blob: 128632508fc64f78c6fef66e05b45ec88be1f459 [file] [log] [blame]
Mark Salter3c7f2552014-04-15 22:47:52 -04001/*
2 * EFI stub implementation that is shared by arm and arm64 architectures.
3 * This should be #included by the EFI stub implementation files.
4 *
5 * Copyright (C) 2013,2014 Linaro Limited
6 * Roy Franz <roy.franz@linaro.org
7 * Copyright (C) 2013 Red Hat, Inc.
8 * Mark Salter <msalter@redhat.com>
9 *
10 * This file is part of the Linux kernel, and is made available under the
11 * terms of the GNU General Public License version 2.
12 *
13 */
14
Ard Biesheuvelbd669472014-07-02 14:54:42 +020015#include <linux/efi.h>
Ard Biesheuvel0ce3cc02015-09-25 23:02:19 +010016#include <linux/sort.h>
Ard Biesheuvelbd669472014-07-02 14:54:42 +020017#include <asm/efi.h>
18
19#include "efistub.h"
20
Ard Biesheuvel2b5fe072016-01-26 14:48:29 +010021bool __nokaslr;
22
Linn Crosetto73a649252016-04-25 21:06:36 +010023static int efi_get_secureboot(efi_system_table_t *sys_table_arg)
Ard Biesheuvel345c7362014-04-03 17:46:58 +020024{
Linn Crosetto30d7bf02016-04-25 21:06:37 +010025 static efi_char16_t const sb_var_name[] = {
Ard Biesheuvel345c7362014-04-03 17:46:58 +020026 'S', 'e', 'c', 'u', 'r', 'e', 'B', 'o', 'o', 't', 0 };
Linn Crosetto30d7bf02016-04-25 21:06:37 +010027 static efi_char16_t const sm_var_name[] = {
28 'S', 'e', 't', 'u', 'p', 'M', 'o', 'd', 'e', 0 };
Ard Biesheuvel345c7362014-04-03 17:46:58 +020029
Linn Crosetto30d7bf02016-04-25 21:06:37 +010030 efi_guid_t var_guid = EFI_GLOBAL_VARIABLE_GUID;
Ard Biesheuvel345c7362014-04-03 17:46:58 +020031 efi_get_variable_t *f_getvar = sys_table_arg->runtime->get_variable;
Ard Biesheuvel345c7362014-04-03 17:46:58 +020032 u8 val;
Linn Crosetto30d7bf02016-04-25 21:06:37 +010033 unsigned long size = sizeof(val);
34 efi_status_t status;
Ard Biesheuvel345c7362014-04-03 17:46:58 +020035
Linn Crosetto30d7bf02016-04-25 21:06:37 +010036 status = f_getvar((efi_char16_t *)sb_var_name, (efi_guid_t *)&var_guid,
Ard Biesheuvel345c7362014-04-03 17:46:58 +020037 NULL, &size, &val);
38
Linn Crosetto30d7bf02016-04-25 21:06:37 +010039 if (status != EFI_SUCCESS)
40 goto out_efi_err;
41
42 if (val == 0)
43 return 0;
44
45 status = f_getvar((efi_char16_t *)sm_var_name, (efi_guid_t *)&var_guid,
46 NULL, &size, &val);
47
48 if (status != EFI_SUCCESS)
49 goto out_efi_err;
50
51 if (val == 1)
52 return 0;
53
54 return 1;
55
56out_efi_err:
Ard Biesheuvel345c7362014-04-03 17:46:58 +020057 switch (status) {
Ard Biesheuvel345c7362014-04-03 17:46:58 +020058 case EFI_NOT_FOUND:
59 return 0;
Linn Crosetto73a649252016-04-25 21:06:36 +010060 case EFI_DEVICE_ERROR:
61 return -EIO;
62 case EFI_SECURITY_VIOLATION:
63 return -EACCES;
Ard Biesheuvel345c7362014-04-03 17:46:58 +020064 default:
Linn Crosetto73a649252016-04-25 21:06:36 +010065 return -EINVAL;
Ard Biesheuvel345c7362014-04-03 17:46:58 +020066 }
67}
68
Ard Biesheuvelbd669472014-07-02 14:54:42 +020069efi_status_t efi_open_volume(efi_system_table_t *sys_table_arg,
70 void *__image, void **__fh)
Mark Salter3c7f2552014-04-15 22:47:52 -040071{
72 efi_file_io_interface_t *io;
73 efi_loaded_image_t *image = __image;
74 efi_file_handle_t *fh;
75 efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID;
76 efi_status_t status;
77 void *handle = (void *)(unsigned long)image->device_handle;
78
79 status = sys_table_arg->boottime->handle_protocol(handle,
80 &fs_proto, (void **)&io);
81 if (status != EFI_SUCCESS) {
82 efi_printk(sys_table_arg, "Failed to handle fs_proto\n");
83 return status;
84 }
85
86 status = io->open_volume(io, &fh);
87 if (status != EFI_SUCCESS)
88 efi_printk(sys_table_arg, "Failed to open volume\n");
89
90 *__fh = fh;
91 return status;
92}
Ard Biesheuvelbd669472014-07-02 14:54:42 +020093
94efi_status_t efi_file_close(void *handle)
Mark Salter3c7f2552014-04-15 22:47:52 -040095{
96 efi_file_handle_t *fh = handle;
97
98 return fh->close(handle);
99}
100
Ard Biesheuvelbd669472014-07-02 14:54:42 +0200101efi_status_t
Mark Salter3c7f2552014-04-15 22:47:52 -0400102efi_file_read(void *handle, unsigned long *size, void *addr)
103{
104 efi_file_handle_t *fh = handle;
105
106 return fh->read(handle, size, addr);
107}
108
109
Ard Biesheuvelbd669472014-07-02 14:54:42 +0200110efi_status_t
Mark Salter3c7f2552014-04-15 22:47:52 -0400111efi_file_size(efi_system_table_t *sys_table_arg, void *__fh,
112 efi_char16_t *filename_16, void **handle, u64 *file_sz)
113{
114 efi_file_handle_t *h, *fh = __fh;
115 efi_file_info_t *info;
116 efi_status_t status;
117 efi_guid_t info_guid = EFI_FILE_INFO_ID;
118 unsigned long info_sz;
119
120 status = fh->open(fh, &h, filename_16, EFI_FILE_MODE_READ, (u64)0);
121 if (status != EFI_SUCCESS) {
122 efi_printk(sys_table_arg, "Failed to open file: ");
123 efi_char16_printk(sys_table_arg, filename_16);
124 efi_printk(sys_table_arg, "\n");
125 return status;
126 }
127
128 *handle = h;
129
130 info_sz = 0;
131 status = h->get_info(h, &info_guid, &info_sz, NULL);
132 if (status != EFI_BUFFER_TOO_SMALL) {
133 efi_printk(sys_table_arg, "Failed to get file info size\n");
134 return status;
135 }
136
137grow:
138 status = sys_table_arg->boottime->allocate_pool(EFI_LOADER_DATA,
139 info_sz, (void **)&info);
140 if (status != EFI_SUCCESS) {
141 efi_printk(sys_table_arg, "Failed to alloc mem for file info\n");
142 return status;
143 }
144
145 status = h->get_info(h, &info_guid, &info_sz,
146 info);
147 if (status == EFI_BUFFER_TOO_SMALL) {
148 sys_table_arg->boottime->free_pool(info);
149 goto grow;
150 }
151
152 *file_sz = info->file_size;
153 sys_table_arg->boottime->free_pool(info);
154
155 if (status != EFI_SUCCESS)
156 efi_printk(sys_table_arg, "Failed to get initrd info\n");
157
158 return status;
159}
160
161
162
Ard Biesheuvelbd669472014-07-02 14:54:42 +0200163void efi_char16_printk(efi_system_table_t *sys_table_arg,
Mark Salter3c7f2552014-04-15 22:47:52 -0400164 efi_char16_t *str)
165{
166 struct efi_simple_text_output_protocol *out;
167
168 out = (struct efi_simple_text_output_protocol *)sys_table_arg->con_out;
169 out->output_string(out, str);
170}
171
172
173/*
174 * This function handles the architcture specific differences between arm and
175 * arm64 regarding where the kernel image must be loaded and any memory that
176 * must be reserved. On failure it is required to free all
177 * all allocations it has made.
178 */
Ard Biesheuvelbd669472014-07-02 14:54:42 +0200179efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
180 unsigned long *image_addr,
181 unsigned long *image_size,
182 unsigned long *reserve_addr,
183 unsigned long *reserve_size,
184 unsigned long dram_base,
185 efi_loaded_image_t *image);
Mark Salter3c7f2552014-04-15 22:47:52 -0400186/*
187 * EFI entry point for the arm/arm64 EFI stubs. This is the entrypoint
188 * that is described in the PE/COFF header. Most of the code is the same
189 * for both archictectures, with the arch-specific code provided in the
190 * handle_kernel_image() function.
191 */
Ard Biesheuvelddeeefe2015-01-12 20:28:20 +0000192unsigned long efi_entry(void *handle, efi_system_table_t *sys_table,
Mark Salter3c7f2552014-04-15 22:47:52 -0400193 unsigned long *image_addr)
194{
195 efi_loaded_image_t *image;
196 efi_status_t status;
197 unsigned long image_size = 0;
198 unsigned long dram_base;
199 /* addr/point and size pairs for memory management*/
200 unsigned long initrd_addr;
201 u64 initrd_size = 0;
Ard Biesheuvel345c7362014-04-03 17:46:58 +0200202 unsigned long fdt_addr = 0; /* Original DTB */
Ard Biesheuvela6433752015-03-04 13:02:29 +0100203 unsigned long fdt_size = 0;
Mark Salter3c7f2552014-04-15 22:47:52 -0400204 char *cmdline_ptr = NULL;
205 int cmdline_size = 0;
206 unsigned long new_fdt_addr;
207 efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
208 unsigned long reserve_addr = 0;
209 unsigned long reserve_size = 0;
Linn Crosetto73a649252016-04-25 21:06:36 +0100210 int secure_boot = 0;
Mark Salter3c7f2552014-04-15 22:47:52 -0400211
212 /* Check if we were booted by the EFI firmware */
213 if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
214 goto fail;
215
216 pr_efi(sys_table, "Booting Linux Kernel...\n");
217
Ard Biesheuvelb9d6769b2016-02-17 12:36:03 +0000218 status = check_platform_features(sys_table);
219 if (status != EFI_SUCCESS)
220 goto fail;
221
Mark Salter3c7f2552014-04-15 22:47:52 -0400222 /*
223 * Get a handle to the loaded image protocol. This is used to get
224 * information about the running image, such as size and the command
225 * line.
226 */
227 status = sys_table->boottime->handle_protocol(handle,
228 &loaded_image_proto, (void *)&image);
229 if (status != EFI_SUCCESS) {
230 pr_efi_err(sys_table, "Failed to get loaded image protocol\n");
231 goto fail;
232 }
233
234 dram_base = get_dram_base(sys_table);
235 if (dram_base == EFI_ERROR) {
236 pr_efi_err(sys_table, "Failed to find DRAM base\n");
237 goto fail;
238 }
Mark Salter3c7f2552014-04-15 22:47:52 -0400239
240 /*
241 * Get the command line from EFI, using the LOADED_IMAGE
242 * protocol. We are going to copy the command line into the
243 * device tree, so this can be allocated anywhere.
244 */
245 cmdline_ptr = efi_convert_cmdline(sys_table, image, &cmdline_size);
246 if (!cmdline_ptr) {
247 pr_efi_err(sys_table, "getting command line via LOADED_IMAGE_PROTOCOL\n");
Ard Biesheuvel2b5fe072016-01-26 14:48:29 +0100248 goto fail;
249 }
250
251 /* check whether 'nokaslr' was passed on the command line */
252 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
253 static const u8 default_cmdline[] = CONFIG_CMDLINE;
254 const u8 *str, *cmdline = cmdline_ptr;
255
256 if (IS_ENABLED(CONFIG_CMDLINE_FORCE))
257 cmdline = default_cmdline;
258 str = strstr(cmdline, "nokaslr");
259 if (str == cmdline || (str > cmdline && *(str - 1) == ' '))
260 __nokaslr = true;
261 }
262
263 status = handle_kernel_image(sys_table, image_addr, &image_size,
264 &reserve_addr,
265 &reserve_size,
266 dram_base, image);
267 if (status != EFI_SUCCESS) {
268 pr_efi_err(sys_table, "Failed to relocate kernel\n");
269 goto fail_free_cmdline;
Mark Salter3c7f2552014-04-15 22:47:52 -0400270 }
271
Matt Fleming5a17dae2014-08-05 11:52:11 +0100272 status = efi_parse_options(cmdline_ptr);
273 if (status != EFI_SUCCESS)
274 pr_efi_err(sys_table, "Failed to parse EFI cmdline options\n");
275
Linn Crosetto73a649252016-04-25 21:06:36 +0100276 secure_boot = efi_get_secureboot(sys_table);
277 if (secure_boot > 0)
278 pr_efi(sys_table, "UEFI Secure Boot is enabled.\n");
279
280 if (secure_boot < 0) {
281 pr_efi_err(sys_table,
282 "could not determine UEFI Secure Boot status.\n");
283 }
284
Ard Biesheuvel345c7362014-04-03 17:46:58 +0200285 /*
286 * Unauthenticated device tree data is a security hazard, so
287 * ignore 'dtb=' unless UEFI Secure Boot is disabled.
288 */
Linn Crosetto73a649252016-04-25 21:06:36 +0100289 if (secure_boot != 0 && strstr(cmdline_ptr, "dtb=")) {
290 pr_efi(sys_table, "Ignoring DTB from command line.\n");
Ard Biesheuvel345c7362014-04-03 17:46:58 +0200291 } else {
Mark Salter3c7f2552014-04-15 22:47:52 -0400292 status = handle_cmdline_files(sys_table, image, cmdline_ptr,
293 "dtb=",
Ard Biesheuvela6433752015-03-04 13:02:29 +0100294 ~0UL, &fdt_addr, &fdt_size);
Mark Salter3c7f2552014-04-15 22:47:52 -0400295
296 if (status != EFI_SUCCESS) {
297 pr_efi_err(sys_table, "Failed to load device tree!\n");
Ard Biesheuvel2b5fe072016-01-26 14:48:29 +0100298 goto fail_free_image;
Mark Salter3c7f2552014-04-15 22:47:52 -0400299 }
300 }
Mark Rutland0bcaa902014-10-23 16:33:33 +0100301
302 if (fdt_addr) {
303 pr_efi(sys_table, "Using DTB from command line\n");
304 } else {
Ard Biesheuvel345c7362014-04-03 17:46:58 +0200305 /* Look for a device tree configuration table entry. */
Ard Biesheuvela6433752015-03-04 13:02:29 +0100306 fdt_addr = (uintptr_t)get_fdt(sys_table, &fdt_size);
Mark Rutland0bcaa902014-10-23 16:33:33 +0100307 if (fdt_addr)
308 pr_efi(sys_table, "Using DTB from configuration table\n");
309 }
310
311 if (!fdt_addr)
312 pr_efi(sys_table, "Generating empty DTB\n");
Mark Salter3c7f2552014-04-15 22:47:52 -0400313
314 status = handle_cmdline_files(sys_table, image, cmdline_ptr,
315 "initrd=", dram_base + SZ_512M,
316 (unsigned long *)&initrd_addr,
317 (unsigned long *)&initrd_size);
318 if (status != EFI_SUCCESS)
319 pr_efi_err(sys_table, "Failed initrd from command line!\n");
320
321 new_fdt_addr = fdt_addr;
322 status = allocate_new_fdt_and_exit_boot(sys_table, handle,
323 &new_fdt_addr, dram_base + MAX_FDT_OFFSET,
324 initrd_addr, initrd_size, cmdline_ptr,
325 fdt_addr, fdt_size);
326
327 /*
328 * If all went well, we need to return the FDT address to the
329 * calling function so it can be passed to kernel as part of
330 * the kernel boot protocol.
331 */
332 if (status == EFI_SUCCESS)
333 return new_fdt_addr;
334
335 pr_efi_err(sys_table, "Failed to update FDT and exit boot services\n");
336
337 efi_free(sys_table, initrd_size, initrd_addr);
338 efi_free(sys_table, fdt_size, fdt_addr);
339
Mark Salter3c7f2552014-04-15 22:47:52 -0400340fail_free_image:
341 efi_free(sys_table, image_size, *image_addr);
342 efi_free(sys_table, reserve_size, reserve_addr);
Ard Biesheuvel2b5fe072016-01-26 14:48:29 +0100343fail_free_cmdline:
344 efi_free(sys_table, cmdline_size, (unsigned long)cmdline_ptr);
Mark Salter3c7f2552014-04-15 22:47:52 -0400345fail:
346 return EFI_ERROR;
347}
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200348
349/*
350 * This is the base address at which to start allocating virtual memory ranges
351 * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
352 * any allocation we choose, and eliminate the risk of a conflict after kexec.
353 * The value chosen is the largest non-zero power of 2 suitable for this purpose
354 * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
355 * be mapped efficiently.
Roy Franz81a0bc32015-09-23 20:17:54 -0700356 * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
357 * map everything below 1 GB.
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200358 */
Roy Franz81a0bc32015-09-23 20:17:54 -0700359#define EFI_RT_VIRTUAL_BASE SZ_512M
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200360
Ard Biesheuvel0ce3cc02015-09-25 23:02:19 +0100361static int cmp_mem_desc(const void *l, const void *r)
362{
363 const efi_memory_desc_t *left = l, *right = r;
364
365 return (left->phys_addr > right->phys_addr) ? 1 : -1;
366}
367
368/*
369 * Returns whether region @left ends exactly where region @right starts,
370 * or false if either argument is NULL.
371 */
372static bool regions_are_adjacent(efi_memory_desc_t *left,
373 efi_memory_desc_t *right)
374{
375 u64 left_end;
376
377 if (left == NULL || right == NULL)
378 return false;
379
380 left_end = left->phys_addr + left->num_pages * EFI_PAGE_SIZE;
381
382 return left_end == right->phys_addr;
383}
384
385/*
386 * Returns whether region @left and region @right have compatible memory type
387 * mapping attributes, and are both EFI_MEMORY_RUNTIME regions.
388 */
389static bool regions_have_compatible_memory_type_attrs(efi_memory_desc_t *left,
390 efi_memory_desc_t *right)
391{
392 static const u64 mem_type_mask = EFI_MEMORY_WB | EFI_MEMORY_WT |
393 EFI_MEMORY_WC | EFI_MEMORY_UC |
394 EFI_MEMORY_RUNTIME;
395
396 return ((left->attribute ^ right->attribute) & mem_type_mask) == 0;
397}
398
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200399/*
400 * efi_get_virtmap() - create a virtual mapping for the EFI memory map
401 *
402 * This function populates the virt_addr fields of all memory region descriptors
403 * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
404 * are also copied to @runtime_map, and their total count is returned in @count.
405 */
406void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
407 unsigned long desc_size, efi_memory_desc_t *runtime_map,
408 int *count)
409{
410 u64 efi_virt_base = EFI_RT_VIRTUAL_BASE;
Ard Biesheuvel0ce3cc02015-09-25 23:02:19 +0100411 efi_memory_desc_t *in, *prev = NULL, *out = runtime_map;
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200412 int l;
413
Ard Biesheuvel0ce3cc02015-09-25 23:02:19 +0100414 /*
415 * To work around potential issues with the Properties Table feature
416 * introduced in UEFI 2.5, which may split PE/COFF executable images
417 * in memory into several RuntimeServicesCode and RuntimeServicesData
418 * regions, we need to preserve the relative offsets between adjacent
419 * EFI_MEMORY_RUNTIME regions with the same memory type attributes.
420 * The easiest way to find adjacent regions is to sort the memory map
421 * before traversing it.
422 */
423 sort(memory_map, map_size / desc_size, desc_size, cmp_mem_desc, NULL);
424
425 for (l = 0; l < map_size; l += desc_size, prev = in) {
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200426 u64 paddr, size;
427
Ard Biesheuvel0ce3cc02015-09-25 23:02:19 +0100428 in = (void *)memory_map + l;
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200429 if (!(in->attribute & EFI_MEMORY_RUNTIME))
430 continue;
431
Ard Biesheuvel0ce3cc02015-09-25 23:02:19 +0100432 paddr = in->phys_addr;
433 size = in->num_pages * EFI_PAGE_SIZE;
434
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200435 /*
436 * Make the mapping compatible with 64k pages: this allows
437 * a 4k page size kernel to kexec a 64k page size kernel and
438 * vice versa.
439 */
Ard Biesheuvel0ce3cc02015-09-25 23:02:19 +0100440 if (!regions_are_adjacent(prev, in) ||
441 !regions_have_compatible_memory_type_attrs(prev, in)) {
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200442
Ard Biesheuvel0ce3cc02015-09-25 23:02:19 +0100443 paddr = round_down(in->phys_addr, SZ_64K);
444 size += in->phys_addr - paddr;
445
446 /*
447 * Avoid wasting memory on PTEs by choosing a virtual
448 * base that is compatible with section mappings if this
449 * region has the appropriate size and physical
450 * alignment. (Sections are 2 MB on 4k granule kernels)
451 */
452 if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
453 efi_virt_base = round_up(efi_virt_base, SZ_2M);
454 else
455 efi_virt_base = round_up(efi_virt_base, SZ_64K);
456 }
Ard Biesheuvelf3cdfd22014-10-20 16:27:26 +0200457
458 in->virt_addr = efi_virt_base + in->phys_addr - paddr;
459 efi_virt_base += size;
460
461 memcpy(out, in, desc_size);
462 out = (void *)out + desc_size;
463 ++*count;
464 }
465}