Stephen Hemminger | aaa248f | 2006-10-17 00:09:42 -0700 | [diff] [blame] | 1 | /* |
| 2 | This is a maximally equidistributed combined Tausworthe generator |
| 3 | based on code from GNU Scientific Library 1.5 (30 Jun 2004) |
| 4 | |
| 5 | x_n = (s1_n ^ s2_n ^ s3_n) |
| 6 | |
| 7 | s1_{n+1} = (((s1_n & 4294967294) <<12) ^ (((s1_n <<13) ^ s1_n) >>19)) |
| 8 | s2_{n+1} = (((s2_n & 4294967288) << 4) ^ (((s2_n << 2) ^ s2_n) >>25)) |
| 9 | s3_{n+1} = (((s3_n & 4294967280) <<17) ^ (((s3_n << 3) ^ s3_n) >>11)) |
| 10 | |
| 11 | The period of this generator is about 2^88. |
| 12 | |
| 13 | From: P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe |
| 14 | Generators", Mathematics of Computation, 65, 213 (1996), 203--213. |
| 15 | |
| 16 | This is available on the net from L'Ecuyer's home page, |
| 17 | |
| 18 | http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps |
| 19 | ftp://ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/tausme.ps |
| 20 | |
| 21 | There is an erratum in the paper "Tables of Maximally |
| 22 | Equidistributed Combined LFSR Generators", Mathematics of |
| 23 | Computation, 68, 225 (1999), 261--269: |
| 24 | http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps |
| 25 | |
| 26 | ... the k_j most significant bits of z_j must be non- |
| 27 | zero, for each j. (Note: this restriction also applies to the |
| 28 | computer code given in [4], but was mistakenly not mentioned in |
| 29 | that paper.) |
| 30 | |
| 31 | This affects the seeding procedure by imposing the requirement |
| 32 | s1 > 1, s2 > 7, s3 > 15. |
| 33 | |
| 34 | */ |
| 35 | |
| 36 | #include <linux/types.h> |
| 37 | #include <linux/percpu.h> |
| 38 | #include <linux/module.h> |
Al Viro | f6a5703 | 2006-10-18 01:47:25 -0400 | [diff] [blame] | 39 | #include <linux/jiffies.h> |
Stephen Hemminger | aaa248f | 2006-10-17 00:09:42 -0700 | [diff] [blame] | 40 | #include <linux/random.h> |
| 41 | |
| 42 | struct rnd_state { |
| 43 | u32 s1, s2, s3; |
| 44 | }; |
| 45 | |
| 46 | static DEFINE_PER_CPU(struct rnd_state, net_rand_state); |
| 47 | |
| 48 | static u32 __random32(struct rnd_state *state) |
| 49 | { |
| 50 | #define TAUSWORTHE(s,a,b,c,d) ((s&c)<<d) ^ (((s <<a) ^ s)>>b) |
| 51 | |
| 52 | state->s1 = TAUSWORTHE(state->s1, 13, 19, 4294967294UL, 12); |
| 53 | state->s2 = TAUSWORTHE(state->s2, 2, 25, 4294967288UL, 4); |
| 54 | state->s3 = TAUSWORTHE(state->s3, 3, 11, 4294967280UL, 17); |
| 55 | |
| 56 | return (state->s1 ^ state->s2 ^ state->s3); |
| 57 | } |
| 58 | |
| 59 | static void __set_random32(struct rnd_state *state, unsigned long s) |
| 60 | { |
| 61 | if (s == 0) |
| 62 | s = 1; /* default seed is 1 */ |
| 63 | |
| 64 | #define LCG(n) (69069 * n) |
| 65 | state->s1 = LCG(s); |
| 66 | state->s2 = LCG(state->s1); |
| 67 | state->s3 = LCG(state->s2); |
| 68 | |
| 69 | /* "warm it up" */ |
| 70 | __random32(state); |
| 71 | __random32(state); |
| 72 | __random32(state); |
| 73 | __random32(state); |
| 74 | __random32(state); |
| 75 | __random32(state); |
| 76 | } |
| 77 | |
| 78 | /** |
| 79 | * random32 - pseudo random number generator |
| 80 | * |
| 81 | * A 32 bit pseudo-random number is generated using a fast |
| 82 | * algorithm suitable for simulation. This algorithm is NOT |
| 83 | * considered safe for cryptographic use. |
| 84 | */ |
| 85 | u32 random32(void) |
| 86 | { |
| 87 | unsigned long r; |
| 88 | struct rnd_state *state = &get_cpu_var(net_rand_state); |
| 89 | r = __random32(state); |
| 90 | put_cpu_var(state); |
| 91 | return r; |
| 92 | } |
| 93 | EXPORT_SYMBOL(random32); |
| 94 | |
| 95 | /** |
| 96 | * srandom32 - add entropy to pseudo random number generator |
| 97 | * @seed: seed value |
| 98 | * |
| 99 | * Add some additional seeding to the random32() pool. |
| 100 | * Note: this pool is per cpu so it only affects current CPU. |
| 101 | */ |
| 102 | void srandom32(u32 entropy) |
| 103 | { |
| 104 | struct rnd_state *state = &get_cpu_var(net_rand_state); |
| 105 | __set_random32(state, state->s1 ^ entropy); |
| 106 | put_cpu_var(state); |
| 107 | } |
| 108 | EXPORT_SYMBOL(srandom32); |
| 109 | |
| 110 | /* |
| 111 | * Generate some initially weak seeding values to allow |
| 112 | * to start the random32() engine. |
| 113 | */ |
| 114 | static int __init random32_init(void) |
| 115 | { |
| 116 | int i; |
| 117 | |
| 118 | for_each_possible_cpu(i) { |
| 119 | struct rnd_state *state = &per_cpu(net_rand_state,i); |
| 120 | __set_random32(state, i + jiffies); |
| 121 | } |
| 122 | return 0; |
| 123 | } |
| 124 | core_initcall(random32_init); |
| 125 | |
| 126 | /* |
| 127 | * Generate better values after random number generator |
| 128 | * is fully initalized. |
| 129 | */ |
| 130 | static int __init random32_reseed(void) |
| 131 | { |
| 132 | int i; |
| 133 | unsigned long seed; |
| 134 | |
| 135 | for_each_possible_cpu(i) { |
| 136 | struct rnd_state *state = &per_cpu(net_rand_state,i); |
| 137 | |
| 138 | get_random_bytes(&seed, sizeof(seed)); |
| 139 | __set_random32(state, seed); |
| 140 | } |
| 141 | return 0; |
| 142 | } |
| 143 | late_initcall(random32_reseed); |