
2330 unsigned long ftype, flags;
2331
2332#ifdef DEBUG
2333 printk(KERN_DEBUG "stli_flushbuffer(tty=%x)\n", (int) tty);
2334#endif
2335
2336 if (tty == (struct tty_struct *) NULL)
2337 return;
2338 portp = tty->driver_data;
2339 if (portp == (stliport_t *) NULL)
2340 return;
2341 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2342 return;
2343 brdp = stli_brds[portp->brdnr];
2344 if (brdp == (stlibrd_t *) NULL)
2345 return;
2346
2347 save_flags(flags);
2348 cli();
2349 if (tty == stli_txcooktty) {
2350 stli_txcooktty = (struct tty_struct *) NULL;
2351 stli_txcooksize = 0;
2352 stli_txcookrealsize = 0;
2353 }
2354 if (test_bit(ST_CMDING, &portp->state)) {
2355 set_bit(ST_DOFLUSHTX, &portp->state);
2356 } else {
2357 ftype = FLUSHTX;
2358 if (test_bit(ST_DOFLUSHRX, &portp->state)) {
2359 ftype |= FLUSHRX;
2360 clear_bit(ST_DOFLUSHRX, &portp->state);
2361 }
2362 stli_sendcmd(brdp, portp, A_FLUSH, &ftype,
2363 sizeof(unsigned long), 0);
2364 }
2365 restore_flags(flags);
2366
2367 wake_up_interruptible(&tty->write_wait);
2368 if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) &&
2369 tty->ldisc.write_wakeup)
2370 (tty->ldisc.write_wakeup)(tty);
2371}
2372
2373/*****************************************************************************/
2374
2375static void stli_breakctl(struct tty_struct *tty, int state)
2376{
2377 stlibrd_t *brdp;
2378 stliport_t *portp;
2379 long arg;
2380 /* long savestate, savetime; */
2381
2382#ifdef DEBUG
2383 printk(KERN_DEBUG "stli_breakctl(tty=%x,state=%d)\n", (int) tty, state);
2384#endif
2385
2386 if (tty == (struct tty_struct *) NULL)
2387 return;
2388 portp = tty->driver_data;
2389 if (portp == (stliport_t *) NULL)
2390 return;
2391 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2392 return;
2393 brdp = stli_brds[portp->brdnr];
2394 if (brdp == (stlibrd_t *) NULL)
2395 return;
2396
2397/*
2398 * Due to a bug in the tty send_break() code we need to preserve
2399 * the current process state and timeout...
2400 savetime = current->timeout;
2401 savestate = current->state;
2402 */
2403
2404 arg = (state == -1) ? BREAKON : BREAKOFF;
2405 stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
2406
2407/*
2408 *
2409 current->timeout = savetime;
2410 current->state = savestate;
2411 */
2412}
2413
2414/*****************************************************************************/
2415
2416static void stli_waituntilsent(struct tty_struct *tty, int timeout)
2417{
2418 stliport_t *portp;
2419 unsigned long tend;
2420
2421#ifdef DEBUG
2422 printk(KERN_DEBUG "stli_waituntilsent(tty=%x,timeout=%x)\n", (int) tty, timeout);
2423#endif
2424
2425 if (tty == (struct tty_struct *) NULL)
2426 return;
2427 portp = tty->driver_data;
2428 if (portp == (stliport_t *) NULL)
2429 return;
2430
2431 if (timeout == 0)
2432 timeout = HZ;
2433 tend = jiffies + timeout;
2434
2435 while (test_bit(ST_TXBUSY, &portp->state)) {
2436 if (signal_pending(current))
2437 break;
2438 msleep_interruptible(20);
2439 if (time_after_eq(jiffies, tend))
2440 break;
2441 }
2442}
2443
2444/*****************************************************************************/
2445
2446static void stli_sendxchar(struct tty_struct *tty, char ch)
2447{
2448 stlibrd_t *brdp;
2449 stliport_t *portp;
2450 asyctrl_t actrl;
2451
2452#ifdef DEBUG
2453 printk(KERN_DEBUG "stli_sendxchar(tty=%x,ch=%x)\n", (int) tty, ch);
2454#endif
2455
2456 if (tty == (struct tty_struct *) NULL)
2457 return;
2458 portp = tty->driver_data;
2459 if (portp == (stliport_t *) NULL)
2460 return;
2461 if ((portp->brdnr < 0) || (portp->brdnr >= stli_nrbrds))
2462 return;
2463 brdp = stli_brds[portp->brdnr];
2464 if (brdp == (stlibrd_t *) NULL)
2465 return;
2466
2467 memset(&actrl, 0, sizeof(asyctrl_t));
2468 if (ch == STOP_CHAR(tty)) {
2469 actrl.rxctrl = CT_STOPFLOW;
2470 } else if (ch == START_CHAR(tty)) {
2471 actrl.rxctrl = CT_STARTFLOW;
2472 } else {
2473 actrl.txctrl = CT_SENDCHR;
2474 actrl.tximdch = ch;
2475 }
2476
2477 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
2478}
2479
2480/*****************************************************************************/
2481
2482#define MAXLINE 80
2483
2484/*
2485 * Format info for a specified port. The line is deliberately limited
2486 * to 80 characters. (If it is too long it will be truncated, if too
2487 * short then padded with spaces).
2488 */
2489
2490static int stli_portinfo(stlibrd_t *brdp, stliport_t *portp, int portnr, char *pos)
2491{
2492 char *sp, *uart;
2493 int rc, cnt;
2494
2495 rc = stli_portcmdstats(portp);
2496
2497 uart = "UNKNOWN";
2498 if (brdp->state & BST_STARTED) {
2499 switch (stli_comstats.hwid) {
2500 case 0: uart = "2681"; break;
2501 case 1: uart = "SC26198"; break;
2502 default: uart = "CD1400"; break;
2503 }
2504 }
2505
2506 sp = pos;
2507 sp += sprintf(sp, "%d: uart:%s ", portnr, uart);
2508
2509 if ((brdp->state & BST_STARTED) && (rc >= 0)) {
2510 sp += sprintf(sp, "tx:%d rx:%d", (int) stli_comstats.txtotal,
2511 (int) stli_comstats.rxtotal);
2512
2513 if (stli_comstats.rxframing)
2514 sp += sprintf(sp, " fe:%d",
2515 (int) stli_comstats.rxframing);
2516 if (stli_comstats.rxparity)
2517 sp += sprintf(sp, " pe:%d",
2518 (int) stli_comstats.rxparity);
2519 if (stli_comstats.rxbreaks)
2520 sp += sprintf(sp, " brk:%d",
2521 (int) stli_comstats.rxbreaks);
2522 if (stli_comstats.rxoverrun)
2523 sp += sprintf(sp, " oe:%d",
2524 (int) stli_comstats.rxoverrun);
2525
2526 cnt = sprintf(sp, "%s%s%s%s%s ",
2527 (stli_comstats.signals & TIOCM_RTS) ? "|RTS" : "",
2528 (stli_comstats.signals & TIOCM_CTS) ? "|CTS" : "",
2529 (stli_comstats.signals & TIOCM_DTR) ? "|DTR" : "",
2530 (stli_comstats.signals & TIOCM_CD) ? "|DCD" : "",
2531 (stli_comstats.signals & TIOCM_DSR) ? "|DSR" : "");
2532 *sp = ' ';
2533 sp += cnt;
2534 }
2535
2536 for (cnt = (sp - pos); (cnt < (MAXLINE - 1)); cnt++)
2537 *sp++ = ' ';
2538 if (cnt >= MAXLINE)
2539 pos[(MAXLINE - 2)] = '+';
2540 pos[(MAXLINE - 1)] = '\n';
2541
2542 return(MAXLINE);
2543}
2544
2545/*****************************************************************************/
2546
2547/*
2548 * Port info, read from the /proc file system.
2549 */
2550
2551static int stli_readproc(char *page, char **start, off_t off, int count, int *eof, void *data)
2552{
2553 stlibrd_t *brdp;
2554 stliport_t *portp;
2555 int brdnr, portnr, totalport;
2556 int curoff, maxoff;
2557 char *pos;
2558
2559#ifdef DEBUG
2560 printk(KERN_DEBUG "stli_readproc(page=%x,start=%x,off=%x,count=%d,eof=%x,"
2561 "data=%x\n", (int) page, (int) start, (int) off, count,
2562 (int) eof, (int) data);
2563#endif
2564
2565 pos = page;
2566 totalport = 0;
2567 curoff = 0;
2568
2569 if (off == 0) {
2570 pos += sprintf(pos, "%s: version %s", stli_drvtitle,
2571 stli_drvversion);
2572 while (pos < (page + MAXLINE - 1))
2573 *pos++ = ' ';
2574 *pos++ = '\n';
2575 }
2576 curoff = MAXLINE;
2577
2578/*
2579 * We scan through for each board, panel and port. The offset is
2580 * calculated on the fly, and irrelevant ports are skipped.
2581 */
2582 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2583 brdp = stli_brds[brdnr];
2584 if (brdp == (stlibrd_t *) NULL)
2585 continue;
2586 if (brdp->state == 0)
2587 continue;
2588
2589 maxoff = curoff + (brdp->nrports * MAXLINE);
2590 if (off >= maxoff) {
2591 curoff = maxoff;
2592 continue;
2593 }
2594
2595 totalport = brdnr * STL_MAXPORTS;
2596 for (portnr = 0; (portnr < brdp->nrports); portnr++,
2597 totalport++) {
2598 portp = brdp->ports[portnr];
2599 if (portp == (stliport_t *) NULL)
2600 continue;
2601 if (off >= (curoff += MAXLINE))
2602 continue;
2603 if ((pos - page + MAXLINE) > count)
2604 goto stli_readdone;
2605 pos += stli_portinfo(brdp, portp, totalport, pos);
2606 }
2607 }
2608
2609 *eof = 1;
2610
2611stli_readdone:
2612 *start = page;
2613 return(pos - page);
2614}
2615
2616/*****************************************************************************/
2617
2618/*
2619 * Generic send command routine. This will send a message to the slave,
2620 * of the specified type with the specified argument. Must be very
2621 * careful of data that will be copied out from shared memory -
2622 * containing command results. The command completion is all done from
2623 * a poll routine that does not have user context. Therefore you cannot
2624 * copy back directly into user space, or to the kernel stack of a
2625 * process. This routine does not sleep, so can be called from anywhere.
2626 */
2627
2628static void stli_sendcmd(stlibrd_t *brdp, stliport_t *portp, unsigned long cmd, void *arg, int size, int copyback)
2629{
2630 volatile cdkhdr_t *hdrp;
2631 volatile cdkctrl_t *cp;
2632 volatile unsigned char *bits;
2633 unsigned long flags;
2634
2635#ifdef DEBUG
2636 printk(KERN_DEBUG "stli_sendcmd(brdp=%x,portp=%x,cmd=%x,arg=%x,size=%d,"
2637 "copyback=%d)\n", (int) brdp, (int) portp, (int) cmd,
2638 (int) arg, size, copyback);
2639#endif
2640
2641 save_flags(flags);
2642 cli();
2643
2644 if (test_bit(ST_CMDING, &portp->state)) {
2645 printk(KERN_ERR "STALLION: command already busy, cmd=%x!\n",
2646 (int) cmd);
2647 restore_flags(flags);
2648 return;
2649 }
2650
2651 EBRDENABLE(brdp);
2652 cp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
2653 if (size > 0) {
2654 memcpy((void *) &(cp->args[0]), arg, size);
2655 if (copyback) {
2656 portp->argp = arg;
2657 portp->argsize = size;
2658 }
2659 }
2660 cp->status = 0;
2661 cp->cmd = cmd;
2662 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2663 bits = ((volatile unsigned char *) hdrp) + brdp->slaveoffset +
2664 portp->portidx;
2665 *bits |= portp->portbit;
2666 set_bit(ST_CMDING, &portp->state);
2667 EBRDDISABLE(brdp);
2668 restore_flags(flags);
2669}
2670
2671/*****************************************************************************/
2672
2673/*
2674 * Read data from shared memory. This assumes that the shared memory
2675 * is enabled and that interrupts are off. Basically we just empty out
2676 * the shared memory buffer into the tty buffer. Must be careful to
2677 * handle the case where we fill up the tty buffer, but still have
2678 * more chars to unload.
2679 */
2680
2681static void stli_read(stlibrd_t *brdp, stliport_t *portp)
2682{
2683 volatile cdkasyrq_t *rp;
2684 volatile char *shbuf;
2685 struct tty_struct *tty;
2686 unsigned int head, tail, size;
2687 unsigned int len, stlen;
2688
2689#ifdef DEBUG
2690 printk(KERN_DEBUG "stli_read(brdp=%x,portp=%d)\n",
2691 (int) brdp, (int) portp);
2692#endif
2693
2694 if (test_bit(ST_RXSTOP, &portp->state))
2695 return;
2696 tty = portp->tty;
2697 if (tty == (struct tty_struct *) NULL)
2698 return;
2699
2700 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2701 head = (unsigned int) rp->head;
2702 if (head != ((unsigned int) rp->head))
2703 head = (unsigned int) rp->head;
2704 tail = (unsigned int) rp->tail;
2705 size = portp->rxsize;
2706 if (head >= tail) {
2707 len = head - tail;
2708 stlen = len;
2709 } else {
2710 len = size - (tail - head);
2711 stlen = size - tail;
2712 }
2713
Alan Cox33f0f882006-01-09 20:54:13 -08002714 len = tty_buffer_request_room(tty, len);
2715 /* FIXME : iomap ? */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002716 shbuf = (volatile char *) EBRDGETMEMPTR(brdp, portp->rxoffset);
2717
2718 while (len > 0) {
2719 stlen = MIN(len, stlen);
Alan Cox33f0f882006-01-09 20:54:13 -08002720 tty_insert_flip_string(tty, (char *)(shbuf + tail), stlen);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002721 len -= stlen;
2722 tail += stlen;
2723 if (tail >= size) {
2724 tail = 0;
2725 stlen = head;
2726 }
2727 }
2728 rp = &((volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2729 rp->tail = tail;
2730
2731 if (head != tail)
2732 set_bit(ST_RXING, &portp->state);
2733
2734 tty_schedule_flip(tty);
2735}
2736
2737/*****************************************************************************/
2738
2739/*
2740 * Set up and carry out any delayed commands. There is only a small set
2741 * of slave commands that can be done "off-level". So it is not too
2742 * difficult to deal with them here.
2743 */
2744
2745static void stli_dodelaycmd(stliport_t *portp, volatile cdkctrl_t *cp)
2746{
2747 int cmd;
2748
2749 if (test_bit(ST_DOSIGS, &portp->state)) {
2750 if (test_bit(ST_DOFLUSHTX, &portp->state) &&
2751 test_bit(ST_DOFLUSHRX, &portp->state))
2752 cmd = A_SETSIGNALSF;
2753 else if (test_bit(ST_DOFLUSHTX, &portp->state))
2754 cmd = A_SETSIGNALSFTX;
2755 else if (test_bit(ST_DOFLUSHRX, &portp->state))
2756 cmd = A_SETSIGNALSFRX;
2757 else
2758 cmd = A_SETSIGNALS;
2759 clear_bit(ST_DOFLUSHTX, &portp->state);
2760 clear_bit(ST_DOFLUSHRX, &portp->state);
2761 clear_bit(ST_DOSIGS, &portp->state);
2762 memcpy((void *) &(cp->args[0]), (void *) &portp->asig,
2763 sizeof(asysigs_t));
2764 cp->status = 0;
2765 cp->cmd = cmd;
2766 set_bit(ST_CMDING, &portp->state);
2767 } else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
2768 test_bit(ST_DOFLUSHRX, &portp->state)) {
2769 cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
2770 cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
2771 clear_bit(ST_DOFLUSHTX, &portp->state);
2772 clear_bit(ST_DOFLUSHRX, &portp->state);
2773 memcpy((void *) &(cp->args[0]), (void *) &cmd, sizeof(int));
2774 cp->status = 0;
2775 cp->cmd = A_FLUSH;
2776 set_bit(ST_CMDING, &portp->state);
2777 }
2778}
2779
2780/*****************************************************************************/
2781
2782/*
2783 * Host command service checking. This handles commands or messages
2784 * coming from the slave to the host. Must have board shared memory
2785 * enabled and interrupts off when called. Notice that by servicing the
2786 * read data last we don't need to change the shared memory pointer
2787 * during processing (which is a slow IO operation).
2788 * Return value indicates if this port is still awaiting actions from
2789 * the slave (like open, command, or even TX data being sent). If 0
2790 * then port is still busy, otherwise no longer busy.
2791 */
2792
2793static int stli_hostcmd(stlibrd_t *brdp, stliport_t *portp)
2794{
2795 volatile cdkasy_t *ap;
2796 volatile cdkctrl_t *cp;
2797 struct tty_struct *tty;
2798 asynotify_t nt;
2799 unsigned long oldsigs;
2800 int rc, donerx;
2801
2802#ifdef DEBUG
2803 printk(KERN_DEBUG "stli_hostcmd(brdp=%x,channr=%d)\n",
2804 (int) brdp, channr);
2805#endif
2806
2807 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
2808 cp = &ap->ctrl;
2809
2810/*
2811 * Check if we are waiting for an open completion message.
2812 */
2813 if (test_bit(ST_OPENING, &portp->state)) {
2814 rc = (int) cp->openarg;
2815 if ((cp->open == 0) && (rc != 0)) {
2816 if (rc > 0)
2817 rc--;
2818 cp->openarg = 0;
2819 portp->rc = rc;
2820 clear_bit(ST_OPENING, &portp->state);
2821 wake_up_interruptible(&portp->raw_wait);
2822 }
2823 }
2824
2825/*
2826 * Check if we are waiting for a close completion message.
2827 */
2828 if (test_bit(ST_CLOSING, &portp->state)) {
2829 rc = (int) cp->closearg;
2830 if ((cp->close == 0) && (rc != 0)) {
2831 if (rc > 0)
2832 rc--;
2833 cp->closearg = 0;
2834 portp->rc = rc;
2835 clear_bit(ST_CLOSING, &portp->state);
2836 wake_up_interruptible(&portp->raw_wait);
2837 }
2838 }
2839
2840/*
2841 * Check if we are waiting for a command completion message. We may
2842 * need to copy out the command results associated with this command.
2843 */
2844 if (test_bit(ST_CMDING, &portp->state)) {
2845 rc = cp->status;
2846 if ((cp->cmd == 0) && (rc != 0)) {
2847 if (rc > 0)
2848 rc--;
2849 if (portp->argp != (void *) NULL) {
2850 memcpy(portp->argp, (void *) &(cp->args[0]),
2851 portp->argsize);
2852 portp->argp = (void *) NULL;
2853 }
2854 cp->status = 0;
2855 portp->rc = rc;
2856 clear_bit(ST_CMDING, &portp->state);
2857 stli_dodelaycmd(portp, cp);
2858 wake_up_interruptible(&portp->raw_wait);
2859 }
2860 }
2861
2862/*
2863 * Check for any notification messages ready. This includes lots of
2864 * different types of events - RX chars ready, RX break received,
2865 * TX data low or empty in the slave, modem signals changed state.
2866 */
2867 donerx = 0;
2868
2869 if (ap->notify) {
2870 nt = ap->changed;
2871 ap->notify = 0;
2872 tty = portp->tty;
2873
2874 if (nt.signal & SG_DCD) {
2875 oldsigs = portp->sigs;
2876 portp->sigs = stli_mktiocm(nt.sigvalue);
2877 clear_bit(ST_GETSIGS, &portp->state);
2878 if ((portp->sigs & TIOCM_CD) &&
2879 ((oldsigs & TIOCM_CD) == 0))
2880 wake_up_interruptible(&portp->open_wait);
2881 if ((oldsigs & TIOCM_CD) &&
2882 ((portp->sigs & TIOCM_CD) == 0)) {
2883 if (portp->flags & ASYNC_CHECK_CD) {
2884 if (tty)
2885 schedule_work(&portp->tqhangup);
2886 }
2887 }
2888 }
2889
2890 if (nt.data & DT_TXEMPTY)
2891 clear_bit(ST_TXBUSY, &portp->state);
2892 if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
2893 if (tty != (struct tty_struct *) NULL) {
2894 if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) &&
2895 tty->ldisc.write_wakeup) {
2896 (tty->ldisc.write_wakeup)(tty);
2897 EBRDENABLE(brdp);
2898 }
2899 wake_up_interruptible(&tty->write_wait);
2900 }
2901 }
2902
2903 if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
2904 if (tty != (struct tty_struct *) NULL) {
Alan Cox33f0f882006-01-09 20:54:13 -08002905 tty_insert_flip_char(tty, 0, TTY_BREAK);
2906 if (portp->flags & ASYNC_SAK) {
2907 do_SAK(tty);
2908 EBRDENABLE(brdp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002909 }
Alan Cox33f0f882006-01-09 20:54:13 -08002910 tty_schedule_flip(tty);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002911 }
2912 }
2913
2914 if (nt.data & DT_RXBUSY) {
2915 donerx++;
2916 stli_read(brdp, portp);
2917 }
2918 }
2919
2920/*
2921 * It might seem odd that we are checking for more RX chars here.
2922 * But, we need to handle the case where the tty buffer was previously
2923 * filled, but we had more characters to pass up. The slave will not
2924 * send any more RX notify messages until the RX buffer has been emptied.
2925 * But it will leave the service bits on (since the buffer is not empty).
2926 * So from here we can try to process more RX chars.
2927 */
2928 if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
2929 clear_bit(ST_RXING, &portp->state);
2930 stli_read(brdp, portp);
2931 }
2932
2933 return((test_bit(ST_OPENING, &portp->state) ||
2934 test_bit(ST_CLOSING, &portp->state) ||
2935 test_bit(ST_CMDING, &portp->state) ||
2936 test_bit(ST_TXBUSY, &portp->state) ||
2937 test_bit(ST_RXING, &portp->state)) ? 0 : 1);
2938}
2939
2940/*****************************************************************************/
2941
2942/*
2943 * Service all ports on a particular board. Assumes that the boards
2944 * shared memory is enabled, and that the page pointer is pointed
2945 * at the cdk header structure.
2946 */
2947
2948static void stli_brdpoll(stlibrd_t *brdp, volatile cdkhdr_t *hdrp)
2949{
2950 stliport_t *portp;
2951 unsigned char hostbits[(STL_MAXCHANS / 8) + 1];
2952 unsigned char slavebits[(STL_MAXCHANS / 8) + 1];
2953 unsigned char *slavep;
2954 int bitpos, bitat, bitsize;
2955 int channr, nrdevs, slavebitchange;
2956
2957 bitsize = brdp->bitsize;
2958 nrdevs = brdp->nrdevs;
2959
2960/*
2961 * Check if slave wants any service. Basically we try to do as
2962 * little work as possible here. There are 2 levels of service
2963 * bits. So if there is nothing to do we bail early. We check
2964 * 8 service bits at a time in the inner loop, so we can bypass
2965 * the lot if none of them want service.
2966 */
2967 memcpy(&hostbits[0], (((unsigned char *) hdrp) + brdp->hostoffset),
2968 bitsize);
2969
2970 memset(&slavebits[0], 0, bitsize);
2971 slavebitchange = 0;
2972
2973 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2974 if (hostbits[bitpos] == 0)
2975 continue;
2976 channr = bitpos * 8;
2977 for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
2978 if (hostbits[bitpos] & bitat) {
2979 portp = brdp->ports[(channr - 1)];
2980 if (stli_hostcmd(brdp, portp)) {
2981 slavebitchange++;
2982 slavebits[bitpos] |= bitat;
2983 }
2984 }
2985 }
2986 }
2987
2988/*
2989 * If any of the ports are no longer busy then update them in the
2990 * slave request bits. We need to do this after, since a host port
2991 * service may initiate more slave requests.
2992 */
2993 if (slavebitchange) {
2994 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2995 slavep = ((unsigned char *) hdrp) + brdp->slaveoffset;
2996 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2997 if (slavebits[bitpos])
2998 slavep[bitpos] &= ~slavebits[bitpos];
2999 }
3000 }
3001}
3002
3003/*****************************************************************************/
3004
3005/*
3006 * Driver poll routine. This routine polls the boards in use and passes
3007 * messages back up to host when necessary. This is actually very
3008 * CPU efficient, since we will always have the kernel poll clock, it
3009 * adds only a few cycles when idle (since board service can be
3010 * determined very easily), but when loaded generates no interrupts
3011 * (with their expensive associated context change).
3012 */
3013
3014static void stli_poll(unsigned long arg)
3015{
3016 volatile cdkhdr_t *hdrp;
3017 stlibrd_t *brdp;
3018 int brdnr;
3019
3020 stli_timerlist.expires = STLI_TIMEOUT;
3021 add_timer(&stli_timerlist);
3022
3023/*
3024 * Check each board and do any servicing required.
3025 */
3026 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
3027 brdp = stli_brds[brdnr];
3028 if (brdp == (stlibrd_t *) NULL)
3029 continue;
3030 if ((brdp->state & BST_STARTED) == 0)
3031 continue;
3032
3033 EBRDENABLE(brdp);
3034 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3035 if (hdrp->hostreq)
3036 stli_brdpoll(brdp, hdrp);
3037 EBRDDISABLE(brdp);
3038 }
3039}
3040
3041/*****************************************************************************/
3042
3043/*
3044 * Translate the termios settings into the port setting structure of
3045 * the slave.
3046 */
3047
3048static void stli_mkasyport(stliport_t *portp, asyport_t *pp, struct termios *tiosp)
3049{
3050#ifdef DEBUG
3051 printk(KERN_DEBUG "stli_mkasyport(portp=%x,pp=%x,tiosp=%d)\n",
3052 (int) portp, (int) pp, (int) tiosp);
3053#endif
3054
3055 memset(pp, 0, sizeof(asyport_t));
3056
3057/*
3058 * Start of by setting the baud, char size, parity and stop bit info.
3059 */
3060 pp->baudout = tiosp->c_cflag & CBAUD;
3061 if (pp->baudout & CBAUDEX) {
3062 pp->baudout &= ~CBAUDEX;
3063 if ((pp->baudout < 1) || (pp->baudout > 4))
3064 tiosp->c_cflag &= ~CBAUDEX;
3065 else
3066 pp->baudout += 15;
3067 }
3068 pp->baudout = stli_baudrates[pp->baudout];
3069 if ((tiosp->c_cflag & CBAUD) == B38400) {
3070 if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
3071 pp->baudout = 57600;
3072 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
3073 pp->baudout = 115200;
3074 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
3075 pp->baudout = 230400;
3076 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
3077 pp->baudout = 460800;
3078 else if ((portp->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
3079 pp->baudout = (portp->baud_base / portp->custom_divisor);
3080 }
3081 if (pp->baudout > STL_MAXBAUD)
3082 pp->baudout = STL_MAXBAUD;
3083 pp->baudin = pp->baudout;
3084
3085 switch (tiosp->c_cflag & CSIZE) {
3086 case CS5:
3087 pp->csize = 5;
3088 break;
3089 case CS6:
3090 pp->csize = 6;
3091 break;
3092 case CS7:
3093 pp->csize = 7;
3094 break;
3095 default:
3096 pp->csize = 8;
3097 break;
3098 }
3099
3100 if (tiosp->c_cflag & CSTOPB)
3101 pp->stopbs = PT_STOP2;
3102 else
3103 pp->stopbs = PT_STOP1;
3104
3105 if (tiosp->c_cflag & PARENB) {
3106 if (tiosp->c_cflag & PARODD)
3107 pp->parity = PT_ODDPARITY;
3108 else
3109 pp->parity = PT_EVENPARITY;
3110 } else {
3111 pp->parity = PT_NOPARITY;
3112 }
3113
3114/*
3115 * Set up any flow control options enabled.
3116 */
3117 if (tiosp->c_iflag & IXON) {
3118 pp->flow |= F_IXON;
3119 if (tiosp->c_iflag & IXANY)
3120 pp->flow |= F_IXANY;
3121 }
3122 if (tiosp->c_cflag & CRTSCTS)
3123 pp->flow |= (F_RTSFLOW | F_CTSFLOW);
3124
3125 pp->startin = tiosp->c_cc[VSTART];
3126 pp->stopin = tiosp->c_cc[VSTOP];
3127 pp->startout = tiosp->c_cc[VSTART];
3128 pp->stopout = tiosp->c_cc[VSTOP];
3129
3130/*
3131 * Set up the RX char marking mask with those RX error types we must
3132 * catch. We can get the slave to help us out a little here, it will
3133 * ignore parity errors and breaks for us, and mark parity errors in
3134 * the data stream.
3135 */
3136 if (tiosp->c_iflag & IGNPAR)
3137 pp->iflag |= FI_IGNRXERRS;
3138 if (tiosp->c_iflag & IGNBRK)
3139 pp->iflag |= FI_IGNBREAK;
3140
3141 portp->rxmarkmsk = 0;
3142 if (tiosp->c_iflag & (INPCK | PARMRK))
3143 pp->iflag |= FI_1MARKRXERRS;
3144 if (tiosp->c_iflag & BRKINT)
3145 portp->rxmarkmsk |= BRKINT;
3146
3147/*
3148 * Set up clocal processing as required.
3149 */
3150 if (tiosp->c_cflag & CLOCAL)
3151 portp->flags &= ~ASYNC_CHECK_CD;
3152 else
3153 portp->flags |= ASYNC_CHECK_CD;
3154
3155/*
3156 * Transfer any persistent flags into the asyport structure.
3157 */
3158 pp->pflag = (portp->pflag & 0xffff);
3159 pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
3160 pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
3161 pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
3162}
3163
3164/*****************************************************************************/
3165
3166/*
3167 * Construct a slave signals structure for setting the DTR and RTS
3168 * signals as specified.
3169 */
3170
3171static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
3172{
3173#ifdef DEBUG
3174 printk(KERN_DEBUG "stli_mkasysigs(sp=%x,dtr=%d,rts=%d)\n",
3175 (int) sp, dtr, rts);
3176#endif
3177
3178 memset(sp, 0, sizeof(asysigs_t));
3179 if (dtr >= 0) {
3180 sp->signal |= SG_DTR;
3181 sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
3182 }
3183 if (rts >= 0) {
3184 sp->signal |= SG_RTS;
3185 sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
3186 }
3187}
3188
3189/*****************************************************************************/
3190
3191/*
3192 * Convert the signals returned from the slave into a local TIOCM type
3193 * signals value. We keep them locally in TIOCM format.
3194 */
3195
3196static long stli_mktiocm(unsigned long sigvalue)
3197{
3198 long tiocm;
3199
3200#ifdef DEBUG
3201 printk(KERN_DEBUG "stli_mktiocm(sigvalue=%x)\n", (int) sigvalue);
3202#endif
3203
3204 tiocm = 0;
3205 tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
3206 tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
3207 tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
3208 tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
3209 tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
3210 tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
3211 return(tiocm);
3212}
3213
3214/*****************************************************************************/
3215
3216/*
3217 * All panels and ports actually attached have been worked out. All
3218 * we need to do here is set up the appropriate per port data structures.
3219 */
3220
3221static int stli_initports(stlibrd_t *brdp)
3222{
3223 stliport_t *portp;
3224 int i, panelnr, panelport;
3225
3226#ifdef DEBUG
3227 printk(KERN_DEBUG "stli_initports(brdp=%x)\n", (int) brdp);
3228#endif
3229
3230 for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
3231 portp = (stliport_t *) stli_memalloc(sizeof(stliport_t));
3232 if (portp == (stliport_t *) NULL) {
3233 printk("STALLION: failed to allocate port structure\n");
3234 continue;
3235 }
3236
3237 memset(portp, 0, sizeof(stliport_t));
3238 portp->magic = STLI_PORTMAGIC;
3239 portp->portnr = i;
3240 portp->brdnr = brdp->brdnr;
3241 portp->panelnr = panelnr;
3242 portp->baud_base = STL_BAUDBASE;
3243 portp->close_delay = STL_CLOSEDELAY;
3244 portp->closing_wait = 30 * HZ;
3245 INIT_WORK(&portp->tqhangup, stli_dohangup, portp);
3246 init_waitqueue_head(&portp->open_wait);
3247 init_waitqueue_head(&portp->close_wait);
3248 init_waitqueue_head(&portp->raw_wait);
3249 panelport++;
3250 if (panelport >= brdp->panels[panelnr]) {
3251 panelport = 0;
3252 panelnr++;
3253 }
3254 brdp->ports[i] = portp;
3255 }
3256
3257 return(0);
3258}
3259
3260/*****************************************************************************/
3261
3262/*
3263 * All the following routines are board specific hardware operations.
3264 */
3265
3266static void stli_ecpinit(stlibrd_t *brdp)
3267{
3268 unsigned long memconf;
3269
3270#ifdef DEBUG
3271 printk(KERN_DEBUG "stli_ecpinit(brdp=%d)\n", (int) brdp);
3272#endif
3273
3274 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
3275 udelay(10);
3276 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3277 udelay(100);
3278
3279 memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
3280 outb(memconf, (brdp->iobase + ECP_ATMEMAR));
3281}
3282
3283/*****************************************************************************/
3284
3285static void stli_ecpenable(stlibrd_t *brdp)
3286{
3287#ifdef DEBUG
3288 printk(KERN_DEBUG "stli_ecpenable(brdp=%x)\n", (int) brdp);
3289#endif
3290 outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
3291}
3292
3293/*****************************************************************************/
3294
3295static void stli_ecpdisable(stlibrd_t *brdp)
3296{
3297#ifdef DEBUG
3298 printk(KERN_DEBUG "stli_ecpdisable(brdp=%x)\n", (int) brdp);
3299#endif
3300 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3301}
3302
3303/*****************************************************************************/
3304
3305static char *stli_ecpgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3306{
3307 void *ptr;
3308 unsigned char val;
3309
3310#ifdef DEBUG
3311 printk(KERN_DEBUG "stli_ecpgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3312 (int) offset);
3313#endif
3314
3315 if (offset > brdp->memsize) {
3316 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3317 "range at line=%d(%d), brd=%d\n",
3318 (int) offset, line, __LINE__, brdp->brdnr);
3319 ptr = NULL;
3320 val = 0;
3321 } else {
3322 ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
3323 val = (unsigned char) (offset / ECP_ATPAGESIZE);
3324 }
3325 outb(val, (brdp->iobase + ECP_ATMEMPR));
3326 return(ptr);
3327}
3328
3329/*****************************************************************************/
3330
3331static void stli_ecpreset(stlibrd_t *brdp)
3332{
3333#ifdef DEBUG
3334 printk(KERN_DEBUG "stli_ecpreset(brdp=%x)\n", (int) brdp);
3335#endif
3336
3337 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
3338 udelay(10);
3339 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
3340 udelay(500);
3341}
3342
3343/*****************************************************************************/
3344
3345static void stli_ecpintr(stlibrd_t *brdp)
3346{
3347#ifdef DEBUG
3348 printk(KERN_DEBUG "stli_ecpintr(brdp=%x)\n", (int) brdp);
3349#endif
3350 outb(0x1, brdp->iobase);
3351}
3352
3353/*****************************************************************************/
3354
3355/*
3356 * The following set of functions act on ECP EISA boards.
3357 */
3358
3359static void stli_ecpeiinit(stlibrd_t *brdp)
3360{
3361 unsigned long memconf;
3362
3363#ifdef DEBUG
3364 printk(KERN_DEBUG "stli_ecpeiinit(brdp=%x)\n", (int) brdp);
3365#endif
3366
3367 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
3368 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3369 udelay(10);
3370 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3371 udelay(500);
3372
3373 memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
3374 outb(memconf, (brdp->iobase + ECP_EIMEMARL));
3375 memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
3376 outb(memconf, (brdp->iobase + ECP_EIMEMARH));
3377}
3378
3379/*****************************************************************************/
3380
3381static void stli_ecpeienable(stlibrd_t *brdp)
3382{
3383 outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
3384}
3385
3386/*****************************************************************************/
3387
3388static void stli_ecpeidisable(stlibrd_t *brdp)
3389{
3390 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3391}
3392
3393/*****************************************************************************/
3394
3395static char *stli_ecpeigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3396{
3397 void *ptr;
3398 unsigned char val;
3399
3400#ifdef DEBUG
3401 printk(KERN_DEBUG "stli_ecpeigetmemptr(brdp=%x,offset=%x,line=%d)\n",
3402 (int) brdp, (int) offset, line);
3403#endif
3404
3405 if (offset > brdp->memsize) {
3406 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3407 "range at line=%d(%d), brd=%d\n",
3408 (int) offset, line, __LINE__, brdp->brdnr);
3409 ptr = NULL;
3410 val = 0;
3411 } else {
3412 ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
3413 if (offset < ECP_EIPAGESIZE)
3414 val = ECP_EIENABLE;
3415 else
3416 val = ECP_EIENABLE | 0x40;
3417 }
3418 outb(val, (brdp->iobase + ECP_EICONFR));
3419 return(ptr);
3420}
3421
3422/*****************************************************************************/
3423
3424static void stli_ecpeireset(stlibrd_t *brdp)
3425{
3426 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3427 udelay(10);
3428 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3429 udelay(500);
3430}
3431
3432/*****************************************************************************/
3433
3434/*
3435 * The following set of functions act on ECP MCA boards.
3436 */
3437
3438static void stli_ecpmcenable(stlibrd_t *brdp)
3439{
3440 outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
3441}
3442
3443/*****************************************************************************/
3444
3445static void stli_ecpmcdisable(stlibrd_t *brdp)
3446{
3447 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
3448}
3449
3450/*****************************************************************************/
3451
3452static char *stli_ecpmcgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3453{
3454 void *ptr;
3455 unsigned char val;
3456
3457 if (offset > brdp->memsize) {
3458 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3459 "range at line=%d(%d), brd=%d\n",
3460 (int) offset, line, __LINE__, brdp->brdnr);
3461 ptr = NULL;
3462 val = 0;
3463 } else {
3464 ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
3465 val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
3466 }
3467 outb(val, (brdp->iobase + ECP_MCCONFR));
3468 return(ptr);
3469}
3470
3471/*****************************************************************************/
3472
3473static void stli_ecpmcreset(stlibrd_t *brdp)
3474{
3475 outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
3476 udelay(10);
3477 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
3478 udelay(500);
3479}
3480
3481/*****************************************************************************/
3482
3483/*
3484 * The following set of functions act on ECP PCI boards.
3485 */
3486
3487static void stli_ecppciinit(stlibrd_t *brdp)
3488{
3489#ifdef DEBUG
3490 printk(KERN_DEBUG "stli_ecppciinit(brdp=%x)\n", (int) brdp);
3491#endif
3492
3493 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
3494 udelay(10);
3495 outb(0, (brdp->iobase + ECP_PCICONFR));
3496 udelay(500);
3497}
3498
3499/*****************************************************************************/
3500
3501static char *stli_ecppcigetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3502{
3503 void *ptr;
3504 unsigned char val;
3505
3506#ifdef DEBUG
3507 printk(KERN_DEBUG "stli_ecppcigetmemptr(brdp=%x,offset=%x,line=%d)\n",
3508 (int) brdp, (int) offset, line);
3509#endif
3510
3511 if (offset > brdp->memsize) {
3512 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3513 "range at line=%d(%d), board=%d\n",
3514 (int) offset, line, __LINE__, brdp->brdnr);
3515 ptr = NULL;
3516 val = 0;
3517 } else {
3518 ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
3519 val = (offset / ECP_PCIPAGESIZE) << 1;
3520 }
3521 outb(val, (brdp->iobase + ECP_PCICONFR));
3522 return(ptr);
3523}
3524
3525/*****************************************************************************/
3526
3527static void stli_ecppcireset(stlibrd_t *brdp)
3528{
3529 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
3530 udelay(10);
3531 outb(0, (brdp->iobase + ECP_PCICONFR));
3532 udelay(500);
3533}
3534
3535/*****************************************************************************/
3536
3537/*
3538 * The following routines act on ONboards.
3539 */
3540
3541static void stli_onbinit(stlibrd_t *brdp)
3542{
3543 unsigned long memconf;
3544
3545#ifdef DEBUG
3546 printk(KERN_DEBUG "stli_onbinit(brdp=%d)\n", (int) brdp);
3547#endif
3548
3549 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3550 udelay(10);
3551 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3552 mdelay(1000);
3553
3554 memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
3555 outb(memconf, (brdp->iobase + ONB_ATMEMAR));
3556 outb(0x1, brdp->iobase);
3557 mdelay(1);
3558}
3559
3560/*****************************************************************************/
3561
3562static void stli_onbenable(stlibrd_t *brdp)
3563{
3564#ifdef DEBUG
3565 printk(KERN_DEBUG "stli_onbenable(brdp=%x)\n", (int) brdp);
3566#endif
3567 outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
3568}
3569
3570/*****************************************************************************/
3571
3572static void stli_onbdisable(stlibrd_t *brdp)
3573{
3574#ifdef DEBUG
3575 printk(KERN_DEBUG "stli_onbdisable(brdp=%x)\n", (int) brdp);
3576#endif
3577 outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
3578}
3579
3580/*****************************************************************************/
3581
3582static char *stli_onbgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3583{
3584 void *ptr;
3585
3586#ifdef DEBUG
3587 printk(KERN_DEBUG "stli_onbgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3588 (int) offset);
3589#endif
3590
3591 if (offset > brdp->memsize) {
3592 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3593 "range at line=%d(%d), brd=%d\n",
3594 (int) offset, line, __LINE__, brdp->brdnr);
3595 ptr = NULL;
3596 } else {
3597 ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
3598 }
3599 return(ptr);
3600}
3601
3602/*****************************************************************************/
3603
3604static void stli_onbreset(stlibrd_t *brdp)
3605{
3606
3607#ifdef DEBUG
3608 printk(KERN_DEBUG "stli_onbreset(brdp=%x)\n", (int) brdp);
3609#endif
3610
3611 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
3612 udelay(10);
3613 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
3614 mdelay(1000);
3615}
3616
3617/*****************************************************************************/
3618
3619/*
3620 * The following routines act on ONboard EISA.
3621 */
3622
3623static void stli_onbeinit(stlibrd_t *brdp)
3624{
3625 unsigned long memconf;
3626
3627#ifdef DEBUG
3628 printk(KERN_DEBUG "stli_onbeinit(brdp=%d)\n", (int) brdp);
3629#endif
3630
3631 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3632 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3633 udelay(10);
3634 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3635 mdelay(1000);
3636
3637 memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
3638 outb(memconf, (brdp->iobase + ONB_EIMEMARL));
3639 memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
3640 outb(memconf, (brdp->iobase + ONB_EIMEMARH));
3641 outb(0x1, brdp->iobase);
3642 mdelay(1);
3643}
3644
3645/*****************************************************************************/
3646
3647static void stli_onbeenable(stlibrd_t *brdp)
3648{
3649#ifdef DEBUG
3650 printk(KERN_DEBUG "stli_onbeenable(brdp=%x)\n", (int) brdp);
3651#endif
3652 outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
3653}
3654
3655/*****************************************************************************/
3656
3657static void stli_onbedisable(stlibrd_t *brdp)
3658{
3659#ifdef DEBUG
3660 printk(KERN_DEBUG "stli_onbedisable(brdp=%x)\n", (int) brdp);
3661#endif
3662 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3663}
3664
3665/*****************************************************************************/
3666
3667static char *stli_onbegetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3668{
3669 void *ptr;
3670 unsigned char val;
3671
3672#ifdef DEBUG
3673 printk(KERN_DEBUG "stli_onbegetmemptr(brdp=%x,offset=%x,line=%d)\n",
3674 (int) brdp, (int) offset, line);
3675#endif
3676
3677 if (offset > brdp->memsize) {
3678 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3679 "range at line=%d(%d), brd=%d\n",
3680 (int) offset, line, __LINE__, brdp->brdnr);
3681 ptr = NULL;
3682 val = 0;
3683 } else {
3684 ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
3685 if (offset < ONB_EIPAGESIZE)
3686 val = ONB_EIENABLE;
3687 else
3688 val = ONB_EIENABLE | 0x40;
3689 }
3690 outb(val, (brdp->iobase + ONB_EICONFR));
3691 return(ptr);
3692}
3693
3694/*****************************************************************************/
3695
3696static void stli_onbereset(stlibrd_t *brdp)
3697{
3698
3699#ifdef DEBUG
3700 printk(KERN_ERR "stli_onbereset(brdp=%x)\n", (int) brdp);
3701#endif
3702
3703 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3704 udelay(10);
3705 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3706 mdelay(1000);
3707}
3708
3709/*****************************************************************************/
3710
3711/*
3712 * The following routines act on Brumby boards.
3713 */
3714
3715static void stli_bbyinit(stlibrd_t *brdp)
3716{
3717
3718#ifdef DEBUG
3719 printk(KERN_ERR "stli_bbyinit(brdp=%d)\n", (int) brdp);
3720#endif
3721
3722 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3723 udelay(10);
3724 outb(0, (brdp->iobase + BBY_ATCONFR));
3725 mdelay(1000);
3726 outb(0x1, brdp->iobase);
3727 mdelay(1);
3728}
3729
3730/*****************************************************************************/
3731
3732static char *stli_bbygetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3733{
3734 void *ptr;
3735 unsigned char val;
3736
3737#ifdef DEBUG
3738 printk(KERN_ERR "stli_bbygetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3739 (int) offset);
3740#endif
3741
3742 if (offset > brdp->memsize) {
3743 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3744 "range at line=%d(%d), brd=%d\n",
3745 (int) offset, line, __LINE__, brdp->brdnr);
3746 ptr = NULL;
3747 val = 0;
3748 } else {
3749 ptr = brdp->membase + (offset % BBY_PAGESIZE);
3750 val = (unsigned char) (offset / BBY_PAGESIZE);
3751 }
3752 outb(val, (brdp->iobase + BBY_ATCONFR));
3753 return(ptr);
3754}
3755
3756/*****************************************************************************/
3757
3758static void stli_bbyreset(stlibrd_t *brdp)
3759{
3760
3761#ifdef DEBUG
3762 printk(KERN_DEBUG "stli_bbyreset(brdp=%x)\n", (int) brdp);
3763#endif
3764
3765 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
3766 udelay(10);
3767 outb(0, (brdp->iobase + BBY_ATCONFR));
3768 mdelay(1000);
3769}
3770
3771/*****************************************************************************/
3772
3773/*
3774 * The following routines act on original old Stallion boards.
3775 */
3776
3777static void stli_stalinit(stlibrd_t *brdp)
3778{
3779
3780#ifdef DEBUG
3781 printk(KERN_DEBUG "stli_stalinit(brdp=%d)\n", (int) brdp);
3782#endif
3783
3784 outb(0x1, brdp->iobase);
3785 mdelay(1000);
3786}
3787
3788/*****************************************************************************/
3789
3790static char *stli_stalgetmemptr(stlibrd_t *brdp, unsigned long offset, int line)
3791{
3792 void *ptr;
3793
3794#ifdef DEBUG
3795 printk(KERN_DEBUG "stli_stalgetmemptr(brdp=%x,offset=%x)\n", (int) brdp,
3796 (int) offset);
3797#endif
3798
3799 if (offset > brdp->memsize) {
3800 printk(KERN_ERR "STALLION: shared memory pointer=%x out of "
3801 "range at line=%d(%d), brd=%d\n",
3802 (int) offset, line, __LINE__, brdp->brdnr);
3803 ptr = NULL;
3804 } else {
3805 ptr = brdp->membase + (offset % STAL_PAGESIZE);
3806 }
3807 return(ptr);
3808}
3809
3810/*****************************************************************************/
3811
3812static void stli_stalreset(stlibrd_t *brdp)
3813{
3814 volatile unsigned long *vecp;
3815
3816#ifdef DEBUG
3817 printk(KERN_DEBUG "stli_stalreset(brdp=%x)\n", (int) brdp);
3818#endif
3819
3820 vecp = (volatile unsigned long *) (brdp->membase + 0x30);
3821 *vecp = 0xffff0000;
3822 outb(0, brdp->iobase);
3823 mdelay(1000);
3824}
3825
3826/*****************************************************************************/
3827
3828/*
3829 * Try to find an ECP board and initialize it. This handles only ECP
3830 * board types.
3831 */
3832
3833static int stli_initecp(stlibrd_t *brdp)
3834{
3835 cdkecpsig_t sig;
3836 cdkecpsig_t *sigsp;
3837 unsigned int status, nxtid;
3838 char *name;
3839 int panelnr, nrports;
3840
3841#ifdef DEBUG
3842 printk(KERN_DEBUG "stli_initecp(brdp=%x)\n", (int) brdp);
3843#endif
3844
3845 if (!request_region(brdp->iobase, brdp->iosize, "istallion"))
3846 return -EIO;
3847
3848 if ((brdp->iobase == 0) || (brdp->memaddr == 0))
3849 {
3850 release_region(brdp->iobase, brdp->iosize);
3851 return(-ENODEV);
3852 }
3853
3854 brdp->iosize = ECP_IOSIZE;
3855
3856/*
3857 * Based on the specific board type setup the common vars to access
3858 * and enable shared memory. Set all board specific information now
3859 * as well.
3860 */
3861 switch (brdp->brdtype) {
3862 case BRD_ECP:
3863 brdp->membase = (void *) brdp->memaddr;
3864 brdp->memsize = ECP_MEMSIZE;
3865 brdp->pagesize = ECP_ATPAGESIZE;
3866 brdp->init = stli_ecpinit;
3867 brdp->enable = stli_ecpenable;
3868 brdp->reenable = stli_ecpenable;
3869 brdp->disable = stli_ecpdisable;
3870 brdp->getmemptr = stli_ecpgetmemptr;
3871 brdp->intr = stli_ecpintr;
3872 brdp->reset = stli_ecpreset;
3873 name = "serial(EC8/64)";
3874 break;
3875
3876 case BRD_ECPE:
3877 brdp->membase = (void *) brdp->memaddr;
3878 brdp->memsize = ECP_MEMSIZE;
3879 brdp->pagesize = ECP_EIPAGESIZE;
3880 brdp->init = stli_ecpeiinit;
3881 brdp->enable = stli_ecpeienable;
3882 brdp->reenable = stli_ecpeienable;
3883 brdp->disable = stli_ecpeidisable;
3884 brdp->getmemptr = stli_ecpeigetmemptr;
3885 brdp->intr = stli_ecpintr;
3886 brdp->reset = stli_ecpeireset;
3887 name = "serial(EC8/64-EI)";
3888 break;
3889
3890 case BRD_ECPMC:
3891 brdp->membase = (void *) brdp->memaddr;
3892 brdp->memsize = ECP_MEMSIZE;
3893 brdp->pagesize = ECP_MCPAGESIZE;
3894 brdp->init = NULL;
3895 brdp->enable = stli_ecpmcenable;
3896 brdp->reenable = stli_ecpmcenable;
3897 brdp->disable = stli_ecpmcdisable;
3898 brdp->getmemptr = stli_ecpmcgetmemptr;
3899 brdp->intr = stli_ecpintr;
3900 brdp->reset = stli_ecpmcreset;
3901 name = "serial(EC8/64-MCA)";
3902 break;
3903
3904 case BRD_ECPPCI:
3905 brdp->membase = (void *) brdp->memaddr;
3906 brdp->memsize = ECP_PCIMEMSIZE;
3907 brdp->pagesize = ECP_PCIPAGESIZE;
3908 brdp->init = stli_ecppciinit;
3909 brdp->enable = NULL;
3910 brdp->reenable = NULL;
3911 brdp->disable = NULL;
3912 brdp->getmemptr = stli_ecppcigetmemptr;
3913 brdp->intr = stli_ecpintr;
3914 brdp->reset = stli_ecppcireset;
3915 name = "serial(EC/RA-PCI)";
3916 break;
3917
3918 default:
3919 release_region(brdp->iobase, brdp->iosize);
3920 return(-EINVAL);
3921 }
3922
3923/*
3924 * The per-board operations structure is all set up, so now let's go
3925 * and get the board operational. Firstly initialize board configuration
3926 * registers. Set the memory mapping info so we can get at the boards
3927 * shared memory.
3928 */
3929 EBRDINIT(brdp);
3930
3931 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
3932 if (brdp->membase == (void *) NULL)
3933 {
3934 release_region(brdp->iobase, brdp->iosize);
3935 return(-ENOMEM);
3936 }
3937
3938/*
3939 * Now that all specific code is set up, enable the shared memory and
3940 * look for the a signature area that will tell us exactly what board
3941 * this is, and what it is connected to it.
3942 */
3943 EBRDENABLE(brdp);
3944 sigsp = (cdkecpsig_t *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3945 memcpy(&sig, sigsp, sizeof(cdkecpsig_t));
3946 EBRDDISABLE(brdp);
3947
3948#if 0
3949 printk("%s(%d): sig-> magic=%x rom=%x panel=%x,%x,%x,%x,%x,%x,%x,%x\n",
3950 __FILE__, __LINE__, (int) sig.magic, sig.romver, sig.panelid[0],
3951 (int) sig.panelid[1], (int) sig.panelid[2],
3952 (int) sig.panelid[3], (int) sig.panelid[4],
3953 (int) sig.panelid[5], (int) sig.panelid[6],
3954 (int) sig.panelid[7]);
3955#endif
3956
3957 if (sig.magic != ECP_MAGIC)
3958 {
3959 release_region(brdp->iobase, brdp->iosize);
3960 return(-ENODEV);
3961 }
3962
3963/*
3964 * Scan through the signature looking at the panels connected to the
3965 * board. Calculate the total number of ports as we go.
3966 */
3967 for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
3968 status = sig.panelid[nxtid];
3969 if ((status & ECH_PNLIDMASK) != nxtid)
3970 break;
3971
3972 brdp->panelids[panelnr] = status;
3973 nrports = (status & ECH_PNL16PORT) ? 16 : 8;
3974 if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
3975 nxtid++;
3976 brdp->panels[panelnr] = nrports;
3977 brdp->nrports += nrports;
3978 nxtid++;
3979 brdp->nrpanels++;
3980 }
3981
3982
3983 brdp->state |= BST_FOUND;
3984 return(0);
3985}
3986
3987/*****************************************************************************/
3988
3989/*
3990 * Try to find an ONboard, Brumby or Stallion board and initialize it.
3991 * This handles only these board types.
3992 */
3993
3994static int stli_initonb(stlibrd_t *brdp)
3995{
3996 cdkonbsig_t sig;
3997 cdkonbsig_t *sigsp;
3998 char *name;
3999 int i;
4000
4001#ifdef DEBUG
4002 printk(KERN_DEBUG "stli_initonb(brdp=%x)\n", (int) brdp);
4003#endif
4004
4005/*
4006 * Do a basic sanity check on the IO and memory addresses.
4007 */
4008 if ((brdp->iobase == 0) || (brdp->memaddr == 0))
4009 return(-ENODEV);
4010
4011 brdp->iosize = ONB_IOSIZE;
4012
4013 if (!request_region(brdp->iobase, brdp->iosize, "istallion"))
4014 return -EIO;
4015
4016/*
4017 * Based on the specific board type setup the common vars to access
4018 * and enable shared memory. Set all board specific information now
4019 * as well.
4020 */
4021 switch (brdp->brdtype) {
4022 case BRD_ONBOARD:
4023 case BRD_ONBOARD32:
4024 case BRD_ONBOARD2:
4025 case BRD_ONBOARD2_32:
4026 case BRD_ONBOARDRS:
4027 brdp->membase = (void *) brdp->memaddr;
4028 brdp->memsize = ONB_MEMSIZE;
4029 brdp->pagesize = ONB_ATPAGESIZE;
4030 brdp->init = stli_onbinit;
4031 brdp->enable = stli_onbenable;
4032 brdp->reenable = stli_onbenable;
4033 brdp->disable = stli_onbdisable;
4034 brdp->getmemptr = stli_onbgetmemptr;
4035 brdp->intr = stli_ecpintr;
4036 brdp->reset = stli_onbreset;
4037 if (brdp->memaddr > 0x100000)
4038 brdp->enabval = ONB_MEMENABHI;
4039 else
4040 brdp->enabval = ONB_MEMENABLO;
4041 name = "serial(ONBoard)";
4042 break;
4043
4044 case BRD_ONBOARDE:
4045 brdp->membase = (void *) brdp->memaddr;
4046 brdp->memsize = ONB_EIMEMSIZE;
4047 brdp->pagesize = ONB_EIPAGESIZE;
4048 brdp->init = stli_onbeinit;
4049 brdp->enable = stli_onbeenable;
4050 brdp->reenable = stli_onbeenable;
4051 brdp->disable = stli_onbedisable;
4052 brdp->getmemptr = stli_onbegetmemptr;
4053 brdp->intr = stli_ecpintr;
4054 brdp->reset = stli_onbereset;
4055 name = "serial(ONBoard/E)";
4056 break;
4057
4058 case BRD_BRUMBY4:
4059 case BRD_BRUMBY8:
4060 case BRD_BRUMBY16:
4061 brdp->membase = (void *) brdp->memaddr;
4062 brdp->memsize = BBY_MEMSIZE;
4063 brdp->pagesize = BBY_PAGESIZE;
4064 brdp->init = stli_bbyinit;
4065 brdp->enable = NULL;
4066 brdp->reenable = NULL;
4067 brdp->disable = NULL;
4068 brdp->getmemptr = stli_bbygetmemptr;
4069 brdp->intr = stli_ecpintr;
4070 brdp->reset = stli_bbyreset;
4071 name = "serial(Brumby)";
4072 break;
4073
4074 case BRD_STALLION:
4075 brdp->membase = (void *) brdp->memaddr;
4076 brdp->memsize = STAL_MEMSIZE;
4077 brdp->pagesize = STAL_PAGESIZE;
4078 brdp->init = stli_stalinit;
4079 brdp->enable = NULL;
4080 brdp->reenable = NULL;
4081 brdp->disable = NULL;
4082 brdp->getmemptr = stli_stalgetmemptr;
4083 brdp->intr = stli_ecpintr;
4084 brdp->reset = stli_stalreset;
4085 name = "serial(Stallion)";
4086 break;
4087
4088 default:
4089 release_region(brdp->iobase, brdp->iosize);
4090 return(-EINVAL);
4091 }
4092
4093/*
4094 * The per-board operations structure is all set up, so now let's go
4095 * and get the board operational. Firstly initialize board configuration
4096 * registers. Set the memory mapping info so we can get at the boards
4097 * shared memory.
4098 */
4099 EBRDINIT(brdp);
4100
4101 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
4102 if (brdp->membase == (void *) NULL)
4103 {
4104 release_region(brdp->iobase, brdp->iosize);
4105 return(-ENOMEM);
4106 }
4107
4108/*
4109 * Now that all specific code is set up, enable the shared memory and
4110 * look for the a signature area that will tell us exactly what board
4111 * this is, and how many ports.
4112 */
4113 EBRDENABLE(brdp);
4114 sigsp = (cdkonbsig_t *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
4115 memcpy(&sig, sigsp, sizeof(cdkonbsig_t));
4116 EBRDDISABLE(brdp);
4117
4118#if 0
4119 printk("%s(%d): sig-> magic=%x:%x:%x:%x romver=%x amask=%x:%x:%x\n",
4120 __FILE__, __LINE__, sig.magic0, sig.magic1, sig.magic2,
4121 sig.magic3, sig.romver, sig.amask0, sig.amask1, sig.amask2);
4122#endif
4123
4124 if ((sig.magic0 != ONB_MAGIC0) || (sig.magic1 != ONB_MAGIC1) ||
4125 (sig.magic2 != ONB_MAGIC2) || (sig.magic3 != ONB_MAGIC3))
4126 {
4127 release_region(brdp->iobase, brdp->iosize);
4128 return(-ENODEV);
4129 }
4130
4131/*
4132 * Scan through the signature alive mask and calculate how many ports
4133 * there are on this board.
4134 */
4135 brdp->nrpanels = 1;
4136 if (sig.amask1) {
4137 brdp->nrports = 32;
4138 } else {
4139 for (i = 0; (i < 16); i++) {
4140 if (((sig.amask0 << i) & 0x8000) == 0)
4141 break;
4142 }
4143 brdp->nrports = i;
4144 }
4145 brdp->panels[0] = brdp->nrports;
4146
4147
4148 brdp->state |= BST_FOUND;
4149 return(0);
4150}
4151
4152/*****************************************************************************/
4153
4154/*
4155 * Start up a running board. This routine is only called after the
4156 * code has been down loaded to the board and is operational. It will
4157 * read in the memory map, and get the show on the road...
4158 */
4159
4160static int stli_startbrd(stlibrd_t *brdp)
4161{
4162 volatile cdkhdr_t *hdrp;
4163 volatile cdkmem_t *memp;
4164 volatile cdkasy_t *ap;
4165 unsigned long flags;
4166 stliport_t *portp;
4167 int portnr, nrdevs, i, rc;
4168
4169#ifdef DEBUG
4170 printk(KERN_DEBUG "stli_startbrd(brdp=%x)\n", (int) brdp);
4171#endif
4172
4173 rc = 0;
4174
4175 save_flags(flags);
4176 cli();
4177 EBRDENABLE(brdp);
4178 hdrp = (volatile cdkhdr_t *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
4179 nrdevs = hdrp->nrdevs;
4180
4181#if 0
4182 printk("%s(%d): CDK version %d.%d.%d --> "
4183 "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
4184 __FILE__, __LINE__, hdrp->ver_release, hdrp->ver_modification,
4185 hdrp->ver_fix, nrdevs, (int) hdrp->memp, (int) hdrp->hostp,
4186 (int) hdrp->slavep);
4187#endif
4188
4189 if (nrdevs < (brdp->nrports + 1)) {
4190 printk(KERN_ERR "STALLION: slave failed to allocate memory for "
4191 "all devices, devices=%d\n", nrdevs);
4192 brdp->nrports = nrdevs - 1;
4193 }
4194 brdp->nrdevs = nrdevs;
4195 brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
4196 brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
4197 brdp->bitsize = (nrdevs + 7) / 8;
4198 memp = (volatile cdkmem_t *) hdrp->memp;
4199 if (((unsigned long) memp) > brdp->memsize) {
4200 printk(KERN_ERR "STALLION: corrupted shared memory region?\n");
4201 rc = -EIO;
4202 goto stli_donestartup;
4203 }
4204 memp = (volatile cdkmem_t *) EBRDGETMEMPTR(brdp, (unsigned long) memp);
4205 if (memp->dtype != TYP_ASYNCTRL) {
4206 printk(KERN_ERR "STALLION: no slave control device found\n");
4207 goto stli_donestartup;
4208 }
4209 memp++;
4210
4211/*
4212 * Cycle through memory allocation of each port. We are guaranteed to
4213 * have all ports inside the first page of slave window, so no need to
4214 * change pages while reading memory map.
4215 */
4216 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
4217 if (memp->dtype != TYP_ASYNC)
4218 break;
4219 portp = brdp->ports[portnr];
4220 if (portp == (stliport_t *) NULL)
4221 break;
4222 portp->devnr = i;
4223 portp->addr = memp->offset;
4224 portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
4225 portp->portidx = (unsigned char) (i / 8);
4226 portp->portbit = (unsigned char) (0x1 << (i % 8));
4227 }
4228
4229 hdrp->slavereq = 0xff;
4230
4231/*
4232 * For each port setup a local copy of the RX and TX buffer offsets
4233 * and sizes. We do this separate from the above, because we need to
4234 * move the shared memory page...
4235 */
4236 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
4237 portp = brdp->ports[portnr];
4238 if (portp == (stliport_t *) NULL)
4239 break;
4240 if (portp->addr == 0)
4241 break;
4242 ap = (volatile cdkasy_t *) EBRDGETMEMPTR(brdp, portp->addr);
4243 if (ap != (volatile cdkasy_t *) NULL) {
4244 portp->rxsize = ap->rxq.size;
4245 portp->txsize = ap->txq.size;
4246 portp->rxoffset = ap->rxq.offset;
4247 portp->txoffset = ap->txq.offset;
4248 }
4249 }
4250
4251stli_donestartup:
4252 EBRDDISABLE(brdp);
4253 restore_flags(flags);
4254
4255 if (rc == 0)
4256 brdp->state |= BST_STARTED;
4257
4258 if (! stli_timeron) {
4259 stli_timeron++;
4260 stli_timerlist.expires = STLI_TIMEOUT;
4261 add_timer(&stli_timerlist);
4262 }
4263
4264 return(rc);
4265}
4266
4267/*****************************************************************************/
4268
4269/*
4270 * Probe and initialize the specified board.
4271 */
4272
4273static int __init stli_brdinit(stlibrd_t *brdp)
4274{
4275#ifdef DEBUG
4276 printk(KERN_DEBUG "stli_brdinit(brdp=%x)\n", (int) brdp);
4277#endif
4278
4279 stli_brds[brdp->brdnr] = brdp;
4280
4281 switch (brdp->brdtype) {
4282 case BRD_ECP:
4283 case BRD_ECPE:
4284 case BRD_ECPMC:
4285 case BRD_ECPPCI:
4286 stli_initecp(brdp);
4287 break;
4288 case BRD_ONBOARD:
4289 case BRD_ONBOARDE:
4290 case BRD_ONBOARD2:
4291 case BRD_ONBOARD32:
4292 case BRD_ONBOARD2_32:
4293 case BRD_ONBOARDRS:
4294 case BRD_BRUMBY4:
4295 case BRD_BRUMBY8:
4296 case BRD_BRUMBY16:
4297 case BRD_STALLION:
4298 stli_initonb(brdp);
4299 break;
4300 case BRD_EASYIO:
4301 case BRD_ECH:
4302 case BRD_ECHMC:
4303 case BRD_ECHPCI:
4304 printk(KERN_ERR "STALLION: %s board type not supported in "
4305 "this driver\n", stli_brdnames[brdp->brdtype]);
4306 return(ENODEV);
4307 default:
4308 printk(KERN_ERR "STALLION: board=%d is unknown board "
4309 "type=%d\n", brdp->brdnr, brdp->brdtype);
4310 return(ENODEV);
4311 }
4312
4313 if ((brdp->state & BST_FOUND) == 0) {
4314 printk(KERN_ERR "STALLION: %s board not found, board=%d "
4315 "io=%x mem=%x\n",
4316 stli_brdnames[brdp->brdtype], brdp->brdnr,
4317 brdp->iobase, (int) brdp->memaddr);
4318 return(ENODEV);
4319 }
4320
4321 stli_initports(brdp);
4322 printk(KERN_INFO "STALLION: %s found, board=%d io=%x mem=%x "
4323 "nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
4324 brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
4325 brdp->nrpanels, brdp->nrports);
4326 return(0);
4327}
4328
4329/*****************************************************************************/
4330
4331/*
4332 * Probe around trying to find where the EISA boards shared memory
4333 * might be. This is a bit if hack, but it is the best we can do.
4334 */
4335
4336static int stli_eisamemprobe(stlibrd_t *brdp)
4337{
4338 cdkecpsig_t ecpsig, *ecpsigp;
4339 cdkonbsig_t onbsig, *onbsigp;
4340 int i, foundit;
4341
4342#ifdef DEBUG
4343 printk(KERN_DEBUG "stli_eisamemprobe(brdp=%x)\n", (int) brdp);
4344#endif
4345
4346/*
4347 * First up we reset the board, to get it into a known state. There
4348 * is only 2 board types here we need to worry about. Don;t use the
4349 * standard board init routine here, it programs up the shared
4350 * memory address, and we don't know it yet...
4351 */
4352 if (brdp->brdtype == BRD_ECPE) {
4353 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
4354 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
4355 udelay(10);
4356 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
4357 udelay(500);
4358 stli_ecpeienable(brdp);
4359 } else if (brdp->brdtype == BRD_ONBOARDE) {
4360 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
4361 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
4362 udelay(10);
4363 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
4364 mdelay(100);
4365 outb(0x1, brdp->iobase);
4366 mdelay(1);
4367 stli_onbeenable(brdp);
4368 } else {
4369 return(-ENODEV);
4370 }
4371
4372 foundit = 0;
4373 brdp->memsize = ECP_MEMSIZE;
4374
4375/*
4376 * Board shared memory is enabled, so now we have a poke around and
4377 * see if we can find it.
4378 */
4379 for (i = 0; (i < stli_eisamempsize); i++) {
4380 brdp->memaddr = stli_eisamemprobeaddrs[i];
4381 brdp->membase = (void *) brdp->memaddr;
4382 brdp->membase = ioremap(brdp->memaddr, brdp->memsize);
4383 if (brdp->membase == (void *) NULL)
4384 continue;
4385
4386 if (brdp->brdtype == BRD_ECPE) {
4387 ecpsigp = (cdkecpsig_t *) stli_ecpeigetmemptr(brdp,
4388 CDK_SIGADDR, __LINE__);
4389 memcpy(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
4390 if (ecpsig.magic == ECP_MAGIC)
4391 foundit = 1;
4392 } else {
4393 onbsigp = (cdkonbsig_t *) stli_onbegetmemptr(brdp,
4394 CDK_SIGADDR, __LINE__);
4395 memcpy(&onbsig, onbsigp, sizeof(cdkonbsig_t));
4396 if ((onbsig.magic0 == ONB_MAGIC0) &&
4397 (onbsig.magic1 == ONB_MAGIC1) &&
4398 (onbsig.magic2 == ONB_MAGIC2) &&
4399 (onbsig.magic3 == ONB_MAGIC3))
4400 foundit = 1;
4401 }
4402
4403 iounmap(brdp->membase);
4404 if (foundit)
4405 break;
4406 }
4407
4408/*
4409 * Regardless of whether we found the shared memory or not we must
4410 * disable the region. After that return success or failure.
4411 */
4412 if (brdp->brdtype == BRD_ECPE)
4413 stli_ecpeidisable(brdp);
4414 else
4415 stli_onbedisable(brdp);
4416
4417 if (! foundit) {
4418 brdp->memaddr = 0;
4419 brdp->membase = NULL;
4420 printk(KERN_ERR "STALLION: failed to probe shared memory "
4421 "region for %s in EISA slot=%d\n",
4422 stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
4423 return(-ENODEV);
4424 }
4425 return(0);
4426}
4427
4428static int stli_getbrdnr(void)
4429{
4430 int i;
4431
4432 for (i = 0; i < STL_MAXBRDS; i++) {
4433 if (!stli_brds[i]) {
4434 if (i >= stli_nrbrds)
4435 stli_nrbrds = i + 1;
4436 return i;
4437 }
4438 }
4439 return -1;
4440}
4441
4442/*****************************************************************************/
4443
4444/*
4445 * Probe around and try to find any EISA boards in system. The biggest
4446 * problem here is finding out what memory address is associated with
4447 * an EISA board after it is found. The registers of the ECPE and
4448 * ONboardE are not readable - so we can't read them from there. We
4449 * don't have access to the EISA CMOS (or EISA BIOS) so we don't
4450 * actually have any way to find out the real value. The best we can
4451 * do is go probing around in the usual places hoping we can find it.
4452 */
4453
4454static int stli_findeisabrds(void)
4455{
4456 stlibrd_t *brdp;
4457 unsigned int iobase, eid;
4458 int i;
4459
4460#ifdef DEBUG
4461 printk(KERN_DEBUG "stli_findeisabrds()\n");
4462#endif
4463
4464/*
4465 * Firstly check if this is an EISA system. Do this by probing for
4466 * the system board EISA ID. If this is not an EISA system then
4467 * don't bother going any further!
4468 */
4469 outb(0xff, 0xc80);
4470 if (inb(0xc80) == 0xff)
4471 return(0);
4472
4473/*
4474 * Looks like an EISA system, so go searching for EISA boards.
4475 */
4476 for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
4477 outb(0xff, (iobase + 0xc80));
4478 eid = inb(iobase + 0xc80);
4479 eid |= inb(iobase + 0xc81) << 8;
4480 if (eid != STL_EISAID)
4481 continue;
4482
4483/*
4484 * We have found a board. Need to check if this board was
4485 * statically configured already (just in case!).
4486 */
4487 for (i = 0; (i < STL_MAXBRDS); i++) {
4488 brdp = stli_brds[i];
4489 if (brdp == (stlibrd_t *) NULL)
4490 continue;
4491 if (brdp->iobase == iobase)
4492 break;
4493 }
4494 if (i < STL_MAXBRDS)
4495 continue;
4496
4497/*
4498 * We have found a Stallion board and it is not configured already.
4499 * Allocate a board structure and initialize it.
4500 */
4501 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4502 return(-ENOMEM);
4503 if ((brdp->brdnr = stli_getbrdnr()) < 0)
4504 return(-ENOMEM);
4505 eid = inb(iobase + 0xc82);
4506 if (eid == ECP_EISAID)
4507 brdp->brdtype = BRD_ECPE;
4508 else if (eid == ONB_EISAID)
4509 brdp->brdtype = BRD_ONBOARDE;
4510 else
4511 brdp->brdtype = BRD_UNKNOWN;
4512 brdp->iobase = iobase;
4513 outb(0x1, (iobase + 0xc84));
4514 if (stli_eisamemprobe(brdp))
4515 outb(0, (iobase + 0xc84));
4516 stli_brdinit(brdp);
4517 }
4518
4519 return(0);
4520}
4521
4522/*****************************************************************************/
4523
4524/*
4525 * Find the next available board number that is free.
4526 */
4527
4528/*****************************************************************************/
4529
4530#ifdef CONFIG_PCI
4531
4532/*
4533 * We have a Stallion board. Allocate a board structure and
4534 * initialize it. Read its IO and MEMORY resources from PCI
4535 * configuration space.
4536 */
4537
4538static int stli_initpcibrd(int brdtype, struct pci_dev *devp)
4539{
4540 stlibrd_t *brdp;
4541
4542#ifdef DEBUG
4543 printk(KERN_DEBUG "stli_initpcibrd(brdtype=%d,busnr=%x,devnr=%x)\n",
4544 brdtype, dev->bus->number, dev->devfn);
4545#endif
4546
4547 if (pci_enable_device(devp))
4548 return(-EIO);
4549 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4550 return(-ENOMEM);
4551 if ((brdp->brdnr = stli_getbrdnr()) < 0) {
4552 printk(KERN_INFO "STALLION: too many boards found, "
4553 "maximum supported %d\n", STL_MAXBRDS);
4554 return(0);
4555 }
4556 brdp->brdtype = brdtype;
4557
4558#ifdef DEBUG
4559 printk(KERN_DEBUG "%s(%d): BAR[]=%lx,%lx,%lx,%lx\n", __FILE__, __LINE__,
4560 pci_resource_start(devp, 0),
4561 pci_resource_start(devp, 1),
4562 pci_resource_start(devp, 2),
4563 pci_resource_start(devp, 3));
4564#endif
4565
4566/*
4567 * We have all resources from the board, so lets setup the actual
4568 * board structure now.
4569 */
4570 brdp->iobase = pci_resource_start(devp, 3);
4571 brdp->memaddr = pci_resource_start(devp, 2);
4572 stli_brdinit(brdp);
4573
4574 return(0);
4575}
4576
4577/*****************************************************************************/
4578
4579/*
4580 * Find all Stallion PCI boards that might be installed. Initialize each
4581 * one as it is found.
4582 */
4583
4584static int stli_findpcibrds(void)
4585{
4586 struct pci_dev *dev = NULL;
4587 int rc;
4588
4589#ifdef DEBUG
4590 printk("stli_findpcibrds()\n");
4591#endif
4592
4593 while ((dev = pci_find_device(PCI_VENDOR_ID_STALLION,
4594 PCI_DEVICE_ID_ECRA, dev))) {
4595 if ((rc = stli_initpcibrd(BRD_ECPPCI, dev)))
4596 return(rc);
4597 }
4598
4599 return(0);
4600}
4601
4602#endif
4603
4604/*****************************************************************************/
4605
4606/*
4607 * Allocate a new board structure. Fill out the basic info in it.
4608 */
4609
4610static stlibrd_t *stli_allocbrd(void)
4611{
4612 stlibrd_t *brdp;
4613
4614 brdp = (stlibrd_t *) stli_memalloc(sizeof(stlibrd_t));
4615 if (brdp == (stlibrd_t *) NULL) {
4616 printk(KERN_ERR "STALLION: failed to allocate memory "
4617 "(size=%d)\n", sizeof(stlibrd_t));
4618 return((stlibrd_t *) NULL);
4619 }
4620
4621 memset(brdp, 0, sizeof(stlibrd_t));
4622 brdp->magic = STLI_BOARDMAGIC;
4623 return(brdp);
4624}
4625
4626/*****************************************************************************/
4627
4628/*
4629 * Scan through all the boards in the configuration and see what we
4630 * can find.
4631 */
4632
4633static int stli_initbrds(void)
4634{
4635 stlibrd_t *brdp, *nxtbrdp;
4636 stlconf_t *confp;
4637 int i, j;
4638
4639#ifdef DEBUG
4640 printk(KERN_DEBUG "stli_initbrds()\n");
4641#endif
4642
4643 if (stli_nrbrds > STL_MAXBRDS) {
4644 printk(KERN_INFO "STALLION: too many boards in configuration "
4645 "table, truncating to %d\n", STL_MAXBRDS);
4646 stli_nrbrds = STL_MAXBRDS;
4647 }
4648
4649/*
4650 * Firstly scan the list of static boards configured. Allocate
4651 * resources and initialize the boards as found. If this is a
4652 * module then let the module args override static configuration.
4653 */
4654 for (i = 0; (i < stli_nrbrds); i++) {
4655 confp = &stli_brdconf[i];
4656#ifdef MODULE
4657 stli_parsebrd(confp, stli_brdsp[i]);
4658#endif
4659 if ((brdp = stli_allocbrd()) == (stlibrd_t *) NULL)
4660 return(-ENOMEM);
4661 brdp->brdnr = i;
4662 brdp->brdtype = confp->brdtype;
4663 brdp->iobase = confp->ioaddr1;
4664 brdp->memaddr = confp->memaddr;
4665 stli_brdinit(brdp);
4666 }
4667
4668/*
4669 * Static configuration table done, so now use dynamic methods to
4670 * see if any more boards should be configured.
4671 */
4672#ifdef MODULE
4673 stli_argbrds();
4674#endif
Adrian Bunkdbc6b5f2005-06-25 14:59:03 -07004675 if (STLI_EISAPROBE)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004676 stli_findeisabrds();
4677#ifdef CONFIG_PCI
4678 stli_findpcibrds();
4679#endif
4680
4681/*
4682 * All found boards are initialized. Now for a little optimization, if
4683 * no boards are sharing the "shared memory" regions then we can just
4684 * leave them all enabled. This is in fact the usual case.
4685 */
4686 stli_shared = 0;
4687 if (stli_nrbrds > 1) {
4688 for (i = 0; (i < stli_nrbrds); i++) {
4689 brdp = stli_brds[i];
4690 if (brdp == (stlibrd_t *) NULL)
4691 continue;
4692 for (j = i + 1; (j < stli_nrbrds); j++) {
4693 nxtbrdp = stli_brds[j];
4694 if (nxtbrdp == (stlibrd_t *) NULL)
4695 continue;
4696 if ((brdp->membase >= nxtbrdp->membase) &&
4697 (brdp->membase <= (nxtbrdp->membase +
4698 nxtbrdp->memsize - 1))) {
4699 stli_shared++;
4700 break;
4701 }
4702 }
4703 }
4704 }
4705
4706 if (stli_shared == 0) {
4707 for (i = 0; (i < stli_nrbrds); i++) {
4708 brdp = stli_brds[i];
4709 if (brdp == (stlibrd_t *) NULL)
4710 continue;
4711 if (brdp->state & BST_FOUND) {
4712 EBRDENABLE(brdp);
4713 brdp->enable = NULL;
4714 brdp->disable = NULL;
4715 }
4716 }
4717 }
4718
4719 return(0);
4720}
4721
4722/*****************************************************************************/
4723
4724/*
4725 * Code to handle an "staliomem" read operation. This device is the
4726 * contents of the board shared memory. It is used for down loading
4727 * the slave image (and debugging :-)
4728 */
4729
4730static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp)
4731{
4732 unsigned long flags;
4733 void *memptr;
4734 stlibrd_t *brdp;
4735 int brdnr, size, n;
4736
4737#ifdef DEBUG
4738 printk(KERN_DEBUG "stli_memread(fp=%x,buf=%x,count=%x,offp=%x)\n",
4739 (int) fp, (int) buf, count, (int) offp);
4740#endif
4741
4742 brdnr = iminor(fp->f_dentry->d_inode);
4743 if (brdnr >= stli_nrbrds)
4744 return(-ENODEV);
4745 brdp = stli_brds[brdnr];
4746 if (brdp == (stlibrd_t *) NULL)
4747 return(-ENODEV);
4748 if (brdp->state == 0)
4749 return(-ENODEV);
4750 if (fp->f_pos >= brdp->memsize)
4751 return(0);
4752
4753 size = MIN(count, (brdp->memsize - fp->f_pos));
4754
4755 save_flags(flags);
4756 cli();
4757 EBRDENABLE(brdp);
4758 while (size > 0) {
4759 memptr = (void *) EBRDGETMEMPTR(brdp, fp->f_pos);
4760 n = MIN(size, (brdp->pagesize - (((unsigned long) fp->f_pos) % brdp->pagesize)));
4761 if (copy_to_user(buf, memptr, n)) {
4762 count = -EFAULT;
4763 goto out;
4764 }
4765 fp->f_pos += n;
4766 buf += n;
4767 size -= n;
4768 }
4769out:
4770 EBRDDISABLE(brdp);
4771 restore_flags(flags);
4772
4773 return(count);
4774}
4775
4776/*****************************************************************************/
4777
4778/*
4779 * Code to handle an "staliomem" write operation. This device is the
4780 * contents of the board shared memory. It is used for down loading
4781 * the slave image (and debugging :-)
4782 */
4783
4784static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp)
4785{
4786 unsigned long flags;
4787 void *memptr;
4788 stlibrd_t *brdp;
4789 char __user *chbuf;
4790 int brdnr, size, n;
4791
4792#ifdef DEBUG
4793 printk(KERN_DEBUG "stli_memwrite(fp=%x,buf=%x,count=%x,offp=%x)\n",
4794 (int) fp, (int) buf, count, (int) offp);
4795#endif
4796
4797 brdnr = iminor(fp->f_dentry->d_inode);
4798 if (brdnr >= stli_nrbrds)
4799 return(-ENODEV);
4800 brdp = stli_brds[brdnr];
4801 if (brdp == (stlibrd_t *) NULL)
4802 return(-ENODEV);
4803 if (brdp->state == 0)
4804 return(-ENODEV);
4805 if (fp->f_pos >= brdp->memsize)
4806 return(0);
4807
4808 chbuf = (char __user *) buf;
4809 size = MIN(count, (brdp->memsize - fp->f_pos));
4810
4811 save_flags(flags);
4812 cli();
4813 EBRDENABLE(brdp);
4814 while (size > 0) {
4815 memptr = (void *) EBRDGETMEMPTR(brdp, fp->f_pos);
4816 n = MIN(size, (brdp->pagesize - (((unsigned long) fp->f_pos) % brdp->pagesize)));
4817 if (copy_from_user(memptr, chbuf, n)) {
4818 count = -EFAULT;
4819 goto out;
4820 }
4821 fp->f_pos += n;
4822 chbuf += n;
4823 size -= n;
4824 }
4825out:
4826 EBRDDISABLE(brdp);
4827 restore_flags(flags);
4828
4829 return(count);
4830}
4831
4832/*****************************************************************************/
4833
4834/*
4835 * Return the board stats structure to user app.
4836 */
4837
4838static int stli_getbrdstats(combrd_t __user *bp)
4839{
4840 stlibrd_t *brdp;
4841 int i;
4842
4843 if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
4844 return -EFAULT;
4845 if (stli_brdstats.brd >= STL_MAXBRDS)
4846 return(-ENODEV);
4847 brdp = stli_brds[stli_brdstats.brd];
4848 if (brdp == (stlibrd_t *) NULL)
4849 return(-ENODEV);
4850
4851 memset(&stli_brdstats, 0, sizeof(combrd_t));
4852 stli_brdstats.brd = brdp->brdnr;
4853 stli_brdstats.type = brdp->brdtype;
4854 stli_brdstats.hwid = 0;
4855 stli_brdstats.state = brdp->state;
4856 stli_brdstats.ioaddr = brdp->iobase;
4857 stli_brdstats.memaddr = brdp->memaddr;
4858 stli_brdstats.nrpanels = brdp->nrpanels;
4859 stli_brdstats.nrports = brdp->nrports;
4860 for (i = 0; (i < brdp->nrpanels); i++) {
4861 stli_brdstats.panels[i].panel = i;
4862 stli_brdstats.panels[i].hwid = brdp->panelids[i];
4863 stli_brdstats.panels[i].nrports = brdp->panels[i];
4864 }
4865
4866 if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
4867 return -EFAULT;
4868 return(0);
4869}
4870
4871/*****************************************************************************/
4872
4873/*
4874 * Resolve the referenced port number into a port struct pointer.
4875 */
4876
4877static stliport_t *stli_getport(int brdnr, int panelnr, int portnr)
4878{
4879 stlibrd_t *brdp;
4880 int i;
4881
4882 if ((brdnr < 0) || (brdnr >= STL_MAXBRDS))
4883 return((stliport_t *) NULL);
4884 brdp = stli_brds[brdnr];
4885 if (brdp == (stlibrd_t *) NULL)
4886 return((stliport_t *) NULL);
4887 for (i = 0; (i < panelnr); i++)
4888 portnr += brdp->panels[i];
4889 if ((portnr < 0) || (portnr >= brdp->nrports))
4890 return((stliport_t *) NULL);
4891 return(brdp->ports[portnr]);
4892}
4893
4894/*****************************************************************************/
4895
4896/*
4897 * Return the port stats structure to user app. A NULL port struct
4898 * pointer passed in means that we need to find out from the app
4899 * what port to get stats for (used through board control device).
4900 */
4901
4902static int stli_portcmdstats(stliport_t *portp)
4903{
4904 unsigned long flags;
4905 stlibrd_t *brdp;
4906 int rc;
4907
4908 memset(&stli_comstats, 0, sizeof(comstats_t));
4909
4910 if (portp == (stliport_t *) NULL)
4911 return(-ENODEV);
4912 brdp = stli_brds[portp->brdnr];
4913 if (brdp == (stlibrd_t *) NULL)
4914 return(-ENODEV);
4915
4916 if (brdp->state & BST_STARTED) {
4917 if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
4918 &stli_cdkstats, sizeof(asystats_t), 1)) < 0)
4919 return(rc);
4920 } else {
4921 memset(&stli_cdkstats, 0, sizeof(asystats_t));
4922 }
4923
4924 stli_comstats.brd = portp->brdnr;
4925 stli_comstats.panel = portp->panelnr;
4926 stli_comstats.port = portp->portnr;
4927 stli_comstats.state = portp->state;
4928 stli_comstats.flags = portp->flags;
4929
4930 save_flags(flags);
4931 cli();
4932 if (portp->tty != (struct tty_struct *) NULL) {
4933 if (portp->tty->driver_data == portp) {
4934 stli_comstats.ttystate = portp->tty->flags;
Alan Cox33f0f882006-01-09 20:54:13 -08004935 stli_comstats.rxbuffered = -1 /*portp->tty->flip.count*/;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004936 if (portp->tty->termios != (struct termios *) NULL) {
4937 stli_comstats.cflags = portp->tty->termios->c_cflag;
4938 stli_comstats.iflags = portp->tty->termios->c_iflag;
4939 stli_comstats.oflags = portp->tty->termios->c_oflag;
4940 stli_comstats.lflags = portp->tty->termios->c_lflag;
4941 }
4942 }
4943 }
4944 restore_flags(flags);
4945
4946 stli_comstats.txtotal = stli_cdkstats.txchars;
4947 stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
4948 stli_comstats.txbuffered = stli_cdkstats.txringq;
4949 stli_comstats.rxbuffered += stli_cdkstats.rxringq;
4950 stli_comstats.rxoverrun = stli_cdkstats.overruns;
4951 stli_comstats.rxparity = stli_cdkstats.parity;
4952 stli_comstats.rxframing = stli_cdkstats.framing;
4953 stli_comstats.rxlost = stli_cdkstats.ringover;
4954 stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
4955 stli_comstats.txbreaks = stli_cdkstats.txbreaks;
4956 stli_comstats.txxon = stli_cdkstats.txstart;
4957 stli_comstats.txxoff = stli_cdkstats.txstop;
4958 stli_comstats.rxxon = stli_cdkstats.rxstart;
4959 stli_comstats.rxxoff = stli_cdkstats.rxstop;
4960 stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
4961 stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
4962 stli_comstats.modem = stli_cdkstats.dcdcnt;
4963 stli_comstats.hwid = stli_cdkstats.hwid;
4964 stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
4965
4966 return(0);
4967}
4968
4969/*****************************************************************************/
4970
4971/*
4972 * Return the port stats structure to user app. A NULL port struct
4973 * pointer passed in means that we need to find out from the app
4974 * what port to get stats for (used through board control device).
4975 */
4976
4977static int stli_getportstats(stliport_t *portp, comstats_t __user *cp)
4978{
4979 stlibrd_t *brdp;
4980 int rc;
4981
4982 if (!portp) {
4983 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4984 return -EFAULT;
4985 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4986 stli_comstats.port);
4987 if (!portp)
4988 return -ENODEV;
4989 }
4990
4991 brdp = stli_brds[portp->brdnr];
4992 if (!brdp)
4993 return -ENODEV;
4994
4995 if ((rc = stli_portcmdstats(portp)) < 0)
4996 return rc;
4997
4998 return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
4999 -EFAULT : 0;
5000}
5001
5002/*****************************************************************************/
5003
5004/*
5005 * Clear the port stats structure. We also return it zeroed out...
5006 */
5007
5008static int stli_clrportstats(stliport_t *portp, comstats_t __user *cp)
5009{
5010 stlibrd_t *brdp;
5011 int rc;
5012
5013 if (!portp) {
5014 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
5015 return -EFAULT;
5016 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
5017 stli_comstats.port);
5018 if (!portp)
5019 return -ENODEV;
5020 }
5021
5022 brdp = stli_brds[portp->brdnr];
5023 if (!brdp)
5024 return -ENODEV;
5025
5026 if (brdp->state & BST_STARTED) {
5027 if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0)
5028 return rc;
5029 }
5030
5031 memset(&stli_comstats, 0, sizeof(comstats_t));
5032 stli_comstats.brd = portp->brdnr;
5033 stli_comstats.panel = portp->panelnr;
5034 stli_comstats.port = portp->portnr;
5035
5036 if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
5037 return -EFAULT;
5038 return 0;
5039}
5040
5041/*****************************************************************************/
5042
5043/*
5044 * Return the entire driver ports structure to a user app.
5045 */
5046
5047static int stli_getportstruct(stliport_t __user *arg)
5048{
5049 stliport_t *portp;
5050
5051 if (copy_from_user(&stli_dummyport, arg, sizeof(stliport_t)))
5052 return -EFAULT;
5053 portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
5054 stli_dummyport.portnr);
5055 if (!portp)
5056 return -ENODEV;
5057 if (copy_to_user(arg, portp, sizeof(stliport_t)))
5058 return -EFAULT;
5059 return 0;
5060}
5061
5062/*****************************************************************************/
5063
5064/*
5065 * Return the entire driver board structure to a user app.
5066 */
5067
5068static int stli_getbrdstruct(stlibrd_t __user *arg)
5069{
5070 stlibrd_t *brdp;
5071
5072 if (copy_from_user(&stli_dummybrd, arg, sizeof(stlibrd_t)))
5073 return -EFAULT;
5074 if ((stli_dummybrd.brdnr < 0) || (stli_dummybrd.brdnr >= STL_MAXBRDS))
5075 return -ENODEV;
5076 brdp = stli_brds[stli_dummybrd.brdnr];
5077 if (!brdp)
5078 return -ENODEV;
5079 if (copy_to_user(arg, brdp, sizeof(stlibrd_t)))
5080 return -EFAULT;
5081 return 0;
5082}
5083
5084/*****************************************************************************/
5085
5086/*
5087 * The "staliomem" device is also required to do some special operations on
5088 * the board. We need to be able to send an interrupt to the board,
5089 * reset it, and start/stop it.
5090 */
5091
5092static int stli_memioctl(struct inode *ip, struct file *fp, unsigned int cmd, unsigned long arg)
5093{
5094 stlibrd_t *brdp;
5095 int brdnr, rc, done;
5096 void __user *argp = (void __user *)arg;
5097
5098#ifdef DEBUG
5099 printk(KERN_DEBUG "stli_memioctl(ip=%x,fp=%x,cmd=%x,arg=%x)\n",
5100 (int) ip, (int) fp, cmd, (int) arg);
5101#endif
5102
5103/*
5104 * First up handle the board independent ioctls.
5105 */
5106 done = 0;
5107 rc = 0;
5108
5109 switch (cmd) {
5110 case COM_GETPORTSTATS:
5111 rc = stli_getportstats(NULL, argp);
5112 done++;
5113 break;
5114 case COM_CLRPORTSTATS:
5115 rc = stli_clrportstats(NULL, argp);
5116 done++;
5117 break;
5118 case COM_GETBRDSTATS:
5119 rc = stli_getbrdstats(argp);
5120 done++;
5121 break;
5122 case COM_READPORT:
5123 rc = stli_getportstruct(argp);
5124 done++;
5125 break;
5126 case COM_READBOARD:
5127 rc = stli_getbrdstruct(argp);
5128 done++;
5129 break;
5130 }
5131
5132 if (done)
5133 return(rc);
5134
5135/*
5136 * Now handle the board specific ioctls. These all depend on the
5137 * minor number of the device they were called from.
5138 */
5139 brdnr = iminor(ip);
5140 if (brdnr >= STL_MAXBRDS)
5141 return(-ENODEV);
5142 brdp = stli_brds[brdnr];
5143 if (!brdp)
5144 return(-ENODEV);
5145 if (brdp->state == 0)
5146 return(-ENODEV);
5147
5148 switch (cmd) {
5149 case STL_BINTR:
5150 EBRDINTR(brdp);
5151 break;
5152 case STL_BSTART:
5153 rc = stli_startbrd(brdp);
5154 break;
5155 case STL_BSTOP:
5156 brdp->state &= ~BST_STARTED;
5157 break;
5158 case STL_BRESET:
5159 brdp->state &= ~BST_STARTED;
5160 EBRDRESET(brdp);
5161 if (stli_shared == 0) {
5162 if (brdp->reenable != NULL)
5163 (* brdp->reenable)(brdp);
5164 }
5165 break;
5166 default:
5167 rc = -ENOIOCTLCMD;
5168 break;
5169 }
5170
5171 return(rc);
5172}
5173
5174static struct tty_operations stli_ops = {
5175 .open = stli_open,
5176 .close = stli_close,
5177 .write = stli_write,
5178 .put_char = stli_putchar,
5179 .flush_chars = stli_flushchars,
5180 .write_room = stli_writeroom,
5181 .chars_in_buffer = stli_charsinbuffer,
5182 .ioctl = stli_ioctl,
5183 .set_termios = stli_settermios,
5184 .throttle = stli_throttle,
5185 .unthrottle = stli_unthrottle,
5186 .stop = stli_stop,
5187 .start = stli_start,
5188 .hangup = stli_hangup,
5189 .flush_buffer = stli_flushbuffer,
5190 .break_ctl = stli_breakctl,
5191 .wait_until_sent = stli_waituntilsent,
5192 .send_xchar = stli_sendxchar,
5193 .read_proc = stli_readproc,
5194 .tiocmget = stli_tiocmget,
5195 .tiocmset = stli_tiocmset,
5196};
5197
5198/*****************************************************************************/
5199
5200int __init stli_init(void)
5201{
5202 int i;
5203 printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);
5204
5205 stli_initbrds();
5206
5207 stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
5208 if (!stli_serial)
5209 return -ENOMEM;
5210
5211/*
5212 * Allocate a temporary write buffer.
5213 */
5214 stli_tmpwritebuf = (char *) stli_memalloc(STLI_TXBUFSIZE);
5215 if (stli_tmpwritebuf == (char *) NULL)
5216 printk(KERN_ERR "STALLION: failed to allocate memory "
5217 "(size=%d)\n", STLI_TXBUFSIZE);
5218 stli_txcookbuf = stli_memalloc(STLI_TXBUFSIZE);
5219 if (stli_txcookbuf == (char *) NULL)
5220 printk(KERN_ERR "STALLION: failed to allocate memory "
5221 "(size=%d)\n", STLI_TXBUFSIZE);
5222
5223/*
5224 * Set up a character driver for the shared memory region. We need this
5225 * to down load the slave code image. Also it is a useful debugging tool.
5226 */
5227 if (register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem))
5228 printk(KERN_ERR "STALLION: failed to register serial memory "
5229 "device\n");
5230
5231 devfs_mk_dir("staliomem");
gregkh@suse.deca8eca62005-03-23 09:53:09 -08005232 istallion_class = class_create(THIS_MODULE, "staliomem");
Linus Torvalds1da177e2005-04-16 15:20:36 -07005233 for (i = 0; i < 4; i++) {
5234 devfs_mk_cdev(MKDEV(STL_SIOMEMMAJOR, i),
5235 S_IFCHR | S_IRUSR | S_IWUSR,
5236 "staliomem/%d", i);
Greg Kroah-Hartman53f46542005-10-27 22:25:43 -07005237 class_device_create(istallion_class, NULL,
5238 MKDEV(STL_SIOMEMMAJOR, i),
Linus Torvalds1da177e2005-04-16 15:20:36 -07005239 NULL, "staliomem%d", i);
5240 }
5241
5242/*
5243 * Set up the tty driver structure and register us as a driver.
5244 */
5245 stli_serial->owner = THIS_MODULE;
5246 stli_serial->driver_name = stli_drvname;
5247 stli_serial->name = stli_serialname;
5248 stli_serial->major = STL_SERIALMAJOR;
5249 stli_serial->minor_start = 0;
5250 stli_serial->type = TTY_DRIVER_TYPE_SERIAL;
5251 stli_serial->subtype = SERIAL_TYPE_NORMAL;
5252 stli_serial->init_termios = stli_deftermios;
5253 stli_serial->flags = TTY_DRIVER_REAL_RAW;
5254 tty_set_operations(stli_serial, &stli_ops);
5255
5256 if (tty_register_driver(stli_serial)) {
5257 put_tty_driver(stli_serial);
5258 printk(KERN_ERR "STALLION: failed to register serial driver\n");
5259 return -EBUSY;
5260 }
5261 return(0);
5262}
5263
5264/*****************************************************************************/