blob: ce13d4677f1d044ae4c070144cfab592341aa81d [file] [log] [blame]
George Zhang20259842013-01-08 15:55:59 -08001/*
2 * VMware VMCI Driver
3 *
4 * Copyright (C) 2012 VMware, Inc. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation version 2 and no later version.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * for more details.
14 */
15
16#ifndef _VMW_VMCI_DEF_H_
17#define _VMW_VMCI_DEF_H_
18
19#include <linux/atomic.h>
20
21/* Register offsets. */
22#define VMCI_STATUS_ADDR 0x00
23#define VMCI_CONTROL_ADDR 0x04
24#define VMCI_ICR_ADDR 0x08
25#define VMCI_IMR_ADDR 0x0c
26#define VMCI_DATA_OUT_ADDR 0x10
27#define VMCI_DATA_IN_ADDR 0x14
28#define VMCI_CAPS_ADDR 0x18
29#define VMCI_RESULT_LOW_ADDR 0x1c
30#define VMCI_RESULT_HIGH_ADDR 0x20
31
32/* Max number of devices. */
33#define VMCI_MAX_DEVICES 1
34
35/* Status register bits. */
36#define VMCI_STATUS_INT_ON 0x1
37
38/* Control register bits. */
39#define VMCI_CONTROL_RESET 0x1
40#define VMCI_CONTROL_INT_ENABLE 0x2
41#define VMCI_CONTROL_INT_DISABLE 0x4
42
43/* Capabilities register bits. */
44#define VMCI_CAPS_HYPERCALL 0x1
45#define VMCI_CAPS_GUESTCALL 0x2
46#define VMCI_CAPS_DATAGRAM 0x4
47#define VMCI_CAPS_NOTIFICATIONS 0x8
48
49/* Interrupt Cause register bits. */
50#define VMCI_ICR_DATAGRAM 0x1
51#define VMCI_ICR_NOTIFICATION 0x2
52
53/* Interrupt Mask register bits. */
54#define VMCI_IMR_DATAGRAM 0x1
55#define VMCI_IMR_NOTIFICATION 0x2
56
57/* Interrupt type. */
58enum {
59 VMCI_INTR_TYPE_INTX = 0,
60 VMCI_INTR_TYPE_MSI = 1,
61 VMCI_INTR_TYPE_MSIX = 2,
62};
63
64/* Maximum MSI/MSI-X interrupt vectors in the device. */
65#define VMCI_MAX_INTRS 2
66
67/*
68 * Supported interrupt vectors. There is one for each ICR value above,
69 * but here they indicate the position in the vector array/message ID.
70 */
71enum {
72 VMCI_INTR_DATAGRAM = 0,
73 VMCI_INTR_NOTIFICATION = 1,
74};
75
76/*
77 * A single VMCI device has an upper limit of 128MB on the amount of
Vishnu DASA6f569922019-05-24 15:13:10 +000078 * memory that can be used for queue pairs. Since each queue pair
79 * consists of at least two pages, the memory limit also dictates the
80 * number of queue pairs a guest can create.
George Zhang20259842013-01-08 15:55:59 -080081 */
82#define VMCI_MAX_GUEST_QP_MEMORY (128 * 1024 * 1024)
Vishnu DASA6f569922019-05-24 15:13:10 +000083#define VMCI_MAX_GUEST_QP_COUNT (VMCI_MAX_GUEST_QP_MEMORY / PAGE_SIZE / 2)
84
85/*
86 * There can be at most PAGE_SIZE doorbells since there is one doorbell
87 * per byte in the doorbell bitmap page.
88 */
89#define VMCI_MAX_GUEST_DOORBELL_COUNT PAGE_SIZE
George Zhang20259842013-01-08 15:55:59 -080090
91/*
92 * Queues with pre-mapped data pages must be small, so that we don't pin
93 * too much kernel memory (especially on vmkernel). We limit a queuepair to
94 * 32 KB, or 16 KB per queue for symmetrical pairs.
95 */
96#define VMCI_MAX_PINNED_QP_MEMORY (32 * 1024)
97
98/*
99 * We have a fixed set of resource IDs available in the VMX.
100 * This allows us to have a very simple implementation since we statically
101 * know how many will create datagram handles. If a new caller arrives and
102 * we have run out of slots we can manually increment the maximum size of
103 * available resource IDs.
104 *
105 * VMCI reserved hypervisor datagram resource IDs.
106 */
107enum {
108 VMCI_RESOURCES_QUERY = 0,
109 VMCI_GET_CONTEXT_ID = 1,
110 VMCI_SET_NOTIFY_BITMAP = 2,
111 VMCI_DOORBELL_LINK = 3,
112 VMCI_DOORBELL_UNLINK = 4,
113 VMCI_DOORBELL_NOTIFY = 5,
114 /*
115 * VMCI_DATAGRAM_REQUEST_MAP and VMCI_DATAGRAM_REMOVE_MAP are
116 * obsoleted by the removal of VM to VM communication.
117 */
118 VMCI_DATAGRAM_REQUEST_MAP = 6,
119 VMCI_DATAGRAM_REMOVE_MAP = 7,
120 VMCI_EVENT_SUBSCRIBE = 8,
121 VMCI_EVENT_UNSUBSCRIBE = 9,
122 VMCI_QUEUEPAIR_ALLOC = 10,
123 VMCI_QUEUEPAIR_DETACH = 11,
124
125 /*
126 * VMCI_VSOCK_VMX_LOOKUP was assigned to 12 for Fusion 3.0/3.1,
127 * WS 7.0/7.1 and ESX 4.1
128 */
129 VMCI_HGFS_TRANSPORT = 13,
130 VMCI_UNITY_PBRPC_REGISTER = 14,
131 VMCI_RPC_PRIVILEGED = 15,
132 VMCI_RPC_UNPRIVILEGED = 16,
133 VMCI_RESOURCE_MAX = 17,
134};
135
136/*
137 * struct vmci_handle - Ownership information structure
138 * @context: The VMX context ID.
139 * @resource: The resource ID (used for locating in resource hash).
140 *
141 * The vmci_handle structure is used to track resources used within
142 * vmw_vmci.
143 */
144struct vmci_handle {
145 u32 context;
146 u32 resource;
147};
148
149#define vmci_make_handle(_cid, _rid) \
150 (struct vmci_handle){ .context = _cid, .resource = _rid }
151
152static inline bool vmci_handle_is_equal(struct vmci_handle h1,
153 struct vmci_handle h2)
154{
155 return h1.context == h2.context && h1.resource == h2.resource;
156}
157
158#define VMCI_INVALID_ID ~0
159static const struct vmci_handle VMCI_INVALID_HANDLE = {
160 .context = VMCI_INVALID_ID,
161 .resource = VMCI_INVALID_ID
162};
163
164static inline bool vmci_handle_is_invalid(struct vmci_handle h)
165{
166 return vmci_handle_is_equal(h, VMCI_INVALID_HANDLE);
167}
168
169/*
170 * The below defines can be used to send anonymous requests.
171 * This also indicates that no response is expected.
172 */
173#define VMCI_ANON_SRC_CONTEXT_ID VMCI_INVALID_ID
174#define VMCI_ANON_SRC_RESOURCE_ID VMCI_INVALID_ID
175static const struct vmci_handle VMCI_ANON_SRC_HANDLE = {
176 .context = VMCI_ANON_SRC_CONTEXT_ID,
177 .resource = VMCI_ANON_SRC_RESOURCE_ID
178};
179
180/* The lowest 16 context ids are reserved for internal use. */
181#define VMCI_RESERVED_CID_LIMIT ((u32) 16)
182
183/*
184 * Hypervisor context id, used for calling into hypervisor
185 * supplied services from the VM.
186 */
187#define VMCI_HYPERVISOR_CONTEXT_ID 0
188
189/*
190 * Well-known context id, a logical context that contains a set of
191 * well-known services. This context ID is now obsolete.
192 */
193#define VMCI_WELL_KNOWN_CONTEXT_ID 1
194
195/*
196 * Context ID used by host endpoints.
197 */
198#define VMCI_HOST_CONTEXT_ID 2
199
200#define VMCI_CONTEXT_IS_VM(_cid) (VMCI_INVALID_ID != (_cid) && \
201 (_cid) > VMCI_HOST_CONTEXT_ID)
202
203/*
204 * The VMCI_CONTEXT_RESOURCE_ID is used together with vmci_make_handle to make
205 * handles that refer to a specific context.
206 */
207#define VMCI_CONTEXT_RESOURCE_ID 0
208
209/*
210 * VMCI error codes.
211 */
212enum {
213 VMCI_SUCCESS_QUEUEPAIR_ATTACH = 5,
214 VMCI_SUCCESS_QUEUEPAIR_CREATE = 4,
215 VMCI_SUCCESS_LAST_DETACH = 3,
216 VMCI_SUCCESS_ACCESS_GRANTED = 2,
217 VMCI_SUCCESS_ENTRY_DEAD = 1,
218 VMCI_SUCCESS = 0,
219 VMCI_ERROR_INVALID_RESOURCE = (-1),
220 VMCI_ERROR_INVALID_ARGS = (-2),
221 VMCI_ERROR_NO_MEM = (-3),
222 VMCI_ERROR_DATAGRAM_FAILED = (-4),
223 VMCI_ERROR_MORE_DATA = (-5),
224 VMCI_ERROR_NO_MORE_DATAGRAMS = (-6),
225 VMCI_ERROR_NO_ACCESS = (-7),
226 VMCI_ERROR_NO_HANDLE = (-8),
227 VMCI_ERROR_DUPLICATE_ENTRY = (-9),
228 VMCI_ERROR_DST_UNREACHABLE = (-10),
229 VMCI_ERROR_PAYLOAD_TOO_LARGE = (-11),
230 VMCI_ERROR_INVALID_PRIV = (-12),
231 VMCI_ERROR_GENERIC = (-13),
232 VMCI_ERROR_PAGE_ALREADY_SHARED = (-14),
233 VMCI_ERROR_CANNOT_SHARE_PAGE = (-15),
234 VMCI_ERROR_CANNOT_UNSHARE_PAGE = (-16),
235 VMCI_ERROR_NO_PROCESS = (-17),
236 VMCI_ERROR_NO_DATAGRAM = (-18),
237 VMCI_ERROR_NO_RESOURCES = (-19),
238 VMCI_ERROR_UNAVAILABLE = (-20),
239 VMCI_ERROR_NOT_FOUND = (-21),
240 VMCI_ERROR_ALREADY_EXISTS = (-22),
241 VMCI_ERROR_NOT_PAGE_ALIGNED = (-23),
242 VMCI_ERROR_INVALID_SIZE = (-24),
243 VMCI_ERROR_REGION_ALREADY_SHARED = (-25),
244 VMCI_ERROR_TIMEOUT = (-26),
245 VMCI_ERROR_DATAGRAM_INCOMPLETE = (-27),
246 VMCI_ERROR_INCORRECT_IRQL = (-28),
247 VMCI_ERROR_EVENT_UNKNOWN = (-29),
248 VMCI_ERROR_OBSOLETE = (-30),
249 VMCI_ERROR_QUEUEPAIR_MISMATCH = (-31),
250 VMCI_ERROR_QUEUEPAIR_NOTSET = (-32),
251 VMCI_ERROR_QUEUEPAIR_NOTOWNER = (-33),
252 VMCI_ERROR_QUEUEPAIR_NOTATTACHED = (-34),
253 VMCI_ERROR_QUEUEPAIR_NOSPACE = (-35),
254 VMCI_ERROR_QUEUEPAIR_NODATA = (-36),
255 VMCI_ERROR_BUSMEM_INVALIDATION = (-37),
256 VMCI_ERROR_MODULE_NOT_LOADED = (-38),
257 VMCI_ERROR_DEVICE_NOT_FOUND = (-39),
258 VMCI_ERROR_QUEUEPAIR_NOT_READY = (-40),
259 VMCI_ERROR_WOULD_BLOCK = (-41),
260
261 /* VMCI clients should return error code within this range */
262 VMCI_ERROR_CLIENT_MIN = (-500),
263 VMCI_ERROR_CLIENT_MAX = (-550),
264
265 /* Internal error codes. */
266 VMCI_SHAREDMEM_ERROR_BAD_CONTEXT = (-1000),
267};
268
269/* VMCI reserved events. */
270enum {
271 /* Only applicable to guest endpoints */
272 VMCI_EVENT_CTX_ID_UPDATE = 0,
273
274 /* Applicable to guest and host */
275 VMCI_EVENT_CTX_REMOVED = 1,
276
277 /* Only applicable to guest endpoints */
278 VMCI_EVENT_QP_RESUMED = 2,
279
280 /* Applicable to guest and host */
281 VMCI_EVENT_QP_PEER_ATTACH = 3,
282
283 /* Applicable to guest and host */
284 VMCI_EVENT_QP_PEER_DETACH = 4,
285
286 /*
287 * Applicable to VMX and vmk. On vmk,
288 * this event has the Context payload type.
289 */
290 VMCI_EVENT_MEM_ACCESS_ON = 5,
291
292 /*
293 * Applicable to VMX and vmk. Same as
294 * above for the payload type.
295 */
296 VMCI_EVENT_MEM_ACCESS_OFF = 6,
297 VMCI_EVENT_MAX = 7,
298};
299
300/*
301 * Of the above events, a few are reserved for use in the VMX, and
302 * other endpoints (guest and host kernel) should not use them. For
303 * the rest of the events, we allow both host and guest endpoints to
304 * subscribe to them, to maintain the same API for host and guest
305 * endpoints.
306 */
307#define VMCI_EVENT_VALID_VMX(_event) ((_event) == VMCI_EVENT_MEM_ACCESS_ON || \
308 (_event) == VMCI_EVENT_MEM_ACCESS_OFF)
309
310#define VMCI_EVENT_VALID(_event) ((_event) < VMCI_EVENT_MAX && \
311 !VMCI_EVENT_VALID_VMX(_event))
312
313/* Reserved guest datagram resource ids. */
314#define VMCI_EVENT_HANDLER 0
315
316/*
317 * VMCI coarse-grained privileges (per context or host
318 * process/endpoint. An entity with the restricted flag is only
319 * allowed to interact with the hypervisor and trusted entities.
320 */
321enum {
322 VMCI_NO_PRIVILEGE_FLAGS = 0,
323 VMCI_PRIVILEGE_FLAG_RESTRICTED = 1,
324 VMCI_PRIVILEGE_FLAG_TRUSTED = 2,
325 VMCI_PRIVILEGE_ALL_FLAGS = (VMCI_PRIVILEGE_FLAG_RESTRICTED |
326 VMCI_PRIVILEGE_FLAG_TRUSTED),
327 VMCI_DEFAULT_PROC_PRIVILEGE_FLAGS = VMCI_NO_PRIVILEGE_FLAGS,
328 VMCI_LEAST_PRIVILEGE_FLAGS = VMCI_PRIVILEGE_FLAG_RESTRICTED,
329 VMCI_MAX_PRIVILEGE_FLAGS = VMCI_PRIVILEGE_FLAG_TRUSTED,
330};
331
332/* 0 through VMCI_RESERVED_RESOURCE_ID_MAX are reserved. */
333#define VMCI_RESERVED_RESOURCE_ID_MAX 1023
334
335/*
336 * Driver version.
337 *
338 * Increment major version when you make an incompatible change.
339 * Compatibility goes both ways (old driver with new executable
340 * as well as new driver with old executable).
341 */
342
343/* Never change VMCI_VERSION_SHIFT_WIDTH */
344#define VMCI_VERSION_SHIFT_WIDTH 16
345#define VMCI_MAKE_VERSION(_major, _minor) \
346 ((_major) << VMCI_VERSION_SHIFT_WIDTH | (u16) (_minor))
347
348#define VMCI_VERSION_MAJOR(v) ((u32) (v) >> VMCI_VERSION_SHIFT_WIDTH)
349#define VMCI_VERSION_MINOR(v) ((u16) (v))
350
351/*
352 * VMCI_VERSION is always the current version. Subsequently listed
353 * versions are ways of detecting previous versions of the connecting
354 * application (i.e., VMX).
355 *
356 * VMCI_VERSION_NOVMVM: This version removed support for VM to VM
357 * communication.
358 *
359 * VMCI_VERSION_NOTIFY: This version introduced doorbell notification
360 * support.
361 *
362 * VMCI_VERSION_HOSTQP: This version introduced host end point support
363 * for hosted products.
364 *
365 * VMCI_VERSION_PREHOSTQP: This is the version prior to the adoption of
366 * support for host end-points.
367 *
368 * VMCI_VERSION_PREVERS2: This fictional version number is intended to
369 * represent the version of a VMX which doesn't call into the driver
370 * with ioctl VERSION2 and thus doesn't establish its version with the
371 * driver.
372 */
373
374#define VMCI_VERSION VMCI_VERSION_NOVMVM
375#define VMCI_VERSION_NOVMVM VMCI_MAKE_VERSION(11, 0)
376#define VMCI_VERSION_NOTIFY VMCI_MAKE_VERSION(10, 0)
377#define VMCI_VERSION_HOSTQP VMCI_MAKE_VERSION(9, 0)
378#define VMCI_VERSION_PREHOSTQP VMCI_MAKE_VERSION(8, 0)
379#define VMCI_VERSION_PREVERS2 VMCI_MAKE_VERSION(1, 0)
380
381#define VMCI_SOCKETS_MAKE_VERSION(_p) \
382 ((((_p)[0] & 0xFF) << 24) | (((_p)[1] & 0xFF) << 16) | ((_p)[2]))
383
384/*
385 * The VMCI IOCTLs. We use identity code 7, as noted in ioctl-number.h, and
386 * we start at sequence 9f. This gives us the same values that our shipping
387 * products use, starting at 1951, provided we leave out the direction and
388 * structure size. Note that VMMon occupies the block following us, starting
389 * at 2001.
390 */
391#define IOCTL_VMCI_VERSION _IO(7, 0x9f) /* 1951 */
392#define IOCTL_VMCI_INIT_CONTEXT _IO(7, 0xa0)
393#define IOCTL_VMCI_QUEUEPAIR_SETVA _IO(7, 0xa4)
394#define IOCTL_VMCI_NOTIFY_RESOURCE _IO(7, 0xa5)
395#define IOCTL_VMCI_NOTIFICATIONS_RECEIVE _IO(7, 0xa6)
396#define IOCTL_VMCI_VERSION2 _IO(7, 0xa7)
397#define IOCTL_VMCI_QUEUEPAIR_ALLOC _IO(7, 0xa8)
398#define IOCTL_VMCI_QUEUEPAIR_SETPAGEFILE _IO(7, 0xa9)
399#define IOCTL_VMCI_QUEUEPAIR_DETACH _IO(7, 0xaa)
400#define IOCTL_VMCI_DATAGRAM_SEND _IO(7, 0xab)
401#define IOCTL_VMCI_DATAGRAM_RECEIVE _IO(7, 0xac)
402#define IOCTL_VMCI_CTX_ADD_NOTIFICATION _IO(7, 0xaf)
403#define IOCTL_VMCI_CTX_REMOVE_NOTIFICATION _IO(7, 0xb0)
404#define IOCTL_VMCI_CTX_GET_CPT_STATE _IO(7, 0xb1)
405#define IOCTL_VMCI_CTX_SET_CPT_STATE _IO(7, 0xb2)
406#define IOCTL_VMCI_GET_CONTEXT_ID _IO(7, 0xb3)
407#define IOCTL_VMCI_SOCKETS_VERSION _IO(7, 0xb4)
408#define IOCTL_VMCI_SOCKETS_GET_AF_VALUE _IO(7, 0xb8)
409#define IOCTL_VMCI_SOCKETS_GET_LOCAL_CID _IO(7, 0xb9)
410#define IOCTL_VMCI_SET_NOTIFY _IO(7, 0xcb) /* 1995 */
411/*IOCTL_VMMON_START _IO(7, 0xd1)*/ /* 2001 */
412
413/*
414 * struct vmci_queue_header - VMCI Queue Header information.
415 *
416 * A Queue cannot stand by itself as designed. Each Queue's header
417 * contains a pointer into itself (the producer_tail) and into its peer
418 * (consumer_head). The reason for the separation is one of
419 * accessibility: Each end-point can modify two things: where the next
420 * location to enqueue is within its produce_q (producer_tail); and
421 * where the next dequeue location is in its consume_q (consumer_head).
422 *
423 * An end-point cannot modify the pointers of its peer (guest to
424 * guest; NOTE that in the host both queue headers are mapped r/w).
425 * But, each end-point needs read access to both Queue header
426 * structures in order to determine how much space is used (or left)
427 * in the Queue. This is because for an end-point to know how full
428 * its produce_q is, it needs to use the consumer_head that points into
429 * the produce_q but -that- consumer_head is in the Queue header for
430 * that end-points consume_q.
431 *
432 * Thoroughly confused? Sorry.
433 *
434 * producer_tail: the point to enqueue new entrants. When you approach
435 * a line in a store, for example, you walk up to the tail.
436 *
437 * consumer_head: the point in the queue from which the next element is
438 * dequeued. In other words, who is next in line is he who is at the
439 * head of the line.
440 *
441 * Also, producer_tail points to an empty byte in the Queue, whereas
442 * consumer_head points to a valid byte of data (unless producer_tail ==
443 * consumer_head in which case consumer_head does not point to a valid
444 * byte of data).
445 *
446 * For a queue of buffer 'size' bytes, the tail and head pointers will be in
447 * the range [0, size-1].
448 *
449 * If produce_q_header->producer_tail == consume_q_header->consumer_head
450 * then the produce_q is empty.
451 */
452struct vmci_queue_header {
453 /* All fields are 64bit and aligned. */
454 struct vmci_handle handle; /* Identifier. */
455 atomic64_t producer_tail; /* Offset in this queue. */
456 atomic64_t consumer_head; /* Offset in peer queue. */
457};
458
459/*
460 * struct vmci_datagram - Base struct for vmci datagrams.
461 * @dst: A vmci_handle that tracks the destination of the datagram.
462 * @src: A vmci_handle that tracks the source of the datagram.
463 * @payload_size: The size of the payload.
464 *
465 * vmci_datagram structs are used when sending vmci datagrams. They include
466 * the necessary source and destination information to properly route
467 * the information along with the size of the package.
468 */
469struct vmci_datagram {
470 struct vmci_handle dst;
471 struct vmci_handle src;
472 u64 payload_size;
473};
474
475/*
476 * Second flag is for creating a well-known handle instead of a per context
477 * handle. Next flag is for deferring datagram delivery, so that the
478 * datagram callback is invoked in a delayed context (not interrupt context).
479 */
480#define VMCI_FLAG_DG_NONE 0
481#define VMCI_FLAG_WELLKNOWN_DG_HND 0x1
482#define VMCI_FLAG_ANYCID_DG_HND 0x2
483#define VMCI_FLAG_DG_DELAYED_CB 0x4
484
485/*
486 * Maximum supported size of a VMCI datagram for routable datagrams.
487 * Datagrams going to the hypervisor are allowed to be larger.
488 */
489#define VMCI_MAX_DG_SIZE (17 * 4096)
490#define VMCI_MAX_DG_PAYLOAD_SIZE (VMCI_MAX_DG_SIZE - \
491 sizeof(struct vmci_datagram))
492#define VMCI_DG_PAYLOAD(_dg) (void *)((char *)(_dg) + \
493 sizeof(struct vmci_datagram))
494#define VMCI_DG_HEADERSIZE sizeof(struct vmci_datagram)
495#define VMCI_DG_SIZE(_dg) (VMCI_DG_HEADERSIZE + (size_t)(_dg)->payload_size)
496#define VMCI_DG_SIZE_ALIGNED(_dg) ((VMCI_DG_SIZE(_dg) + 7) & (~((size_t) 0x7)))
497#define VMCI_MAX_DATAGRAM_QUEUE_SIZE (VMCI_MAX_DG_SIZE * 2)
498
499struct vmci_event_payload_qp {
500 struct vmci_handle handle; /* queue_pair handle. */
501 u32 peer_id; /* Context id of attaching/detaching VM. */
502 u32 _pad;
503};
504
505/* Flags for VMCI queue_pair API. */
506enum {
507 /* Fail alloc if QP not created by peer. */
508 VMCI_QPFLAG_ATTACH_ONLY = 1 << 0,
509
510 /* Only allow attaches from local context. */
511 VMCI_QPFLAG_LOCAL = 1 << 1,
512
513 /* Host won't block when guest is quiesced. */
514 VMCI_QPFLAG_NONBLOCK = 1 << 2,
515
516 /* Pin data pages in ESX. Used with NONBLOCK */
517 VMCI_QPFLAG_PINNED = 1 << 3,
518
519 /* Update the following flag when adding new flags. */
520 VMCI_QP_ALL_FLAGS = (VMCI_QPFLAG_ATTACH_ONLY | VMCI_QPFLAG_LOCAL |
521 VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED),
522
523 /* Convenience flags */
524 VMCI_QP_ASYMM = (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED),
525 VMCI_QP_ASYMM_PEER = (VMCI_QPFLAG_ATTACH_ONLY | VMCI_QP_ASYMM),
526};
527
528/*
529 * We allow at least 1024 more event datagrams from the hypervisor past the
530 * normally allowed datagrams pending for a given context. We define this
531 * limit on event datagrams from the hypervisor to guard against DoS attack
532 * from a malicious VM which could repeatedly attach to and detach from a queue
533 * pair, causing events to be queued at the destination VM. However, the rate
534 * at which such events can be generated is small since it requires a VM exit
535 * and handling of queue pair attach/detach call at the hypervisor. Event
536 * datagrams may be queued up at the destination VM if it has interrupts
537 * disabled or if it is not draining events for some other reason. 1024
538 * datagrams is a grossly conservative estimate of the time for which
539 * interrupts may be disabled in the destination VM, but at the same time does
540 * not exacerbate the memory pressure problem on the host by much (size of each
541 * event datagram is small).
542 */
543#define VMCI_MAX_DATAGRAM_AND_EVENT_QUEUE_SIZE \
544 (VMCI_MAX_DATAGRAM_QUEUE_SIZE + \
545 1024 * (sizeof(struct vmci_datagram) + \
546 sizeof(struct vmci_event_data_max)))
547
548/*
549 * Struct used for querying, via VMCI_RESOURCES_QUERY, the availability of
550 * hypervisor resources. Struct size is 16 bytes. All fields in struct are
551 * aligned to their natural alignment.
552 */
553struct vmci_resource_query_hdr {
554 struct vmci_datagram hdr;
555 u32 num_resources;
556 u32 _padding;
557};
558
559/*
560 * Convenience struct for negotiating vectors. Must match layout of
561 * VMCIResourceQueryHdr minus the struct vmci_datagram header.
562 */
563struct vmci_resource_query_msg {
564 u32 num_resources;
565 u32 _padding;
566 u32 resources[1];
567};
568
569/*
570 * The maximum number of resources that can be queried using
571 * VMCI_RESOURCE_QUERY is 31, as the result is encoded in the lower 31
572 * bits of a positive return value. Negative values are reserved for
573 * errors.
574 */
575#define VMCI_RESOURCE_QUERY_MAX_NUM 31
576
577/* Maximum size for the VMCI_RESOURCE_QUERY request. */
578#define VMCI_RESOURCE_QUERY_MAX_SIZE \
579 (sizeof(struct vmci_resource_query_hdr) + \
580 sizeof(u32) * VMCI_RESOURCE_QUERY_MAX_NUM)
581
582/*
583 * Struct used for setting the notification bitmap. All fields in
584 * struct are aligned to their natural alignment.
585 */
586struct vmci_notify_bm_set_msg {
587 struct vmci_datagram hdr;
588 u32 bitmap_ppn;
589 u32 _pad;
590};
591
592/*
593 * Struct used for linking a doorbell handle with an index in the
594 * notify bitmap. All fields in struct are aligned to their natural
595 * alignment.
596 */
597struct vmci_doorbell_link_msg {
598 struct vmci_datagram hdr;
599 struct vmci_handle handle;
600 u64 notify_idx;
601};
602
603/*
604 * Struct used for unlinking a doorbell handle from an index in the
605 * notify bitmap. All fields in struct are aligned to their natural
606 * alignment.
607 */
608struct vmci_doorbell_unlink_msg {
609 struct vmci_datagram hdr;
610 struct vmci_handle handle;
611};
612
613/*
614 * Struct used for generating a notification on a doorbell handle. All
615 * fields in struct are aligned to their natural alignment.
616 */
617struct vmci_doorbell_notify_msg {
618 struct vmci_datagram hdr;
619 struct vmci_handle handle;
620};
621
622/*
623 * This struct is used to contain data for events. Size of this struct is a
624 * multiple of 8 bytes, and all fields are aligned to their natural alignment.
625 */
626struct vmci_event_data {
627 u32 event; /* 4 bytes. */
628 u32 _pad;
629 /* Event payload is put here. */
630};
631
632/*
633 * Define the different VMCI_EVENT payload data types here. All structs must
634 * be a multiple of 8 bytes, and fields must be aligned to their natural
635 * alignment.
636 */
637struct vmci_event_payld_ctx {
638 u32 context_id; /* 4 bytes. */
639 u32 _pad;
640};
641
642struct vmci_event_payld_qp {
643 struct vmci_handle handle; /* queue_pair handle. */
644 u32 peer_id; /* Context id of attaching/detaching VM. */
645 u32 _pad;
646};
647
648/*
649 * We define the following struct to get the size of the maximum event
650 * data the hypervisor may send to the guest. If adding a new event
651 * payload type above, add it to the following struct too (inside the
652 * union).
653 */
654struct vmci_event_data_max {
655 struct vmci_event_data event_data;
656 union {
657 struct vmci_event_payld_ctx context_payload;
658 struct vmci_event_payld_qp qp_payload;
659 } ev_data_payload;
660};
661
662/*
663 * Struct used for VMCI_EVENT_SUBSCRIBE/UNSUBSCRIBE and
664 * VMCI_EVENT_HANDLER messages. Struct size is 32 bytes. All fields
665 * in struct are aligned to their natural alignment.
666 */
667struct vmci_event_msg {
668 struct vmci_datagram hdr;
669
670 /* Has event type and payload. */
671 struct vmci_event_data event_data;
672
673 /* Payload gets put here. */
674};
675
676/* Event with context payload. */
677struct vmci_event_ctx {
678 struct vmci_event_msg msg;
679 struct vmci_event_payld_ctx payload;
680};
681
682/* Event with QP payload. */
683struct vmci_event_qp {
684 struct vmci_event_msg msg;
685 struct vmci_event_payld_qp payload;
686};
687
688/*
689 * Structs used for queue_pair alloc and detach messages. We align fields of
690 * these structs to 64bit boundaries.
691 */
692struct vmci_qp_alloc_msg {
693 struct vmci_datagram hdr;
694 struct vmci_handle handle;
695 u32 peer;
696 u32 flags;
697 u64 produce_size;
698 u64 consume_size;
699 u64 num_ppns;
700
701 /* List of PPNs placed here. */
702};
703
704struct vmci_qp_detach_msg {
705 struct vmci_datagram hdr;
706 struct vmci_handle handle;
707};
708
709/* VMCI Doorbell API. */
710#define VMCI_FLAG_DELAYED_CB 0x01
711
712typedef void (*vmci_callback) (void *client_data);
713
714/*
715 * struct vmci_qp - A vmw_vmci queue pair handle.
716 *
717 * This structure is used as a handle to a queue pair created by
718 * VMCI. It is intentionally left opaque to clients.
719 */
720struct vmci_qp;
721
722/* Callback needed for correctly waiting on events. */
723typedef int (*vmci_datagram_recv_cb) (void *client_data,
724 struct vmci_datagram *msg);
725
726/* VMCI Event API. */
727typedef void (*vmci_event_cb) (u32 sub_id, const struct vmci_event_data *ed,
728 void *client_data);
729
730/*
731 * We use the following inline function to access the payload data
732 * associated with an event data.
733 */
734static inline const void *
735vmci_event_data_const_payload(const struct vmci_event_data *ev_data)
736{
737 return (const char *)ev_data + sizeof(*ev_data);
738}
739
740static inline void *vmci_event_data_payload(struct vmci_event_data *ev_data)
741{
742 return (void *)vmci_event_data_const_payload(ev_data);
743}
744
745/*
Jorgen Hansenf42a0fd2015-11-12 01:29:32 -0800746 * Helper to read a value from a head or tail pointer. For X86_32, the
747 * pointer is treated as a 32bit value, since the pointer value
748 * never exceeds a 32bit value in this case. Also, doing an
749 * atomic64_read on X86_32 uniprocessor systems may be implemented
750 * as a non locked cmpxchg8b, that may end up overwriting updates done
751 * by the VMCI device to the memory location. On 32bit SMP, the lock
752 * prefix will be used, so correctness isn't an issue, but using a
753 * 64bit operation still adds unnecessary overhead.
754 */
755static inline u64 vmci_q_read_pointer(atomic64_t *var)
756{
757#if defined(CONFIG_X86_32)
758 return atomic_read((atomic_t *)var);
759#else
760 return atomic64_read(var);
761#endif
762}
763
764/*
765 * Helper to set the value of a head or tail pointer. For X86_32, the
766 * pointer is treated as a 32bit value, since the pointer value
767 * never exceeds a 32bit value in this case. On 32bit SMP, using a
768 * locked cmpxchg8b adds unnecessary overhead.
769 */
770static inline void vmci_q_set_pointer(atomic64_t *var,
771 u64 new_val)
772{
773#if defined(CONFIG_X86_32)
774 return atomic_set((atomic_t *)var, (u32)new_val);
775#else
776 return atomic64_set(var, new_val);
777#endif
778}
779
780/*
George Zhang20259842013-01-08 15:55:59 -0800781 * Helper to add a given offset to a head or tail pointer. Wraps the
782 * value of the pointer around the max size of the queue.
783 */
784static inline void vmci_qp_add_pointer(atomic64_t *var,
785 size_t add,
786 u64 size)
787{
Jorgen Hansenf42a0fd2015-11-12 01:29:32 -0800788 u64 new_val = vmci_q_read_pointer(var);
George Zhang20259842013-01-08 15:55:59 -0800789
790 if (new_val >= size - add)
791 new_val -= size;
792
793 new_val += add;
794
Jorgen Hansenf42a0fd2015-11-12 01:29:32 -0800795 vmci_q_set_pointer(var, new_val);
George Zhang20259842013-01-08 15:55:59 -0800796}
797
798/*
799 * Helper routine to get the Producer Tail from the supplied queue.
800 */
801static inline u64
802vmci_q_header_producer_tail(const struct vmci_queue_header *q_header)
803{
804 struct vmci_queue_header *qh = (struct vmci_queue_header *)q_header;
Jorgen Hansenf42a0fd2015-11-12 01:29:32 -0800805 return vmci_q_read_pointer(&qh->producer_tail);
George Zhang20259842013-01-08 15:55:59 -0800806}
807
808/*
809 * Helper routine to get the Consumer Head from the supplied queue.
810 */
811static inline u64
812vmci_q_header_consumer_head(const struct vmci_queue_header *q_header)
813{
814 struct vmci_queue_header *qh = (struct vmci_queue_header *)q_header;
Jorgen Hansenf42a0fd2015-11-12 01:29:32 -0800815 return vmci_q_read_pointer(&qh->consumer_head);
George Zhang20259842013-01-08 15:55:59 -0800816}
817
818/*
819 * Helper routine to increment the Producer Tail. Fundamentally,
820 * vmci_qp_add_pointer() is used to manipulate the tail itself.
821 */
822static inline void
823vmci_q_header_add_producer_tail(struct vmci_queue_header *q_header,
824 size_t add,
825 u64 queue_size)
826{
827 vmci_qp_add_pointer(&q_header->producer_tail, add, queue_size);
828}
829
830/*
831 * Helper routine to increment the Consumer Head. Fundamentally,
832 * vmci_qp_add_pointer() is used to manipulate the head itself.
833 */
834static inline void
835vmci_q_header_add_consumer_head(struct vmci_queue_header *q_header,
836 size_t add,
837 u64 queue_size)
838{
839 vmci_qp_add_pointer(&q_header->consumer_head, add, queue_size);
840}
841
842/*
843 * Helper routine for getting the head and the tail pointer for a queue.
844 * Both the VMCIQueues are needed to get both the pointers for one queue.
845 */
846static inline void
847vmci_q_header_get_pointers(const struct vmci_queue_header *produce_q_header,
848 const struct vmci_queue_header *consume_q_header,
849 u64 *producer_tail,
850 u64 *consumer_head)
851{
852 if (producer_tail)
853 *producer_tail = vmci_q_header_producer_tail(produce_q_header);
854
855 if (consumer_head)
856 *consumer_head = vmci_q_header_consumer_head(consume_q_header);
857}
858
859static inline void vmci_q_header_init(struct vmci_queue_header *q_header,
860 const struct vmci_handle handle)
861{
862 q_header->handle = handle;
863 atomic64_set(&q_header->producer_tail, 0);
864 atomic64_set(&q_header->consumer_head, 0);
865}
866
867/*
868 * Finds available free space in a produce queue to enqueue more
869 * data or reports an error if queue pair corruption is detected.
870 */
871static s64
872vmci_q_header_free_space(const struct vmci_queue_header *produce_q_header,
873 const struct vmci_queue_header *consume_q_header,
874 const u64 produce_q_size)
875{
876 u64 tail;
877 u64 head;
878 u64 free_space;
879
880 tail = vmci_q_header_producer_tail(produce_q_header);
881 head = vmci_q_header_consumer_head(consume_q_header);
882
883 if (tail >= produce_q_size || head >= produce_q_size)
884 return VMCI_ERROR_INVALID_SIZE;
885
886 /*
887 * Deduct 1 to avoid tail becoming equal to head which causes
888 * ambiguity. If head and tail are equal it means that the
889 * queue is empty.
890 */
891 if (tail >= head)
892 free_space = produce_q_size - (tail - head) - 1;
893 else
894 free_space = head - tail - 1;
895
896 return free_space;
897}
898
899/*
900 * vmci_q_header_free_space() does all the heavy lifting of
901 * determing the number of free bytes in a Queue. This routine,
902 * then subtracts that size from the full size of the Queue so
903 * the caller knows how many bytes are ready to be dequeued.
904 * Results:
905 * On success, available data size in bytes (up to MAX_INT64).
906 * On failure, appropriate error code.
907 */
908static inline s64
909vmci_q_header_buf_ready(const struct vmci_queue_header *consume_q_header,
910 const struct vmci_queue_header *produce_q_header,
911 const u64 consume_q_size)
912{
913 s64 free_space;
914
915 free_space = vmci_q_header_free_space(consume_q_header,
916 produce_q_header, consume_q_size);
917 if (free_space < VMCI_SUCCESS)
918 return free_space;
919
920 return consume_q_size - free_space - 1;
921}
922
923
924#endif /* _VMW_VMCI_DEF_H_ */