blob: 3e00526f52ec14d56eb89ee1ab5c1a40fbed1331 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
Paul Jackson029190c2007-10-18 23:40:20 -07007 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
Paul Menage8793d852007-10-18 23:39:39 -07008 * Copyright (C) 2006 Google, Inc
Linus Torvalds1da177e2005-04-16 15:20:36 -07009 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
Linus Torvalds1da177e2005-04-16 15:20:36 -070012 *
Paul Jackson825a46a2006-03-24 03:16:03 -080013 * 2003-10-10 Written by Simon Derr.
Linus Torvalds1da177e2005-04-16 15:20:36 -070014 * 2003-10-22 Updates by Stephen Hemminger.
Paul Jackson825a46a2006-03-24 03:16:03 -080015 * 2004 May-July Rework by Paul Jackson.
Paul Menage8793d852007-10-18 23:39:39 -070016 * 2006 Rework by Paul Menage to use generic cgroups
Max Krasnyanskycf417142008-08-11 14:33:53 -070017 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
Linus Torvalds1da177e2005-04-16 15:20:36 -070019 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
Linus Torvalds1da177e2005-04-16 15:20:36 -070025#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
Paul Jackson68860ec2005-10-30 15:02:36 -080037#include <linux/mempolicy.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070038#include <linux/mm.h>
39#include <linux/module.h>
40#include <linux/mount.h>
41#include <linux/namei.h>
42#include <linux/pagemap.h>
43#include <linux/proc_fs.h>
Paul Jackson6b9c2602006-01-08 01:02:02 -080044#include <linux/rcupdate.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070045#include <linux/sched.h>
46#include <linux/seq_file.h>
David Quigley22fb52d2006-06-23 02:04:00 -070047#include <linux/security.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070048#include <linux/slab.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070049#include <linux/spinlock.h>
50#include <linux/stat.h>
51#include <linux/string.h>
52#include <linux/time.h>
53#include <linux/backing-dev.h>
54#include <linux/sort.h>
55
56#include <asm/uaccess.h>
57#include <asm/atomic.h>
Ingo Molnar3d3f26a2006-03-23 03:00:18 -080058#include <linux/mutex.h>
Cliff Wickman956db3c2008-02-07 00:14:43 -080059#include <linux/workqueue.h>
60#include <linux/cgroup.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070061
Paul Jackson202f72d2006-01-08 01:01:57 -080062/*
63 * Tracks how many cpusets are currently defined in system.
64 * When there is only one cpuset (the root cpuset) we can
65 * short circuit some hooks.
66 */
Paul Jackson7edc5962006-01-08 01:02:03 -080067int number_of_cpusets __read_mostly;
Paul Jackson202f72d2006-01-08 01:01:57 -080068
Paul Menage2df167a2008-02-07 00:14:45 -080069/* Forward declare cgroup structures */
Paul Menage8793d852007-10-18 23:39:39 -070070struct cgroup_subsys cpuset_subsys;
71struct cpuset;
72
Paul Jackson3e0d98b2006-01-08 01:01:49 -080073/* See "Frequency meter" comments, below. */
74
75struct fmeter {
76 int cnt; /* unprocessed events count */
77 int val; /* most recent output value */
78 time_t time; /* clock (secs) when val computed */
79 spinlock_t lock; /* guards read or write of above */
80};
81
Linus Torvalds1da177e2005-04-16 15:20:36 -070082struct cpuset {
Paul Menage8793d852007-10-18 23:39:39 -070083 struct cgroup_subsys_state css;
84
Linus Torvalds1da177e2005-04-16 15:20:36 -070085 unsigned long flags; /* "unsigned long" so bitops work */
86 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
87 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
88
Linus Torvalds1da177e2005-04-16 15:20:36 -070089 struct cpuset *parent; /* my parent */
Linus Torvalds1da177e2005-04-16 15:20:36 -070090
91 /*
92 * Copy of global cpuset_mems_generation as of the most
93 * recent time this cpuset changed its mems_allowed.
94 */
Paul Jackson3e0d98b2006-01-08 01:01:49 -080095 int mems_generation;
96
97 struct fmeter fmeter; /* memory_pressure filter */
Paul Jackson029190c2007-10-18 23:40:20 -070098
99 /* partition number for rebuild_sched_domains() */
100 int pn;
Cliff Wickman956db3c2008-02-07 00:14:43 -0800101
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +0900102 /* for custom sched domain */
103 int relax_domain_level;
104
Cliff Wickman956db3c2008-02-07 00:14:43 -0800105 /* used for walking a cpuset heirarchy */
106 struct list_head stack_list;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700107};
108
Paul Menage8793d852007-10-18 23:39:39 -0700109/* Retrieve the cpuset for a cgroup */
110static inline struct cpuset *cgroup_cs(struct cgroup *cont)
111{
112 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
113 struct cpuset, css);
114}
115
116/* Retrieve the cpuset for a task */
117static inline struct cpuset *task_cs(struct task_struct *task)
118{
119 return container_of(task_subsys_state(task, cpuset_subsys_id),
120 struct cpuset, css);
121}
Cliff Wickman956db3c2008-02-07 00:14:43 -0800122struct cpuset_hotplug_scanner {
123 struct cgroup_scanner scan;
124 struct cgroup *to;
125};
Paul Menage8793d852007-10-18 23:39:39 -0700126
Linus Torvalds1da177e2005-04-16 15:20:36 -0700127/* bits in struct cpuset flags field */
128typedef enum {
129 CS_CPU_EXCLUSIVE,
130 CS_MEM_EXCLUSIVE,
Paul Menage78608362008-04-29 01:00:26 -0700131 CS_MEM_HARDWALL,
Paul Jackson45b07ef2006-01-08 01:00:56 -0800132 CS_MEMORY_MIGRATE,
Paul Jackson029190c2007-10-18 23:40:20 -0700133 CS_SCHED_LOAD_BALANCE,
Paul Jackson825a46a2006-03-24 03:16:03 -0800134 CS_SPREAD_PAGE,
135 CS_SPREAD_SLAB,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700136} cpuset_flagbits_t;
137
138/* convenient tests for these bits */
139static inline int is_cpu_exclusive(const struct cpuset *cs)
140{
Paul Jackson7b5b9ef2006-03-24 03:16:00 -0800141 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700142}
143
144static inline int is_mem_exclusive(const struct cpuset *cs)
145{
Paul Jackson7b5b9ef2006-03-24 03:16:00 -0800146 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700147}
148
Paul Menage78608362008-04-29 01:00:26 -0700149static inline int is_mem_hardwall(const struct cpuset *cs)
150{
151 return test_bit(CS_MEM_HARDWALL, &cs->flags);
152}
153
Paul Jackson029190c2007-10-18 23:40:20 -0700154static inline int is_sched_load_balance(const struct cpuset *cs)
155{
156 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
157}
158
Paul Jackson45b07ef2006-01-08 01:00:56 -0800159static inline int is_memory_migrate(const struct cpuset *cs)
160{
Paul Jackson7b5b9ef2006-03-24 03:16:00 -0800161 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
Paul Jackson45b07ef2006-01-08 01:00:56 -0800162}
163
Paul Jackson825a46a2006-03-24 03:16:03 -0800164static inline int is_spread_page(const struct cpuset *cs)
165{
166 return test_bit(CS_SPREAD_PAGE, &cs->flags);
167}
168
169static inline int is_spread_slab(const struct cpuset *cs)
170{
171 return test_bit(CS_SPREAD_SLAB, &cs->flags);
172}
173
Linus Torvalds1da177e2005-04-16 15:20:36 -0700174/*
Paul Jackson151a4422006-03-24 03:16:11 -0800175 * Increment this integer everytime any cpuset changes its
Linus Torvalds1da177e2005-04-16 15:20:36 -0700176 * mems_allowed value. Users of cpusets can track this generation
177 * number, and avoid having to lock and reload mems_allowed unless
178 * the cpuset they're using changes generation.
179 *
Paul Menage2df167a2008-02-07 00:14:45 -0800180 * A single, global generation is needed because cpuset_attach_task() could
Linus Torvalds1da177e2005-04-16 15:20:36 -0700181 * reattach a task to a different cpuset, which must not have its
182 * generation numbers aliased with those of that tasks previous cpuset.
183 *
184 * Generations are needed for mems_allowed because one task cannot
Paul Menage2df167a2008-02-07 00:14:45 -0800185 * modify another's memory placement. So we must enable every task,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700186 * on every visit to __alloc_pages(), to efficiently check whether
187 * its current->cpuset->mems_allowed has changed, requiring an update
188 * of its current->mems_allowed.
Paul Jackson151a4422006-03-24 03:16:11 -0800189 *
Paul Menage2df167a2008-02-07 00:14:45 -0800190 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
Paul Jackson151a4422006-03-24 03:16:11 -0800191 * there is no need to mark it atomic.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700192 */
Paul Jackson151a4422006-03-24 03:16:11 -0800193static int cpuset_mems_generation;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700194
195static struct cpuset top_cpuset = {
196 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
197 .cpus_allowed = CPU_MASK_ALL,
198 .mems_allowed = NODE_MASK_ALL,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700199};
200
Linus Torvalds1da177e2005-04-16 15:20:36 -0700201/*
Paul Menage2df167a2008-02-07 00:14:45 -0800202 * There are two global mutexes guarding cpuset structures. The first
203 * is the main control groups cgroup_mutex, accessed via
204 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
205 * callback_mutex, below. They can nest. It is ok to first take
206 * cgroup_mutex, then nest callback_mutex. We also require taking
207 * task_lock() when dereferencing a task's cpuset pointer. See "The
208 * task_lock() exception", at the end of this comment.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700209 *
Ingo Molnar3d3f26a2006-03-23 03:00:18 -0800210 * A task must hold both mutexes to modify cpusets. If a task
Paul Menage2df167a2008-02-07 00:14:45 -0800211 * holds cgroup_mutex, then it blocks others wanting that mutex,
Ingo Molnar3d3f26a2006-03-23 03:00:18 -0800212 * ensuring that it is the only task able to also acquire callback_mutex
Paul Jackson053199e2005-10-30 15:02:30 -0800213 * and be able to modify cpusets. It can perform various checks on
214 * the cpuset structure first, knowing nothing will change. It can
Paul Menage2df167a2008-02-07 00:14:45 -0800215 * also allocate memory while just holding cgroup_mutex. While it is
Paul Jackson053199e2005-10-30 15:02:30 -0800216 * performing these checks, various callback routines can briefly
Ingo Molnar3d3f26a2006-03-23 03:00:18 -0800217 * acquire callback_mutex to query cpusets. Once it is ready to make
218 * the changes, it takes callback_mutex, blocking everyone else.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700219 *
Paul Jackson053199e2005-10-30 15:02:30 -0800220 * Calls to the kernel memory allocator can not be made while holding
Ingo Molnar3d3f26a2006-03-23 03:00:18 -0800221 * callback_mutex, as that would risk double tripping on callback_mutex
Paul Jackson053199e2005-10-30 15:02:30 -0800222 * from one of the callbacks into the cpuset code from within
223 * __alloc_pages().
Linus Torvalds1da177e2005-04-16 15:20:36 -0700224 *
Ingo Molnar3d3f26a2006-03-23 03:00:18 -0800225 * If a task is only holding callback_mutex, then it has read-only
Paul Jackson053199e2005-10-30 15:02:30 -0800226 * access to cpusets.
227 *
228 * The task_struct fields mems_allowed and mems_generation may only
229 * be accessed in the context of that task, so require no locks.
230 *
Ingo Molnar3d3f26a2006-03-23 03:00:18 -0800231 * The cpuset_common_file_read() handlers only hold callback_mutex across
Paul Jackson053199e2005-10-30 15:02:30 -0800232 * small pieces of code, such as when reading out possibly multi-word
233 * cpumasks and nodemasks.
234 *
Paul Menage2df167a2008-02-07 00:14:45 -0800235 * Accessing a task's cpuset should be done in accordance with the
236 * guidelines for accessing subsystem state in kernel/cgroup.c
Linus Torvalds1da177e2005-04-16 15:20:36 -0700237 */
238
Ingo Molnar3d3f26a2006-03-23 03:00:18 -0800239static DEFINE_MUTEX(callback_mutex);
Paul Jackson4247bdc2005-09-10 00:26:06 -0700240
Max Krasnyanskycf417142008-08-11 14:33:53 -0700241/*
242 * This is ugly, but preserves the userspace API for existing cpuset
Paul Menage8793d852007-10-18 23:39:39 -0700243 * users. If someone tries to mount the "cpuset" filesystem, we
Max Krasnyanskycf417142008-08-11 14:33:53 -0700244 * silently switch it to mount "cgroup" instead
245 */
David Howells454e2392006-06-23 02:02:57 -0700246static int cpuset_get_sb(struct file_system_type *fs_type,
247 int flags, const char *unused_dev_name,
248 void *data, struct vfsmount *mnt)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700249{
Paul Menage8793d852007-10-18 23:39:39 -0700250 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
251 int ret = -ENODEV;
252 if (cgroup_fs) {
253 char mountopts[] =
254 "cpuset,noprefix,"
255 "release_agent=/sbin/cpuset_release_agent";
256 ret = cgroup_fs->get_sb(cgroup_fs, flags,
257 unused_dev_name, mountopts, mnt);
258 put_filesystem(cgroup_fs);
259 }
260 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700261}
262
263static struct file_system_type cpuset_fs_type = {
264 .name = "cpuset",
265 .get_sb = cpuset_get_sb,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700266};
267
Linus Torvalds1da177e2005-04-16 15:20:36 -0700268/*
269 * Return in *pmask the portion of a cpusets's cpus_allowed that
270 * are online. If none are online, walk up the cpuset hierarchy
271 * until we find one that does have some online cpus. If we get
272 * all the way to the top and still haven't found any online cpus,
273 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
274 * task, return cpu_online_map.
275 *
276 * One way or another, we guarantee to return some non-empty subset
277 * of cpu_online_map.
278 *
Ingo Molnar3d3f26a2006-03-23 03:00:18 -0800279 * Call with callback_mutex held.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700280 */
281
282static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
283{
284 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
285 cs = cs->parent;
286 if (cs)
287 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
288 else
289 *pmask = cpu_online_map;
290 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
291}
292
293/*
294 * Return in *pmask the portion of a cpusets's mems_allowed that
Christoph Lameter0e1e7c72007-10-16 01:25:38 -0700295 * are online, with memory. If none are online with memory, walk
296 * up the cpuset hierarchy until we find one that does have some
297 * online mems. If we get all the way to the top and still haven't
298 * found any online mems, return node_states[N_HIGH_MEMORY].
Linus Torvalds1da177e2005-04-16 15:20:36 -0700299 *
300 * One way or another, we guarantee to return some non-empty subset
Christoph Lameter0e1e7c72007-10-16 01:25:38 -0700301 * of node_states[N_HIGH_MEMORY].
Linus Torvalds1da177e2005-04-16 15:20:36 -0700302 *
Ingo Molnar3d3f26a2006-03-23 03:00:18 -0800303 * Call with callback_mutex held.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700304 */
305
306static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
307{
Christoph Lameter0e1e7c72007-10-16 01:25:38 -0700308 while (cs && !nodes_intersects(cs->mems_allowed,
309 node_states[N_HIGH_MEMORY]))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700310 cs = cs->parent;
311 if (cs)
Christoph Lameter0e1e7c72007-10-16 01:25:38 -0700312 nodes_and(*pmask, cs->mems_allowed,
313 node_states[N_HIGH_MEMORY]);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700314 else
Christoph Lameter0e1e7c72007-10-16 01:25:38 -0700315 *pmask = node_states[N_HIGH_MEMORY];
316 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700317}
318
Paul Jacksoncf2a473c2006-01-08 01:01:54 -0800319/**
320 * cpuset_update_task_memory_state - update task memory placement
Linus Torvalds1da177e2005-04-16 15:20:36 -0700321 *
Paul Jacksoncf2a473c2006-01-08 01:01:54 -0800322 * If the current tasks cpusets mems_allowed changed behind our
323 * backs, update current->mems_allowed, mems_generation and task NUMA
324 * mempolicy to the new value.
325 *
326 * Task mempolicy is updated by rebinding it relative to the
327 * current->cpuset if a task has its memory placement changed.
328 * Do not call this routine if in_interrupt().
329 *
Paul Jackson4a01c8d2006-03-31 02:30:50 -0800330 * Call without callback_mutex or task_lock() held. May be
Paul Menage2df167a2008-02-07 00:14:45 -0800331 * called with or without cgroup_mutex held. Thanks in part to
332 * 'the_top_cpuset_hack', the task's cpuset pointer will never
David Rientjes41f7f602008-03-04 23:32:38 -0800333 * be NULL. This routine also might acquire callback_mutex during
334 * call.
Paul Jackson5aa15b52005-10-30 15:02:28 -0800335 *
Paul Jackson6b9c2602006-01-08 01:02:02 -0800336 * Reading current->cpuset->mems_generation doesn't need task_lock
337 * to guard the current->cpuset derefence, because it is guarded
Paul Menage2df167a2008-02-07 00:14:45 -0800338 * from concurrent freeing of current->cpuset using RCU.
Paul Jackson6b9c2602006-01-08 01:02:02 -0800339 *
340 * The rcu_dereference() is technically probably not needed,
341 * as I don't actually mind if I see a new cpuset pointer but
342 * an old value of mems_generation. However this really only
343 * matters on alpha systems using cpusets heavily. If I dropped
344 * that rcu_dereference(), it would save them a memory barrier.
345 * For all other arch's, rcu_dereference is a no-op anyway, and for
346 * alpha systems not using cpusets, another planned optimization,
347 * avoiding the rcu critical section for tasks in the root cpuset
348 * which is statically allocated, so can't vanish, will make this
349 * irrelevant. Better to use RCU as intended, than to engage in
350 * some cute trick to save a memory barrier that is impossible to
351 * test, for alpha systems using cpusets heavily, which might not
352 * even exist.
Paul Jackson053199e2005-10-30 15:02:30 -0800353 *
354 * This routine is needed to update the per-task mems_allowed data,
355 * within the tasks context, when it is trying to allocate memory
356 * (in various mm/mempolicy.c routines) and notices that some other
357 * task has been modifying its cpuset.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700358 */
359
Randy Dunlapfe85a992006-02-03 03:04:23 -0800360void cpuset_update_task_memory_state(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700361{
Paul Jackson053199e2005-10-30 15:02:30 -0800362 int my_cpusets_mem_gen;
Paul Jacksoncf2a473c2006-01-08 01:01:54 -0800363 struct task_struct *tsk = current;
Paul Jackson6b9c2602006-01-08 01:02:02 -0800364 struct cpuset *cs;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700365
Paul Menage8793d852007-10-18 23:39:39 -0700366 if (task_cs(tsk) == &top_cpuset) {
Paul Jackson03a285f2006-01-08 01:02:04 -0800367 /* Don't need rcu for top_cpuset. It's never freed. */
368 my_cpusets_mem_gen = top_cpuset.mems_generation;
369 } else {
370 rcu_read_lock();
Lai Jiangshanda5ef6b2008-07-25 01:47:25 -0700371 my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
Paul Jackson03a285f2006-01-08 01:02:04 -0800372 rcu_read_unlock();
373 }
Paul Jacksoncf2a473c2006-01-08 01:01:54 -0800374
375 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
Ingo Molnar3d3f26a2006-03-23 03:00:18 -0800376 mutex_lock(&callback_mutex);
Paul Jacksoncf2a473c2006-01-08 01:01:54 -0800377 task_lock(tsk);
Paul Menage8793d852007-10-18 23:39:39 -0700378 cs = task_cs(tsk); /* Maybe changed when task not locked */
Paul Jacksoncf2a473c2006-01-08 01:01:54 -0800379 guarantee_online_mems(cs, &tsk->mems_allowed);
380 tsk->cpuset_mems_generation = cs->mems_generation;
Paul Jackson825a46a2006-03-24 03:16:03 -0800381 if (is_spread_page(cs))
382 tsk->flags |= PF_SPREAD_PAGE;
383 else
384 tsk->flags &= ~PF_SPREAD_PAGE;
385 if (is_spread_slab(cs))
386 tsk->flags |= PF_SPREAD_SLAB;
387 else
388 tsk->flags &= ~PF_SPREAD_SLAB;
Paul Jacksoncf2a473c2006-01-08 01:01:54 -0800389 task_unlock(tsk);
Ingo Molnar3d3f26a2006-03-23 03:00:18 -0800390 mutex_unlock(&callback_mutex);
Paul Jackson74cb2152006-01-08 01:01:56 -0800391 mpol_rebind_task(tsk, &tsk->mems_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700392 }
393}
394
395/*
396 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
397 *
398 * One cpuset is a subset of another if all its allowed CPUs and
399 * Memory Nodes are a subset of the other, and its exclusive flags
Paul Menage2df167a2008-02-07 00:14:45 -0800400 * are only set if the other's are set. Call holding cgroup_mutex.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700401 */
402
403static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
404{
405 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
406 nodes_subset(p->mems_allowed, q->mems_allowed) &&
407 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
408 is_mem_exclusive(p) <= is_mem_exclusive(q);
409}
410
411/*
412 * validate_change() - Used to validate that any proposed cpuset change
413 * follows the structural rules for cpusets.
414 *
415 * If we replaced the flag and mask values of the current cpuset
416 * (cur) with those values in the trial cpuset (trial), would
417 * our various subset and exclusive rules still be valid? Presumes
Paul Menage2df167a2008-02-07 00:14:45 -0800418 * cgroup_mutex held.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700419 *
420 * 'cur' is the address of an actual, in-use cpuset. Operations
421 * such as list traversal that depend on the actual address of the
422 * cpuset in the list must use cur below, not trial.
423 *
424 * 'trial' is the address of bulk structure copy of cur, with
425 * perhaps one or more of the fields cpus_allowed, mems_allowed,
426 * or flags changed to new, trial values.
427 *
428 * Return 0 if valid, -errno if not.
429 */
430
431static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
432{
Paul Menage8793d852007-10-18 23:39:39 -0700433 struct cgroup *cont;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700434 struct cpuset *c, *par;
435
436 /* Each of our child cpusets must be a subset of us */
Paul Menage8793d852007-10-18 23:39:39 -0700437 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
438 if (!is_cpuset_subset(cgroup_cs(cont), trial))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700439 return -EBUSY;
440 }
441
442 /* Remaining checks don't apply to root cpuset */
Paul Jackson69604062006-12-06 20:36:15 -0800443 if (cur == &top_cpuset)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700444 return 0;
445
Paul Jackson69604062006-12-06 20:36:15 -0800446 par = cur->parent;
447
Linus Torvalds1da177e2005-04-16 15:20:36 -0700448 /* We must be a subset of our parent cpuset */
449 if (!is_cpuset_subset(trial, par))
450 return -EACCES;
451
Paul Menage2df167a2008-02-07 00:14:45 -0800452 /*
453 * If either I or some sibling (!= me) is exclusive, we can't
454 * overlap
455 */
Paul Menage8793d852007-10-18 23:39:39 -0700456 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
457 c = cgroup_cs(cont);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700458 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
459 c != cur &&
460 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
461 return -EINVAL;
462 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
463 c != cur &&
464 nodes_intersects(trial->mems_allowed, c->mems_allowed))
465 return -EINVAL;
466 }
467
Paul Jackson020958b2007-10-18 23:40:21 -0700468 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
469 if (cgroup_task_count(cur->css.cgroup)) {
470 if (cpus_empty(trial->cpus_allowed) ||
471 nodes_empty(trial->mems_allowed)) {
472 return -ENOSPC;
473 }
474 }
475
Linus Torvalds1da177e2005-04-16 15:20:36 -0700476 return 0;
477}
478
Dinakar Guniguntala85d7b942005-06-25 14:57:34 -0700479/*
Max Krasnyanskycf417142008-08-11 14:33:53 -0700480 * Helper routine for generate_sched_domains().
Paul Jackson029190c2007-10-18 23:40:20 -0700481 * Do cpusets a, b have overlapping cpus_allowed masks?
482 */
Paul Jackson029190c2007-10-18 23:40:20 -0700483static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
484{
485 return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
486}
487
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +0900488static void
489update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
490{
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +0900491 if (dattr->relax_domain_level < c->relax_domain_level)
492 dattr->relax_domain_level = c->relax_domain_level;
493 return;
494}
495
Lai Jiangshanf5393692008-07-29 22:33:22 -0700496static void
497update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
498{
499 LIST_HEAD(q);
500
501 list_add(&c->stack_list, &q);
502 while (!list_empty(&q)) {
503 struct cpuset *cp;
504 struct cgroup *cont;
505 struct cpuset *child;
506
507 cp = list_first_entry(&q, struct cpuset, stack_list);
508 list_del(q.next);
509
510 if (cpus_empty(cp->cpus_allowed))
511 continue;
512
513 if (is_sched_load_balance(cp))
514 update_domain_attr(dattr, cp);
515
516 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
517 child = cgroup_cs(cont);
518 list_add_tail(&child->stack_list, &q);
519 }
520 }
521}
522
Paul Jackson029190c2007-10-18 23:40:20 -0700523/*
Max Krasnyanskycf417142008-08-11 14:33:53 -0700524 * generate_sched_domains()
Paul Jackson029190c2007-10-18 23:40:20 -0700525 *
Max Krasnyanskycf417142008-08-11 14:33:53 -0700526 * This function builds a partial partition of the systems CPUs
527 * A 'partial partition' is a set of non-overlapping subsets whose
528 * union is a subset of that set.
529 * The output of this function needs to be passed to kernel/sched.c
530 * partition_sched_domains() routine, which will rebuild the scheduler's
531 * load balancing domains (sched domains) as specified by that partial
532 * partition.
Paul Jackson029190c2007-10-18 23:40:20 -0700533 *
534 * See "What is sched_load_balance" in Documentation/cpusets.txt
535 * for a background explanation of this.
536 *
537 * Does not return errors, on the theory that the callers of this
538 * routine would rather not worry about failures to rebuild sched
539 * domains when operating in the severe memory shortage situations
540 * that could cause allocation failures below.
541 *
Max Krasnyanskycf417142008-08-11 14:33:53 -0700542 * Must be called with cgroup_lock held.
Paul Jackson029190c2007-10-18 23:40:20 -0700543 *
544 * The three key local variables below are:
Li Zefanaeed6822008-07-29 22:33:24 -0700545 * q - a linked-list queue of cpuset pointers, used to implement a
Paul Jackson029190c2007-10-18 23:40:20 -0700546 * top-down scan of all cpusets. This scan loads a pointer
547 * to each cpuset marked is_sched_load_balance into the
548 * array 'csa'. For our purposes, rebuilding the schedulers
549 * sched domains, we can ignore !is_sched_load_balance cpusets.
550 * csa - (for CpuSet Array) Array of pointers to all the cpusets
551 * that need to be load balanced, for convenient iterative
552 * access by the subsequent code that finds the best partition,
553 * i.e the set of domains (subsets) of CPUs such that the
554 * cpus_allowed of every cpuset marked is_sched_load_balance
555 * is a subset of one of these domains, while there are as
556 * many such domains as possible, each as small as possible.
557 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
558 * the kernel/sched.c routine partition_sched_domains() in a
559 * convenient format, that can be easily compared to the prior
560 * value to determine what partition elements (sched domains)
561 * were changed (added or removed.)
562 *
563 * Finding the best partition (set of domains):
564 * The triple nested loops below over i, j, k scan over the
565 * load balanced cpusets (using the array of cpuset pointers in
566 * csa[]) looking for pairs of cpusets that have overlapping
567 * cpus_allowed, but which don't have the same 'pn' partition
568 * number and gives them in the same partition number. It keeps
569 * looping on the 'restart' label until it can no longer find
570 * any such pairs.
571 *
572 * The union of the cpus_allowed masks from the set of
573 * all cpusets having the same 'pn' value then form the one
574 * element of the partition (one sched domain) to be passed to
575 * partition_sched_domains().
576 */
Max Krasnyanskycf417142008-08-11 14:33:53 -0700577static int generate_sched_domains(cpumask_t **domains,
578 struct sched_domain_attr **attributes)
Paul Jackson029190c2007-10-18 23:40:20 -0700579{
Max Krasnyanskycf417142008-08-11 14:33:53 -0700580 LIST_HEAD(q); /* queue of cpusets to be scanned */
Paul Jackson029190c2007-10-18 23:40:20 -0700581 struct cpuset *cp; /* scans q */
582 struct cpuset **csa; /* array of all cpuset ptrs */
583 int csn; /* how many cpuset ptrs in csa so far */
584 int i, j, k; /* indices for partition finding loops */
585 cpumask_t *doms; /* resulting partition; i.e. sched domains */
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +0900586 struct sched_domain_attr *dattr; /* attributes for custom domains */
Paul Jackson029190c2007-10-18 23:40:20 -0700587 int ndoms; /* number of sched domains in result */
588 int nslot; /* next empty doms[] cpumask_t slot */
589
Max Krasnyanskycf417142008-08-11 14:33:53 -0700590 ndoms = 0;
Paul Jackson029190c2007-10-18 23:40:20 -0700591 doms = NULL;
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +0900592 dattr = NULL;
Max Krasnyanskycf417142008-08-11 14:33:53 -0700593 csa = NULL;
Paul Jackson029190c2007-10-18 23:40:20 -0700594
595 /* Special case for the 99% of systems with one, full, sched domain */
596 if (is_sched_load_balance(&top_cpuset)) {
Paul Jackson029190c2007-10-18 23:40:20 -0700597 doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
598 if (!doms)
Max Krasnyanskycf417142008-08-11 14:33:53 -0700599 goto done;
600
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +0900601 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
602 if (dattr) {
603 *dattr = SD_ATTR_INIT;
Li Zefan93a65572008-07-29 22:33:23 -0700604 update_domain_attr_tree(dattr, &top_cpuset);
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +0900605 }
Paul Jackson029190c2007-10-18 23:40:20 -0700606 *doms = top_cpuset.cpus_allowed;
Max Krasnyanskycf417142008-08-11 14:33:53 -0700607
608 ndoms = 1;
609 goto done;
Paul Jackson029190c2007-10-18 23:40:20 -0700610 }
611
Paul Jackson029190c2007-10-18 23:40:20 -0700612 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
613 if (!csa)
614 goto done;
615 csn = 0;
616
Li Zefanaeed6822008-07-29 22:33:24 -0700617 list_add(&top_cpuset.stack_list, &q);
618 while (!list_empty(&q)) {
Paul Jackson029190c2007-10-18 23:40:20 -0700619 struct cgroup *cont;
620 struct cpuset *child; /* scans child cpusets of cp */
Lai Jiangshan489a5392008-07-25 01:47:23 -0700621
Li Zefanaeed6822008-07-29 22:33:24 -0700622 cp = list_first_entry(&q, struct cpuset, stack_list);
623 list_del(q.next);
624
Lai Jiangshan489a5392008-07-25 01:47:23 -0700625 if (cpus_empty(cp->cpus_allowed))
626 continue;
627
Lai Jiangshanf5393692008-07-29 22:33:22 -0700628 /*
629 * All child cpusets contain a subset of the parent's cpus, so
630 * just skip them, and then we call update_domain_attr_tree()
631 * to calc relax_domain_level of the corresponding sched
632 * domain.
633 */
634 if (is_sched_load_balance(cp)) {
Paul Jackson029190c2007-10-18 23:40:20 -0700635 csa[csn++] = cp;
Lai Jiangshanf5393692008-07-29 22:33:22 -0700636 continue;
637 }
Lai Jiangshan489a5392008-07-25 01:47:23 -0700638
Paul Jackson029190c2007-10-18 23:40:20 -0700639 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
640 child = cgroup_cs(cont);
Li Zefanaeed6822008-07-29 22:33:24 -0700641 list_add_tail(&child->stack_list, &q);
Paul Jackson029190c2007-10-18 23:40:20 -0700642 }
643 }
644
645 for (i = 0; i < csn; i++)
646 csa[i]->pn = i;
647 ndoms = csn;
648
649restart:
650 /* Find the best partition (set of sched domains) */
651 for (i = 0; i < csn; i++) {
652 struct cpuset *a = csa[i];
653 int apn = a->pn;
654
655 for (j = 0; j < csn; j++) {
656 struct cpuset *b = csa[j];
657 int bpn = b->pn;
658
659 if (apn != bpn && cpusets_overlap(a, b)) {
660 for (k = 0; k < csn; k++) {
661 struct cpuset *c = csa[k];
662
663 if (c->pn == bpn)
664 c->pn = apn;
665 }
666 ndoms--; /* one less element */
667 goto restart;
668 }
669 }
670 }
671
Max Krasnyanskycf417142008-08-11 14:33:53 -0700672 /*
673 * Now we know how many domains to create.
674 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
675 */
Paul Jackson029190c2007-10-18 23:40:20 -0700676 doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
Max Krasnyanskycf417142008-08-11 14:33:53 -0700677 if (!doms) {
678 ndoms = 0;
679 goto done;
680 }
681
682 /*
683 * The rest of the code, including the scheduler, can deal with
684 * dattr==NULL case. No need to abort if alloc fails.
685 */
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +0900686 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
Paul Jackson029190c2007-10-18 23:40:20 -0700687
688 for (nslot = 0, i = 0; i < csn; i++) {
689 struct cpuset *a = csa[i];
Max Krasnyanskycf417142008-08-11 14:33:53 -0700690 cpumask_t *dp;
Paul Jackson029190c2007-10-18 23:40:20 -0700691 int apn = a->pn;
692
Max Krasnyanskycf417142008-08-11 14:33:53 -0700693 if (apn < 0) {
694 /* Skip completed partitions */
695 continue;
Paul Jackson029190c2007-10-18 23:40:20 -0700696 }
Max Krasnyanskycf417142008-08-11 14:33:53 -0700697
698 dp = doms + nslot;
699
700 if (nslot == ndoms) {
701 static int warnings = 10;
702 if (warnings) {
703 printk(KERN_WARNING
704 "rebuild_sched_domains confused:"
705 " nslot %d, ndoms %d, csn %d, i %d,"
706 " apn %d\n",
707 nslot, ndoms, csn, i, apn);
708 warnings--;
709 }
710 continue;
711 }
712
713 cpus_clear(*dp);
714 if (dattr)
715 *(dattr + nslot) = SD_ATTR_INIT;
716 for (j = i; j < csn; j++) {
717 struct cpuset *b = csa[j];
718
719 if (apn == b->pn) {
720 cpus_or(*dp, *dp, b->cpus_allowed);
721 if (dattr)
722 update_domain_attr_tree(dattr + nslot, b);
723
724 /* Done with this partition */
725 b->pn = -1;
726 }
727 }
728 nslot++;
Paul Jackson029190c2007-10-18 23:40:20 -0700729 }
730 BUG_ON(nslot != ndoms);
731
Paul Jackson029190c2007-10-18 23:40:20 -0700732done:
Paul Jackson029190c2007-10-18 23:40:20 -0700733 kfree(csa);
Max Krasnyanskycf417142008-08-11 14:33:53 -0700734
735 *domains = doms;
736 *attributes = dattr;
737 return ndoms;
738}
739
740/*
741 * Rebuild scheduler domains.
742 *
743 * Call with neither cgroup_mutex held nor within get_online_cpus().
744 * Takes both cgroup_mutex and get_online_cpus().
745 *
746 * Cannot be directly called from cpuset code handling changes
747 * to the cpuset pseudo-filesystem, because it cannot be called
748 * from code that already holds cgroup_mutex.
749 */
750static void do_rebuild_sched_domains(struct work_struct *unused)
751{
752 struct sched_domain_attr *attr;
753 cpumask_t *doms;
754 int ndoms;
755
756 get_online_cpus();
757
758 /* Generate domain masks and attrs */
759 cgroup_lock();
760 ndoms = generate_sched_domains(&doms, &attr);
761 cgroup_unlock();
762
763 /* Have scheduler rebuild the domains */
764 partition_sched_domains(ndoms, doms, attr);
765
766 put_online_cpus();
767}
768
769static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
770
771/*
772 * Rebuild scheduler domains, asynchronously via workqueue.
773 *
774 * If the flag 'sched_load_balance' of any cpuset with non-empty
775 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
776 * which has that flag enabled, or if any cpuset with a non-empty
777 * 'cpus' is removed, then call this routine to rebuild the
778 * scheduler's dynamic sched domains.
779 *
780 * The rebuild_sched_domains() and partition_sched_domains()
781 * routines must nest cgroup_lock() inside get_online_cpus(),
782 * but such cpuset changes as these must nest that locking the
783 * other way, holding cgroup_lock() for much of the code.
784 *
785 * So in order to avoid an ABBA deadlock, the cpuset code handling
786 * these user changes delegates the actual sched domain rebuilding
787 * to a separate workqueue thread, which ends up processing the
788 * above do_rebuild_sched_domains() function.
789 */
790static void async_rebuild_sched_domains(void)
791{
792 schedule_work(&rebuild_sched_domains_work);
793}
794
795/*
796 * Accomplishes the same scheduler domain rebuild as the above
797 * async_rebuild_sched_domains(), however it directly calls the
798 * rebuild routine synchronously rather than calling it via an
799 * asynchronous work thread.
800 *
801 * This can only be called from code that is not holding
802 * cgroup_mutex (not nested in a cgroup_lock() call.)
803 */
804void rebuild_sched_domains(void)
805{
806 do_rebuild_sched_domains(NULL);
Paul Jackson029190c2007-10-18 23:40:20 -0700807}
808
Cliff Wickman58f47902008-02-07 00:14:44 -0800809/**
810 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
811 * @tsk: task to test
812 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
813 *
Paul Menage2df167a2008-02-07 00:14:45 -0800814 * Call with cgroup_mutex held. May take callback_mutex during call.
Cliff Wickman58f47902008-02-07 00:14:44 -0800815 * Called for each task in a cgroup by cgroup_scan_tasks().
816 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
817 * words, if its mask is not equal to its cpuset's mask).
Paul Jackson053199e2005-10-30 15:02:30 -0800818 */
Adrian Bunk9e0c9142008-04-29 01:00:25 -0700819static int cpuset_test_cpumask(struct task_struct *tsk,
820 struct cgroup_scanner *scan)
Cliff Wickman58f47902008-02-07 00:14:44 -0800821{
822 return !cpus_equal(tsk->cpus_allowed,
823 (cgroup_cs(scan->cg))->cpus_allowed);
824}
Paul Jackson053199e2005-10-30 15:02:30 -0800825
Cliff Wickman58f47902008-02-07 00:14:44 -0800826/**
827 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
828 * @tsk: task to test
829 * @scan: struct cgroup_scanner containing the cgroup of the task
830 *
831 * Called by cgroup_scan_tasks() for each task in a cgroup whose
832 * cpus_allowed mask needs to be changed.
833 *
834 * We don't need to re-check for the cgroup/cpuset membership, since we're
835 * holding cgroup_lock() at this point.
836 */
Adrian Bunk9e0c9142008-04-29 01:00:25 -0700837static void cpuset_change_cpumask(struct task_struct *tsk,
838 struct cgroup_scanner *scan)
Cliff Wickman58f47902008-02-07 00:14:44 -0800839{
Mike Travisf9a86fc2008-04-04 18:11:07 -0700840 set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
Cliff Wickman58f47902008-02-07 00:14:44 -0800841}
842
843/**
Miao Xie0b2f6302008-07-25 01:47:21 -0700844 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
845 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
Li Zefan4e743392008-09-13 02:33:08 -0700846 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
Miao Xie0b2f6302008-07-25 01:47:21 -0700847 *
848 * Called with cgroup_mutex held
849 *
850 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
851 * calling callback functions for each.
852 *
Li Zefan4e743392008-09-13 02:33:08 -0700853 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
854 * if @heap != NULL.
Miao Xie0b2f6302008-07-25 01:47:21 -0700855 */
Li Zefan4e743392008-09-13 02:33:08 -0700856static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
Miao Xie0b2f6302008-07-25 01:47:21 -0700857{
858 struct cgroup_scanner scan;
Miao Xie0b2f6302008-07-25 01:47:21 -0700859
860 scan.cg = cs->css.cgroup;
861 scan.test_task = cpuset_test_cpumask;
862 scan.process_task = cpuset_change_cpumask;
Li Zefan4e743392008-09-13 02:33:08 -0700863 scan.heap = heap;
864 cgroup_scan_tasks(&scan);
Miao Xie0b2f6302008-07-25 01:47:21 -0700865}
866
867/**
Cliff Wickman58f47902008-02-07 00:14:44 -0800868 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
869 * @cs: the cpuset to consider
870 * @buf: buffer of cpu numbers written to this cpuset
871 */
Paul Menagee3712392008-07-25 01:47:02 -0700872static int update_cpumask(struct cpuset *cs, const char *buf)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700873{
Li Zefan4e743392008-09-13 02:33:08 -0700874 struct ptr_heap heap;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700875 struct cpuset trialcs;
Cliff Wickman58f47902008-02-07 00:14:44 -0800876 int retval;
877 int is_load_balanced;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700878
Paul Jackson4c4d50f2006-08-27 01:23:51 -0700879 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
880 if (cs == &top_cpuset)
881 return -EACCES;
882
Linus Torvalds1da177e2005-04-16 15:20:36 -0700883 trialcs = *cs;
David Rientjes6f7f02e2007-05-08 00:31:43 -0700884
885 /*
Paul Jacksonc8d9c902008-02-07 00:14:46 -0800886 * An empty cpus_allowed is ok only if the cpuset has no tasks.
Paul Jackson020958b2007-10-18 23:40:21 -0700887 * Since cpulist_parse() fails on an empty mask, we special case
888 * that parsing. The validate_change() call ensures that cpusets
889 * with tasks have cpus.
David Rientjes6f7f02e2007-05-08 00:31:43 -0700890 */
Paul Jackson020958b2007-10-18 23:40:21 -0700891 if (!*buf) {
David Rientjes6f7f02e2007-05-08 00:31:43 -0700892 cpus_clear(trialcs.cpus_allowed);
893 } else {
894 retval = cpulist_parse(buf, trialcs.cpus_allowed);
895 if (retval < 0)
896 return retval;
Lai Jiangshan37340742008-06-05 22:46:32 -0700897
898 if (!cpus_subset(trialcs.cpus_allowed, cpu_online_map))
899 return -EINVAL;
David Rientjes6f7f02e2007-05-08 00:31:43 -0700900 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700901 retval = validate_change(cs, &trialcs);
Dinakar Guniguntala85d7b942005-06-25 14:57:34 -0700902 if (retval < 0)
903 return retval;
Paul Jackson029190c2007-10-18 23:40:20 -0700904
Paul Menage8707d8b2007-10-18 23:40:22 -0700905 /* Nothing to do if the cpus didn't change */
906 if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
907 return 0;
Cliff Wickman58f47902008-02-07 00:14:44 -0800908
Li Zefan4e743392008-09-13 02:33:08 -0700909 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
910 if (retval)
911 return retval;
912
Paul Jackson029190c2007-10-18 23:40:20 -0700913 is_load_balanced = is_sched_load_balance(&trialcs);
914
Ingo Molnar3d3f26a2006-03-23 03:00:18 -0800915 mutex_lock(&callback_mutex);
Dinakar Guniguntala85d7b942005-06-25 14:57:34 -0700916 cs->cpus_allowed = trialcs.cpus_allowed;
Ingo Molnar3d3f26a2006-03-23 03:00:18 -0800917 mutex_unlock(&callback_mutex);
Paul Jackson029190c2007-10-18 23:40:20 -0700918
Paul Menage8707d8b2007-10-18 23:40:22 -0700919 /*
920 * Scan tasks in the cpuset, and update the cpumasks of any
Cliff Wickman58f47902008-02-07 00:14:44 -0800921 * that need an update.
Paul Menage8707d8b2007-10-18 23:40:22 -0700922 */
Li Zefan4e743392008-09-13 02:33:08 -0700923 update_tasks_cpumask(cs, &heap);
924
925 heap_free(&heap);
Cliff Wickman58f47902008-02-07 00:14:44 -0800926
Paul Menage8707d8b2007-10-18 23:40:22 -0700927 if (is_load_balanced)
Max Krasnyanskycf417142008-08-11 14:33:53 -0700928 async_rebuild_sched_domains();
Dinakar Guniguntala85d7b942005-06-25 14:57:34 -0700929 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700930}
931
Paul Jackson053199e2005-10-30 15:02:30 -0800932/*
Paul Jacksone4e364e2006-03-31 02:30:52 -0800933 * cpuset_migrate_mm
934 *
935 * Migrate memory region from one set of nodes to another.
936 *
937 * Temporarilly set tasks mems_allowed to target nodes of migration,
938 * so that the migration code can allocate pages on these nodes.
939 *
Paul Menage2df167a2008-02-07 00:14:45 -0800940 * Call holding cgroup_mutex, so current's cpuset won't change
Paul Jacksonc8d9c902008-02-07 00:14:46 -0800941 * during this call, as manage_mutex holds off any cpuset_attach()
Paul Jacksone4e364e2006-03-31 02:30:52 -0800942 * calls. Therefore we don't need to take task_lock around the
943 * call to guarantee_online_mems(), as we know no one is changing
Paul Menage2df167a2008-02-07 00:14:45 -0800944 * our task's cpuset.
Paul Jacksone4e364e2006-03-31 02:30:52 -0800945 *
946 * Hold callback_mutex around the two modifications of our tasks
947 * mems_allowed to synchronize with cpuset_mems_allowed().
948 *
949 * While the mm_struct we are migrating is typically from some
950 * other task, the task_struct mems_allowed that we are hacking
951 * is for our current task, which must allocate new pages for that
952 * migrating memory region.
953 *
954 * We call cpuset_update_task_memory_state() before hacking
955 * our tasks mems_allowed, so that we are assured of being in
956 * sync with our tasks cpuset, and in particular, callbacks to
957 * cpuset_update_task_memory_state() from nested page allocations
958 * won't see any mismatch of our cpuset and task mems_generation
959 * values, so won't overwrite our hacked tasks mems_allowed
960 * nodemask.
961 */
962
963static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
964 const nodemask_t *to)
965{
966 struct task_struct *tsk = current;
967
968 cpuset_update_task_memory_state();
969
970 mutex_lock(&callback_mutex);
971 tsk->mems_allowed = *to;
972 mutex_unlock(&callback_mutex);
973
974 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
975
976 mutex_lock(&callback_mutex);
Paul Menage8793d852007-10-18 23:39:39 -0700977 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
Paul Jacksone4e364e2006-03-31 02:30:52 -0800978 mutex_unlock(&callback_mutex);
979}
980
Paul Menage8793d852007-10-18 23:39:39 -0700981static void *cpuset_being_rebound;
982
Miao Xie0b2f6302008-07-25 01:47:21 -0700983/**
984 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
985 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
986 * @oldmem: old mems_allowed of cpuset cs
987 *
988 * Called with cgroup_mutex held
989 * Return 0 if successful, -errno if not.
990 */
991static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700992{
Paul Menage8793d852007-10-18 23:39:39 -0700993 struct task_struct *p;
Paul Jackson42253992006-01-08 01:01:59 -0800994 struct mm_struct **mmarray;
995 int i, n, ntasks;
Paul Jackson04c19fa2006-01-08 01:02:00 -0800996 int migrate;
Paul Jackson42253992006-01-08 01:01:59 -0800997 int fudge;
Paul Menage8793d852007-10-18 23:39:39 -0700998 struct cgroup_iter it;
Miao Xie0b2f6302008-07-25 01:47:21 -0700999 int retval;
Paul Jackson59dac162006-01-08 01:01:52 -08001000
Lee Schermerhorn846a16b2008-04-28 02:13:09 -07001001 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
Paul Jackson42253992006-01-08 01:01:59 -08001002
1003 fudge = 10; /* spare mmarray[] slots */
1004 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
1005 retval = -ENOMEM;
1006
1007 /*
1008 * Allocate mmarray[] to hold mm reference for each task
1009 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
1010 * tasklist_lock. We could use GFP_ATOMIC, but with a
1011 * few more lines of code, we can retry until we get a big
1012 * enough mmarray[] w/o using GFP_ATOMIC.
1013 */
1014 while (1) {
Paul Menage8793d852007-10-18 23:39:39 -07001015 ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
Paul Jackson42253992006-01-08 01:01:59 -08001016 ntasks += fudge;
1017 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
1018 if (!mmarray)
1019 goto done;
Paul Menagec2aef332007-07-15 23:40:11 -07001020 read_lock(&tasklist_lock); /* block fork */
Paul Menage8793d852007-10-18 23:39:39 -07001021 if (cgroup_task_count(cs->css.cgroup) <= ntasks)
Paul Jackson42253992006-01-08 01:01:59 -08001022 break; /* got enough */
Paul Menagec2aef332007-07-15 23:40:11 -07001023 read_unlock(&tasklist_lock); /* try again */
Paul Jackson42253992006-01-08 01:01:59 -08001024 kfree(mmarray);
1025 }
1026
1027 n = 0;
1028
1029 /* Load up mmarray[] with mm reference for each task in cpuset. */
Paul Menage8793d852007-10-18 23:39:39 -07001030 cgroup_iter_start(cs->css.cgroup, &it);
1031 while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
Paul Jackson42253992006-01-08 01:01:59 -08001032 struct mm_struct *mm;
1033
1034 if (n >= ntasks) {
1035 printk(KERN_WARNING
1036 "Cpuset mempolicy rebind incomplete.\n");
Paul Menage8793d852007-10-18 23:39:39 -07001037 break;
Paul Jackson42253992006-01-08 01:01:59 -08001038 }
Paul Jackson42253992006-01-08 01:01:59 -08001039 mm = get_task_mm(p);
1040 if (!mm)
1041 continue;
1042 mmarray[n++] = mm;
Paul Menage8793d852007-10-18 23:39:39 -07001043 }
1044 cgroup_iter_end(cs->css.cgroup, &it);
Paul Menagec2aef332007-07-15 23:40:11 -07001045 read_unlock(&tasklist_lock);
Paul Jackson42253992006-01-08 01:01:59 -08001046
1047 /*
1048 * Now that we've dropped the tasklist spinlock, we can
1049 * rebind the vma mempolicies of each mm in mmarray[] to their
1050 * new cpuset, and release that mm. The mpol_rebind_mm()
1051 * call takes mmap_sem, which we couldn't take while holding
Lee Schermerhorn846a16b2008-04-28 02:13:09 -07001052 * tasklist_lock. Forks can happen again now - the mpol_dup()
Paul Jackson42253992006-01-08 01:01:59 -08001053 * cpuset_being_rebound check will catch such forks, and rebind
1054 * their vma mempolicies too. Because we still hold the global
Paul Menage2df167a2008-02-07 00:14:45 -08001055 * cgroup_mutex, we know that no other rebind effort will
Paul Jackson42253992006-01-08 01:01:59 -08001056 * be contending for the global variable cpuset_being_rebound.
1057 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
Paul Jackson04c19fa2006-01-08 01:02:00 -08001058 * is idempotent. Also migrate pages in each mm to new nodes.
Paul Jackson42253992006-01-08 01:01:59 -08001059 */
Paul Jackson04c19fa2006-01-08 01:02:00 -08001060 migrate = is_memory_migrate(cs);
Paul Jackson42253992006-01-08 01:01:59 -08001061 for (i = 0; i < n; i++) {
1062 struct mm_struct *mm = mmarray[i];
1063
1064 mpol_rebind_mm(mm, &cs->mems_allowed);
Paul Jacksone4e364e2006-03-31 02:30:52 -08001065 if (migrate)
Miao Xie0b2f6302008-07-25 01:47:21 -07001066 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
Paul Jackson42253992006-01-08 01:01:59 -08001067 mmput(mm);
1068 }
1069
Paul Menage2df167a2008-02-07 00:14:45 -08001070 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
Paul Jackson42253992006-01-08 01:01:59 -08001071 kfree(mmarray);
Paul Menage8793d852007-10-18 23:39:39 -07001072 cpuset_being_rebound = NULL;
Paul Jackson42253992006-01-08 01:01:59 -08001073 retval = 0;
Paul Jackson59dac162006-01-08 01:01:52 -08001074done:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001075 return retval;
1076}
1077
Miao Xie0b2f6302008-07-25 01:47:21 -07001078/*
1079 * Handle user request to change the 'mems' memory placement
1080 * of a cpuset. Needs to validate the request, update the
1081 * cpusets mems_allowed and mems_generation, and for each
1082 * task in the cpuset, rebind any vma mempolicies and if
1083 * the cpuset is marked 'memory_migrate', migrate the tasks
1084 * pages to the new memory.
1085 *
1086 * Call with cgroup_mutex held. May take callback_mutex during call.
1087 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1088 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1089 * their mempolicies to the cpusets new mems_allowed.
1090 */
1091static int update_nodemask(struct cpuset *cs, const char *buf)
1092{
1093 struct cpuset trialcs;
1094 nodemask_t oldmem;
1095 int retval;
1096
1097 /*
1098 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1099 * it's read-only
1100 */
1101 if (cs == &top_cpuset)
1102 return -EACCES;
1103
1104 trialcs = *cs;
1105
1106 /*
1107 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1108 * Since nodelist_parse() fails on an empty mask, we special case
1109 * that parsing. The validate_change() call ensures that cpusets
1110 * with tasks have memory.
1111 */
1112 if (!*buf) {
1113 nodes_clear(trialcs.mems_allowed);
1114 } else {
1115 retval = nodelist_parse(buf, trialcs.mems_allowed);
1116 if (retval < 0)
1117 goto done;
1118
1119 if (!nodes_subset(trialcs.mems_allowed,
1120 node_states[N_HIGH_MEMORY]))
1121 return -EINVAL;
1122 }
1123 oldmem = cs->mems_allowed;
1124 if (nodes_equal(oldmem, trialcs.mems_allowed)) {
1125 retval = 0; /* Too easy - nothing to do */
1126 goto done;
1127 }
1128 retval = validate_change(cs, &trialcs);
1129 if (retval < 0)
1130 goto done;
1131
1132 mutex_lock(&callback_mutex);
1133 cs->mems_allowed = trialcs.mems_allowed;
1134 cs->mems_generation = cpuset_mems_generation++;
1135 mutex_unlock(&callback_mutex);
1136
1137 retval = update_tasks_nodemask(cs, &oldmem);
1138done:
1139 return retval;
1140}
1141
Paul Menage8793d852007-10-18 23:39:39 -07001142int current_cpuset_is_being_rebound(void)
1143{
1144 return task_cs(current) == cpuset_being_rebound;
1145}
1146
Paul Menage5be7a472008-05-06 20:42:41 -07001147static int update_relax_domain_level(struct cpuset *cs, s64 val)
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +09001148{
Li Zefan30e0e172008-05-13 10:27:17 +08001149 if (val < -1 || val >= SD_LV_MAX)
1150 return -EINVAL;
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +09001151
1152 if (val != cs->relax_domain_level) {
1153 cs->relax_domain_level = val;
Li Zefanc372e812008-07-25 01:47:23 -07001154 if (!cpus_empty(cs->cpus_allowed) && is_sched_load_balance(cs))
Max Krasnyanskycf417142008-08-11 14:33:53 -07001155 async_rebuild_sched_domains();
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +09001156 }
1157
1158 return 0;
1159}
1160
Paul Jackson3e0d98b2006-01-08 01:01:49 -08001161/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001162 * update_flag - read a 0 or a 1 in a file and update associated flag
Paul Menage78608362008-04-29 01:00:26 -07001163 * bit: the bit to update (see cpuset_flagbits_t)
1164 * cs: the cpuset to update
1165 * turning_on: whether the flag is being set or cleared
Paul Jackson053199e2005-10-30 15:02:30 -08001166 *
Paul Menage2df167a2008-02-07 00:14:45 -08001167 * Call with cgroup_mutex held.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001168 */
1169
Paul Menage700fe1a2008-04-29 01:00:00 -07001170static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1171 int turning_on)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001172{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001173 struct cpuset trialcs;
Paul Jackson607717a2007-10-16 01:27:43 -07001174 int err;
Rakib Mullick40b6a762008-10-18 20:28:18 -07001175 int balance_flag_changed;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001176
Linus Torvalds1da177e2005-04-16 15:20:36 -07001177 trialcs = *cs;
1178 if (turning_on)
1179 set_bit(bit, &trialcs.flags);
1180 else
1181 clear_bit(bit, &trialcs.flags);
1182
1183 err = validate_change(cs, &trialcs);
Dinakar Guniguntala85d7b942005-06-25 14:57:34 -07001184 if (err < 0)
1185 return err;
Paul Jackson029190c2007-10-18 23:40:20 -07001186
Paul Jackson029190c2007-10-18 23:40:20 -07001187 balance_flag_changed = (is_sched_load_balance(cs) !=
1188 is_sched_load_balance(&trialcs));
1189
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08001190 mutex_lock(&callback_mutex);
Paul Jackson69604062006-12-06 20:36:15 -08001191 cs->flags = trialcs.flags;
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08001192 mutex_unlock(&callback_mutex);
Dinakar Guniguntala85d7b942005-06-25 14:57:34 -07001193
Rakib Mullick40b6a762008-10-18 20:28:18 -07001194 if (!cpus_empty(trialcs.cpus_allowed) && balance_flag_changed)
Max Krasnyanskycf417142008-08-11 14:33:53 -07001195 async_rebuild_sched_domains();
Paul Jackson029190c2007-10-18 23:40:20 -07001196
Dinakar Guniguntala85d7b942005-06-25 14:57:34 -07001197 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001198}
1199
Paul Jackson053199e2005-10-30 15:02:30 -08001200/*
Adrian Bunk80f72282006-06-30 18:27:16 +02001201 * Frequency meter - How fast is some event occurring?
Paul Jackson3e0d98b2006-01-08 01:01:49 -08001202 *
1203 * These routines manage a digitally filtered, constant time based,
1204 * event frequency meter. There are four routines:
1205 * fmeter_init() - initialize a frequency meter.
1206 * fmeter_markevent() - called each time the event happens.
1207 * fmeter_getrate() - returns the recent rate of such events.
1208 * fmeter_update() - internal routine used to update fmeter.
1209 *
1210 * A common data structure is passed to each of these routines,
1211 * which is used to keep track of the state required to manage the
1212 * frequency meter and its digital filter.
1213 *
1214 * The filter works on the number of events marked per unit time.
1215 * The filter is single-pole low-pass recursive (IIR). The time unit
1216 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1217 * simulate 3 decimal digits of precision (multiplied by 1000).
1218 *
1219 * With an FM_COEF of 933, and a time base of 1 second, the filter
1220 * has a half-life of 10 seconds, meaning that if the events quit
1221 * happening, then the rate returned from the fmeter_getrate()
1222 * will be cut in half each 10 seconds, until it converges to zero.
1223 *
1224 * It is not worth doing a real infinitely recursive filter. If more
1225 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1226 * just compute FM_MAXTICKS ticks worth, by which point the level
1227 * will be stable.
1228 *
1229 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1230 * arithmetic overflow in the fmeter_update() routine.
1231 *
1232 * Given the simple 32 bit integer arithmetic used, this meter works
1233 * best for reporting rates between one per millisecond (msec) and
1234 * one per 32 (approx) seconds. At constant rates faster than one
1235 * per msec it maxes out at values just under 1,000,000. At constant
1236 * rates between one per msec, and one per second it will stabilize
1237 * to a value N*1000, where N is the rate of events per second.
1238 * At constant rates between one per second and one per 32 seconds,
1239 * it will be choppy, moving up on the seconds that have an event,
1240 * and then decaying until the next event. At rates slower than
1241 * about one in 32 seconds, it decays all the way back to zero between
1242 * each event.
1243 */
1244
1245#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1246#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1247#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1248#define FM_SCALE 1000 /* faux fixed point scale */
1249
1250/* Initialize a frequency meter */
1251static void fmeter_init(struct fmeter *fmp)
1252{
1253 fmp->cnt = 0;
1254 fmp->val = 0;
1255 fmp->time = 0;
1256 spin_lock_init(&fmp->lock);
1257}
1258
1259/* Internal meter update - process cnt events and update value */
1260static void fmeter_update(struct fmeter *fmp)
1261{
1262 time_t now = get_seconds();
1263 time_t ticks = now - fmp->time;
1264
1265 if (ticks == 0)
1266 return;
1267
1268 ticks = min(FM_MAXTICKS, ticks);
1269 while (ticks-- > 0)
1270 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1271 fmp->time = now;
1272
1273 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1274 fmp->cnt = 0;
1275}
1276
1277/* Process any previous ticks, then bump cnt by one (times scale). */
1278static void fmeter_markevent(struct fmeter *fmp)
1279{
1280 spin_lock(&fmp->lock);
1281 fmeter_update(fmp);
1282 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1283 spin_unlock(&fmp->lock);
1284}
1285
1286/* Process any previous ticks, then return current value. */
1287static int fmeter_getrate(struct fmeter *fmp)
1288{
1289 int val;
1290
1291 spin_lock(&fmp->lock);
1292 fmeter_update(fmp);
1293 val = fmp->val;
1294 spin_unlock(&fmp->lock);
1295 return val;
1296}
1297
Paul Menage2df167a2008-02-07 00:14:45 -08001298/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
Paul Menage8793d852007-10-18 23:39:39 -07001299static int cpuset_can_attach(struct cgroup_subsys *ss,
1300 struct cgroup *cont, struct task_struct *tsk)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001301{
Paul Menage8793d852007-10-18 23:39:39 -07001302 struct cpuset *cs = cgroup_cs(cont);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001303
Linus Torvalds1da177e2005-04-16 15:20:36 -07001304 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1305 return -ENOSPC;
David Rientjes9985b0b2008-06-05 12:57:11 -07001306 if (tsk->flags & PF_THREAD_BOUND) {
1307 cpumask_t mask;
1308
1309 mutex_lock(&callback_mutex);
1310 mask = cs->cpus_allowed;
1311 mutex_unlock(&callback_mutex);
1312 if (!cpus_equal(tsk->cpus_allowed, mask))
1313 return -EINVAL;
1314 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001315
Paul Menage8793d852007-10-18 23:39:39 -07001316 return security_task_setscheduler(tsk, 0, NULL);
1317}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001318
Paul Menage8793d852007-10-18 23:39:39 -07001319static void cpuset_attach(struct cgroup_subsys *ss,
1320 struct cgroup *cont, struct cgroup *oldcont,
1321 struct task_struct *tsk)
1322{
1323 cpumask_t cpus;
1324 nodemask_t from, to;
1325 struct mm_struct *mm;
1326 struct cpuset *cs = cgroup_cs(cont);
1327 struct cpuset *oldcs = cgroup_cs(oldcont);
David Rientjes9985b0b2008-06-05 12:57:11 -07001328 int err;
David Quigley22fb52d2006-06-23 02:04:00 -07001329
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08001330 mutex_lock(&callback_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001331 guarantee_online_cpus(cs, &cpus);
David Rientjes9985b0b2008-06-05 12:57:11 -07001332 err = set_cpus_allowed_ptr(tsk, &cpus);
Paul Menage8793d852007-10-18 23:39:39 -07001333 mutex_unlock(&callback_mutex);
David Rientjes9985b0b2008-06-05 12:57:11 -07001334 if (err)
1335 return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001336
Paul Jackson45b07ef2006-01-08 01:00:56 -08001337 from = oldcs->mems_allowed;
1338 to = cs->mems_allowed;
Paul Jackson42253992006-01-08 01:01:59 -08001339 mm = get_task_mm(tsk);
1340 if (mm) {
1341 mpol_rebind_mm(mm, &to);
Paul Jackson2741a552006-03-31 02:30:51 -08001342 if (is_memory_migrate(cs))
Paul Jacksone4e364e2006-03-31 02:30:52 -08001343 cpuset_migrate_mm(mm, &from, &to);
Paul Jackson42253992006-01-08 01:01:59 -08001344 mmput(mm);
1345 }
1346
Linus Torvalds1da177e2005-04-16 15:20:36 -07001347}
1348
1349/* The various types of files and directories in a cpuset file system */
1350
1351typedef enum {
Paul Jackson45b07ef2006-01-08 01:00:56 -08001352 FILE_MEMORY_MIGRATE,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001353 FILE_CPULIST,
1354 FILE_MEMLIST,
1355 FILE_CPU_EXCLUSIVE,
1356 FILE_MEM_EXCLUSIVE,
Paul Menage78608362008-04-29 01:00:26 -07001357 FILE_MEM_HARDWALL,
Paul Jackson029190c2007-10-18 23:40:20 -07001358 FILE_SCHED_LOAD_BALANCE,
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +09001359 FILE_SCHED_RELAX_DOMAIN_LEVEL,
Paul Jackson3e0d98b2006-01-08 01:01:49 -08001360 FILE_MEMORY_PRESSURE_ENABLED,
1361 FILE_MEMORY_PRESSURE,
Paul Jackson825a46a2006-03-24 03:16:03 -08001362 FILE_SPREAD_PAGE,
1363 FILE_SPREAD_SLAB,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001364} cpuset_filetype_t;
1365
Paul Menage700fe1a2008-04-29 01:00:00 -07001366static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1367{
1368 int retval = 0;
1369 struct cpuset *cs = cgroup_cs(cgrp);
1370 cpuset_filetype_t type = cft->private;
1371
Paul Menagee3712392008-07-25 01:47:02 -07001372 if (!cgroup_lock_live_group(cgrp))
Paul Menage700fe1a2008-04-29 01:00:00 -07001373 return -ENODEV;
Paul Menage700fe1a2008-04-29 01:00:00 -07001374
1375 switch (type) {
1376 case FILE_CPU_EXCLUSIVE:
1377 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1378 break;
1379 case FILE_MEM_EXCLUSIVE:
1380 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1381 break;
Paul Menage78608362008-04-29 01:00:26 -07001382 case FILE_MEM_HARDWALL:
1383 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1384 break;
Paul Menage700fe1a2008-04-29 01:00:00 -07001385 case FILE_SCHED_LOAD_BALANCE:
1386 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1387 break;
1388 case FILE_MEMORY_MIGRATE:
1389 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1390 break;
1391 case FILE_MEMORY_PRESSURE_ENABLED:
1392 cpuset_memory_pressure_enabled = !!val;
1393 break;
1394 case FILE_MEMORY_PRESSURE:
1395 retval = -EACCES;
1396 break;
1397 case FILE_SPREAD_PAGE:
1398 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1399 cs->mems_generation = cpuset_mems_generation++;
1400 break;
1401 case FILE_SPREAD_SLAB:
1402 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1403 cs->mems_generation = cpuset_mems_generation++;
1404 break;
1405 default:
1406 retval = -EINVAL;
1407 break;
1408 }
1409 cgroup_unlock();
1410 return retval;
1411}
1412
Paul Menage5be7a472008-05-06 20:42:41 -07001413static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1414{
1415 int retval = 0;
1416 struct cpuset *cs = cgroup_cs(cgrp);
1417 cpuset_filetype_t type = cft->private;
1418
Paul Menagee3712392008-07-25 01:47:02 -07001419 if (!cgroup_lock_live_group(cgrp))
Paul Menage5be7a472008-05-06 20:42:41 -07001420 return -ENODEV;
Paul Menagee3712392008-07-25 01:47:02 -07001421
Paul Menage5be7a472008-05-06 20:42:41 -07001422 switch (type) {
1423 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1424 retval = update_relax_domain_level(cs, val);
1425 break;
1426 default:
1427 retval = -EINVAL;
1428 break;
1429 }
1430 cgroup_unlock();
1431 return retval;
1432}
1433
Linus Torvalds1da177e2005-04-16 15:20:36 -07001434/*
Paul Menagee3712392008-07-25 01:47:02 -07001435 * Common handling for a write to a "cpus" or "mems" file.
1436 */
1437static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1438 const char *buf)
1439{
1440 int retval = 0;
1441
1442 if (!cgroup_lock_live_group(cgrp))
1443 return -ENODEV;
1444
1445 switch (cft->private) {
1446 case FILE_CPULIST:
1447 retval = update_cpumask(cgroup_cs(cgrp), buf);
1448 break;
1449 case FILE_MEMLIST:
1450 retval = update_nodemask(cgroup_cs(cgrp), buf);
1451 break;
1452 default:
1453 retval = -EINVAL;
1454 break;
1455 }
1456 cgroup_unlock();
1457 return retval;
1458}
1459
1460/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001461 * These ascii lists should be read in a single call, by using a user
1462 * buffer large enough to hold the entire map. If read in smaller
1463 * chunks, there is no guarantee of atomicity. Since the display format
1464 * used, list of ranges of sequential numbers, is variable length,
1465 * and since these maps can change value dynamically, one could read
1466 * gibberish by doing partial reads while a list was changing.
1467 * A single large read to a buffer that crosses a page boundary is
1468 * ok, because the result being copied to user land is not recomputed
1469 * across a page fault.
1470 */
1471
1472static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1473{
1474 cpumask_t mask;
1475
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08001476 mutex_lock(&callback_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001477 mask = cs->cpus_allowed;
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08001478 mutex_unlock(&callback_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001479
1480 return cpulist_scnprintf(page, PAGE_SIZE, mask);
1481}
1482
1483static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1484{
1485 nodemask_t mask;
1486
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08001487 mutex_lock(&callback_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001488 mask = cs->mems_allowed;
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08001489 mutex_unlock(&callback_mutex);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001490
1491 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1492}
1493
Paul Menage8793d852007-10-18 23:39:39 -07001494static ssize_t cpuset_common_file_read(struct cgroup *cont,
1495 struct cftype *cft,
1496 struct file *file,
1497 char __user *buf,
1498 size_t nbytes, loff_t *ppos)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001499{
Paul Menage8793d852007-10-18 23:39:39 -07001500 struct cpuset *cs = cgroup_cs(cont);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001501 cpuset_filetype_t type = cft->private;
1502 char *page;
1503 ssize_t retval = 0;
1504 char *s;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001505
Mel Gormane12ba742007-10-16 01:25:52 -07001506 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001507 return -ENOMEM;
1508
1509 s = page;
1510
1511 switch (type) {
1512 case FILE_CPULIST:
1513 s += cpuset_sprintf_cpulist(s, cs);
1514 break;
1515 case FILE_MEMLIST:
1516 s += cpuset_sprintf_memlist(s, cs);
1517 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001518 default:
1519 retval = -EINVAL;
1520 goto out;
1521 }
1522 *s++ = '\n';
Linus Torvalds1da177e2005-04-16 15:20:36 -07001523
Al Viroeacaa1f2005-09-30 03:26:43 +01001524 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001525out:
1526 free_page((unsigned long)page);
1527 return retval;
1528}
1529
Paul Menage700fe1a2008-04-29 01:00:00 -07001530static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1531{
1532 struct cpuset *cs = cgroup_cs(cont);
1533 cpuset_filetype_t type = cft->private;
1534 switch (type) {
1535 case FILE_CPU_EXCLUSIVE:
1536 return is_cpu_exclusive(cs);
1537 case FILE_MEM_EXCLUSIVE:
1538 return is_mem_exclusive(cs);
Paul Menage78608362008-04-29 01:00:26 -07001539 case FILE_MEM_HARDWALL:
1540 return is_mem_hardwall(cs);
Paul Menage700fe1a2008-04-29 01:00:00 -07001541 case FILE_SCHED_LOAD_BALANCE:
1542 return is_sched_load_balance(cs);
1543 case FILE_MEMORY_MIGRATE:
1544 return is_memory_migrate(cs);
1545 case FILE_MEMORY_PRESSURE_ENABLED:
1546 return cpuset_memory_pressure_enabled;
1547 case FILE_MEMORY_PRESSURE:
1548 return fmeter_getrate(&cs->fmeter);
1549 case FILE_SPREAD_PAGE:
1550 return is_spread_page(cs);
1551 case FILE_SPREAD_SLAB:
1552 return is_spread_slab(cs);
1553 default:
1554 BUG();
1555 }
Max Krasnyanskycf417142008-08-11 14:33:53 -07001556
1557 /* Unreachable but makes gcc happy */
1558 return 0;
Paul Menage700fe1a2008-04-29 01:00:00 -07001559}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001560
Paul Menage5be7a472008-05-06 20:42:41 -07001561static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1562{
1563 struct cpuset *cs = cgroup_cs(cont);
1564 cpuset_filetype_t type = cft->private;
1565 switch (type) {
1566 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1567 return cs->relax_domain_level;
1568 default:
1569 BUG();
1570 }
Max Krasnyanskycf417142008-08-11 14:33:53 -07001571
1572 /* Unrechable but makes gcc happy */
1573 return 0;
Paul Menage5be7a472008-05-06 20:42:41 -07001574}
1575
Linus Torvalds1da177e2005-04-16 15:20:36 -07001576
1577/*
1578 * for the common functions, 'private' gives the type of file
1579 */
1580
Paul Menageaddf2c72008-04-29 01:00:26 -07001581static struct cftype files[] = {
1582 {
1583 .name = "cpus",
1584 .read = cpuset_common_file_read,
Paul Menagee3712392008-07-25 01:47:02 -07001585 .write_string = cpuset_write_resmask,
1586 .max_write_len = (100U + 6 * NR_CPUS),
Paul Menageaddf2c72008-04-29 01:00:26 -07001587 .private = FILE_CPULIST,
1588 },
Linus Torvalds1da177e2005-04-16 15:20:36 -07001589
Paul Menageaddf2c72008-04-29 01:00:26 -07001590 {
1591 .name = "mems",
1592 .read = cpuset_common_file_read,
Paul Menagee3712392008-07-25 01:47:02 -07001593 .write_string = cpuset_write_resmask,
1594 .max_write_len = (100U + 6 * MAX_NUMNODES),
Paul Menageaddf2c72008-04-29 01:00:26 -07001595 .private = FILE_MEMLIST,
1596 },
Linus Torvalds1da177e2005-04-16 15:20:36 -07001597
Paul Menageaddf2c72008-04-29 01:00:26 -07001598 {
1599 .name = "cpu_exclusive",
1600 .read_u64 = cpuset_read_u64,
1601 .write_u64 = cpuset_write_u64,
1602 .private = FILE_CPU_EXCLUSIVE,
1603 },
Linus Torvalds1da177e2005-04-16 15:20:36 -07001604
Paul Menageaddf2c72008-04-29 01:00:26 -07001605 {
1606 .name = "mem_exclusive",
1607 .read_u64 = cpuset_read_u64,
1608 .write_u64 = cpuset_write_u64,
1609 .private = FILE_MEM_EXCLUSIVE,
1610 },
Linus Torvalds1da177e2005-04-16 15:20:36 -07001611
Paul Menageaddf2c72008-04-29 01:00:26 -07001612 {
Paul Menage78608362008-04-29 01:00:26 -07001613 .name = "mem_hardwall",
1614 .read_u64 = cpuset_read_u64,
1615 .write_u64 = cpuset_write_u64,
1616 .private = FILE_MEM_HARDWALL,
1617 },
1618
1619 {
Paul Menageaddf2c72008-04-29 01:00:26 -07001620 .name = "sched_load_balance",
1621 .read_u64 = cpuset_read_u64,
1622 .write_u64 = cpuset_write_u64,
1623 .private = FILE_SCHED_LOAD_BALANCE,
1624 },
Paul Jackson029190c2007-10-18 23:40:20 -07001625
Paul Menageaddf2c72008-04-29 01:00:26 -07001626 {
1627 .name = "sched_relax_domain_level",
Paul Menage5be7a472008-05-06 20:42:41 -07001628 .read_s64 = cpuset_read_s64,
1629 .write_s64 = cpuset_write_s64,
Paul Menageaddf2c72008-04-29 01:00:26 -07001630 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1631 },
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +09001632
Paul Menageaddf2c72008-04-29 01:00:26 -07001633 {
1634 .name = "memory_migrate",
1635 .read_u64 = cpuset_read_u64,
1636 .write_u64 = cpuset_write_u64,
1637 .private = FILE_MEMORY_MIGRATE,
1638 },
1639
1640 {
1641 .name = "memory_pressure",
1642 .read_u64 = cpuset_read_u64,
1643 .write_u64 = cpuset_write_u64,
1644 .private = FILE_MEMORY_PRESSURE,
1645 },
1646
1647 {
1648 .name = "memory_spread_page",
1649 .read_u64 = cpuset_read_u64,
1650 .write_u64 = cpuset_write_u64,
1651 .private = FILE_SPREAD_PAGE,
1652 },
1653
1654 {
1655 .name = "memory_spread_slab",
1656 .read_u64 = cpuset_read_u64,
1657 .write_u64 = cpuset_write_u64,
1658 .private = FILE_SPREAD_SLAB,
1659 },
Paul Jackson45b07ef2006-01-08 01:00:56 -08001660};
1661
Paul Jackson3e0d98b2006-01-08 01:01:49 -08001662static struct cftype cft_memory_pressure_enabled = {
1663 .name = "memory_pressure_enabled",
Paul Menage700fe1a2008-04-29 01:00:00 -07001664 .read_u64 = cpuset_read_u64,
1665 .write_u64 = cpuset_write_u64,
Paul Jackson3e0d98b2006-01-08 01:01:49 -08001666 .private = FILE_MEMORY_PRESSURE_ENABLED,
1667};
1668
Paul Menage8793d852007-10-18 23:39:39 -07001669static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001670{
1671 int err;
1672
Paul Menageaddf2c72008-04-29 01:00:26 -07001673 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1674 if (err)
Paul Jackson825a46a2006-03-24 03:16:03 -08001675 return err;
Paul Menage8793d852007-10-18 23:39:39 -07001676 /* memory_pressure_enabled is in root cpuset only */
Paul Menageaddf2c72008-04-29 01:00:26 -07001677 if (!cont->parent)
Paul Menage8793d852007-10-18 23:39:39 -07001678 err = cgroup_add_file(cont, ss,
Paul Menageaddf2c72008-04-29 01:00:26 -07001679 &cft_memory_pressure_enabled);
1680 return err;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001681}
1682
1683/*
Paul Menage8793d852007-10-18 23:39:39 -07001684 * post_clone() is called at the end of cgroup_clone().
1685 * 'cgroup' was just created automatically as a result of
1686 * a cgroup_clone(), and the current task is about to
1687 * be moved into 'cgroup'.
1688 *
1689 * Currently we refuse to set up the cgroup - thereby
1690 * refusing the task to be entered, and as a result refusing
1691 * the sys_unshare() or clone() which initiated it - if any
1692 * sibling cpusets have exclusive cpus or mem.
1693 *
1694 * If this becomes a problem for some users who wish to
1695 * allow that scenario, then cpuset_post_clone() could be
1696 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
Paul Menage2df167a2008-02-07 00:14:45 -08001697 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1698 * held.
Paul Menage8793d852007-10-18 23:39:39 -07001699 */
1700static void cpuset_post_clone(struct cgroup_subsys *ss,
1701 struct cgroup *cgroup)
1702{
1703 struct cgroup *parent, *child;
1704 struct cpuset *cs, *parent_cs;
1705
1706 parent = cgroup->parent;
1707 list_for_each_entry(child, &parent->children, sibling) {
1708 cs = cgroup_cs(child);
1709 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1710 return;
1711 }
1712 cs = cgroup_cs(cgroup);
1713 parent_cs = cgroup_cs(parent);
1714
1715 cs->mems_allowed = parent_cs->mems_allowed;
1716 cs->cpus_allowed = parent_cs->cpus_allowed;
1717 return;
1718}
1719
1720/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001721 * cpuset_create - create a cpuset
Paul Menage2df167a2008-02-07 00:14:45 -08001722 * ss: cpuset cgroup subsystem
1723 * cont: control group that the new cpuset will be part of
Linus Torvalds1da177e2005-04-16 15:20:36 -07001724 */
1725
Paul Menage8793d852007-10-18 23:39:39 -07001726static struct cgroup_subsys_state *cpuset_create(
1727 struct cgroup_subsys *ss,
1728 struct cgroup *cont)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001729{
1730 struct cpuset *cs;
Paul Menage8793d852007-10-18 23:39:39 -07001731 struct cpuset *parent;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001732
Paul Menage8793d852007-10-18 23:39:39 -07001733 if (!cont->parent) {
1734 /* This is early initialization for the top cgroup */
1735 top_cpuset.mems_generation = cpuset_mems_generation++;
1736 return &top_cpuset.css;
1737 }
1738 parent = cgroup_cs(cont->parent);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001739 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1740 if (!cs)
Paul Menage8793d852007-10-18 23:39:39 -07001741 return ERR_PTR(-ENOMEM);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001742
Paul Jacksoncf2a473c2006-01-08 01:01:54 -08001743 cpuset_update_task_memory_state();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001744 cs->flags = 0;
Paul Jackson825a46a2006-03-24 03:16:03 -08001745 if (is_spread_page(parent))
1746 set_bit(CS_SPREAD_PAGE, &cs->flags);
1747 if (is_spread_slab(parent))
1748 set_bit(CS_SPREAD_SLAB, &cs->flags);
Paul Jackson029190c2007-10-18 23:40:20 -07001749 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
Mike Travisf9a86fc2008-04-04 18:11:07 -07001750 cpus_clear(cs->cpus_allowed);
1751 nodes_clear(cs->mems_allowed);
Paul Jackson151a4422006-03-24 03:16:11 -08001752 cs->mems_generation = cpuset_mems_generation++;
Paul Jackson3e0d98b2006-01-08 01:01:49 -08001753 fmeter_init(&cs->fmeter);
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +09001754 cs->relax_domain_level = -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001755
1756 cs->parent = parent;
Paul Jackson202f72d2006-01-08 01:01:57 -08001757 number_of_cpusets++;
Paul Menage8793d852007-10-18 23:39:39 -07001758 return &cs->css ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001759}
1760
Paul Jackson029190c2007-10-18 23:40:20 -07001761/*
Paul Jackson029190c2007-10-18 23:40:20 -07001762 * If the cpuset being removed has its flag 'sched_load_balance'
1763 * enabled, then simulate turning sched_load_balance off, which
Max Krasnyanskycf417142008-08-11 14:33:53 -07001764 * will call async_rebuild_sched_domains().
Paul Jackson029190c2007-10-18 23:40:20 -07001765 */
1766
Paul Menage8793d852007-10-18 23:39:39 -07001767static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001768{
Paul Menage8793d852007-10-18 23:39:39 -07001769 struct cpuset *cs = cgroup_cs(cont);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001770
Paul Jacksoncf2a473c2006-01-08 01:01:54 -08001771 cpuset_update_task_memory_state();
Paul Jackson029190c2007-10-18 23:40:20 -07001772
1773 if (is_sched_load_balance(cs))
Paul Menage700fe1a2008-04-29 01:00:00 -07001774 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
Paul Jackson029190c2007-10-18 23:40:20 -07001775
Paul Jackson202f72d2006-01-08 01:01:57 -08001776 number_of_cpusets--;
Paul Menage8793d852007-10-18 23:39:39 -07001777 kfree(cs);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001778}
1779
Paul Menage8793d852007-10-18 23:39:39 -07001780struct cgroup_subsys cpuset_subsys = {
1781 .name = "cpuset",
1782 .create = cpuset_create,
Max Krasnyanskycf417142008-08-11 14:33:53 -07001783 .destroy = cpuset_destroy,
Paul Menage8793d852007-10-18 23:39:39 -07001784 .can_attach = cpuset_can_attach,
1785 .attach = cpuset_attach,
1786 .populate = cpuset_populate,
1787 .post_clone = cpuset_post_clone,
1788 .subsys_id = cpuset_subsys_id,
1789 .early_init = 1,
1790};
1791
Paul Jacksonc417f022006-01-08 01:02:01 -08001792/*
1793 * cpuset_init_early - just enough so that the calls to
1794 * cpuset_update_task_memory_state() in early init code
1795 * are harmless.
1796 */
1797
1798int __init cpuset_init_early(void)
1799{
Paul Menage8793d852007-10-18 23:39:39 -07001800 top_cpuset.mems_generation = cpuset_mems_generation++;
Paul Jacksonc417f022006-01-08 01:02:01 -08001801 return 0;
1802}
1803
Paul Menage8793d852007-10-18 23:39:39 -07001804
Linus Torvalds1da177e2005-04-16 15:20:36 -07001805/**
1806 * cpuset_init - initialize cpusets at system boot
1807 *
1808 * Description: Initialize top_cpuset and the cpuset internal file system,
1809 **/
1810
1811int __init cpuset_init(void)
1812{
Paul Menage8793d852007-10-18 23:39:39 -07001813 int err = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001814
Mike Travisf9a86fc2008-04-04 18:11:07 -07001815 cpus_setall(top_cpuset.cpus_allowed);
1816 nodes_setall(top_cpuset.mems_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001817
Paul Jackson3e0d98b2006-01-08 01:01:49 -08001818 fmeter_init(&top_cpuset.fmeter);
Paul Jackson151a4422006-03-24 03:16:11 -08001819 top_cpuset.mems_generation = cpuset_mems_generation++;
Paul Jackson029190c2007-10-18 23:40:20 -07001820 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
Hidetoshi Seto1d3504f2008-04-15 14:04:23 +09001821 top_cpuset.relax_domain_level = -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001822
Linus Torvalds1da177e2005-04-16 15:20:36 -07001823 err = register_filesystem(&cpuset_fs_type);
1824 if (err < 0)
Paul Menage8793d852007-10-18 23:39:39 -07001825 return err;
1826
Paul Jackson202f72d2006-01-08 01:01:57 -08001827 number_of_cpusets = 1;
Paul Menage8793d852007-10-18 23:39:39 -07001828 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001829}
1830
Cliff Wickman956db3c2008-02-07 00:14:43 -08001831/**
1832 * cpuset_do_move_task - move a given task to another cpuset
1833 * @tsk: pointer to task_struct the task to move
1834 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1835 *
1836 * Called by cgroup_scan_tasks() for each task in a cgroup.
1837 * Return nonzero to stop the walk through the tasks.
1838 */
Adrian Bunk9e0c9142008-04-29 01:00:25 -07001839static void cpuset_do_move_task(struct task_struct *tsk,
1840 struct cgroup_scanner *scan)
Cliff Wickman956db3c2008-02-07 00:14:43 -08001841{
1842 struct cpuset_hotplug_scanner *chsp;
1843
1844 chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
1845 cgroup_attach_task(chsp->to, tsk);
1846}
1847
1848/**
1849 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1850 * @from: cpuset in which the tasks currently reside
1851 * @to: cpuset to which the tasks will be moved
1852 *
Paul Jacksonc8d9c902008-02-07 00:14:46 -08001853 * Called with cgroup_mutex held
1854 * callback_mutex must not be held, as cpuset_attach() will take it.
Cliff Wickman956db3c2008-02-07 00:14:43 -08001855 *
1856 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1857 * calling callback functions for each.
1858 */
1859static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1860{
1861 struct cpuset_hotplug_scanner scan;
1862
1863 scan.scan.cg = from->css.cgroup;
1864 scan.scan.test_task = NULL; /* select all tasks in cgroup */
1865 scan.scan.process_task = cpuset_do_move_task;
1866 scan.scan.heap = NULL;
1867 scan.to = to->css.cgroup;
1868
Lai Jiangshanda5ef6b2008-07-25 01:47:25 -07001869 if (cgroup_scan_tasks(&scan.scan))
Cliff Wickman956db3c2008-02-07 00:14:43 -08001870 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1871 "cgroup_scan_tasks failed\n");
1872}
1873
Paul Jacksonb1aac8b2006-09-29 02:01:17 -07001874/*
Max Krasnyanskycf417142008-08-11 14:33:53 -07001875 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
Paul Jacksonb1aac8b2006-09-29 02:01:17 -07001876 * or memory nodes, we need to walk over the cpuset hierarchy,
1877 * removing that CPU or node from all cpusets. If this removes the
Cliff Wickman956db3c2008-02-07 00:14:43 -08001878 * last CPU or node from a cpuset, then move the tasks in the empty
1879 * cpuset to its next-highest non-empty parent.
Paul Jacksonb1aac8b2006-09-29 02:01:17 -07001880 *
Paul Jacksonc8d9c902008-02-07 00:14:46 -08001881 * Called with cgroup_mutex held
1882 * callback_mutex must not be held, as cpuset_attach() will take it.
Paul Jacksonb1aac8b2006-09-29 02:01:17 -07001883 */
Cliff Wickman956db3c2008-02-07 00:14:43 -08001884static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
Paul Jacksonb1aac8b2006-09-29 02:01:17 -07001885{
Cliff Wickman956db3c2008-02-07 00:14:43 -08001886 struct cpuset *parent;
Paul Jacksonb1aac8b2006-09-29 02:01:17 -07001887
Paul Jacksonc8d9c902008-02-07 00:14:46 -08001888 /*
1889 * The cgroup's css_sets list is in use if there are tasks
1890 * in the cpuset; the list is empty if there are none;
1891 * the cs->css.refcnt seems always 0.
1892 */
Cliff Wickman956db3c2008-02-07 00:14:43 -08001893 if (list_empty(&cs->css.cgroup->css_sets))
1894 return;
1895
1896 /*
1897 * Find its next-highest non-empty parent, (top cpuset
1898 * has online cpus, so can't be empty).
1899 */
1900 parent = cs->parent;
Paul Jacksonb4501292008-02-07 00:14:47 -08001901 while (cpus_empty(parent->cpus_allowed) ||
1902 nodes_empty(parent->mems_allowed))
Cliff Wickman956db3c2008-02-07 00:14:43 -08001903 parent = parent->parent;
Cliff Wickman956db3c2008-02-07 00:14:43 -08001904
1905 move_member_tasks_to_cpuset(cs, parent);
1906}
1907
1908/*
1909 * Walk the specified cpuset subtree and look for empty cpusets.
1910 * The tasks of such cpuset must be moved to a parent cpuset.
1911 *
Paul Menage2df167a2008-02-07 00:14:45 -08001912 * Called with cgroup_mutex held. We take callback_mutex to modify
Cliff Wickman956db3c2008-02-07 00:14:43 -08001913 * cpus_allowed and mems_allowed.
1914 *
1915 * This walk processes the tree from top to bottom, completing one layer
1916 * before dropping down to the next. It always processes a node before
1917 * any of its children.
1918 *
1919 * For now, since we lack memory hot unplug, we'll never see a cpuset
1920 * that has tasks along with an empty 'mems'. But if we did see such
1921 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1922 */
Frederic Weisbeckerd294eb82008-10-03 12:10:10 +02001923static void scan_for_empty_cpusets(struct cpuset *root)
Cliff Wickman956db3c2008-02-07 00:14:43 -08001924{
Li Zefan8d1e6262008-07-29 22:33:21 -07001925 LIST_HEAD(queue);
Cliff Wickman956db3c2008-02-07 00:14:43 -08001926 struct cpuset *cp; /* scans cpusets being updated */
1927 struct cpuset *child; /* scans child cpusets of cp */
Cliff Wickman956db3c2008-02-07 00:14:43 -08001928 struct cgroup *cont;
Miao Xief9b4fb82008-07-25 01:47:22 -07001929 nodemask_t oldmems;
Cliff Wickman956db3c2008-02-07 00:14:43 -08001930
Cliff Wickman956db3c2008-02-07 00:14:43 -08001931 list_add_tail((struct list_head *)&root->stack_list, &queue);
1932
Cliff Wickman956db3c2008-02-07 00:14:43 -08001933 while (!list_empty(&queue)) {
Li Zefan8d1e6262008-07-29 22:33:21 -07001934 cp = list_first_entry(&queue, struct cpuset, stack_list);
Cliff Wickman956db3c2008-02-07 00:14:43 -08001935 list_del(queue.next);
1936 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
1937 child = cgroup_cs(cont);
1938 list_add_tail(&child->stack_list, &queue);
1939 }
Paul Jacksonb4501292008-02-07 00:14:47 -08001940
1941 /* Continue past cpusets with all cpus, mems online */
1942 if (cpus_subset(cp->cpus_allowed, cpu_online_map) &&
1943 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
1944 continue;
1945
Miao Xief9b4fb82008-07-25 01:47:22 -07001946 oldmems = cp->mems_allowed;
1947
Cliff Wickman956db3c2008-02-07 00:14:43 -08001948 /* Remove offline cpus and mems from this cpuset. */
Paul Jacksonb4501292008-02-07 00:14:47 -08001949 mutex_lock(&callback_mutex);
Cliff Wickman956db3c2008-02-07 00:14:43 -08001950 cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
1951 nodes_and(cp->mems_allowed, cp->mems_allowed,
1952 node_states[N_HIGH_MEMORY]);
Paul Jacksonb4501292008-02-07 00:14:47 -08001953 mutex_unlock(&callback_mutex);
1954
1955 /* Move tasks from the empty cpuset to a parent */
Paul Jacksonc8d9c902008-02-07 00:14:46 -08001956 if (cpus_empty(cp->cpus_allowed) ||
Paul Jacksonb4501292008-02-07 00:14:47 -08001957 nodes_empty(cp->mems_allowed))
Cliff Wickman956db3c2008-02-07 00:14:43 -08001958 remove_tasks_in_empty_cpuset(cp);
Miao Xief9b4fb82008-07-25 01:47:22 -07001959 else {
Li Zefan4e743392008-09-13 02:33:08 -07001960 update_tasks_cpumask(cp, NULL);
Miao Xief9b4fb82008-07-25 01:47:22 -07001961 update_tasks_nodemask(cp, &oldmems);
1962 }
Cliff Wickman956db3c2008-02-07 00:14:43 -08001963 }
Paul Jacksonb1aac8b2006-09-29 02:01:17 -07001964}
1965
1966/*
Paul Jackson4c4d50f2006-08-27 01:23:51 -07001967 * The top_cpuset tracks what CPUs and Memory Nodes are online,
1968 * period. This is necessary in order to make cpusets transparent
1969 * (of no affect) on systems that are actively using CPU hotplug
1970 * but making no active use of cpusets.
1971 *
Paul Jackson38837fc2006-09-29 02:01:16 -07001972 * This routine ensures that top_cpuset.cpus_allowed tracks
1973 * cpu_online_map on each CPU hotplug (cpuhp) event.
Max Krasnyanskycf417142008-08-11 14:33:53 -07001974 *
1975 * Called within get_online_cpus(). Needs to call cgroup_lock()
1976 * before calling generate_sched_domains().
Paul Jackson4c4d50f2006-08-27 01:23:51 -07001977 */
Max Krasnyanskycf417142008-08-11 14:33:53 -07001978static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
Paul Jackson029190c2007-10-18 23:40:20 -07001979 unsigned long phase, void *unused_cpu)
Paul Jackson4c4d50f2006-08-27 01:23:51 -07001980{
Max Krasnyanskycf417142008-08-11 14:33:53 -07001981 struct sched_domain_attr *attr;
1982 cpumask_t *doms;
1983 int ndoms;
1984
Dmitry Adamushko3e840502008-07-13 02:10:29 +02001985 switch (phase) {
Dmitry Adamushko3e840502008-07-13 02:10:29 +02001986 case CPU_ONLINE:
1987 case CPU_ONLINE_FROZEN:
1988 case CPU_DEAD:
1989 case CPU_DEAD_FROZEN:
Dmitry Adamushko3e840502008-07-13 02:10:29 +02001990 break;
Max Krasnyanskycf417142008-08-11 14:33:53 -07001991
Dmitry Adamushko3e840502008-07-13 02:10:29 +02001992 default:
Avi Kivityac076752007-05-24 12:33:15 +03001993 return NOTIFY_DONE;
Dmitry Adamushko3e840502008-07-13 02:10:29 +02001994 }
Avi Kivityac076752007-05-24 12:33:15 +03001995
Max Krasnyanskycf417142008-08-11 14:33:53 -07001996 cgroup_lock();
1997 top_cpuset.cpus_allowed = cpu_online_map;
1998 scan_for_empty_cpusets(&top_cpuset);
1999 ndoms = generate_sched_domains(&doms, &attr);
2000 cgroup_unlock();
2001
2002 /* Have scheduler rebuild the domains */
2003 partition_sched_domains(ndoms, doms, attr);
2004
Dmitry Adamushko3e840502008-07-13 02:10:29 +02002005 return NOTIFY_OK;
Paul Jackson4c4d50f2006-08-27 01:23:51 -07002006}
Paul Jackson4c4d50f2006-08-27 01:23:51 -07002007
Paul Jacksonb1aac8b2006-09-29 02:01:17 -07002008#ifdef CONFIG_MEMORY_HOTPLUG
Paul Jackson38837fc2006-09-29 02:01:16 -07002009/*
Christoph Lameter0e1e7c72007-10-16 01:25:38 -07002010 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
Max Krasnyanskycf417142008-08-11 14:33:53 -07002011 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2012 * See also the previous routine cpuset_track_online_cpus().
Paul Jackson38837fc2006-09-29 02:01:16 -07002013 */
Al Viro1af98922006-10-10 22:48:57 +01002014void cpuset_track_online_nodes(void)
Paul Jackson38837fc2006-09-29 02:01:16 -07002015{
Max Krasnyanskycf417142008-08-11 14:33:53 -07002016 cgroup_lock();
2017 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
2018 scan_for_empty_cpusets(&top_cpuset);
2019 cgroup_unlock();
Paul Jackson38837fc2006-09-29 02:01:16 -07002020}
2021#endif
2022
Linus Torvalds1da177e2005-04-16 15:20:36 -07002023/**
2024 * cpuset_init_smp - initialize cpus_allowed
2025 *
2026 * Description: Finish top cpuset after cpu, node maps are initialized
2027 **/
2028
2029void __init cpuset_init_smp(void)
2030{
2031 top_cpuset.cpus_allowed = cpu_online_map;
Christoph Lameter0e1e7c72007-10-16 01:25:38 -07002032 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
Paul Jackson4c4d50f2006-08-27 01:23:51 -07002033
Max Krasnyanskycf417142008-08-11 14:33:53 -07002034 hotcpu_notifier(cpuset_track_online_cpus, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002035}
2036
2037/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07002038 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2039 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
Mike Travisf9a86fc2008-04-04 18:11:07 -07002040 * @pmask: pointer to cpumask_t variable to receive cpus_allowed set.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002041 *
2042 * Description: Returns the cpumask_t cpus_allowed of the cpuset
2043 * attached to the specified @tsk. Guaranteed to return some non-empty
2044 * subset of cpu_online_map, even if this means going outside the
2045 * tasks cpuset.
2046 **/
2047
Mike Travisf9a86fc2008-04-04 18:11:07 -07002048void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002049{
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08002050 mutex_lock(&callback_mutex);
Mike Travisf9a86fc2008-04-04 18:11:07 -07002051 cpuset_cpus_allowed_locked(tsk, pmask);
Cliff Wickman470fd642007-10-18 23:40:46 -07002052 mutex_unlock(&callback_mutex);
Cliff Wickman470fd642007-10-18 23:40:46 -07002053}
2054
2055/**
2056 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
Paul Menage2df167a2008-02-07 00:14:45 -08002057 * Must be called with callback_mutex held.
Cliff Wickman470fd642007-10-18 23:40:46 -07002058 **/
Mike Travisf9a86fc2008-04-04 18:11:07 -07002059void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask)
Cliff Wickman470fd642007-10-18 23:40:46 -07002060{
Paul Jackson909d75a2006-01-08 01:01:55 -08002061 task_lock(tsk);
Mike Travisf9a86fc2008-04-04 18:11:07 -07002062 guarantee_online_cpus(task_cs(tsk), pmask);
Paul Jackson909d75a2006-01-08 01:01:55 -08002063 task_unlock(tsk);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002064}
2065
2066void cpuset_init_current_mems_allowed(void)
2067{
Mike Travisf9a86fc2008-04-04 18:11:07 -07002068 nodes_setall(current->mems_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002069}
2070
Randy Dunlapd9fd8a62005-07-27 11:45:11 -07002071/**
Paul Jackson909d75a2006-01-08 01:01:55 -08002072 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2073 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2074 *
2075 * Description: Returns the nodemask_t mems_allowed of the cpuset
2076 * attached to the specified @tsk. Guaranteed to return some non-empty
Christoph Lameter0e1e7c72007-10-16 01:25:38 -07002077 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
Paul Jackson909d75a2006-01-08 01:01:55 -08002078 * tasks cpuset.
2079 **/
2080
2081nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2082{
2083 nodemask_t mask;
2084
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08002085 mutex_lock(&callback_mutex);
Paul Jackson909d75a2006-01-08 01:01:55 -08002086 task_lock(tsk);
Paul Menage8793d852007-10-18 23:39:39 -07002087 guarantee_online_mems(task_cs(tsk), &mask);
Paul Jackson909d75a2006-01-08 01:01:55 -08002088 task_unlock(tsk);
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08002089 mutex_unlock(&callback_mutex);
Paul Jackson909d75a2006-01-08 01:01:55 -08002090
2091 return mask;
2092}
2093
2094/**
Mel Gorman19770b32008-04-28 02:12:18 -07002095 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2096 * @nodemask: the nodemask to be checked
Randy Dunlapd9fd8a62005-07-27 11:45:11 -07002097 *
Mel Gorman19770b32008-04-28 02:12:18 -07002098 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
Linus Torvalds1da177e2005-04-16 15:20:36 -07002099 */
Mel Gorman19770b32008-04-28 02:12:18 -07002100int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002101{
Mel Gorman19770b32008-04-28 02:12:18 -07002102 return nodes_intersects(*nodemask, current->mems_allowed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002103}
2104
Paul Jackson9bf22292005-09-06 15:18:12 -07002105/*
Paul Menage78608362008-04-29 01:00:26 -07002106 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2107 * mem_hardwall ancestor to the specified cpuset. Call holding
2108 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2109 * (an unusual configuration), then returns the root cpuset.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002110 */
Paul Menage78608362008-04-29 01:00:26 -07002111static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002112{
Paul Menage78608362008-04-29 01:00:26 -07002113 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
Paul Jackson9bf22292005-09-06 15:18:12 -07002114 cs = cs->parent;
2115 return cs;
2116}
2117
2118/**
Paul Jackson02a0e532006-12-13 00:34:25 -08002119 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
Paul Jackson9bf22292005-09-06 15:18:12 -07002120 * @z: is this zone on an allowed node?
Paul Jackson02a0e532006-12-13 00:34:25 -08002121 * @gfp_mask: memory allocation flags
Paul Jackson9bf22292005-09-06 15:18:12 -07002122 *
Paul Jackson02a0e532006-12-13 00:34:25 -08002123 * If we're in interrupt, yes, we can always allocate. If
2124 * __GFP_THISNODE is set, yes, we can always allocate. If zone
Paul Jackson9bf22292005-09-06 15:18:12 -07002125 * z's node is in our tasks mems_allowed, yes. If it's not a
2126 * __GFP_HARDWALL request and this zone's nodes is in the nearest
Paul Menage78608362008-04-29 01:00:26 -07002127 * hardwalled cpuset ancestor to this tasks cpuset, yes.
David Rientjesc596d9f2007-05-06 14:49:32 -07002128 * If the task has been OOM killed and has access to memory reserves
2129 * as specified by the TIF_MEMDIE flag, yes.
Paul Jackson9bf22292005-09-06 15:18:12 -07002130 * Otherwise, no.
2131 *
Paul Jackson02a0e532006-12-13 00:34:25 -08002132 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
2133 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
2134 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
2135 * from an enclosing cpuset.
2136 *
2137 * cpuset_zone_allowed_hardwall() only handles the simpler case of
2138 * hardwall cpusets, and never sleeps.
2139 *
2140 * The __GFP_THISNODE placement logic is really handled elsewhere,
2141 * by forcibly using a zonelist starting at a specified node, and by
2142 * (in get_page_from_freelist()) refusing to consider the zones for
2143 * any node on the zonelist except the first. By the time any such
2144 * calls get to this routine, we should just shut up and say 'yes'.
2145 *
Paul Jackson9bf22292005-09-06 15:18:12 -07002146 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
David Rientjesc596d9f2007-05-06 14:49:32 -07002147 * and do not allow allocations outside the current tasks cpuset
2148 * unless the task has been OOM killed as is marked TIF_MEMDIE.
Paul Jackson9bf22292005-09-06 15:18:12 -07002149 * GFP_KERNEL allocations are not so marked, so can escape to the
Paul Menage78608362008-04-29 01:00:26 -07002150 * nearest enclosing hardwalled ancestor cpuset.
Paul Jackson9bf22292005-09-06 15:18:12 -07002151 *
Paul Jackson02a0e532006-12-13 00:34:25 -08002152 * Scanning up parent cpusets requires callback_mutex. The
2153 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2154 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2155 * current tasks mems_allowed came up empty on the first pass over
2156 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2157 * cpuset are short of memory, might require taking the callback_mutex
2158 * mutex.
Paul Jackson9bf22292005-09-06 15:18:12 -07002159 *
Paul Jackson36be57f2006-05-20 15:00:10 -07002160 * The first call here from mm/page_alloc:get_page_from_freelist()
Paul Jackson02a0e532006-12-13 00:34:25 -08002161 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2162 * so no allocation on a node outside the cpuset is allowed (unless
2163 * in interrupt, of course).
Paul Jackson9bf22292005-09-06 15:18:12 -07002164 *
Paul Jackson36be57f2006-05-20 15:00:10 -07002165 * The second pass through get_page_from_freelist() doesn't even call
2166 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2167 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2168 * in alloc_flags. That logic and the checks below have the combined
2169 * affect that:
Paul Jackson9bf22292005-09-06 15:18:12 -07002170 * in_interrupt - any node ok (current task context irrelevant)
2171 * GFP_ATOMIC - any node ok
David Rientjesc596d9f2007-05-06 14:49:32 -07002172 * TIF_MEMDIE - any node ok
Paul Menage78608362008-04-29 01:00:26 -07002173 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
Paul Jackson9bf22292005-09-06 15:18:12 -07002174 * GFP_USER - only nodes in current tasks mems allowed ok.
Paul Jackson36be57f2006-05-20 15:00:10 -07002175 *
2176 * Rule:
Paul Jackson02a0e532006-12-13 00:34:25 -08002177 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
Paul Jackson36be57f2006-05-20 15:00:10 -07002178 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2179 * the code that might scan up ancestor cpusets and sleep.
Paul Jackson02a0e532006-12-13 00:34:25 -08002180 */
Paul Jackson9bf22292005-09-06 15:18:12 -07002181
Paul Jackson02a0e532006-12-13 00:34:25 -08002182int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
Paul Jackson9bf22292005-09-06 15:18:12 -07002183{
2184 int node; /* node that zone z is on */
2185 const struct cpuset *cs; /* current cpuset ancestors */
Paul Jackson29afd492006-03-24 03:16:12 -08002186 int allowed; /* is allocation in zone z allowed? */
Paul Jackson9bf22292005-09-06 15:18:12 -07002187
Christoph Lameter9b819d22006-09-25 23:31:40 -07002188 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
Paul Jackson9bf22292005-09-06 15:18:12 -07002189 return 1;
Christoph Lameter89fa3022006-09-25 23:31:55 -07002190 node = zone_to_nid(z);
Paul Jackson92d1dbd2006-05-20 15:00:11 -07002191 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
Paul Jackson9bf22292005-09-06 15:18:12 -07002192 if (node_isset(node, current->mems_allowed))
2193 return 1;
David Rientjesc596d9f2007-05-06 14:49:32 -07002194 /*
2195 * Allow tasks that have access to memory reserves because they have
2196 * been OOM killed to get memory anywhere.
2197 */
2198 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2199 return 1;
Paul Jackson9bf22292005-09-06 15:18:12 -07002200 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2201 return 0;
2202
Bob Picco5563e772005-11-13 16:06:35 -08002203 if (current->flags & PF_EXITING) /* Let dying task have memory */
2204 return 1;
2205
Paul Jackson9bf22292005-09-06 15:18:12 -07002206 /* Not hardwall and node outside mems_allowed: scan up cpusets */
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08002207 mutex_lock(&callback_mutex);
Paul Jackson053199e2005-10-30 15:02:30 -08002208
Paul Jackson053199e2005-10-30 15:02:30 -08002209 task_lock(current);
Paul Menage78608362008-04-29 01:00:26 -07002210 cs = nearest_hardwall_ancestor(task_cs(current));
Paul Jackson053199e2005-10-30 15:02:30 -08002211 task_unlock(current);
2212
Paul Jackson9bf22292005-09-06 15:18:12 -07002213 allowed = node_isset(node, cs->mems_allowed);
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08002214 mutex_unlock(&callback_mutex);
Paul Jackson9bf22292005-09-06 15:18:12 -07002215 return allowed;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002216}
2217
Paul Jackson02a0e532006-12-13 00:34:25 -08002218/*
2219 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
2220 * @z: is this zone on an allowed node?
2221 * @gfp_mask: memory allocation flags
2222 *
2223 * If we're in interrupt, yes, we can always allocate.
2224 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
David Rientjesc596d9f2007-05-06 14:49:32 -07002225 * z's node is in our tasks mems_allowed, yes. If the task has been
2226 * OOM killed and has access to memory reserves as specified by the
2227 * TIF_MEMDIE flag, yes. Otherwise, no.
Paul Jackson02a0e532006-12-13 00:34:25 -08002228 *
2229 * The __GFP_THISNODE placement logic is really handled elsewhere,
2230 * by forcibly using a zonelist starting at a specified node, and by
2231 * (in get_page_from_freelist()) refusing to consider the zones for
2232 * any node on the zonelist except the first. By the time any such
2233 * calls get to this routine, we should just shut up and say 'yes'.
2234 *
2235 * Unlike the cpuset_zone_allowed_softwall() variant, above,
2236 * this variant requires that the zone be in the current tasks
2237 * mems_allowed or that we're in interrupt. It does not scan up the
2238 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2239 * It never sleeps.
2240 */
2241
2242int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
2243{
2244 int node; /* node that zone z is on */
2245
2246 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2247 return 1;
2248 node = zone_to_nid(z);
2249 if (node_isset(node, current->mems_allowed))
2250 return 1;
Daniel Walkerdedf8b72007-10-18 03:06:04 -07002251 /*
2252 * Allow tasks that have access to memory reserves because they have
2253 * been OOM killed to get memory anywhere.
2254 */
2255 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2256 return 1;
Paul Jackson02a0e532006-12-13 00:34:25 -08002257 return 0;
2258}
2259
Paul Jacksonef08e3b2005-09-06 15:18:13 -07002260/**
Paul Jackson505970b2006-01-14 13:21:06 -08002261 * cpuset_lock - lock out any changes to cpuset structures
2262 *
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08002263 * The out of memory (oom) code needs to mutex_lock cpusets
Paul Jackson505970b2006-01-14 13:21:06 -08002264 * from being changed while it scans the tasklist looking for a
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08002265 * task in an overlapping cpuset. Expose callback_mutex via this
Paul Jackson505970b2006-01-14 13:21:06 -08002266 * cpuset_lock() routine, so the oom code can lock it, before
2267 * locking the task list. The tasklist_lock is a spinlock, so
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08002268 * must be taken inside callback_mutex.
Paul Jackson505970b2006-01-14 13:21:06 -08002269 */
2270
2271void cpuset_lock(void)
2272{
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08002273 mutex_lock(&callback_mutex);
Paul Jackson505970b2006-01-14 13:21:06 -08002274}
2275
2276/**
2277 * cpuset_unlock - release lock on cpuset changes
2278 *
2279 * Undo the lock taken in a previous cpuset_lock() call.
2280 */
2281
2282void cpuset_unlock(void)
2283{
Ingo Molnar3d3f26a2006-03-23 03:00:18 -08002284 mutex_unlock(&callback_mutex);
Paul Jackson505970b2006-01-14 13:21:06 -08002285}
2286
2287/**
Paul Jackson825a46a2006-03-24 03:16:03 -08002288 * cpuset_mem_spread_node() - On which node to begin search for a page
2289 *
2290 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2291 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2292 * and if the memory allocation used cpuset_mem_spread_node()
2293 * to determine on which node to start looking, as it will for
2294 * certain page cache or slab cache pages such as used for file
2295 * system buffers and inode caches, then instead of starting on the
2296 * local node to look for a free page, rather spread the starting
2297 * node around the tasks mems_allowed nodes.
2298 *
2299 * We don't have to worry about the returned node being offline
2300 * because "it can't happen", and even if it did, it would be ok.
2301 *
2302 * The routines calling guarantee_online_mems() are careful to
2303 * only set nodes in task->mems_allowed that are online. So it
2304 * should not be possible for the following code to return an
2305 * offline node. But if it did, that would be ok, as this routine
2306 * is not returning the node where the allocation must be, only
2307 * the node where the search should start. The zonelist passed to
2308 * __alloc_pages() will include all nodes. If the slab allocator
2309 * is passed an offline node, it will fall back to the local node.
2310 * See kmem_cache_alloc_node().
2311 */
2312
2313int cpuset_mem_spread_node(void)
2314{
2315 int node;
2316
2317 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2318 if (node == MAX_NUMNODES)
2319 node = first_node(current->mems_allowed);
2320 current->cpuset_mem_spread_rotor = node;
2321 return node;
2322}
2323EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2324
2325/**
David Rientjesbbe373f2007-10-16 23:25:58 -07002326 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2327 * @tsk1: pointer to task_struct of some task.
2328 * @tsk2: pointer to task_struct of some other task.
Paul Jacksonef08e3b2005-09-06 15:18:13 -07002329 *
David Rientjesbbe373f2007-10-16 23:25:58 -07002330 * Description: Return true if @tsk1's mems_allowed intersects the
2331 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2332 * one of the task's memory usage might impact the memory available
2333 * to the other.
Paul Jacksonef08e3b2005-09-06 15:18:13 -07002334 **/
2335
David Rientjesbbe373f2007-10-16 23:25:58 -07002336int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2337 const struct task_struct *tsk2)
Paul Jacksonef08e3b2005-09-06 15:18:13 -07002338{
David Rientjesbbe373f2007-10-16 23:25:58 -07002339 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
Paul Jacksonef08e3b2005-09-06 15:18:13 -07002340}
2341
Linus Torvalds1da177e2005-04-16 15:20:36 -07002342/*
Paul Jackson3e0d98b2006-01-08 01:01:49 -08002343 * Collection of memory_pressure is suppressed unless
2344 * this flag is enabled by writing "1" to the special
2345 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2346 */
2347
Paul Jacksonc5b2aff2006-01-08 01:01:51 -08002348int cpuset_memory_pressure_enabled __read_mostly;
Paul Jackson3e0d98b2006-01-08 01:01:49 -08002349
2350/**
2351 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2352 *
2353 * Keep a running average of the rate of synchronous (direct)
2354 * page reclaim efforts initiated by tasks in each cpuset.
2355 *
2356 * This represents the rate at which some task in the cpuset
2357 * ran low on memory on all nodes it was allowed to use, and
2358 * had to enter the kernels page reclaim code in an effort to
2359 * create more free memory by tossing clean pages or swapping
2360 * or writing dirty pages.
2361 *
2362 * Display to user space in the per-cpuset read-only file
2363 * "memory_pressure". Value displayed is an integer
2364 * representing the recent rate of entry into the synchronous
2365 * (direct) page reclaim by any task attached to the cpuset.
2366 **/
2367
2368void __cpuset_memory_pressure_bump(void)
2369{
Paul Jackson3e0d98b2006-01-08 01:01:49 -08002370 task_lock(current);
Paul Menage8793d852007-10-18 23:39:39 -07002371 fmeter_markevent(&task_cs(current)->fmeter);
Paul Jackson3e0d98b2006-01-08 01:01:49 -08002372 task_unlock(current);
2373}
2374
Paul Menage8793d852007-10-18 23:39:39 -07002375#ifdef CONFIG_PROC_PID_CPUSET
Paul Jackson3e0d98b2006-01-08 01:01:49 -08002376/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002377 * proc_cpuset_show()
2378 * - Print tasks cpuset path into seq_file.
2379 * - Used for /proc/<pid>/cpuset.
Paul Jackson053199e2005-10-30 15:02:30 -08002380 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2381 * doesn't really matter if tsk->cpuset changes after we read it,
Paul Jacksonc8d9c902008-02-07 00:14:46 -08002382 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
Paul Menage2df167a2008-02-07 00:14:45 -08002383 * anyway.
Linus Torvalds1da177e2005-04-16 15:20:36 -07002384 */
Paul Jackson029190c2007-10-18 23:40:20 -07002385static int proc_cpuset_show(struct seq_file *m, void *unused_v)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002386{
Eric W. Biederman13b41b02006-06-26 00:25:56 -07002387 struct pid *pid;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002388 struct task_struct *tsk;
2389 char *buf;
Paul Menage8793d852007-10-18 23:39:39 -07002390 struct cgroup_subsys_state *css;
Eric W. Biederman99f89552006-06-26 00:25:55 -07002391 int retval;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002392
Eric W. Biederman99f89552006-06-26 00:25:55 -07002393 retval = -ENOMEM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002394 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2395 if (!buf)
Eric W. Biederman99f89552006-06-26 00:25:55 -07002396 goto out;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002397
Eric W. Biederman99f89552006-06-26 00:25:55 -07002398 retval = -ESRCH;
Eric W. Biederman13b41b02006-06-26 00:25:56 -07002399 pid = m->private;
2400 tsk = get_pid_task(pid, PIDTYPE_PID);
Eric W. Biederman99f89552006-06-26 00:25:55 -07002401 if (!tsk)
2402 goto out_free;
2403
2404 retval = -EINVAL;
Paul Menage8793d852007-10-18 23:39:39 -07002405 cgroup_lock();
2406 css = task_subsys_state(tsk, cpuset_subsys_id);
2407 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002408 if (retval < 0)
Eric W. Biederman99f89552006-06-26 00:25:55 -07002409 goto out_unlock;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002410 seq_puts(m, buf);
2411 seq_putc(m, '\n');
Eric W. Biederman99f89552006-06-26 00:25:55 -07002412out_unlock:
Paul Menage8793d852007-10-18 23:39:39 -07002413 cgroup_unlock();
Eric W. Biederman99f89552006-06-26 00:25:55 -07002414 put_task_struct(tsk);
2415out_free:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002416 kfree(buf);
Eric W. Biederman99f89552006-06-26 00:25:55 -07002417out:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002418 return retval;
2419}
2420
2421static int cpuset_open(struct inode *inode, struct file *file)
2422{
Eric W. Biederman13b41b02006-06-26 00:25:56 -07002423 struct pid *pid = PROC_I(inode)->pid;
2424 return single_open(file, proc_cpuset_show, pid);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002425}
2426
Arjan van de Ven9a321442007-02-12 00:55:35 -08002427const struct file_operations proc_cpuset_operations = {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002428 .open = cpuset_open,
2429 .read = seq_read,
2430 .llseek = seq_lseek,
2431 .release = single_release,
2432};
Paul Menage8793d852007-10-18 23:39:39 -07002433#endif /* CONFIG_PROC_PID_CPUSET */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002434
2435/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
Eric W. Biedermandf5f8312008-02-08 04:18:33 -08002436void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002437{
Eric W. Biedermandf5f8312008-02-08 04:18:33 -08002438 seq_printf(m, "Cpus_allowed:\t");
Lai Jiangshan30e8e132008-10-18 20:28:20 -07002439 seq_cpumask(m, &task->cpus_allowed);
Eric W. Biedermandf5f8312008-02-08 04:18:33 -08002440 seq_printf(m, "\n");
Mike Travis39106dc2008-04-08 11:43:03 -07002441 seq_printf(m, "Cpus_allowed_list:\t");
Lai Jiangshan30e8e132008-10-18 20:28:20 -07002442 seq_cpumask_list(m, &task->cpus_allowed);
Mike Travis39106dc2008-04-08 11:43:03 -07002443 seq_printf(m, "\n");
Eric W. Biedermandf5f8312008-02-08 04:18:33 -08002444 seq_printf(m, "Mems_allowed:\t");
Lai Jiangshan30e8e132008-10-18 20:28:20 -07002445 seq_nodemask(m, &task->mems_allowed);
Eric W. Biedermandf5f8312008-02-08 04:18:33 -08002446 seq_printf(m, "\n");
Mike Travis39106dc2008-04-08 11:43:03 -07002447 seq_printf(m, "Mems_allowed_list:\t");
Lai Jiangshan30e8e132008-10-18 20:28:20 -07002448 seq_nodemask_list(m, &task->mems_allowed);
Mike Travis39106dc2008-04-08 11:43:03 -07002449 seq_printf(m, "\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002450}