blob: c6baa913592a84be37b7de56e2b2a9ce8ed2400e [file] [log] [blame]
Greg Ungerer171d8092011-05-17 16:45:00 +10001#ifndef _M68K_BITOPS_H
2#define _M68K_BITOPS_H
3/*
4 * Copyright 1992, Linus Torvalds.
5 *
6 * This file is subject to the terms and conditions of the GNU General Public
7 * License. See the file COPYING in the main directory of this archive
8 * for more details.
9 */
10
11#ifndef _LINUX_BITOPS_H
12#error only <linux/bitops.h> can be included directly
Sam Ravnborg49148022009-01-16 21:58:10 +100013#endif
Greg Ungerer171d8092011-05-17 16:45:00 +100014
15#include <linux/compiler.h>
16
17/*
18 * Bit access functions vary across the ColdFire and 68k families.
19 * So we will break them out here, and then macro in the ones we want.
20 *
21 * ColdFire - supports standard bset/bclr/bchg with register operand only
22 * 68000 - supports standard bset/bclr/bchg with memory operand
23 * >= 68020 - also supports the bfset/bfclr/bfchg instructions
24 *
25 * Although it is possible to use only the bset/bclr/bchg with register
26 * operands on all platforms you end up with larger generated code.
27 * So we use the best form possible on a given platform.
28 */
29
30static inline void bset_reg_set_bit(int nr, volatile unsigned long *vaddr)
31{
32 char *p = (char *)vaddr + (nr ^ 31) / 8;
33
34 __asm__ __volatile__ ("bset %1,(%0)"
35 :
36 : "a" (p), "di" (nr & 7)
37 : "memory");
38}
39
40static inline void bset_mem_set_bit(int nr, volatile unsigned long *vaddr)
41{
42 char *p = (char *)vaddr + (nr ^ 31) / 8;
43
44 __asm__ __volatile__ ("bset %1,%0"
45 : "+m" (*p)
46 : "di" (nr & 7));
47}
48
49static inline void bfset_mem_set_bit(int nr, volatile unsigned long *vaddr)
50{
51 __asm__ __volatile__ ("bfset %1{%0:#1}"
52 :
53 : "d" (nr ^ 31), "o" (*vaddr)
54 : "memory");
55}
56
57#if defined(CONFIG_COLDFIRE)
58#define set_bit(nr, vaddr) bset_reg_set_bit(nr, vaddr)
59#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
60#define set_bit(nr, vaddr) bset_mem_set_bit(nr, vaddr)
61#else
62#define set_bit(nr, vaddr) (__builtin_constant_p(nr) ? \
63 bset_mem_set_bit(nr, vaddr) : \
64 bfset_mem_set_bit(nr, vaddr))
65#endif
66
67#define __set_bit(nr, vaddr) set_bit(nr, vaddr)
68
69
70/*
71 * clear_bit() doesn't provide any barrier for the compiler.
72 */
73#define smp_mb__before_clear_bit() barrier()
74#define smp_mb__after_clear_bit() barrier()
75
76static inline void bclr_reg_clear_bit(int nr, volatile unsigned long *vaddr)
77{
78 char *p = (char *)vaddr + (nr ^ 31) / 8;
79
80 __asm__ __volatile__ ("bclr %1,(%0)"
81 :
82 : "a" (p), "di" (nr & 7)
83 : "memory");
84}
85
86static inline void bclr_mem_clear_bit(int nr, volatile unsigned long *vaddr)
87{
88 char *p = (char *)vaddr + (nr ^ 31) / 8;
89
90 __asm__ __volatile__ ("bclr %1,%0"
91 : "+m" (*p)
92 : "di" (nr & 7));
93}
94
95static inline void bfclr_mem_clear_bit(int nr, volatile unsigned long *vaddr)
96{
97 __asm__ __volatile__ ("bfclr %1{%0:#1}"
98 :
99 : "d" (nr ^ 31), "o" (*vaddr)
100 : "memory");
101}
102
103#if defined(CONFIG_COLDFIRE)
104#define clear_bit(nr, vaddr) bclr_reg_clear_bit(nr, vaddr)
105#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
106#define clear_bit(nr, vaddr) bclr_mem_clear_bit(nr, vaddr)
107#else
108#define clear_bit(nr, vaddr) (__builtin_constant_p(nr) ? \
109 bclr_mem_clear_bit(nr, vaddr) : \
110 bfclr_mem_clear_bit(nr, vaddr))
111#endif
112
113#define __clear_bit(nr, vaddr) clear_bit(nr, vaddr)
114
115
116static inline void bchg_reg_change_bit(int nr, volatile unsigned long *vaddr)
117{
118 char *p = (char *)vaddr + (nr ^ 31) / 8;
119
120 __asm__ __volatile__ ("bchg %1,(%0)"
121 :
122 : "a" (p), "di" (nr & 7)
123 : "memory");
124}
125
126static inline void bchg_mem_change_bit(int nr, volatile unsigned long *vaddr)
127{
128 char *p = (char *)vaddr + (nr ^ 31) / 8;
129
130 __asm__ __volatile__ ("bchg %1,%0"
131 : "+m" (*p)
132 : "di" (nr & 7));
133}
134
135static inline void bfchg_mem_change_bit(int nr, volatile unsigned long *vaddr)
136{
137 __asm__ __volatile__ ("bfchg %1{%0:#1}"
138 :
139 : "d" (nr ^ 31), "o" (*vaddr)
140 : "memory");
141}
142
143#if defined(CONFIG_COLDFIRE)
144#define change_bit(nr, vaddr) bchg_reg_change_bit(nr, vaddr)
145#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
146#define change_bit(nr, vaddr) bchg_mem_change_bit(nr, vaddr)
147#else
148#define change_bit(nr, vaddr) (__builtin_constant_p(nr) ? \
149 bchg_mem_change_bit(nr, vaddr) : \
150 bfchg_mem_change_bit(nr, vaddr))
151#endif
152
153#define __change_bit(nr, vaddr) change_bit(nr, vaddr)
154
155
156static inline int test_bit(int nr, const unsigned long *vaddr)
157{
158 return (vaddr[nr >> 5] & (1UL << (nr & 31))) != 0;
159}
160
161
162static inline int bset_reg_test_and_set_bit(int nr,
163 volatile unsigned long *vaddr)
164{
165 char *p = (char *)vaddr + (nr ^ 31) / 8;
166 char retval;
167
168 __asm__ __volatile__ ("bset %2,(%1); sne %0"
169 : "=d" (retval)
170 : "a" (p), "di" (nr & 7)
171 : "memory");
172 return retval;
173}
174
175static inline int bset_mem_test_and_set_bit(int nr,
176 volatile unsigned long *vaddr)
177{
178 char *p = (char *)vaddr + (nr ^ 31) / 8;
179 char retval;
180
181 __asm__ __volatile__ ("bset %2,%1; sne %0"
182 : "=d" (retval), "+m" (*p)
183 : "di" (nr & 7));
184 return retval;
185}
186
187static inline int bfset_mem_test_and_set_bit(int nr,
188 volatile unsigned long *vaddr)
189{
190 char retval;
191
192 __asm__ __volatile__ ("bfset %2{%1:#1}; sne %0"
193 : "=d" (retval)
194 : "d" (nr ^ 31), "o" (*vaddr)
195 : "memory");
196 return retval;
197}
198
199#if defined(CONFIG_COLDFIRE)
200#define test_and_set_bit(nr, vaddr) bset_reg_test_and_set_bit(nr, vaddr)
201#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
202#define test_and_set_bit(nr, vaddr) bset_mem_test_and_set_bit(nr, vaddr)
203#else
204#define test_and_set_bit(nr, vaddr) (__builtin_constant_p(nr) ? \
205 bset_mem_test_and_set_bit(nr, vaddr) : \
206 bfset_mem_test_and_set_bit(nr, vaddr))
207#endif
208
209#define __test_and_set_bit(nr, vaddr) test_and_set_bit(nr, vaddr)
210
211
212static inline int bclr_reg_test_and_clear_bit(int nr,
213 volatile unsigned long *vaddr)
214{
215 char *p = (char *)vaddr + (nr ^ 31) / 8;
216 char retval;
217
218 __asm__ __volatile__ ("bclr %2,(%1); sne %0"
219 : "=d" (retval)
220 : "a" (p), "di" (nr & 7)
221 : "memory");
222 return retval;
223}
224
225static inline int bclr_mem_test_and_clear_bit(int nr,
226 volatile unsigned long *vaddr)
227{
228 char *p = (char *)vaddr + (nr ^ 31) / 8;
229 char retval;
230
231 __asm__ __volatile__ ("bclr %2,%1; sne %0"
232 : "=d" (retval), "+m" (*p)
233 : "di" (nr & 7));
234 return retval;
235}
236
237static inline int bfclr_mem_test_and_clear_bit(int nr,
238 volatile unsigned long *vaddr)
239{
240 char retval;
241
242 __asm__ __volatile__ ("bfclr %2{%1:#1}; sne %0"
243 : "=d" (retval)
244 : "d" (nr ^ 31), "o" (*vaddr)
245 : "memory");
246 return retval;
247}
248
249#if defined(CONFIG_COLDFIRE)
250#define test_and_clear_bit(nr, vaddr) bclr_reg_test_and_clear_bit(nr, vaddr)
251#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
252#define test_and_clear_bit(nr, vaddr) bclr_mem_test_and_clear_bit(nr, vaddr)
253#else
254#define test_and_clear_bit(nr, vaddr) (__builtin_constant_p(nr) ? \
255 bclr_mem_test_and_clear_bit(nr, vaddr) : \
256 bfclr_mem_test_and_clear_bit(nr, vaddr))
257#endif
258
259#define __test_and_clear_bit(nr, vaddr) test_and_clear_bit(nr, vaddr)
260
261
262static inline int bchg_reg_test_and_change_bit(int nr,
263 volatile unsigned long *vaddr)
264{
265 char *p = (char *)vaddr + (nr ^ 31) / 8;
266 char retval;
267
268 __asm__ __volatile__ ("bchg %2,(%1); sne %0"
269 : "=d" (retval)
270 : "a" (p), "di" (nr & 7)
271 : "memory");
272 return retval;
273}
274
275static inline int bchg_mem_test_and_change_bit(int nr,
276 volatile unsigned long *vaddr)
277{
278 char *p = (char *)vaddr + (nr ^ 31) / 8;
279 char retval;
280
281 __asm__ __volatile__ ("bchg %2,%1; sne %0"
282 : "=d" (retval), "+m" (*p)
283 : "di" (nr & 7));
284 return retval;
285}
286
287static inline int bfchg_mem_test_and_change_bit(int nr,
288 volatile unsigned long *vaddr)
289{
290 char retval;
291
292 __asm__ __volatile__ ("bfchg %2{%1:#1}; sne %0"
293 : "=d" (retval)
294 : "d" (nr ^ 31), "o" (*vaddr)
295 : "memory");
296 return retval;
297}
298
299#if defined(CONFIG_COLDFIRE)
300#define test_and_change_bit(nr, vaddr) bchg_reg_test_and_change_bit(nr, vaddr)
301#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
302#define test_and_change_bit(nr, vaddr) bchg_mem_test_and_change_bit(nr, vaddr)
303#else
304#define test_and_change_bit(nr, vaddr) (__builtin_constant_p(nr) ? \
305 bchg_mem_test_and_change_bit(nr, vaddr) : \
306 bfchg_mem_test_and_change_bit(nr, vaddr))
307#endif
308
309#define __test_and_change_bit(nr, vaddr) test_and_change_bit(nr, vaddr)
310
311
312/*
313 * The true 68020 and more advanced processors support the "bfffo"
314 * instruction for finding bits. ColdFire and simple 68000 parts
315 * (including CPU32) do not support this. They simply use the generic
316 * functions.
317 */
318#if defined(CONFIG_CPU_HAS_NO_BITFIELDS)
319#include <asm-generic/bitops/find.h>
320#include <asm-generic/bitops/ffz.h>
321#else
322
323static inline int find_first_zero_bit(const unsigned long *vaddr,
324 unsigned size)
325{
326 const unsigned long *p = vaddr;
327 int res = 32;
328 unsigned int words;
329 unsigned long num;
330
331 if (!size)
332 return 0;
333
334 words = (size + 31) >> 5;
335 while (!(num = ~*p++)) {
336 if (!--words)
337 goto out;
338 }
339
340 __asm__ __volatile__ ("bfffo %1{#0,#0},%0"
341 : "=d" (res) : "d" (num & -num));
342 res ^= 31;
343out:
344 res += ((long)p - (long)vaddr - 4) * 8;
345 return res < size ? res : size;
346}
347#define find_first_zero_bit find_first_zero_bit
348
349static inline int find_next_zero_bit(const unsigned long *vaddr, int size,
350 int offset)
351{
352 const unsigned long *p = vaddr + (offset >> 5);
353 int bit = offset & 31UL, res;
354
355 if (offset >= size)
356 return size;
357
358 if (bit) {
359 unsigned long num = ~*p++ & (~0UL << bit);
360 offset -= bit;
361
362 /* Look for zero in first longword */
363 __asm__ __volatile__ ("bfffo %1{#0,#0},%0"
364 : "=d" (res) : "d" (num & -num));
365 if (res < 32) {
366 offset += res ^ 31;
367 return offset < size ? offset : size;
368 }
369 offset += 32;
370
371 if (offset >= size)
372 return size;
373 }
374 /* No zero yet, search remaining full bytes for a zero */
375 return offset + find_first_zero_bit(p, size - offset);
376}
377#define find_next_zero_bit find_next_zero_bit
378
379static inline int find_first_bit(const unsigned long *vaddr, unsigned size)
380{
381 const unsigned long *p = vaddr;
382 int res = 32;
383 unsigned int words;
384 unsigned long num;
385
386 if (!size)
387 return 0;
388
389 words = (size + 31) >> 5;
390 while (!(num = *p++)) {
391 if (!--words)
392 goto out;
393 }
394
395 __asm__ __volatile__ ("bfffo %1{#0,#0},%0"
396 : "=d" (res) : "d" (num & -num));
397 res ^= 31;
398out:
399 res += ((long)p - (long)vaddr - 4) * 8;
400 return res < size ? res : size;
401}
402#define find_first_bit find_first_bit
403
404static inline int find_next_bit(const unsigned long *vaddr, int size,
405 int offset)
406{
407 const unsigned long *p = vaddr + (offset >> 5);
408 int bit = offset & 31UL, res;
409
410 if (offset >= size)
411 return size;
412
413 if (bit) {
414 unsigned long num = *p++ & (~0UL << bit);
415 offset -= bit;
416
417 /* Look for one in first longword */
418 __asm__ __volatile__ ("bfffo %1{#0,#0},%0"
419 : "=d" (res) : "d" (num & -num));
420 if (res < 32) {
421 offset += res ^ 31;
422 return offset < size ? offset : size;
423 }
424 offset += 32;
425
426 if (offset >= size)
427 return size;
428 }
429 /* No one yet, search remaining full bytes for a one */
430 return offset + find_first_bit(p, size - offset);
431}
432#define find_next_bit find_next_bit
433
434/*
435 * ffz = Find First Zero in word. Undefined if no zero exists,
436 * so code should check against ~0UL first..
437 */
438static inline unsigned long ffz(unsigned long word)
439{
440 int res;
441
442 __asm__ __volatile__ ("bfffo %1{#0,#0},%0"
443 : "=d" (res) : "d" (~word & -~word));
444 return res ^ 31;
445}
446
447#endif
448
449#ifdef __KERNEL__
450
451#if defined(CONFIG_CPU_HAS_NO_BITFIELDS)
452
453/*
454 * The newer ColdFire family members support a "bitrev" instruction
455 * and we can use that to implement a fast ffs. Older Coldfire parts,
456 * and normal 68000 parts don't have anything special, so we use the
457 * generic functions for those.
458 */
459#if (defined(__mcfisaaplus__) || defined(__mcfisac__)) && \
460 !defined(CONFIG_M68000) && !defined(CONFIG_MCPU32)
461static inline int __ffs(int x)
462{
463 __asm__ __volatile__ ("bitrev %0; ff1 %0"
464 : "=d" (x)
465 : "0" (x));
466 return x;
467}
468
469static inline int ffs(int x)
470{
471 if (!x)
472 return 0;
473 return __ffs(x) + 1;
474}
475
476#else
477#include <asm-generic/bitops/ffs.h>
478#include <asm-generic/bitops/__ffs.h>
479#endif
480
481#include <asm-generic/bitops/fls.h>
482#include <asm-generic/bitops/__fls.h>
483
484#else
485
486/*
487 * ffs: find first bit set. This is defined the same way as
488 * the libc and compiler builtin ffs routines, therefore
489 * differs in spirit from the above ffz (man ffs).
490 */
491static inline int ffs(int x)
492{
493 int cnt;
494
495 __asm__ ("bfffo %1{#0:#0},%0"
496 : "=d" (cnt)
497 : "dm" (x & -x));
498 return 32 - cnt;
499}
500#define __ffs(x) (ffs(x) - 1)
501
502/*
503 * fls: find last bit set.
504 */
505static inline int fls(int x)
506{
507 int cnt;
508
509 __asm__ ("bfffo %1{#0,#0},%0"
510 : "=d" (cnt)
511 : "dm" (x));
512 return 32 - cnt;
513}
514
515static inline int __fls(int x)
516{
517 return fls(x) - 1;
518}
519
520#endif
521
522#include <asm-generic/bitops/ext2-atomic.h>
523#include <asm-generic/bitops/le.h>
524#include <asm-generic/bitops/fls64.h>
525#include <asm-generic/bitops/sched.h>
526#include <asm-generic/bitops/hweight.h>
527#include <asm-generic/bitops/lock.h>
528#endif /* __KERNEL__ */
529
530#endif /* _M68K_BITOPS_H */