Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * linux/arch/arm/vfp/vfpsingle.c |
| 3 | * |
| 4 | * This code is derived in part from John R. Housers softfloat library, which |
| 5 | * carries the following notice: |
| 6 | * |
| 7 | * =========================================================================== |
| 8 | * This C source file is part of the SoftFloat IEC/IEEE Floating-point |
| 9 | * Arithmetic Package, Release 2. |
| 10 | * |
| 11 | * Written by John R. Hauser. This work was made possible in part by the |
| 12 | * International Computer Science Institute, located at Suite 600, 1947 Center |
| 13 | * Street, Berkeley, California 94704. Funding was partially provided by the |
| 14 | * National Science Foundation under grant MIP-9311980. The original version |
| 15 | * of this code was written as part of a project to build a fixed-point vector |
| 16 | * processor in collaboration with the University of California at Berkeley, |
| 17 | * overseen by Profs. Nelson Morgan and John Wawrzynek. More information |
| 18 | * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ |
| 19 | * arithmetic/softfloat.html'. |
| 20 | * |
| 21 | * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort |
| 22 | * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT |
| 23 | * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO |
| 24 | * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY |
| 25 | * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. |
| 26 | * |
| 27 | * Derivative works are acceptable, even for commercial purposes, so long as |
| 28 | * (1) they include prominent notice that the work is derivative, and (2) they |
| 29 | * include prominent notice akin to these three paragraphs for those parts of |
| 30 | * this code that are retained. |
| 31 | * =========================================================================== |
| 32 | */ |
| 33 | #include <linux/kernel.h> |
| 34 | #include <linux/bitops.h> |
| 35 | #include <asm/ptrace.h> |
| 36 | #include <asm/vfp.h> |
| 37 | |
| 38 | #include "vfpinstr.h" |
| 39 | #include "vfp.h" |
| 40 | |
| 41 | static struct vfp_single vfp_single_default_qnan = { |
| 42 | .exponent = 255, |
| 43 | .sign = 0, |
| 44 | .significand = VFP_SINGLE_SIGNIFICAND_QNAN, |
| 45 | }; |
| 46 | |
| 47 | static void vfp_single_dump(const char *str, struct vfp_single *s) |
| 48 | { |
| 49 | pr_debug("VFP: %s: sign=%d exponent=%d significand=%08x\n", |
| 50 | str, s->sign != 0, s->exponent, s->significand); |
| 51 | } |
| 52 | |
| 53 | static void vfp_single_normalise_denormal(struct vfp_single *vs) |
| 54 | { |
| 55 | int bits = 31 - fls(vs->significand); |
| 56 | |
| 57 | vfp_single_dump("normalise_denormal: in", vs); |
| 58 | |
| 59 | if (bits) { |
| 60 | vs->exponent -= bits - 1; |
| 61 | vs->significand <<= bits; |
| 62 | } |
| 63 | |
| 64 | vfp_single_dump("normalise_denormal: out", vs); |
| 65 | } |
| 66 | |
| 67 | #ifndef DEBUG |
| 68 | #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except) |
| 69 | u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions) |
| 70 | #else |
| 71 | u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func) |
| 72 | #endif |
| 73 | { |
| 74 | u32 significand, incr, rmode; |
| 75 | int exponent, shift, underflow; |
| 76 | |
| 77 | vfp_single_dump("pack: in", vs); |
| 78 | |
| 79 | /* |
| 80 | * Infinities and NaNs are a special case. |
| 81 | */ |
| 82 | if (vs->exponent == 255 && (vs->significand == 0 || exceptions)) |
| 83 | goto pack; |
| 84 | |
| 85 | /* |
| 86 | * Special-case zero. |
| 87 | */ |
| 88 | if (vs->significand == 0) { |
| 89 | vs->exponent = 0; |
| 90 | goto pack; |
| 91 | } |
| 92 | |
| 93 | exponent = vs->exponent; |
| 94 | significand = vs->significand; |
| 95 | |
| 96 | /* |
| 97 | * Normalise first. Note that we shift the significand up to |
| 98 | * bit 31, so we have VFP_SINGLE_LOW_BITS + 1 below the least |
| 99 | * significant bit. |
| 100 | */ |
| 101 | shift = 32 - fls(significand); |
| 102 | if (shift < 32 && shift) { |
| 103 | exponent -= shift; |
| 104 | significand <<= shift; |
| 105 | } |
| 106 | |
| 107 | #ifdef DEBUG |
| 108 | vs->exponent = exponent; |
| 109 | vs->significand = significand; |
| 110 | vfp_single_dump("pack: normalised", vs); |
| 111 | #endif |
| 112 | |
| 113 | /* |
| 114 | * Tiny number? |
| 115 | */ |
| 116 | underflow = exponent < 0; |
| 117 | if (underflow) { |
| 118 | significand = vfp_shiftright32jamming(significand, -exponent); |
| 119 | exponent = 0; |
| 120 | #ifdef DEBUG |
| 121 | vs->exponent = exponent; |
| 122 | vs->significand = significand; |
| 123 | vfp_single_dump("pack: tiny number", vs); |
| 124 | #endif |
| 125 | if (!(significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1))) |
| 126 | underflow = 0; |
| 127 | } |
| 128 | |
| 129 | /* |
| 130 | * Select rounding increment. |
| 131 | */ |
| 132 | incr = 0; |
| 133 | rmode = fpscr & FPSCR_RMODE_MASK; |
| 134 | |
| 135 | if (rmode == FPSCR_ROUND_NEAREST) { |
| 136 | incr = 1 << VFP_SINGLE_LOW_BITS; |
| 137 | if ((significand & (1 << (VFP_SINGLE_LOW_BITS + 1))) == 0) |
| 138 | incr -= 1; |
| 139 | } else if (rmode == FPSCR_ROUND_TOZERO) { |
| 140 | incr = 0; |
| 141 | } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vs->sign != 0)) |
| 142 | incr = (1 << (VFP_SINGLE_LOW_BITS + 1)) - 1; |
| 143 | |
| 144 | pr_debug("VFP: rounding increment = 0x%08x\n", incr); |
| 145 | |
| 146 | /* |
| 147 | * Is our rounding going to overflow? |
| 148 | */ |
| 149 | if ((significand + incr) < significand) { |
| 150 | exponent += 1; |
| 151 | significand = (significand >> 1) | (significand & 1); |
| 152 | incr >>= 1; |
| 153 | #ifdef DEBUG |
| 154 | vs->exponent = exponent; |
| 155 | vs->significand = significand; |
| 156 | vfp_single_dump("pack: overflow", vs); |
| 157 | #endif |
| 158 | } |
| 159 | |
| 160 | /* |
| 161 | * If any of the low bits (which will be shifted out of the |
| 162 | * number) are non-zero, the result is inexact. |
| 163 | */ |
| 164 | if (significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1)) |
| 165 | exceptions |= FPSCR_IXC; |
| 166 | |
| 167 | /* |
| 168 | * Do our rounding. |
| 169 | */ |
| 170 | significand += incr; |
| 171 | |
| 172 | /* |
| 173 | * Infinity? |
| 174 | */ |
| 175 | if (exponent >= 254) { |
| 176 | exceptions |= FPSCR_OFC | FPSCR_IXC; |
| 177 | if (incr == 0) { |
| 178 | vs->exponent = 253; |
| 179 | vs->significand = 0x7fffffff; |
| 180 | } else { |
| 181 | vs->exponent = 255; /* infinity */ |
| 182 | vs->significand = 0; |
| 183 | } |
| 184 | } else { |
| 185 | if (significand >> (VFP_SINGLE_LOW_BITS + 1) == 0) |
| 186 | exponent = 0; |
| 187 | if (exponent || significand > 0x80000000) |
| 188 | underflow = 0; |
| 189 | if (underflow) |
| 190 | exceptions |= FPSCR_UFC; |
| 191 | vs->exponent = exponent; |
| 192 | vs->significand = significand >> 1; |
| 193 | } |
| 194 | |
| 195 | pack: |
| 196 | vfp_single_dump("pack: final", vs); |
| 197 | { |
| 198 | s32 d = vfp_single_pack(vs); |
| 199 | pr_debug("VFP: %s: d(s%d)=%08x exceptions=%08x\n", func, |
| 200 | sd, d, exceptions); |
| 201 | vfp_put_float(sd, d); |
| 202 | } |
| 203 | |
| 204 | return exceptions & ~VFP_NAN_FLAG; |
| 205 | } |
| 206 | |
| 207 | /* |
| 208 | * Propagate the NaN, setting exceptions if it is signalling. |
| 209 | * 'n' is always a NaN. 'm' may be a number, NaN or infinity. |
| 210 | */ |
| 211 | static u32 |
| 212 | vfp_propagate_nan(struct vfp_single *vsd, struct vfp_single *vsn, |
| 213 | struct vfp_single *vsm, u32 fpscr) |
| 214 | { |
| 215 | struct vfp_single *nan; |
| 216 | int tn, tm = 0; |
| 217 | |
| 218 | tn = vfp_single_type(vsn); |
| 219 | |
| 220 | if (vsm) |
| 221 | tm = vfp_single_type(vsm); |
| 222 | |
| 223 | if (fpscr & FPSCR_DEFAULT_NAN) |
| 224 | /* |
| 225 | * Default NaN mode - always returns a quiet NaN |
| 226 | */ |
| 227 | nan = &vfp_single_default_qnan; |
| 228 | else { |
| 229 | /* |
| 230 | * Contemporary mode - select the first signalling |
| 231 | * NAN, or if neither are signalling, the first |
| 232 | * quiet NAN. |
| 233 | */ |
| 234 | if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN)) |
| 235 | nan = vsn; |
| 236 | else |
| 237 | nan = vsm; |
| 238 | /* |
| 239 | * Make the NaN quiet. |
| 240 | */ |
| 241 | nan->significand |= VFP_SINGLE_SIGNIFICAND_QNAN; |
| 242 | } |
| 243 | |
| 244 | *vsd = *nan; |
| 245 | |
| 246 | /* |
| 247 | * If one was a signalling NAN, raise invalid operation. |
| 248 | */ |
| 249 | return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG; |
| 250 | } |
| 251 | |
| 252 | |
| 253 | /* |
| 254 | * Extended operations |
| 255 | */ |
| 256 | static u32 vfp_single_fabs(int sd, int unused, s32 m, u32 fpscr) |
| 257 | { |
| 258 | vfp_put_float(sd, vfp_single_packed_abs(m)); |
| 259 | return 0; |
| 260 | } |
| 261 | |
| 262 | static u32 vfp_single_fcpy(int sd, int unused, s32 m, u32 fpscr) |
| 263 | { |
| 264 | vfp_put_float(sd, m); |
| 265 | return 0; |
| 266 | } |
| 267 | |
| 268 | static u32 vfp_single_fneg(int sd, int unused, s32 m, u32 fpscr) |
| 269 | { |
| 270 | vfp_put_float(sd, vfp_single_packed_negate(m)); |
| 271 | return 0; |
| 272 | } |
| 273 | |
| 274 | static const u16 sqrt_oddadjust[] = { |
| 275 | 0x0004, 0x0022, 0x005d, 0x00b1, 0x011d, 0x019f, 0x0236, 0x02e0, |
| 276 | 0x039c, 0x0468, 0x0545, 0x0631, 0x072b, 0x0832, 0x0946, 0x0a67 |
| 277 | }; |
| 278 | |
| 279 | static const u16 sqrt_evenadjust[] = { |
| 280 | 0x0a2d, 0x08af, 0x075a, 0x0629, 0x051a, 0x0429, 0x0356, 0x029e, |
| 281 | 0x0200, 0x0179, 0x0109, 0x00af, 0x0068, 0x0034, 0x0012, 0x0002 |
| 282 | }; |
| 283 | |
| 284 | u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand) |
| 285 | { |
| 286 | int index; |
| 287 | u32 z, a; |
| 288 | |
| 289 | if ((significand & 0xc0000000) != 0x40000000) { |
| 290 | printk(KERN_WARNING "VFP: estimate_sqrt: invalid significand\n"); |
| 291 | } |
| 292 | |
| 293 | a = significand << 1; |
| 294 | index = (a >> 27) & 15; |
| 295 | if (exponent & 1) { |
| 296 | z = 0x4000 + (a >> 17) - sqrt_oddadjust[index]; |
| 297 | z = ((a / z) << 14) + (z << 15); |
| 298 | a >>= 1; |
| 299 | } else { |
| 300 | z = 0x8000 + (a >> 17) - sqrt_evenadjust[index]; |
| 301 | z = a / z + z; |
| 302 | z = (z >= 0x20000) ? 0xffff8000 : (z << 15); |
| 303 | if (z <= a) |
| 304 | return (s32)a >> 1; |
| 305 | } |
| 306 | return (u32)(((u64)a << 31) / z) + (z >> 1); |
| 307 | } |
| 308 | |
| 309 | static u32 vfp_single_fsqrt(int sd, int unused, s32 m, u32 fpscr) |
| 310 | { |
| 311 | struct vfp_single vsm, vsd; |
| 312 | int ret, tm; |
| 313 | |
| 314 | vfp_single_unpack(&vsm, m); |
| 315 | tm = vfp_single_type(&vsm); |
| 316 | if (tm & (VFP_NAN|VFP_INFINITY)) { |
| 317 | struct vfp_single *vsp = &vsd; |
| 318 | |
| 319 | if (tm & VFP_NAN) |
| 320 | ret = vfp_propagate_nan(vsp, &vsm, NULL, fpscr); |
| 321 | else if (vsm.sign == 0) { |
| 322 | sqrt_copy: |
| 323 | vsp = &vsm; |
| 324 | ret = 0; |
| 325 | } else { |
| 326 | sqrt_invalid: |
| 327 | vsp = &vfp_single_default_qnan; |
| 328 | ret = FPSCR_IOC; |
| 329 | } |
| 330 | vfp_put_float(sd, vfp_single_pack(vsp)); |
| 331 | return ret; |
| 332 | } |
| 333 | |
| 334 | /* |
| 335 | * sqrt(+/- 0) == +/- 0 |
| 336 | */ |
| 337 | if (tm & VFP_ZERO) |
| 338 | goto sqrt_copy; |
| 339 | |
| 340 | /* |
| 341 | * Normalise a denormalised number |
| 342 | */ |
| 343 | if (tm & VFP_DENORMAL) |
| 344 | vfp_single_normalise_denormal(&vsm); |
| 345 | |
| 346 | /* |
| 347 | * sqrt(<0) = invalid |
| 348 | */ |
| 349 | if (vsm.sign) |
| 350 | goto sqrt_invalid; |
| 351 | |
| 352 | vfp_single_dump("sqrt", &vsm); |
| 353 | |
| 354 | /* |
| 355 | * Estimate the square root. |
| 356 | */ |
| 357 | vsd.sign = 0; |
| 358 | vsd.exponent = ((vsm.exponent - 127) >> 1) + 127; |
| 359 | vsd.significand = vfp_estimate_sqrt_significand(vsm.exponent, vsm.significand) + 2; |
| 360 | |
| 361 | vfp_single_dump("sqrt estimate", &vsd); |
| 362 | |
| 363 | /* |
| 364 | * And now adjust. |
| 365 | */ |
| 366 | if ((vsd.significand & VFP_SINGLE_LOW_BITS_MASK) <= 5) { |
| 367 | if (vsd.significand < 2) { |
| 368 | vsd.significand = 0xffffffff; |
| 369 | } else { |
| 370 | u64 term; |
| 371 | s64 rem; |
| 372 | vsm.significand <<= !(vsm.exponent & 1); |
| 373 | term = (u64)vsd.significand * vsd.significand; |
| 374 | rem = ((u64)vsm.significand << 32) - term; |
| 375 | |
| 376 | pr_debug("VFP: term=%016llx rem=%016llx\n", term, rem); |
| 377 | |
| 378 | while (rem < 0) { |
| 379 | vsd.significand -= 1; |
| 380 | rem += ((u64)vsd.significand << 1) | 1; |
| 381 | } |
| 382 | vsd.significand |= rem != 0; |
| 383 | } |
| 384 | } |
| 385 | vsd.significand = vfp_shiftright32jamming(vsd.significand, 1); |
| 386 | |
| 387 | return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fsqrt"); |
| 388 | } |
| 389 | |
| 390 | /* |
| 391 | * Equal := ZC |
| 392 | * Less than := N |
| 393 | * Greater than := C |
| 394 | * Unordered := CV |
| 395 | */ |
| 396 | static u32 vfp_compare(int sd, int signal_on_qnan, s32 m, u32 fpscr) |
| 397 | { |
| 398 | s32 d; |
| 399 | u32 ret = 0; |
| 400 | |
| 401 | d = vfp_get_float(sd); |
| 402 | if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) { |
| 403 | ret |= FPSCR_C | FPSCR_V; |
| 404 | if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1)))) |
| 405 | /* |
| 406 | * Signalling NaN, or signalling on quiet NaN |
| 407 | */ |
| 408 | ret |= FPSCR_IOC; |
| 409 | } |
| 410 | |
| 411 | if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) { |
| 412 | ret |= FPSCR_C | FPSCR_V; |
| 413 | if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1)))) |
| 414 | /* |
| 415 | * Signalling NaN, or signalling on quiet NaN |
| 416 | */ |
| 417 | ret |= FPSCR_IOC; |
| 418 | } |
| 419 | |
| 420 | if (ret == 0) { |
| 421 | if (d == m || vfp_single_packed_abs(d | m) == 0) { |
| 422 | /* |
| 423 | * equal |
| 424 | */ |
| 425 | ret |= FPSCR_Z | FPSCR_C; |
| 426 | } else if (vfp_single_packed_sign(d ^ m)) { |
| 427 | /* |
| 428 | * different signs |
| 429 | */ |
| 430 | if (vfp_single_packed_sign(d)) |
| 431 | /* |
| 432 | * d is negative, so d < m |
| 433 | */ |
| 434 | ret |= FPSCR_N; |
| 435 | else |
| 436 | /* |
| 437 | * d is positive, so d > m |
| 438 | */ |
| 439 | ret |= FPSCR_C; |
| 440 | } else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) { |
| 441 | /* |
| 442 | * d < m |
| 443 | */ |
| 444 | ret |= FPSCR_N; |
| 445 | } else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) { |
| 446 | /* |
| 447 | * d > m |
| 448 | */ |
| 449 | ret |= FPSCR_C; |
| 450 | } |
| 451 | } |
| 452 | return ret; |
| 453 | } |
| 454 | |
| 455 | static u32 vfp_single_fcmp(int sd, int unused, s32 m, u32 fpscr) |
| 456 | { |
| 457 | return vfp_compare(sd, 0, m, fpscr); |
| 458 | } |
| 459 | |
| 460 | static u32 vfp_single_fcmpe(int sd, int unused, s32 m, u32 fpscr) |
| 461 | { |
| 462 | return vfp_compare(sd, 1, m, fpscr); |
| 463 | } |
| 464 | |
| 465 | static u32 vfp_single_fcmpz(int sd, int unused, s32 m, u32 fpscr) |
| 466 | { |
| 467 | return vfp_compare(sd, 0, 0, fpscr); |
| 468 | } |
| 469 | |
| 470 | static u32 vfp_single_fcmpez(int sd, int unused, s32 m, u32 fpscr) |
| 471 | { |
| 472 | return vfp_compare(sd, 1, 0, fpscr); |
| 473 | } |
| 474 | |
| 475 | static u32 vfp_single_fcvtd(int dd, int unused, s32 m, u32 fpscr) |
| 476 | { |
| 477 | struct vfp_single vsm; |
| 478 | struct vfp_double vdd; |
| 479 | int tm; |
| 480 | u32 exceptions = 0; |
| 481 | |
| 482 | vfp_single_unpack(&vsm, m); |
| 483 | |
| 484 | tm = vfp_single_type(&vsm); |
| 485 | |
| 486 | /* |
| 487 | * If we have a signalling NaN, signal invalid operation. |
| 488 | */ |
| 489 | if (tm == VFP_SNAN) |
| 490 | exceptions = FPSCR_IOC; |
| 491 | |
| 492 | if (tm & VFP_DENORMAL) |
| 493 | vfp_single_normalise_denormal(&vsm); |
| 494 | |
| 495 | vdd.sign = vsm.sign; |
| 496 | vdd.significand = (u64)vsm.significand << 32; |
| 497 | |
| 498 | /* |
| 499 | * If we have an infinity or NaN, the exponent must be 2047. |
| 500 | */ |
| 501 | if (tm & (VFP_INFINITY|VFP_NAN)) { |
| 502 | vdd.exponent = 2047; |
| 503 | if (tm & VFP_NAN) |
| 504 | vdd.significand |= VFP_DOUBLE_SIGNIFICAND_QNAN; |
| 505 | goto pack_nan; |
| 506 | } else if (tm & VFP_ZERO) |
| 507 | vdd.exponent = 0; |
| 508 | else |
| 509 | vdd.exponent = vsm.exponent + (1023 - 127); |
| 510 | |
| 511 | /* |
| 512 | * Technically, if bit 0 of dd is set, this is an invalid |
| 513 | * instruction. However, we ignore this for efficiency. |
| 514 | */ |
| 515 | return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fcvtd"); |
| 516 | |
| 517 | pack_nan: |
| 518 | vfp_put_double(dd, vfp_double_pack(&vdd)); |
| 519 | return exceptions; |
| 520 | } |
| 521 | |
| 522 | static u32 vfp_single_fuito(int sd, int unused, s32 m, u32 fpscr) |
| 523 | { |
| 524 | struct vfp_single vs; |
| 525 | |
| 526 | vs.sign = 0; |
| 527 | vs.exponent = 127 + 31 - 1; |
| 528 | vs.significand = (u32)m; |
| 529 | |
| 530 | return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fuito"); |
| 531 | } |
| 532 | |
| 533 | static u32 vfp_single_fsito(int sd, int unused, s32 m, u32 fpscr) |
| 534 | { |
| 535 | struct vfp_single vs; |
| 536 | |
| 537 | vs.sign = (m & 0x80000000) >> 16; |
| 538 | vs.exponent = 127 + 31 - 1; |
| 539 | vs.significand = vs.sign ? -m : m; |
| 540 | |
| 541 | return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fsito"); |
| 542 | } |
| 543 | |
| 544 | static u32 vfp_single_ftoui(int sd, int unused, s32 m, u32 fpscr) |
| 545 | { |
| 546 | struct vfp_single vsm; |
| 547 | u32 d, exceptions = 0; |
| 548 | int rmode = fpscr & FPSCR_RMODE_MASK; |
| 549 | int tm; |
| 550 | |
| 551 | vfp_single_unpack(&vsm, m); |
| 552 | vfp_single_dump("VSM", &vsm); |
| 553 | |
| 554 | /* |
| 555 | * Do we have a denormalised number? |
| 556 | */ |
| 557 | tm = vfp_single_type(&vsm); |
| 558 | if (tm & VFP_DENORMAL) |
| 559 | exceptions |= FPSCR_IDC; |
| 560 | |
| 561 | if (tm & VFP_NAN) |
| 562 | vsm.sign = 0; |
| 563 | |
| 564 | if (vsm.exponent >= 127 + 32) { |
| 565 | d = vsm.sign ? 0 : 0xffffffff; |
| 566 | exceptions = FPSCR_IOC; |
| 567 | } else if (vsm.exponent >= 127 - 1) { |
| 568 | int shift = 127 + 31 - vsm.exponent; |
| 569 | u32 rem, incr = 0; |
| 570 | |
| 571 | /* |
| 572 | * 2^0 <= m < 2^32-2^8 |
| 573 | */ |
| 574 | d = (vsm.significand << 1) >> shift; |
| 575 | rem = vsm.significand << (33 - shift); |
| 576 | |
| 577 | if (rmode == FPSCR_ROUND_NEAREST) { |
| 578 | incr = 0x80000000; |
| 579 | if ((d & 1) == 0) |
| 580 | incr -= 1; |
| 581 | } else if (rmode == FPSCR_ROUND_TOZERO) { |
| 582 | incr = 0; |
| 583 | } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) { |
| 584 | incr = ~0; |
| 585 | } |
| 586 | |
| 587 | if ((rem + incr) < rem) { |
| 588 | if (d < 0xffffffff) |
| 589 | d += 1; |
| 590 | else |
| 591 | exceptions |= FPSCR_IOC; |
| 592 | } |
| 593 | |
| 594 | if (d && vsm.sign) { |
| 595 | d = 0; |
| 596 | exceptions |= FPSCR_IOC; |
| 597 | } else if (rem) |
| 598 | exceptions |= FPSCR_IXC; |
| 599 | } else { |
| 600 | d = 0; |
| 601 | if (vsm.exponent | vsm.significand) { |
| 602 | exceptions |= FPSCR_IXC; |
| 603 | if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0) |
| 604 | d = 1; |
| 605 | else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) { |
| 606 | d = 0; |
| 607 | exceptions |= FPSCR_IOC; |
| 608 | } |
| 609 | } |
| 610 | } |
| 611 | |
| 612 | pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions); |
| 613 | |
| 614 | vfp_put_float(sd, d); |
| 615 | |
| 616 | return exceptions; |
| 617 | } |
| 618 | |
| 619 | static u32 vfp_single_ftouiz(int sd, int unused, s32 m, u32 fpscr) |
| 620 | { |
| 621 | return vfp_single_ftoui(sd, unused, m, FPSCR_ROUND_TOZERO); |
| 622 | } |
| 623 | |
| 624 | static u32 vfp_single_ftosi(int sd, int unused, s32 m, u32 fpscr) |
| 625 | { |
| 626 | struct vfp_single vsm; |
| 627 | u32 d, exceptions = 0; |
| 628 | int rmode = fpscr & FPSCR_RMODE_MASK; |
| 629 | |
| 630 | vfp_single_unpack(&vsm, m); |
| 631 | vfp_single_dump("VSM", &vsm); |
| 632 | |
| 633 | /* |
| 634 | * Do we have a denormalised number? |
| 635 | */ |
| 636 | if (vfp_single_type(&vsm) & VFP_DENORMAL) |
| 637 | exceptions |= FPSCR_IDC; |
| 638 | |
| 639 | if (vsm.exponent >= 127 + 32) { |
| 640 | /* |
| 641 | * m >= 2^31-2^7: invalid |
| 642 | */ |
| 643 | d = 0x7fffffff; |
| 644 | if (vsm.sign) |
| 645 | d = ~d; |
| 646 | exceptions |= FPSCR_IOC; |
| 647 | } else if (vsm.exponent >= 127 - 1) { |
| 648 | int shift = 127 + 31 - vsm.exponent; |
| 649 | u32 rem, incr = 0; |
| 650 | |
| 651 | /* 2^0 <= m <= 2^31-2^7 */ |
| 652 | d = (vsm.significand << 1) >> shift; |
| 653 | rem = vsm.significand << (33 - shift); |
| 654 | |
| 655 | if (rmode == FPSCR_ROUND_NEAREST) { |
| 656 | incr = 0x80000000; |
| 657 | if ((d & 1) == 0) |
| 658 | incr -= 1; |
| 659 | } else if (rmode == FPSCR_ROUND_TOZERO) { |
| 660 | incr = 0; |
| 661 | } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) { |
| 662 | incr = ~0; |
| 663 | } |
| 664 | |
| 665 | if ((rem + incr) < rem && d < 0xffffffff) |
| 666 | d += 1; |
| 667 | if (d > 0x7fffffff + (vsm.sign != 0)) { |
| 668 | d = 0x7fffffff + (vsm.sign != 0); |
| 669 | exceptions |= FPSCR_IOC; |
| 670 | } else if (rem) |
| 671 | exceptions |= FPSCR_IXC; |
| 672 | |
| 673 | if (vsm.sign) |
| 674 | d = -d; |
| 675 | } else { |
| 676 | d = 0; |
| 677 | if (vsm.exponent | vsm.significand) { |
| 678 | exceptions |= FPSCR_IXC; |
| 679 | if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0) |
| 680 | d = 1; |
| 681 | else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) |
| 682 | d = -1; |
| 683 | } |
| 684 | } |
| 685 | |
| 686 | pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions); |
| 687 | |
| 688 | vfp_put_float(sd, (s32)d); |
| 689 | |
| 690 | return exceptions; |
| 691 | } |
| 692 | |
| 693 | static u32 vfp_single_ftosiz(int sd, int unused, s32 m, u32 fpscr) |
| 694 | { |
| 695 | return vfp_single_ftosi(sd, unused, m, FPSCR_ROUND_TOZERO); |
| 696 | } |
| 697 | |
| 698 | static u32 (* const fop_extfns[32])(int sd, int unused, s32 m, u32 fpscr) = { |
| 699 | [FEXT_TO_IDX(FEXT_FCPY)] = vfp_single_fcpy, |
| 700 | [FEXT_TO_IDX(FEXT_FABS)] = vfp_single_fabs, |
| 701 | [FEXT_TO_IDX(FEXT_FNEG)] = vfp_single_fneg, |
| 702 | [FEXT_TO_IDX(FEXT_FSQRT)] = vfp_single_fsqrt, |
| 703 | [FEXT_TO_IDX(FEXT_FCMP)] = vfp_single_fcmp, |
| 704 | [FEXT_TO_IDX(FEXT_FCMPE)] = vfp_single_fcmpe, |
| 705 | [FEXT_TO_IDX(FEXT_FCMPZ)] = vfp_single_fcmpz, |
| 706 | [FEXT_TO_IDX(FEXT_FCMPEZ)] = vfp_single_fcmpez, |
| 707 | [FEXT_TO_IDX(FEXT_FCVT)] = vfp_single_fcvtd, |
| 708 | [FEXT_TO_IDX(FEXT_FUITO)] = vfp_single_fuito, |
| 709 | [FEXT_TO_IDX(FEXT_FSITO)] = vfp_single_fsito, |
| 710 | [FEXT_TO_IDX(FEXT_FTOUI)] = vfp_single_ftoui, |
| 711 | [FEXT_TO_IDX(FEXT_FTOUIZ)] = vfp_single_ftouiz, |
| 712 | [FEXT_TO_IDX(FEXT_FTOSI)] = vfp_single_ftosi, |
| 713 | [FEXT_TO_IDX(FEXT_FTOSIZ)] = vfp_single_ftosiz, |
| 714 | }; |
| 715 | |
| 716 | |
| 717 | |
| 718 | |
| 719 | |
| 720 | static u32 |
| 721 | vfp_single_fadd_nonnumber(struct vfp_single *vsd, struct vfp_single *vsn, |
| 722 | struct vfp_single *vsm, u32 fpscr) |
| 723 | { |
| 724 | struct vfp_single *vsp; |
| 725 | u32 exceptions = 0; |
| 726 | int tn, tm; |
| 727 | |
| 728 | tn = vfp_single_type(vsn); |
| 729 | tm = vfp_single_type(vsm); |
| 730 | |
| 731 | if (tn & tm & VFP_INFINITY) { |
| 732 | /* |
| 733 | * Two infinities. Are they different signs? |
| 734 | */ |
| 735 | if (vsn->sign ^ vsm->sign) { |
| 736 | /* |
| 737 | * different signs -> invalid |
| 738 | */ |
| 739 | exceptions = FPSCR_IOC; |
| 740 | vsp = &vfp_single_default_qnan; |
| 741 | } else { |
| 742 | /* |
| 743 | * same signs -> valid |
| 744 | */ |
| 745 | vsp = vsn; |
| 746 | } |
| 747 | } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) { |
| 748 | /* |
| 749 | * One infinity and one number -> infinity |
| 750 | */ |
| 751 | vsp = vsn; |
| 752 | } else { |
| 753 | /* |
| 754 | * 'n' is a NaN of some type |
| 755 | */ |
| 756 | return vfp_propagate_nan(vsd, vsn, vsm, fpscr); |
| 757 | } |
| 758 | *vsd = *vsp; |
| 759 | return exceptions; |
| 760 | } |
| 761 | |
| 762 | static u32 |
| 763 | vfp_single_add(struct vfp_single *vsd, struct vfp_single *vsn, |
| 764 | struct vfp_single *vsm, u32 fpscr) |
| 765 | { |
| 766 | u32 exp_diff, m_sig; |
| 767 | |
| 768 | if (vsn->significand & 0x80000000 || |
| 769 | vsm->significand & 0x80000000) { |
| 770 | pr_info("VFP: bad FP values in %s\n", __func__); |
| 771 | vfp_single_dump("VSN", vsn); |
| 772 | vfp_single_dump("VSM", vsm); |
| 773 | } |
| 774 | |
| 775 | /* |
| 776 | * Ensure that 'n' is the largest magnitude number. Note that |
| 777 | * if 'n' and 'm' have equal exponents, we do not swap them. |
| 778 | * This ensures that NaN propagation works correctly. |
| 779 | */ |
| 780 | if (vsn->exponent < vsm->exponent) { |
| 781 | struct vfp_single *t = vsn; |
| 782 | vsn = vsm; |
| 783 | vsm = t; |
| 784 | } |
| 785 | |
| 786 | /* |
| 787 | * Is 'n' an infinity or a NaN? Note that 'm' may be a number, |
| 788 | * infinity or a NaN here. |
| 789 | */ |
| 790 | if (vsn->exponent == 255) |
| 791 | return vfp_single_fadd_nonnumber(vsd, vsn, vsm, fpscr); |
| 792 | |
| 793 | /* |
| 794 | * We have two proper numbers, where 'vsn' is the larger magnitude. |
| 795 | * |
| 796 | * Copy 'n' to 'd' before doing the arithmetic. |
| 797 | */ |
| 798 | *vsd = *vsn; |
| 799 | |
| 800 | /* |
| 801 | * Align both numbers. |
| 802 | */ |
| 803 | exp_diff = vsn->exponent - vsm->exponent; |
| 804 | m_sig = vfp_shiftright32jamming(vsm->significand, exp_diff); |
| 805 | |
| 806 | /* |
| 807 | * If the signs are different, we are really subtracting. |
| 808 | */ |
| 809 | if (vsn->sign ^ vsm->sign) { |
| 810 | m_sig = vsn->significand - m_sig; |
| 811 | if ((s32)m_sig < 0) { |
| 812 | vsd->sign = vfp_sign_negate(vsd->sign); |
| 813 | m_sig = -m_sig; |
| 814 | } else if (m_sig == 0) { |
| 815 | vsd->sign = (fpscr & FPSCR_RMODE_MASK) == |
| 816 | FPSCR_ROUND_MINUSINF ? 0x8000 : 0; |
| 817 | } |
| 818 | } else { |
| 819 | m_sig = vsn->significand + m_sig; |
| 820 | } |
| 821 | vsd->significand = m_sig; |
| 822 | |
| 823 | return 0; |
| 824 | } |
| 825 | |
| 826 | static u32 |
| 827 | vfp_single_multiply(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr) |
| 828 | { |
| 829 | vfp_single_dump("VSN", vsn); |
| 830 | vfp_single_dump("VSM", vsm); |
| 831 | |
| 832 | /* |
| 833 | * Ensure that 'n' is the largest magnitude number. Note that |
| 834 | * if 'n' and 'm' have equal exponents, we do not swap them. |
| 835 | * This ensures that NaN propagation works correctly. |
| 836 | */ |
| 837 | if (vsn->exponent < vsm->exponent) { |
| 838 | struct vfp_single *t = vsn; |
| 839 | vsn = vsm; |
| 840 | vsm = t; |
| 841 | pr_debug("VFP: swapping M <-> N\n"); |
| 842 | } |
| 843 | |
| 844 | vsd->sign = vsn->sign ^ vsm->sign; |
| 845 | |
| 846 | /* |
| 847 | * If 'n' is an infinity or NaN, handle it. 'm' may be anything. |
| 848 | */ |
| 849 | if (vsn->exponent == 255) { |
| 850 | if (vsn->significand || (vsm->exponent == 255 && vsm->significand)) |
| 851 | return vfp_propagate_nan(vsd, vsn, vsm, fpscr); |
| 852 | if ((vsm->exponent | vsm->significand) == 0) { |
| 853 | *vsd = vfp_single_default_qnan; |
| 854 | return FPSCR_IOC; |
| 855 | } |
| 856 | vsd->exponent = vsn->exponent; |
| 857 | vsd->significand = 0; |
| 858 | return 0; |
| 859 | } |
| 860 | |
| 861 | /* |
| 862 | * If 'm' is zero, the result is always zero. In this case, |
| 863 | * 'n' may be zero or a number, but it doesn't matter which. |
| 864 | */ |
| 865 | if ((vsm->exponent | vsm->significand) == 0) { |
| 866 | vsd->exponent = 0; |
| 867 | vsd->significand = 0; |
| 868 | return 0; |
| 869 | } |
| 870 | |
| 871 | /* |
| 872 | * We add 2 to the destination exponent for the same reason as |
| 873 | * the addition case - though this time we have +1 from each |
| 874 | * input operand. |
| 875 | */ |
| 876 | vsd->exponent = vsn->exponent + vsm->exponent - 127 + 2; |
| 877 | vsd->significand = vfp_hi64to32jamming((u64)vsn->significand * vsm->significand); |
| 878 | |
| 879 | vfp_single_dump("VSD", vsd); |
| 880 | return 0; |
| 881 | } |
| 882 | |
| 883 | #define NEG_MULTIPLY (1 << 0) |
| 884 | #define NEG_SUBTRACT (1 << 1) |
| 885 | |
| 886 | static u32 |
| 887 | vfp_single_multiply_accumulate(int sd, int sn, s32 m, u32 fpscr, u32 negate, char *func) |
| 888 | { |
| 889 | struct vfp_single vsd, vsp, vsn, vsm; |
| 890 | u32 exceptions; |
| 891 | s32 v; |
| 892 | |
| 893 | v = vfp_get_float(sn); |
| 894 | pr_debug("VFP: s%u = %08x\n", sn, v); |
| 895 | vfp_single_unpack(&vsn, v); |
| 896 | if (vsn.exponent == 0 && vsn.significand) |
| 897 | vfp_single_normalise_denormal(&vsn); |
| 898 | |
| 899 | vfp_single_unpack(&vsm, m); |
| 900 | if (vsm.exponent == 0 && vsm.significand) |
| 901 | vfp_single_normalise_denormal(&vsm); |
| 902 | |
| 903 | exceptions = vfp_single_multiply(&vsp, &vsn, &vsm, fpscr); |
| 904 | if (negate & NEG_MULTIPLY) |
| 905 | vsp.sign = vfp_sign_negate(vsp.sign); |
| 906 | |
| 907 | v = vfp_get_float(sd); |
| 908 | pr_debug("VFP: s%u = %08x\n", sd, v); |
| 909 | vfp_single_unpack(&vsn, v); |
| 910 | if (negate & NEG_SUBTRACT) |
| 911 | vsn.sign = vfp_sign_negate(vsn.sign); |
| 912 | |
| 913 | exceptions |= vfp_single_add(&vsd, &vsn, &vsp, fpscr); |
| 914 | |
| 915 | return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, func); |
| 916 | } |
| 917 | |
| 918 | /* |
| 919 | * Standard operations |
| 920 | */ |
| 921 | |
| 922 | /* |
| 923 | * sd = sd + (sn * sm) |
| 924 | */ |
| 925 | static u32 vfp_single_fmac(int sd, int sn, s32 m, u32 fpscr) |
| 926 | { |
| 927 | return vfp_single_multiply_accumulate(sd, sn, m, fpscr, 0, "fmac"); |
| 928 | } |
| 929 | |
| 930 | /* |
| 931 | * sd = sd - (sn * sm) |
| 932 | */ |
| 933 | static u32 vfp_single_fnmac(int sd, int sn, s32 m, u32 fpscr) |
| 934 | { |
| 935 | return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_MULTIPLY, "fnmac"); |
| 936 | } |
| 937 | |
| 938 | /* |
| 939 | * sd = -sd + (sn * sm) |
| 940 | */ |
| 941 | static u32 vfp_single_fmsc(int sd, int sn, s32 m, u32 fpscr) |
| 942 | { |
| 943 | return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT, "fmsc"); |
| 944 | } |
| 945 | |
| 946 | /* |
| 947 | * sd = -sd - (sn * sm) |
| 948 | */ |
| 949 | static u32 vfp_single_fnmsc(int sd, int sn, s32 m, u32 fpscr) |
| 950 | { |
| 951 | return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc"); |
| 952 | } |
| 953 | |
| 954 | /* |
| 955 | * sd = sn * sm |
| 956 | */ |
| 957 | static u32 vfp_single_fmul(int sd, int sn, s32 m, u32 fpscr) |
| 958 | { |
| 959 | struct vfp_single vsd, vsn, vsm; |
| 960 | u32 exceptions; |
| 961 | s32 n = vfp_get_float(sn); |
| 962 | |
| 963 | pr_debug("VFP: s%u = %08x\n", sn, n); |
| 964 | |
| 965 | vfp_single_unpack(&vsn, n); |
| 966 | if (vsn.exponent == 0 && vsn.significand) |
| 967 | vfp_single_normalise_denormal(&vsn); |
| 968 | |
| 969 | vfp_single_unpack(&vsm, m); |
| 970 | if (vsm.exponent == 0 && vsm.significand) |
| 971 | vfp_single_normalise_denormal(&vsm); |
| 972 | |
| 973 | exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr); |
| 974 | return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fmul"); |
| 975 | } |
| 976 | |
| 977 | /* |
| 978 | * sd = -(sn * sm) |
| 979 | */ |
| 980 | static u32 vfp_single_fnmul(int sd, int sn, s32 m, u32 fpscr) |
| 981 | { |
| 982 | struct vfp_single vsd, vsn, vsm; |
| 983 | u32 exceptions; |
| 984 | s32 n = vfp_get_float(sn); |
| 985 | |
| 986 | pr_debug("VFP: s%u = %08x\n", sn, n); |
| 987 | |
| 988 | vfp_single_unpack(&vsn, n); |
| 989 | if (vsn.exponent == 0 && vsn.significand) |
| 990 | vfp_single_normalise_denormal(&vsn); |
| 991 | |
| 992 | vfp_single_unpack(&vsm, m); |
| 993 | if (vsm.exponent == 0 && vsm.significand) |
| 994 | vfp_single_normalise_denormal(&vsm); |
| 995 | |
| 996 | exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr); |
| 997 | vsd.sign = vfp_sign_negate(vsd.sign); |
| 998 | return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fnmul"); |
| 999 | } |
| 1000 | |
| 1001 | /* |
| 1002 | * sd = sn + sm |
| 1003 | */ |
| 1004 | static u32 vfp_single_fadd(int sd, int sn, s32 m, u32 fpscr) |
| 1005 | { |
| 1006 | struct vfp_single vsd, vsn, vsm; |
| 1007 | u32 exceptions; |
| 1008 | s32 n = vfp_get_float(sn); |
| 1009 | |
| 1010 | pr_debug("VFP: s%u = %08x\n", sn, n); |
| 1011 | |
| 1012 | /* |
| 1013 | * Unpack and normalise denormals. |
| 1014 | */ |
| 1015 | vfp_single_unpack(&vsn, n); |
| 1016 | if (vsn.exponent == 0 && vsn.significand) |
| 1017 | vfp_single_normalise_denormal(&vsn); |
| 1018 | |
| 1019 | vfp_single_unpack(&vsm, m); |
| 1020 | if (vsm.exponent == 0 && vsm.significand) |
| 1021 | vfp_single_normalise_denormal(&vsm); |
| 1022 | |
| 1023 | exceptions = vfp_single_add(&vsd, &vsn, &vsm, fpscr); |
| 1024 | |
| 1025 | return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fadd"); |
| 1026 | } |
| 1027 | |
| 1028 | /* |
| 1029 | * sd = sn - sm |
| 1030 | */ |
| 1031 | static u32 vfp_single_fsub(int sd, int sn, s32 m, u32 fpscr) |
| 1032 | { |
| 1033 | /* |
| 1034 | * Subtraction is addition with one sign inverted. |
| 1035 | */ |
| 1036 | return vfp_single_fadd(sd, sn, vfp_single_packed_negate(m), fpscr); |
| 1037 | } |
| 1038 | |
| 1039 | /* |
| 1040 | * sd = sn / sm |
| 1041 | */ |
| 1042 | static u32 vfp_single_fdiv(int sd, int sn, s32 m, u32 fpscr) |
| 1043 | { |
| 1044 | struct vfp_single vsd, vsn, vsm; |
| 1045 | u32 exceptions = 0; |
| 1046 | s32 n = vfp_get_float(sn); |
| 1047 | int tm, tn; |
| 1048 | |
| 1049 | pr_debug("VFP: s%u = %08x\n", sn, n); |
| 1050 | |
| 1051 | vfp_single_unpack(&vsn, n); |
| 1052 | vfp_single_unpack(&vsm, m); |
| 1053 | |
| 1054 | vsd.sign = vsn.sign ^ vsm.sign; |
| 1055 | |
| 1056 | tn = vfp_single_type(&vsn); |
| 1057 | tm = vfp_single_type(&vsm); |
| 1058 | |
| 1059 | /* |
| 1060 | * Is n a NAN? |
| 1061 | */ |
| 1062 | if (tn & VFP_NAN) |
| 1063 | goto vsn_nan; |
| 1064 | |
| 1065 | /* |
| 1066 | * Is m a NAN? |
| 1067 | */ |
| 1068 | if (tm & VFP_NAN) |
| 1069 | goto vsm_nan; |
| 1070 | |
| 1071 | /* |
| 1072 | * If n and m are infinity, the result is invalid |
| 1073 | * If n and m are zero, the result is invalid |
| 1074 | */ |
| 1075 | if (tm & tn & (VFP_INFINITY|VFP_ZERO)) |
| 1076 | goto invalid; |
| 1077 | |
| 1078 | /* |
| 1079 | * If n is infinity, the result is infinity |
| 1080 | */ |
| 1081 | if (tn & VFP_INFINITY) |
| 1082 | goto infinity; |
| 1083 | |
| 1084 | /* |
| 1085 | * If m is zero, raise div0 exception |
| 1086 | */ |
| 1087 | if (tm & VFP_ZERO) |
| 1088 | goto divzero; |
| 1089 | |
| 1090 | /* |
| 1091 | * If m is infinity, or n is zero, the result is zero |
| 1092 | */ |
| 1093 | if (tm & VFP_INFINITY || tn & VFP_ZERO) |
| 1094 | goto zero; |
| 1095 | |
| 1096 | if (tn & VFP_DENORMAL) |
| 1097 | vfp_single_normalise_denormal(&vsn); |
| 1098 | if (tm & VFP_DENORMAL) |
| 1099 | vfp_single_normalise_denormal(&vsm); |
| 1100 | |
| 1101 | /* |
| 1102 | * Ok, we have two numbers, we can perform division. |
| 1103 | */ |
| 1104 | vsd.exponent = vsn.exponent - vsm.exponent + 127 - 1; |
| 1105 | vsm.significand <<= 1; |
| 1106 | if (vsm.significand <= (2 * vsn.significand)) { |
| 1107 | vsn.significand >>= 1; |
| 1108 | vsd.exponent++; |
| 1109 | } |
| 1110 | vsd.significand = ((u64)vsn.significand << 32) / vsm.significand; |
| 1111 | if ((vsd.significand & 0x3f) == 0) |
| 1112 | vsd.significand |= ((u64)vsm.significand * vsd.significand != (u64)vsn.significand << 32); |
| 1113 | |
| 1114 | return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fdiv"); |
| 1115 | |
| 1116 | vsn_nan: |
| 1117 | exceptions = vfp_propagate_nan(&vsd, &vsn, &vsm, fpscr); |
| 1118 | pack: |
| 1119 | vfp_put_float(sd, vfp_single_pack(&vsd)); |
| 1120 | return exceptions; |
| 1121 | |
| 1122 | vsm_nan: |
| 1123 | exceptions = vfp_propagate_nan(&vsd, &vsm, &vsn, fpscr); |
| 1124 | goto pack; |
| 1125 | |
| 1126 | zero: |
| 1127 | vsd.exponent = 0; |
| 1128 | vsd.significand = 0; |
| 1129 | goto pack; |
| 1130 | |
| 1131 | divzero: |
| 1132 | exceptions = FPSCR_DZC; |
| 1133 | infinity: |
| 1134 | vsd.exponent = 255; |
| 1135 | vsd.significand = 0; |
| 1136 | goto pack; |
| 1137 | |
| 1138 | invalid: |
| 1139 | vfp_put_float(sd, vfp_single_pack(&vfp_single_default_qnan)); |
| 1140 | return FPSCR_IOC; |
| 1141 | } |
| 1142 | |
| 1143 | static u32 (* const fop_fns[16])(int sd, int sn, s32 m, u32 fpscr) = { |
| 1144 | [FOP_TO_IDX(FOP_FMAC)] = vfp_single_fmac, |
| 1145 | [FOP_TO_IDX(FOP_FNMAC)] = vfp_single_fnmac, |
| 1146 | [FOP_TO_IDX(FOP_FMSC)] = vfp_single_fmsc, |
| 1147 | [FOP_TO_IDX(FOP_FNMSC)] = vfp_single_fnmsc, |
| 1148 | [FOP_TO_IDX(FOP_FMUL)] = vfp_single_fmul, |
| 1149 | [FOP_TO_IDX(FOP_FNMUL)] = vfp_single_fnmul, |
| 1150 | [FOP_TO_IDX(FOP_FADD)] = vfp_single_fadd, |
| 1151 | [FOP_TO_IDX(FOP_FSUB)] = vfp_single_fsub, |
| 1152 | [FOP_TO_IDX(FOP_FDIV)] = vfp_single_fdiv, |
| 1153 | }; |
| 1154 | |
| 1155 | #define FREG_BANK(x) ((x) & 0x18) |
| 1156 | #define FREG_IDX(x) ((x) & 7) |
| 1157 | |
| 1158 | u32 vfp_single_cpdo(u32 inst, u32 fpscr) |
| 1159 | { |
| 1160 | u32 op = inst & FOP_MASK; |
| 1161 | u32 exceptions = 0; |
| 1162 | unsigned int sd = vfp_get_sd(inst); |
| 1163 | unsigned int sn = vfp_get_sn(inst); |
| 1164 | unsigned int sm = vfp_get_sm(inst); |
| 1165 | unsigned int vecitr, veclen, vecstride; |
| 1166 | u32 (*fop)(int, int, s32, u32); |
| 1167 | |
| 1168 | veclen = fpscr & FPSCR_LENGTH_MASK; |
| 1169 | vecstride = 1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK); |
| 1170 | |
| 1171 | /* |
| 1172 | * If destination bank is zero, vector length is always '1'. |
| 1173 | * ARM DDI0100F C5.1.3, C5.3.2. |
| 1174 | */ |
| 1175 | if (FREG_BANK(sd) == 0) |
| 1176 | veclen = 0; |
| 1177 | |
| 1178 | pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride, |
| 1179 | (veclen >> FPSCR_LENGTH_BIT) + 1); |
| 1180 | |
| 1181 | fop = (op == FOP_EXT) ? fop_extfns[sn] : fop_fns[FOP_TO_IDX(op)]; |
| 1182 | if (!fop) |
| 1183 | goto invalid; |
| 1184 | |
| 1185 | for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) { |
| 1186 | s32 m = vfp_get_float(sm); |
| 1187 | u32 except; |
| 1188 | |
| 1189 | if (op == FOP_EXT) |
| 1190 | pr_debug("VFP: itr%d (s%u) = op[%u] (s%u=%08x)\n", |
| 1191 | vecitr >> FPSCR_LENGTH_BIT, sd, sn, sm, m); |
| 1192 | else |
| 1193 | pr_debug("VFP: itr%d (s%u) = (s%u) op[%u] (s%u=%08x)\n", |
| 1194 | vecitr >> FPSCR_LENGTH_BIT, sd, sn, |
| 1195 | FOP_TO_IDX(op), sm, m); |
| 1196 | |
| 1197 | except = fop(sd, sn, m, fpscr); |
| 1198 | pr_debug("VFP: itr%d: exceptions=%08x\n", |
| 1199 | vecitr >> FPSCR_LENGTH_BIT, except); |
| 1200 | |
| 1201 | exceptions |= except; |
| 1202 | |
| 1203 | /* |
| 1204 | * This ensures that comparisons only operate on scalars; |
| 1205 | * comparisons always return with one FPSCR status bit set. |
| 1206 | */ |
| 1207 | if (except & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V)) |
| 1208 | break; |
| 1209 | |
| 1210 | /* |
| 1211 | * CHECK: It appears to be undefined whether we stop when |
| 1212 | * we encounter an exception. We continue. |
| 1213 | */ |
| 1214 | |
| 1215 | sd = FREG_BANK(sd) + ((FREG_IDX(sd) + vecstride) & 7); |
| 1216 | sn = FREG_BANK(sn) + ((FREG_IDX(sn) + vecstride) & 7); |
| 1217 | if (FREG_BANK(sm) != 0) |
| 1218 | sm = FREG_BANK(sm) + ((FREG_IDX(sm) + vecstride) & 7); |
| 1219 | } |
| 1220 | return exceptions; |
| 1221 | |
| 1222 | invalid: |
| 1223 | return (u32)-1; |
| 1224 | } |