blob: ae96451bc223dfe7350887afbd802866a27f0f48 [file] [log] [blame]
Chris Masone02119d2008-09-05 16:13:11 -04001/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include "ctree.h"
21#include "transaction.h"
22#include "disk-io.h"
23#include "locking.h"
24#include "print-tree.h"
25#include "compat.h"
26
27/* magic values for the inode_only field in btrfs_log_inode:
28 *
29 * LOG_INODE_ALL means to log everything
30 * LOG_INODE_EXISTS means to log just enough to recreate the inode
31 * during log replay
32 */
33#define LOG_INODE_ALL 0
34#define LOG_INODE_EXISTS 1
35
36/*
37 * stages for the tree walking. The first
38 * stage (0) is to only pin down the blocks we find
39 * the second stage (1) is to make sure that all the inodes
40 * we find in the log are created in the subvolume.
41 *
42 * The last stage is to deal with directories and links and extents
43 * and all the other fun semantics
44 */
45#define LOG_WALK_PIN_ONLY 0
46#define LOG_WALK_REPLAY_INODES 1
47#define LOG_WALK_REPLAY_ALL 2
48
49static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
50 struct btrfs_root *root, struct inode *inode,
51 int inode_only);
52
53/*
54 * tree logging is a special write ahead log used to make sure that
55 * fsyncs and O_SYNCs can happen without doing full tree commits.
56 *
57 * Full tree commits are expensive because they require commonly
58 * modified blocks to be recowed, creating many dirty pages in the
59 * extent tree an 4x-6x higher write load than ext3.
60 *
61 * Instead of doing a tree commit on every fsync, we use the
62 * key ranges and transaction ids to find items for a given file or directory
63 * that have changed in this transaction. Those items are copied into
64 * a special tree (one per subvolume root), that tree is written to disk
65 * and then the fsync is considered complete.
66 *
67 * After a crash, items are copied out of the log-tree back into the
68 * subvolume tree. Any file data extents found are recorded in the extent
69 * allocation tree, and the log-tree freed.
70 *
71 * The log tree is read three times, once to pin down all the extents it is
72 * using in ram and once, once to create all the inodes logged in the tree
73 * and once to do all the other items.
74 */
75
76/*
77 * btrfs_add_log_tree adds a new per-subvolume log tree into the
78 * tree of log tree roots. This must be called with a tree log transaction
79 * running (see start_log_trans).
80 */
81int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
82 struct btrfs_root *root)
83{
84 struct btrfs_key key;
85 struct btrfs_root_item root_item;
86 struct btrfs_inode_item *inode_item;
87 struct extent_buffer *leaf;
88 struct btrfs_root *new_root = root;
89 int ret;
90 u64 objectid = root->root_key.objectid;
91
92 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
93 BTRFS_TREE_LOG_OBJECTID,
94 0, 0, 0, 0, 0);
95 if (IS_ERR(leaf)) {
96 ret = PTR_ERR(leaf);
97 return ret;
98 }
99
100 btrfs_set_header_nritems(leaf, 0);
101 btrfs_set_header_level(leaf, 0);
102 btrfs_set_header_bytenr(leaf, leaf->start);
103 btrfs_set_header_generation(leaf, trans->transid);
104 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
105
106 write_extent_buffer(leaf, root->fs_info->fsid,
107 (unsigned long)btrfs_header_fsid(leaf),
108 BTRFS_FSID_SIZE);
109 btrfs_mark_buffer_dirty(leaf);
110
111 inode_item = &root_item.inode;
112 memset(inode_item, 0, sizeof(*inode_item));
113 inode_item->generation = cpu_to_le64(1);
114 inode_item->size = cpu_to_le64(3);
115 inode_item->nlink = cpu_to_le32(1);
116 inode_item->nblocks = cpu_to_le64(1);
117 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
118
119 btrfs_set_root_bytenr(&root_item, leaf->start);
120 btrfs_set_root_level(&root_item, 0);
121 btrfs_set_root_refs(&root_item, 0);
122 btrfs_set_root_used(&root_item, 0);
123
124 memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
125 root_item.drop_level = 0;
126
127 btrfs_tree_unlock(leaf);
128 free_extent_buffer(leaf);
129 leaf = NULL;
130
131 btrfs_set_root_dirid(&root_item, 0);
132
133 key.objectid = BTRFS_TREE_LOG_OBJECTID;
134 key.offset = objectid;
135 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
136 ret = btrfs_insert_root(trans, root->fs_info->log_root_tree, &key,
137 &root_item);
138 if (ret)
139 goto fail;
140
141 new_root = btrfs_read_fs_root_no_radix(root->fs_info->log_root_tree,
142 &key);
143 BUG_ON(!new_root);
144
145 WARN_ON(root->log_root);
146 root->log_root = new_root;
147
148 /*
149 * log trees do not get reference counted because they go away
150 * before a real commit is actually done. They do store pointers
151 * to file data extents, and those reference counts still get
152 * updated (along with back refs to the log tree).
153 */
154 new_root->ref_cows = 0;
155 new_root->last_trans = trans->transid;
156fail:
157 return ret;
158}
159
160/*
161 * start a sub transaction and setup the log tree
162 * this increments the log tree writer count to make the people
163 * syncing the tree wait for us to finish
164 */
165static int start_log_trans(struct btrfs_trans_handle *trans,
166 struct btrfs_root *root)
167{
168 int ret;
169 mutex_lock(&root->fs_info->tree_log_mutex);
170 if (!root->fs_info->log_root_tree) {
171 ret = btrfs_init_log_root_tree(trans, root->fs_info);
172 BUG_ON(ret);
173 }
174 if (!root->log_root) {
175 ret = btrfs_add_log_tree(trans, root);
176 BUG_ON(ret);
177 }
178 atomic_inc(&root->fs_info->tree_log_writers);
179 root->fs_info->tree_log_batch++;
180 mutex_unlock(&root->fs_info->tree_log_mutex);
181 return 0;
182}
183
184/*
185 * returns 0 if there was a log transaction running and we were able
186 * to join, or returns -ENOENT if there were not transactions
187 * in progress
188 */
189static int join_running_log_trans(struct btrfs_root *root)
190{
191 int ret = -ENOENT;
192
193 smp_mb();
194 if (!root->log_root)
195 return -ENOENT;
196
197 mutex_lock(&root->fs_info->tree_log_mutex);
198 if (root->log_root) {
199 ret = 0;
200 atomic_inc(&root->fs_info->tree_log_writers);
201 root->fs_info->tree_log_batch++;
202 }
203 mutex_unlock(&root->fs_info->tree_log_mutex);
204 return ret;
205}
206
207/*
208 * indicate we're done making changes to the log tree
209 * and wake up anyone waiting to do a sync
210 */
211static int end_log_trans(struct btrfs_root *root)
212{
213 atomic_dec(&root->fs_info->tree_log_writers);
214 smp_mb();
215 if (waitqueue_active(&root->fs_info->tree_log_wait))
216 wake_up(&root->fs_info->tree_log_wait);
217 return 0;
218}
219
220
221/*
222 * the walk control struct is used to pass state down the chain when
223 * processing the log tree. The stage field tells us which part
224 * of the log tree processing we are currently doing. The others
225 * are state fields used for that specific part
226 */
227struct walk_control {
228 /* should we free the extent on disk when done? This is used
229 * at transaction commit time while freeing a log tree
230 */
231 int free;
232
233 /* should we write out the extent buffer? This is used
234 * while flushing the log tree to disk during a sync
235 */
236 int write;
237
238 /* should we wait for the extent buffer io to finish? Also used
239 * while flushing the log tree to disk for a sync
240 */
241 int wait;
242
243 /* pin only walk, we record which extents on disk belong to the
244 * log trees
245 */
246 int pin;
247
248 /* what stage of the replay code we're currently in */
249 int stage;
250
251 /* the root we are currently replaying */
252 struct btrfs_root *replay_dest;
253
254 /* the trans handle for the current replay */
255 struct btrfs_trans_handle *trans;
256
257 /* the function that gets used to process blocks we find in the
258 * tree. Note the extent_buffer might not be up to date when it is
259 * passed in, and it must be checked or read if you need the data
260 * inside it
261 */
262 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
263 struct walk_control *wc, u64 gen);
264};
265
266/*
267 * process_func used to pin down extents, write them or wait on them
268 */
269static int process_one_buffer(struct btrfs_root *log,
270 struct extent_buffer *eb,
271 struct walk_control *wc, u64 gen)
272{
273 if (wc->pin) {
274 mutex_lock(&log->fs_info->alloc_mutex);
275 btrfs_update_pinned_extents(log->fs_info->extent_root,
276 eb->start, eb->len, 1);
277 mutex_unlock(&log->fs_info->alloc_mutex);
278 }
279
280 if (btrfs_buffer_uptodate(eb, gen)) {
281 if (wc->write)
282 btrfs_write_tree_block(eb);
283 if (wc->wait)
284 btrfs_wait_tree_block_writeback(eb);
285 }
286 return 0;
287}
288
289/*
290 * Item overwrite used by replay and tree logging. eb, slot and key all refer
291 * to the src data we are copying out.
292 *
293 * root is the tree we are copying into, and path is a scratch
294 * path for use in this function (it should be released on entry and
295 * will be released on exit).
296 *
297 * If the key is already in the destination tree the existing item is
298 * overwritten. If the existing item isn't big enough, it is extended.
299 * If it is too large, it is truncated.
300 *
301 * If the key isn't in the destination yet, a new item is inserted.
302 */
303static noinline int overwrite_item(struct btrfs_trans_handle *trans,
304 struct btrfs_root *root,
305 struct btrfs_path *path,
306 struct extent_buffer *eb, int slot,
307 struct btrfs_key *key)
308{
309 int ret;
310 u32 item_size;
311 u64 saved_i_size = 0;
312 int save_old_i_size = 0;
313 unsigned long src_ptr;
314 unsigned long dst_ptr;
315 int overwrite_root = 0;
316
317 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
318 overwrite_root = 1;
319
320 item_size = btrfs_item_size_nr(eb, slot);
321 src_ptr = btrfs_item_ptr_offset(eb, slot);
322
323 /* look for the key in the destination tree */
324 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
325 if (ret == 0) {
326 char *src_copy;
327 char *dst_copy;
328 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
329 path->slots[0]);
330 if (dst_size != item_size)
331 goto insert;
332
333 if (item_size == 0) {
334 btrfs_release_path(root, path);
335 return 0;
336 }
337 dst_copy = kmalloc(item_size, GFP_NOFS);
338 src_copy = kmalloc(item_size, GFP_NOFS);
339
340 read_extent_buffer(eb, src_copy, src_ptr, item_size);
341
342 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
343 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
344 item_size);
345 ret = memcmp(dst_copy, src_copy, item_size);
346
347 kfree(dst_copy);
348 kfree(src_copy);
349 /*
350 * they have the same contents, just return, this saves
351 * us from cowing blocks in the destination tree and doing
352 * extra writes that may not have been done by a previous
353 * sync
354 */
355 if (ret == 0) {
356 btrfs_release_path(root, path);
357 return 0;
358 }
359
360 }
361insert:
362 btrfs_release_path(root, path);
363 /* try to insert the key into the destination tree */
364 ret = btrfs_insert_empty_item(trans, root, path,
365 key, item_size);
366
367 /* make sure any existing item is the correct size */
368 if (ret == -EEXIST) {
369 u32 found_size;
370 found_size = btrfs_item_size_nr(path->nodes[0],
371 path->slots[0]);
372 if (found_size > item_size) {
373 btrfs_truncate_item(trans, root, path, item_size, 1);
374 } else if (found_size < item_size) {
375 ret = btrfs_del_item(trans, root,
376 path);
377 BUG_ON(ret);
378
379 btrfs_release_path(root, path);
380 ret = btrfs_insert_empty_item(trans,
381 root, path, key, item_size);
382 BUG_ON(ret);
383 }
384 } else if (ret) {
385 BUG();
386 }
387 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
388 path->slots[0]);
389
390 /* don't overwrite an existing inode if the generation number
391 * was logged as zero. This is done when the tree logging code
392 * is just logging an inode to make sure it exists after recovery.
393 *
394 * Also, don't overwrite i_size on directories during replay.
395 * log replay inserts and removes directory items based on the
396 * state of the tree found in the subvolume, and i_size is modified
397 * as it goes
398 */
399 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
400 struct btrfs_inode_item *src_item;
401 struct btrfs_inode_item *dst_item;
402
403 src_item = (struct btrfs_inode_item *)src_ptr;
404 dst_item = (struct btrfs_inode_item *)dst_ptr;
405
406 if (btrfs_inode_generation(eb, src_item) == 0)
407 goto no_copy;
408
409 if (overwrite_root &&
410 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
411 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
412 save_old_i_size = 1;
413 saved_i_size = btrfs_inode_size(path->nodes[0],
414 dst_item);
415 }
416 }
417
418 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
419 src_ptr, item_size);
420
421 if (save_old_i_size) {
422 struct btrfs_inode_item *dst_item;
423 dst_item = (struct btrfs_inode_item *)dst_ptr;
424 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
425 }
426
427 /* make sure the generation is filled in */
428 if (key->type == BTRFS_INODE_ITEM_KEY) {
429 struct btrfs_inode_item *dst_item;
430 dst_item = (struct btrfs_inode_item *)dst_ptr;
431 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
432 btrfs_set_inode_generation(path->nodes[0], dst_item,
433 trans->transid);
434 }
435 }
436no_copy:
437 btrfs_mark_buffer_dirty(path->nodes[0]);
438 btrfs_release_path(root, path);
439 return 0;
440}
441
442/*
443 * simple helper to read an inode off the disk from a given root
444 * This can only be called for subvolume roots and not for the log
445 */
446static noinline struct inode *read_one_inode(struct btrfs_root *root,
447 u64 objectid)
448{
449 struct inode *inode;
450 inode = btrfs_iget_locked(root->fs_info->sb, objectid, root);
451 if (inode->i_state & I_NEW) {
452 BTRFS_I(inode)->root = root;
453 BTRFS_I(inode)->location.objectid = objectid;
454 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
455 BTRFS_I(inode)->location.offset = 0;
456 btrfs_read_locked_inode(inode);
457 unlock_new_inode(inode);
458
459 }
460 if (is_bad_inode(inode)) {
461 iput(inode);
462 inode = NULL;
463 }
464 return inode;
465}
466
467/* replays a single extent in 'eb' at 'slot' with 'key' into the
468 * subvolume 'root'. path is released on entry and should be released
469 * on exit.
470 *
471 * extents in the log tree have not been allocated out of the extent
472 * tree yet. So, this completes the allocation, taking a reference
473 * as required if the extent already exists or creating a new extent
474 * if it isn't in the extent allocation tree yet.
475 *
476 * The extent is inserted into the file, dropping any existing extents
477 * from the file that overlap the new one.
478 */
479static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
480 struct btrfs_root *root,
481 struct btrfs_path *path,
482 struct extent_buffer *eb, int slot,
483 struct btrfs_key *key)
484{
485 int found_type;
486 u64 mask = root->sectorsize - 1;
487 u64 extent_end;
488 u64 alloc_hint;
489 u64 start = key->offset;
490 struct btrfs_file_extent_item *item;
491 struct inode *inode = NULL;
492 unsigned long size;
493 int ret = 0;
494
495 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
496 found_type = btrfs_file_extent_type(eb, item);
497
498 if (found_type == BTRFS_FILE_EXTENT_REG)
499 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
500 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
501 size = btrfs_file_extent_inline_len(eb,
502 btrfs_item_nr(eb, slot));
503 extent_end = (start + size + mask) & ~mask;
504 } else {
505 ret = 0;
506 goto out;
507 }
508
509 inode = read_one_inode(root, key->objectid);
510 if (!inode) {
511 ret = -EIO;
512 goto out;
513 }
514
515 /*
516 * first check to see if we already have this extent in the
517 * file. This must be done before the btrfs_drop_extents run
518 * so we don't try to drop this extent.
519 */
520 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
521 start, 0);
522
523 if (ret == 0 && found_type == BTRFS_FILE_EXTENT_REG) {
524 struct btrfs_file_extent_item cmp1;
525 struct btrfs_file_extent_item cmp2;
526 struct btrfs_file_extent_item *existing;
527 struct extent_buffer *leaf;
528
529 leaf = path->nodes[0];
530 existing = btrfs_item_ptr(leaf, path->slots[0],
531 struct btrfs_file_extent_item);
532
533 read_extent_buffer(eb, &cmp1, (unsigned long)item,
534 sizeof(cmp1));
535 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
536 sizeof(cmp2));
537
538 /*
539 * we already have a pointer to this exact extent,
540 * we don't have to do anything
541 */
542 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
543 btrfs_release_path(root, path);
544 goto out;
545 }
546 }
547 btrfs_release_path(root, path);
548
549 /* drop any overlapping extents */
550 ret = btrfs_drop_extents(trans, root, inode,
551 start, extent_end, start, &alloc_hint);
552 BUG_ON(ret);
553
554 BUG_ON(ret);
555 if (found_type == BTRFS_FILE_EXTENT_REG) {
556 struct btrfs_key ins;
557
558 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
559 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
560 ins.type = BTRFS_EXTENT_ITEM_KEY;
561
562 /* insert the extent pointer in the file */
563 ret = overwrite_item(trans, root, path, eb, slot, key);
564 BUG_ON(ret);
565
566 /*
567 * is this extent already allocated in the extent
568 * allocation tree? If so, just add a reference
569 */
570 ret = btrfs_lookup_extent(root, path, ins.objectid, ins.offset);
571 btrfs_release_path(root, path);
572 if (ret == 0) {
573 ret = btrfs_inc_extent_ref(trans, root,
574 ins.objectid, ins.offset,
575 root->root_key.objectid,
576 trans->transid, key->objectid, start);
577 } else {
578 /*
579 * insert the extent pointer in the extent
580 * allocation tree
581 */
582 ret = btrfs_alloc_logged_extent(trans, root,
583 root->root_key.objectid,
584 trans->transid, key->objectid,
585 start, &ins);
586 BUG_ON(ret);
587 }
588 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
589 /* inline extents are easy, we just overwrite them */
590 ret = overwrite_item(trans, root, path, eb, slot, key);
591 BUG_ON(ret);
592 }
593 /* btrfs_drop_extents changes i_blocks, update it here */
594 inode->i_blocks += (extent_end - start) >> 9;
595 btrfs_update_inode(trans, root, inode);
596out:
597 if (inode)
598 iput(inode);
599 return ret;
600}
601
602/*
603 * when cleaning up conflicts between the directory names in the
604 * subvolume, directory names in the log and directory names in the
605 * inode back references, we may have to unlink inodes from directories.
606 *
607 * This is a helper function to do the unlink of a specific directory
608 * item
609 */
610static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
611 struct btrfs_root *root,
612 struct btrfs_path *path,
613 struct inode *dir,
614 struct btrfs_dir_item *di)
615{
616 struct inode *inode;
617 char *name;
618 int name_len;
619 struct extent_buffer *leaf;
620 struct btrfs_key location;
621 int ret;
622
623 leaf = path->nodes[0];
624
625 btrfs_dir_item_key_to_cpu(leaf, di, &location);
626 name_len = btrfs_dir_name_len(leaf, di);
627 name = kmalloc(name_len, GFP_NOFS);
628 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
629 btrfs_release_path(root, path);
630
631 inode = read_one_inode(root, location.objectid);
632 BUG_ON(!inode);
633
634 btrfs_inc_nlink(inode);
635 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
636 kfree(name);
637
638 iput(inode);
639 return ret;
640}
641
642/*
643 * helper function to see if a given name and sequence number found
644 * in an inode back reference are already in a directory and correctly
645 * point to this inode
646 */
647static noinline int inode_in_dir(struct btrfs_root *root,
648 struct btrfs_path *path,
649 u64 dirid, u64 objectid, u64 index,
650 const char *name, int name_len)
651{
652 struct btrfs_dir_item *di;
653 struct btrfs_key location;
654 int match = 0;
655
656 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
657 index, name, name_len, 0);
658 if (di && !IS_ERR(di)) {
659 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
660 if (location.objectid != objectid)
661 goto out;
662 } else
663 goto out;
664 btrfs_release_path(root, path);
665
666 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
667 if (di && !IS_ERR(di)) {
668 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
669 if (location.objectid != objectid)
670 goto out;
671 } else
672 goto out;
673 match = 1;
674out:
675 btrfs_release_path(root, path);
676 return match;
677}
678
679/*
680 * helper function to check a log tree for a named back reference in
681 * an inode. This is used to decide if a back reference that is
682 * found in the subvolume conflicts with what we find in the log.
683 *
684 * inode backreferences may have multiple refs in a single item,
685 * during replay we process one reference at a time, and we don't
686 * want to delete valid links to a file from the subvolume if that
687 * link is also in the log.
688 */
689static noinline int backref_in_log(struct btrfs_root *log,
690 struct btrfs_key *key,
691 char *name, int namelen)
692{
693 struct btrfs_path *path;
694 struct btrfs_inode_ref *ref;
695 unsigned long ptr;
696 unsigned long ptr_end;
697 unsigned long name_ptr;
698 int found_name_len;
699 int item_size;
700 int ret;
701 int match = 0;
702
703 path = btrfs_alloc_path();
704 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
705 if (ret != 0)
706 goto out;
707
708 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
709 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
710 ptr_end = ptr + item_size;
711 while (ptr < ptr_end) {
712 ref = (struct btrfs_inode_ref *)ptr;
713 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
714 if (found_name_len == namelen) {
715 name_ptr = (unsigned long)(ref + 1);
716 ret = memcmp_extent_buffer(path->nodes[0], name,
717 name_ptr, namelen);
718 if (ret == 0) {
719 match = 1;
720 goto out;
721 }
722 }
723 ptr = (unsigned long)(ref + 1) + found_name_len;
724 }
725out:
726 btrfs_free_path(path);
727 return match;
728}
729
730
731/*
732 * replay one inode back reference item found in the log tree.
733 * eb, slot and key refer to the buffer and key found in the log tree.
734 * root is the destination we are replaying into, and path is for temp
735 * use by this function. (it should be released on return).
736 */
737static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
738 struct btrfs_root *root,
739 struct btrfs_root *log,
740 struct btrfs_path *path,
741 struct extent_buffer *eb, int slot,
742 struct btrfs_key *key)
743{
744 struct inode *dir;
745 int ret;
746 struct btrfs_key location;
747 struct btrfs_inode_ref *ref;
748 struct btrfs_dir_item *di;
749 struct inode *inode;
750 char *name;
751 int namelen;
752 unsigned long ref_ptr;
753 unsigned long ref_end;
754
755 location.objectid = key->objectid;
756 location.type = BTRFS_INODE_ITEM_KEY;
757 location.offset = 0;
758
759 /*
760 * it is possible that we didn't log all the parent directories
761 * for a given inode. If we don't find the dir, just don't
762 * copy the back ref in. The link count fixup code will take
763 * care of the rest
764 */
765 dir = read_one_inode(root, key->offset);
766 if (!dir)
767 return -ENOENT;
768
769 inode = read_one_inode(root, key->objectid);
770 BUG_ON(!dir);
771
772 ref_ptr = btrfs_item_ptr_offset(eb, slot);
773 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
774
775again:
776 ref = (struct btrfs_inode_ref *)ref_ptr;
777
778 namelen = btrfs_inode_ref_name_len(eb, ref);
779 name = kmalloc(namelen, GFP_NOFS);
780 BUG_ON(!name);
781
782 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
783
784 /* if we already have a perfect match, we're done */
785 if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
786 btrfs_inode_ref_index(eb, ref),
787 name, namelen)) {
788 goto out;
789 }
790
791 /*
792 * look for a conflicting back reference in the metadata.
793 * if we find one we have to unlink that name of the file
794 * before we add our new link. Later on, we overwrite any
795 * existing back reference, and we don't want to create
796 * dangling pointers in the directory.
797 */
798conflict_again:
799 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
800 if (ret == 0) {
801 char *victim_name;
802 int victim_name_len;
803 struct btrfs_inode_ref *victim_ref;
804 unsigned long ptr;
805 unsigned long ptr_end;
806 struct extent_buffer *leaf = path->nodes[0];
807
808 /* are we trying to overwrite a back ref for the root directory
809 * if so, just jump out, we're done
810 */
811 if (key->objectid == key->offset)
812 goto out_nowrite;
813
814 /* check all the names in this back reference to see
815 * if they are in the log. if so, we allow them to stay
816 * otherwise they must be unlinked as a conflict
817 */
818 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
819 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
820 while(ptr < ptr_end) {
821 victim_ref = (struct btrfs_inode_ref *)ptr;
822 victim_name_len = btrfs_inode_ref_name_len(leaf,
823 victim_ref);
824 victim_name = kmalloc(victim_name_len, GFP_NOFS);
825 BUG_ON(!victim_name);
826
827 read_extent_buffer(leaf, victim_name,
828 (unsigned long)(victim_ref + 1),
829 victim_name_len);
830
831 if (!backref_in_log(log, key, victim_name,
832 victim_name_len)) {
833 btrfs_inc_nlink(inode);
834 btrfs_release_path(root, path);
835 ret = btrfs_unlink_inode(trans, root, dir,
836 inode, victim_name,
837 victim_name_len);
838 kfree(victim_name);
839 btrfs_release_path(root, path);
840 goto conflict_again;
841 }
842 kfree(victim_name);
843 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
844 }
845 BUG_ON(ret);
846 }
847 btrfs_release_path(root, path);
848
849 /* look for a conflicting sequence number */
850 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
851 btrfs_inode_ref_index(eb, ref),
852 name, namelen, 0);
853 if (di && !IS_ERR(di)) {
854 ret = drop_one_dir_item(trans, root, path, dir, di);
855 BUG_ON(ret);
856 }
857 btrfs_release_path(root, path);
858
859
860 /* look for a conflicting name */
861 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
862 name, namelen, 0);
863 if (di && !IS_ERR(di)) {
864 ret = drop_one_dir_item(trans, root, path, dir, di);
865 BUG_ON(ret);
866 }
867 btrfs_release_path(root, path);
868
869 /* insert our name */
870 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
871 btrfs_inode_ref_index(eb, ref));
872 BUG_ON(ret);
873
874 btrfs_update_inode(trans, root, inode);
875
876out:
877 ref_ptr = (unsigned long)(ref + 1) + namelen;
878 kfree(name);
879 if (ref_ptr < ref_end)
880 goto again;
881
882 /* finally write the back reference in the inode */
883 ret = overwrite_item(trans, root, path, eb, slot, key);
884 BUG_ON(ret);
885
886out_nowrite:
887 btrfs_release_path(root, path);
888 iput(dir);
889 iput(inode);
890 return 0;
891}
892
893/*
894 * replay one csum item from the log tree into the subvolume 'root'
895 * eb, slot and key all refer to the log tree
896 * path is for temp use by this function and should be released on return
897 *
898 * This copies the checksums out of the log tree and inserts them into
899 * the subvolume. Any existing checksums for this range in the file
900 * are overwritten, and new items are added where required.
901 *
902 * We keep this simple by reusing the btrfs_ordered_sum code from
903 * the data=ordered mode. This basically means making a copy
904 * of all the checksums in ram, which we have to do anyway for kmap
905 * rules.
906 *
907 * The copy is then sent down to btrfs_csum_file_blocks, which
908 * does all the hard work of finding existing items in the file
909 * or adding new ones.
910 */
911static noinline int replay_one_csum(struct btrfs_trans_handle *trans,
912 struct btrfs_root *root,
913 struct btrfs_path *path,
914 struct extent_buffer *eb, int slot,
915 struct btrfs_key *key)
916{
917 int ret;
918 u32 item_size = btrfs_item_size_nr(eb, slot);
919 u64 cur_offset;
920 unsigned long file_bytes;
921 struct btrfs_ordered_sum *sums;
922 struct btrfs_sector_sum *sector_sum;
923 struct inode *inode;
924 unsigned long ptr;
925
926 file_bytes = (item_size / BTRFS_CRC32_SIZE) * root->sectorsize;
927 inode = read_one_inode(root, key->objectid);
928 if (!inode) {
929 return -EIO;
930 }
931
932 sums = kzalloc(btrfs_ordered_sum_size(root, file_bytes), GFP_NOFS);
933 if (!sums) {
934 iput(inode);
935 return -ENOMEM;
936 }
937
938 INIT_LIST_HEAD(&sums->list);
939 sums->len = file_bytes;
940 sums->file_offset = key->offset;
941
942 /*
943 * copy all the sums into the ordered sum struct
944 */
945 sector_sum = sums->sums;
946 cur_offset = key->offset;
947 ptr = btrfs_item_ptr_offset(eb, slot);
948 while(item_size > 0) {
949 sector_sum->offset = cur_offset;
950 read_extent_buffer(eb, &sector_sum->sum, ptr, BTRFS_CRC32_SIZE);
951 sector_sum++;
952 item_size -= BTRFS_CRC32_SIZE;
953 ptr += BTRFS_CRC32_SIZE;
954 cur_offset += root->sectorsize;
955 }
956
957 /* let btrfs_csum_file_blocks add them into the file */
958 ret = btrfs_csum_file_blocks(trans, root, inode, sums);
959 BUG_ON(ret);
960 kfree(sums);
961 iput(inode);
962
963 return 0;
964}
965/*
966 * There are a few corners where the link count of the file can't
967 * be properly maintained during replay. So, instead of adding
968 * lots of complexity to the log code, we just scan the backrefs
969 * for any file that has been through replay.
970 *
971 * The scan will update the link count on the inode to reflect the
972 * number of back refs found. If it goes down to zero, the iput
973 * will free the inode.
974 */
975static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
976 struct btrfs_root *root,
977 struct inode *inode)
978{
979 struct btrfs_path *path;
980 int ret;
981 struct btrfs_key key;
982 u64 nlink = 0;
983 unsigned long ptr;
984 unsigned long ptr_end;
985 int name_len;
986
987 key.objectid = inode->i_ino;
988 key.type = BTRFS_INODE_REF_KEY;
989 key.offset = (u64)-1;
990
991 path = btrfs_alloc_path();
992
993 while(1) {
994 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
995 if (ret < 0)
996 break;
997 if (ret > 0) {
998 if (path->slots[0] == 0)
999 break;
1000 path->slots[0]--;
1001 }
1002 btrfs_item_key_to_cpu(path->nodes[0], &key,
1003 path->slots[0]);
1004 if (key.objectid != inode->i_ino ||
1005 key.type != BTRFS_INODE_REF_KEY)
1006 break;
1007 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1008 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1009 path->slots[0]);
1010 while(ptr < ptr_end) {
1011 struct btrfs_inode_ref *ref;
1012
1013 ref = (struct btrfs_inode_ref *)ptr;
1014 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1015 ref);
1016 ptr = (unsigned long)(ref + 1) + name_len;
1017 nlink++;
1018 }
1019
1020 if (key.offset == 0)
1021 break;
1022 key.offset--;
1023 btrfs_release_path(root, path);
1024 }
1025 btrfs_free_path(path);
1026 if (nlink != inode->i_nlink) {
1027 inode->i_nlink = nlink;
1028 btrfs_update_inode(trans, root, inode);
1029 }
Chris Mason8d5bf1c2008-09-11 15:51:21 -04001030 BTRFS_I(inode)->index_cnt = (u64)-1;
Chris Masone02119d2008-09-05 16:13:11 -04001031
1032 return 0;
1033}
1034
1035static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1036 struct btrfs_root *root,
1037 struct btrfs_path *path)
1038{
1039 int ret;
1040 struct btrfs_key key;
1041 struct inode *inode;
1042
1043 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1044 key.type = BTRFS_ORPHAN_ITEM_KEY;
1045 key.offset = (u64)-1;
1046 while(1) {
1047 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1048 if (ret < 0)
1049 break;
1050
1051 if (ret == 1) {
1052 if (path->slots[0] == 0)
1053 break;
1054 path->slots[0]--;
1055 }
1056
1057 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1058 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1059 key.type != BTRFS_ORPHAN_ITEM_KEY)
1060 break;
1061
1062 ret = btrfs_del_item(trans, root, path);
1063 BUG_ON(ret);
1064
1065 btrfs_release_path(root, path);
1066 inode = read_one_inode(root, key.offset);
1067 BUG_ON(!inode);
1068
1069 ret = fixup_inode_link_count(trans, root, inode);
1070 BUG_ON(ret);
1071
1072 iput(inode);
1073
1074 if (key.offset == 0)
1075 break;
1076 key.offset--;
1077 }
1078 btrfs_release_path(root, path);
1079 return 0;
1080}
1081
1082
1083/*
1084 * record a given inode in the fixup dir so we can check its link
1085 * count when replay is done. The link count is incremented here
1086 * so the inode won't go away until we check it
1087 */
1088static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1089 struct btrfs_root *root,
1090 struct btrfs_path *path,
1091 u64 objectid)
1092{
1093 struct btrfs_key key;
1094 int ret = 0;
1095 struct inode *inode;
1096
1097 inode = read_one_inode(root, objectid);
1098 BUG_ON(!inode);
1099
1100 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1101 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1102 key.offset = objectid;
1103
1104 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1105
1106 btrfs_release_path(root, path);
1107 if (ret == 0) {
1108 btrfs_inc_nlink(inode);
1109 btrfs_update_inode(trans, root, inode);
1110 } else if (ret == -EEXIST) {
1111 ret = 0;
1112 } else {
1113 BUG();
1114 }
1115 iput(inode);
1116
1117 return ret;
1118}
1119
1120/*
1121 * when replaying the log for a directory, we only insert names
1122 * for inodes that actually exist. This means an fsync on a directory
1123 * does not implicitly fsync all the new files in it
1124 */
1125static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1126 struct btrfs_root *root,
1127 struct btrfs_path *path,
1128 u64 dirid, u64 index,
1129 char *name, int name_len, u8 type,
1130 struct btrfs_key *location)
1131{
1132 struct inode *inode;
1133 struct inode *dir;
1134 int ret;
1135
1136 inode = read_one_inode(root, location->objectid);
1137 if (!inode)
1138 return -ENOENT;
1139
1140 dir = read_one_inode(root, dirid);
1141 if (!dir) {
1142 iput(inode);
1143 return -EIO;
1144 }
1145 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1146
1147 /* FIXME, put inode into FIXUP list */
1148
1149 iput(inode);
1150 iput(dir);
1151 return ret;
1152}
1153
1154/*
1155 * take a single entry in a log directory item and replay it into
1156 * the subvolume.
1157 *
1158 * if a conflicting item exists in the subdirectory already,
1159 * the inode it points to is unlinked and put into the link count
1160 * fix up tree.
1161 *
1162 * If a name from the log points to a file or directory that does
1163 * not exist in the FS, it is skipped. fsyncs on directories
1164 * do not force down inodes inside that directory, just changes to the
1165 * names or unlinks in a directory.
1166 */
1167static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1168 struct btrfs_root *root,
1169 struct btrfs_path *path,
1170 struct extent_buffer *eb,
1171 struct btrfs_dir_item *di,
1172 struct btrfs_key *key)
1173{
1174 char *name;
1175 int name_len;
1176 struct btrfs_dir_item *dst_di;
1177 struct btrfs_key found_key;
1178 struct btrfs_key log_key;
1179 struct inode *dir;
Chris Masone02119d2008-09-05 16:13:11 -04001180 u8 log_type;
Chris Mason4bef0842008-09-08 11:18:08 -04001181 int exists;
Chris Masone02119d2008-09-05 16:13:11 -04001182 int ret;
1183
1184 dir = read_one_inode(root, key->objectid);
1185 BUG_ON(!dir);
1186
1187 name_len = btrfs_dir_name_len(eb, di);
1188 name = kmalloc(name_len, GFP_NOFS);
1189 log_type = btrfs_dir_type(eb, di);
1190 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1191 name_len);
1192
1193 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
Chris Mason4bef0842008-09-08 11:18:08 -04001194 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1195 if (exists == 0)
1196 exists = 1;
1197 else
1198 exists = 0;
1199 btrfs_release_path(root, path);
1200
Chris Masone02119d2008-09-05 16:13:11 -04001201 if (key->type == BTRFS_DIR_ITEM_KEY) {
1202 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1203 name, name_len, 1);
1204 }
1205 else if (key->type == BTRFS_DIR_INDEX_KEY) {
1206 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1207 key->objectid,
1208 key->offset, name,
1209 name_len, 1);
1210 } else {
1211 BUG();
1212 }
1213 if (!dst_di || IS_ERR(dst_di)) {
1214 /* we need a sequence number to insert, so we only
1215 * do inserts for the BTRFS_DIR_INDEX_KEY types
1216 */
1217 if (key->type != BTRFS_DIR_INDEX_KEY)
1218 goto out;
1219 goto insert;
1220 }
1221
1222 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1223 /* the existing item matches the logged item */
1224 if (found_key.objectid == log_key.objectid &&
1225 found_key.type == log_key.type &&
1226 found_key.offset == log_key.offset &&
1227 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1228 goto out;
1229 }
1230
1231 /*
1232 * don't drop the conflicting directory entry if the inode
1233 * for the new entry doesn't exist
1234 */
Chris Mason4bef0842008-09-08 11:18:08 -04001235 if (!exists)
Chris Masone02119d2008-09-05 16:13:11 -04001236 goto out;
1237
Chris Masone02119d2008-09-05 16:13:11 -04001238 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1239 BUG_ON(ret);
1240
1241 if (key->type == BTRFS_DIR_INDEX_KEY)
1242 goto insert;
1243out:
1244 btrfs_release_path(root, path);
1245 kfree(name);
1246 iput(dir);
1247 return 0;
1248
1249insert:
1250 btrfs_release_path(root, path);
1251 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1252 name, name_len, log_type, &log_key);
1253
1254 if (ret && ret != -ENOENT)
1255 BUG();
1256 goto out;
1257}
1258
1259/*
1260 * find all the names in a directory item and reconcile them into
1261 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1262 * one name in a directory item, but the same code gets used for
1263 * both directory index types
1264 */
1265static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1266 struct btrfs_root *root,
1267 struct btrfs_path *path,
1268 struct extent_buffer *eb, int slot,
1269 struct btrfs_key *key)
1270{
1271 int ret;
1272 u32 item_size = btrfs_item_size_nr(eb, slot);
1273 struct btrfs_dir_item *di;
1274 int name_len;
1275 unsigned long ptr;
1276 unsigned long ptr_end;
1277
1278 ptr = btrfs_item_ptr_offset(eb, slot);
1279 ptr_end = ptr + item_size;
1280 while(ptr < ptr_end) {
1281 di = (struct btrfs_dir_item *)ptr;
1282 name_len = btrfs_dir_name_len(eb, di);
1283 ret = replay_one_name(trans, root, path, eb, di, key);
1284 BUG_ON(ret);
1285 ptr = (unsigned long)(di + 1);
1286 ptr += name_len;
1287 }
1288 return 0;
1289}
1290
1291/*
1292 * directory replay has two parts. There are the standard directory
1293 * items in the log copied from the subvolume, and range items
1294 * created in the log while the subvolume was logged.
1295 *
1296 * The range items tell us which parts of the key space the log
1297 * is authoritative for. During replay, if a key in the subvolume
1298 * directory is in a logged range item, but not actually in the log
1299 * that means it was deleted from the directory before the fsync
1300 * and should be removed.
1301 */
1302static noinline int find_dir_range(struct btrfs_root *root,
1303 struct btrfs_path *path,
1304 u64 dirid, int key_type,
1305 u64 *start_ret, u64 *end_ret)
1306{
1307 struct btrfs_key key;
1308 u64 found_end;
1309 struct btrfs_dir_log_item *item;
1310 int ret;
1311 int nritems;
1312
1313 if (*start_ret == (u64)-1)
1314 return 1;
1315
1316 key.objectid = dirid;
1317 key.type = key_type;
1318 key.offset = *start_ret;
1319
1320 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1321 if (ret < 0)
1322 goto out;
1323 if (ret > 0) {
1324 if (path->slots[0] == 0)
1325 goto out;
1326 path->slots[0]--;
1327 }
1328 if (ret != 0)
1329 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1330
1331 if (key.type != key_type || key.objectid != dirid) {
1332 ret = 1;
1333 goto next;
1334 }
1335 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1336 struct btrfs_dir_log_item);
1337 found_end = btrfs_dir_log_end(path->nodes[0], item);
1338
1339 if (*start_ret >= key.offset && *start_ret <= found_end) {
1340 ret = 0;
1341 *start_ret = key.offset;
1342 *end_ret = found_end;
1343 goto out;
1344 }
1345 ret = 1;
1346next:
1347 /* check the next slot in the tree to see if it is a valid item */
1348 nritems = btrfs_header_nritems(path->nodes[0]);
1349 if (path->slots[0] >= nritems) {
1350 ret = btrfs_next_leaf(root, path);
1351 if (ret)
1352 goto out;
1353 } else {
1354 path->slots[0]++;
1355 }
1356
1357 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1358
1359 if (key.type != key_type || key.objectid != dirid) {
1360 ret = 1;
1361 goto out;
1362 }
1363 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1364 struct btrfs_dir_log_item);
1365 found_end = btrfs_dir_log_end(path->nodes[0], item);
1366 *start_ret = key.offset;
1367 *end_ret = found_end;
1368 ret = 0;
1369out:
1370 btrfs_release_path(root, path);
1371 return ret;
1372}
1373
1374/*
1375 * this looks for a given directory item in the log. If the directory
1376 * item is not in the log, the item is removed and the inode it points
1377 * to is unlinked
1378 */
1379static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1380 struct btrfs_root *root,
1381 struct btrfs_root *log,
1382 struct btrfs_path *path,
1383 struct btrfs_path *log_path,
1384 struct inode *dir,
1385 struct btrfs_key *dir_key)
1386{
1387 int ret;
1388 struct extent_buffer *eb;
1389 int slot;
1390 u32 item_size;
1391 struct btrfs_dir_item *di;
1392 struct btrfs_dir_item *log_di;
1393 int name_len;
1394 unsigned long ptr;
1395 unsigned long ptr_end;
1396 char *name;
1397 struct inode *inode;
1398 struct btrfs_key location;
1399
1400again:
1401 eb = path->nodes[0];
1402 slot = path->slots[0];
1403 item_size = btrfs_item_size_nr(eb, slot);
1404 ptr = btrfs_item_ptr_offset(eb, slot);
1405 ptr_end = ptr + item_size;
1406 while(ptr < ptr_end) {
1407 di = (struct btrfs_dir_item *)ptr;
1408 name_len = btrfs_dir_name_len(eb, di);
1409 name = kmalloc(name_len, GFP_NOFS);
1410 if (!name) {
1411 ret = -ENOMEM;
1412 goto out;
1413 }
1414 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1415 name_len);
1416 log_di = NULL;
1417 if (dir_key->type == BTRFS_DIR_ITEM_KEY) {
1418 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1419 dir_key->objectid,
1420 name, name_len, 0);
1421 } else if (dir_key->type == BTRFS_DIR_INDEX_KEY) {
1422 log_di = btrfs_lookup_dir_index_item(trans, log,
1423 log_path,
1424 dir_key->objectid,
1425 dir_key->offset,
1426 name, name_len, 0);
1427 }
1428 if (!log_di || IS_ERR(log_di)) {
1429 btrfs_dir_item_key_to_cpu(eb, di, &location);
1430 btrfs_release_path(root, path);
1431 btrfs_release_path(log, log_path);
1432 inode = read_one_inode(root, location.objectid);
1433 BUG_ON(!inode);
1434
1435 ret = link_to_fixup_dir(trans, root,
1436 path, location.objectid);
1437 BUG_ON(ret);
1438 btrfs_inc_nlink(inode);
1439 ret = btrfs_unlink_inode(trans, root, dir, inode,
1440 name, name_len);
1441 BUG_ON(ret);
1442 kfree(name);
1443 iput(inode);
1444
1445 /* there might still be more names under this key
1446 * check and repeat if required
1447 */
1448 ret = btrfs_search_slot(NULL, root, dir_key, path,
1449 0, 0);
1450 if (ret == 0)
1451 goto again;
1452 ret = 0;
1453 goto out;
1454 }
1455 btrfs_release_path(log, log_path);
1456 kfree(name);
1457
1458 ptr = (unsigned long)(di + 1);
1459 ptr += name_len;
1460 }
1461 ret = 0;
1462out:
1463 btrfs_release_path(root, path);
1464 btrfs_release_path(log, log_path);
1465 return ret;
1466}
1467
1468/*
1469 * deletion replay happens before we copy any new directory items
1470 * out of the log or out of backreferences from inodes. It
1471 * scans the log to find ranges of keys that log is authoritative for,
1472 * and then scans the directory to find items in those ranges that are
1473 * not present in the log.
1474 *
1475 * Anything we don't find in the log is unlinked and removed from the
1476 * directory.
1477 */
1478static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1479 struct btrfs_root *root,
1480 struct btrfs_root *log,
1481 struct btrfs_path *path,
1482 u64 dirid)
1483{
1484 u64 range_start;
1485 u64 range_end;
1486 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1487 int ret = 0;
1488 struct btrfs_key dir_key;
1489 struct btrfs_key found_key;
1490 struct btrfs_path *log_path;
1491 struct inode *dir;
1492
1493 dir_key.objectid = dirid;
1494 dir_key.type = BTRFS_DIR_ITEM_KEY;
1495 log_path = btrfs_alloc_path();
1496 if (!log_path)
1497 return -ENOMEM;
1498
1499 dir = read_one_inode(root, dirid);
1500 /* it isn't an error if the inode isn't there, that can happen
1501 * because we replay the deletes before we copy in the inode item
1502 * from the log
1503 */
1504 if (!dir) {
1505 btrfs_free_path(log_path);
1506 return 0;
1507 }
1508again:
1509 range_start = 0;
1510 range_end = 0;
1511 while(1) {
1512 ret = find_dir_range(log, path, dirid, key_type,
1513 &range_start, &range_end);
1514 if (ret != 0)
1515 break;
1516
1517 dir_key.offset = range_start;
1518 while(1) {
1519 int nritems;
1520 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1521 0, 0);
1522 if (ret < 0)
1523 goto out;
1524
1525 nritems = btrfs_header_nritems(path->nodes[0]);
1526 if (path->slots[0] >= nritems) {
1527 ret = btrfs_next_leaf(root, path);
1528 if (ret)
1529 break;
1530 }
1531 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1532 path->slots[0]);
1533 if (found_key.objectid != dirid ||
1534 found_key.type != dir_key.type)
1535 goto next_type;
1536
1537 if (found_key.offset > range_end)
1538 break;
1539
1540 ret = check_item_in_log(trans, root, log, path,
1541 log_path, dir, &found_key);
1542 BUG_ON(ret);
1543 if (found_key.offset == (u64)-1)
1544 break;
1545 dir_key.offset = found_key.offset + 1;
1546 }
1547 btrfs_release_path(root, path);
1548 if (range_end == (u64)-1)
1549 break;
1550 range_start = range_end + 1;
1551 }
1552
1553next_type:
1554 ret = 0;
1555 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1556 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1557 dir_key.type = BTRFS_DIR_INDEX_KEY;
1558 btrfs_release_path(root, path);
1559 goto again;
1560 }
1561out:
1562 btrfs_release_path(root, path);
1563 btrfs_free_path(log_path);
1564 iput(dir);
1565 return ret;
1566}
1567
1568/*
1569 * the process_func used to replay items from the log tree. This
1570 * gets called in two different stages. The first stage just looks
1571 * for inodes and makes sure they are all copied into the subvolume.
1572 *
1573 * The second stage copies all the other item types from the log into
1574 * the subvolume. The two stage approach is slower, but gets rid of
1575 * lots of complexity around inodes referencing other inodes that exist
1576 * only in the log (references come from either directory items or inode
1577 * back refs).
1578 */
1579static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1580 struct walk_control *wc, u64 gen)
1581{
1582 int nritems;
1583 struct btrfs_path *path;
1584 struct btrfs_root *root = wc->replay_dest;
1585 struct btrfs_key key;
1586 u32 item_size;
1587 int level;
1588 int i;
1589 int ret;
1590
1591 btrfs_read_buffer(eb, gen);
1592
1593 level = btrfs_header_level(eb);
1594
1595 if (level != 0)
1596 return 0;
1597
1598 path = btrfs_alloc_path();
1599 BUG_ON(!path);
1600
1601 nritems = btrfs_header_nritems(eb);
1602 for (i = 0; i < nritems; i++) {
1603 btrfs_item_key_to_cpu(eb, &key, i);
1604 item_size = btrfs_item_size_nr(eb, i);
1605
1606 /* inode keys are done during the first stage */
1607 if (key.type == BTRFS_INODE_ITEM_KEY &&
1608 wc->stage == LOG_WALK_REPLAY_INODES) {
1609 struct inode *inode;
1610 struct btrfs_inode_item *inode_item;
1611 u32 mode;
1612
1613 inode_item = btrfs_item_ptr(eb, i,
1614 struct btrfs_inode_item);
1615 mode = btrfs_inode_mode(eb, inode_item);
1616 if (S_ISDIR(mode)) {
1617 ret = replay_dir_deletes(wc->trans,
1618 root, log, path, key.objectid);
1619 BUG_ON(ret);
1620 }
1621 ret = overwrite_item(wc->trans, root, path,
1622 eb, i, &key);
1623 BUG_ON(ret);
1624
1625 /* for regular files, truncate away
1626 * extents past the new EOF
1627 */
1628 if (S_ISREG(mode)) {
1629 inode = read_one_inode(root,
1630 key.objectid);
1631 BUG_ON(!inode);
1632
1633 ret = btrfs_truncate_inode_items(wc->trans,
1634 root, inode, inode->i_size,
1635 BTRFS_EXTENT_DATA_KEY);
1636 BUG_ON(ret);
1637 iput(inode);
1638 }
1639 ret = link_to_fixup_dir(wc->trans, root,
1640 path, key.objectid);
1641 BUG_ON(ret);
1642 }
1643 if (wc->stage < LOG_WALK_REPLAY_ALL)
1644 continue;
1645
1646 /* these keys are simply copied */
1647 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1648 ret = overwrite_item(wc->trans, root, path,
1649 eb, i, &key);
1650 BUG_ON(ret);
1651 } else if (key.type == BTRFS_INODE_REF_KEY) {
1652 ret = add_inode_ref(wc->trans, root, log, path,
1653 eb, i, &key);
1654 BUG_ON(ret && ret != -ENOENT);
1655 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1656 ret = replay_one_extent(wc->trans, root, path,
1657 eb, i, &key);
1658 BUG_ON(ret);
1659 } else if (key.type == BTRFS_CSUM_ITEM_KEY) {
1660 ret = replay_one_csum(wc->trans, root, path,
1661 eb, i, &key);
1662 BUG_ON(ret);
1663 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1664 key.type == BTRFS_DIR_INDEX_KEY) {
1665 ret = replay_one_dir_item(wc->trans, root, path,
1666 eb, i, &key);
1667 BUG_ON(ret);
1668 }
1669 }
1670 btrfs_free_path(path);
1671 return 0;
1672}
1673
1674static int noinline walk_down_log_tree(struct btrfs_trans_handle *trans,
1675 struct btrfs_root *root,
1676 struct btrfs_path *path, int *level,
1677 struct walk_control *wc)
1678{
1679 u64 root_owner;
1680 u64 root_gen;
1681 u64 bytenr;
1682 u64 ptr_gen;
1683 struct extent_buffer *next;
1684 struct extent_buffer *cur;
1685 struct extent_buffer *parent;
1686 u32 blocksize;
1687 int ret = 0;
1688
1689 WARN_ON(*level < 0);
1690 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1691
1692 while(*level > 0) {
1693 WARN_ON(*level < 0);
1694 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1695 cur = path->nodes[*level];
1696
1697 if (btrfs_header_level(cur) != *level)
1698 WARN_ON(1);
1699
1700 if (path->slots[*level] >=
1701 btrfs_header_nritems(cur))
1702 break;
1703
1704 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1705 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1706 blocksize = btrfs_level_size(root, *level - 1);
1707
1708 parent = path->nodes[*level];
1709 root_owner = btrfs_header_owner(parent);
1710 root_gen = btrfs_header_generation(parent);
1711
1712 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1713
1714 wc->process_func(root, next, wc, ptr_gen);
1715
1716 if (*level == 1) {
1717 path->slots[*level]++;
1718 if (wc->free) {
1719 btrfs_read_buffer(next, ptr_gen);
1720
1721 btrfs_tree_lock(next);
1722 clean_tree_block(trans, root, next);
1723 btrfs_wait_tree_block_writeback(next);
1724 btrfs_tree_unlock(next);
1725
1726 ret = btrfs_drop_leaf_ref(trans, root, next);
1727 BUG_ON(ret);
1728
1729 WARN_ON(root_owner !=
1730 BTRFS_TREE_LOG_OBJECTID);
Chris Masond00aff02008-09-11 15:54:42 -04001731 ret = btrfs_free_reserved_extent(root,
1732 bytenr, blocksize);
Chris Masone02119d2008-09-05 16:13:11 -04001733 BUG_ON(ret);
1734 }
1735 free_extent_buffer(next);
1736 continue;
1737 }
1738 btrfs_read_buffer(next, ptr_gen);
1739
1740 WARN_ON(*level <= 0);
1741 if (path->nodes[*level-1])
1742 free_extent_buffer(path->nodes[*level-1]);
1743 path->nodes[*level-1] = next;
1744 *level = btrfs_header_level(next);
1745 path->slots[*level] = 0;
1746 cond_resched();
1747 }
1748 WARN_ON(*level < 0);
1749 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1750
1751 if (path->nodes[*level] == root->node) {
1752 parent = path->nodes[*level];
1753 } else {
1754 parent = path->nodes[*level + 1];
1755 }
1756 bytenr = path->nodes[*level]->start;
1757
1758 blocksize = btrfs_level_size(root, *level);
1759 root_owner = btrfs_header_owner(parent);
1760 root_gen = btrfs_header_generation(parent);
1761
1762 wc->process_func(root, path->nodes[*level], wc,
1763 btrfs_header_generation(path->nodes[*level]));
1764
1765 if (wc->free) {
1766 next = path->nodes[*level];
1767 btrfs_tree_lock(next);
1768 clean_tree_block(trans, root, next);
1769 btrfs_wait_tree_block_writeback(next);
1770 btrfs_tree_unlock(next);
1771
1772 if (*level == 0) {
1773 ret = btrfs_drop_leaf_ref(trans, root, next);
1774 BUG_ON(ret);
1775 }
1776 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
Chris Masond00aff02008-09-11 15:54:42 -04001777 ret = btrfs_free_reserved_extent(root, bytenr, blocksize);
Chris Masone02119d2008-09-05 16:13:11 -04001778 BUG_ON(ret);
1779 }
1780 free_extent_buffer(path->nodes[*level]);
1781 path->nodes[*level] = NULL;
1782 *level += 1;
1783
1784 cond_resched();
1785 return 0;
1786}
1787
1788static int noinline walk_up_log_tree(struct btrfs_trans_handle *trans,
1789 struct btrfs_root *root,
1790 struct btrfs_path *path, int *level,
1791 struct walk_control *wc)
1792{
1793 u64 root_owner;
1794 u64 root_gen;
1795 int i;
1796 int slot;
1797 int ret;
1798
1799 for(i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1800 slot = path->slots[i];
1801 if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
1802 struct extent_buffer *node;
1803 node = path->nodes[i];
1804 path->slots[i]++;
1805 *level = i;
1806 WARN_ON(*level == 0);
1807 return 0;
1808 } else {
1809 if (path->nodes[*level] == root->node) {
1810 root_owner = root->root_key.objectid;
1811 root_gen =
1812 btrfs_header_generation(path->nodes[*level]);
1813 } else {
1814 struct extent_buffer *node;
1815 node = path->nodes[*level + 1];
1816 root_owner = btrfs_header_owner(node);
1817 root_gen = btrfs_header_generation(node);
1818 }
1819 wc->process_func(root, path->nodes[*level], wc,
1820 btrfs_header_generation(path->nodes[*level]));
1821 if (wc->free) {
1822 struct extent_buffer *next;
1823
1824 next = path->nodes[*level];
1825
1826 btrfs_tree_lock(next);
1827 clean_tree_block(trans, root, next);
1828 btrfs_wait_tree_block_writeback(next);
1829 btrfs_tree_unlock(next);
1830
1831 if (*level == 0) {
1832 ret = btrfs_drop_leaf_ref(trans, root,
1833 next);
1834 BUG_ON(ret);
1835 }
1836
1837 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
Chris Masond00aff02008-09-11 15:54:42 -04001838 ret = btrfs_free_reserved_extent(root,
Chris Masone02119d2008-09-05 16:13:11 -04001839 path->nodes[*level]->start,
Chris Masond00aff02008-09-11 15:54:42 -04001840 path->nodes[*level]->len);
Chris Masone02119d2008-09-05 16:13:11 -04001841 BUG_ON(ret);
1842 }
1843 free_extent_buffer(path->nodes[*level]);
1844 path->nodes[*level] = NULL;
1845 *level = i + 1;
1846 }
1847 }
1848 return 1;
1849}
1850
1851/*
1852 * drop the reference count on the tree rooted at 'snap'. This traverses
1853 * the tree freeing any blocks that have a ref count of zero after being
1854 * decremented.
1855 */
1856static int walk_log_tree(struct btrfs_trans_handle *trans,
1857 struct btrfs_root *log, struct walk_control *wc)
1858{
1859 int ret = 0;
1860 int wret;
1861 int level;
1862 struct btrfs_path *path;
1863 int i;
1864 int orig_level;
1865
1866 path = btrfs_alloc_path();
1867 BUG_ON(!path);
1868
1869 level = btrfs_header_level(log->node);
1870 orig_level = level;
1871 path->nodes[level] = log->node;
1872 extent_buffer_get(log->node);
1873 path->slots[level] = 0;
1874
1875 while(1) {
1876 wret = walk_down_log_tree(trans, log, path, &level, wc);
1877 if (wret > 0)
1878 break;
1879 if (wret < 0)
1880 ret = wret;
1881
1882 wret = walk_up_log_tree(trans, log, path, &level, wc);
1883 if (wret > 0)
1884 break;
1885 if (wret < 0)
1886 ret = wret;
1887 }
1888
1889 /* was the root node processed? if not, catch it here */
1890 if (path->nodes[orig_level]) {
1891 wc->process_func(log, path->nodes[orig_level], wc,
1892 btrfs_header_generation(path->nodes[orig_level]));
1893 if (wc->free) {
1894 struct extent_buffer *next;
1895
1896 next = path->nodes[orig_level];
1897
1898 btrfs_tree_lock(next);
1899 clean_tree_block(trans, log, next);
1900 btrfs_wait_tree_block_writeback(next);
1901 btrfs_tree_unlock(next);
1902
1903 if (orig_level == 0) {
1904 ret = btrfs_drop_leaf_ref(trans, log,
1905 next);
1906 BUG_ON(ret);
1907 }
1908 WARN_ON(log->root_key.objectid !=
1909 BTRFS_TREE_LOG_OBJECTID);
Chris Masond00aff02008-09-11 15:54:42 -04001910 ret = btrfs_free_reserved_extent(log, next->start,
1911 next->len);
Chris Masone02119d2008-09-05 16:13:11 -04001912 BUG_ON(ret);
1913 }
1914 }
1915
1916 for (i = 0; i <= orig_level; i++) {
1917 if (path->nodes[i]) {
1918 free_extent_buffer(path->nodes[i]);
1919 path->nodes[i] = NULL;
1920 }
1921 }
1922 btrfs_free_path(path);
1923 if (wc->free)
1924 free_extent_buffer(log->node);
1925 return ret;
1926}
1927
1928int wait_log_commit(struct btrfs_root *log)
1929{
1930 DEFINE_WAIT(wait);
1931 u64 transid = log->fs_info->tree_log_transid;
1932
1933 do {
1934 prepare_to_wait(&log->fs_info->tree_log_wait, &wait,
1935 TASK_UNINTERRUPTIBLE);
1936 mutex_unlock(&log->fs_info->tree_log_mutex);
1937 if (atomic_read(&log->fs_info->tree_log_commit))
1938 schedule();
1939 finish_wait(&log->fs_info->tree_log_wait, &wait);
1940 mutex_lock(&log->fs_info->tree_log_mutex);
1941 } while(transid == log->fs_info->tree_log_transid &&
1942 atomic_read(&log->fs_info->tree_log_commit));
1943 return 0;
1944}
1945
1946/*
1947 * btrfs_sync_log does sends a given tree log down to the disk and
1948 * updates the super blocks to record it. When this call is done,
1949 * you know that any inodes previously logged are safely on disk
1950 */
1951int btrfs_sync_log(struct btrfs_trans_handle *trans,
1952 struct btrfs_root *root)
1953{
1954 int ret;
1955 unsigned long batch;
1956 struct btrfs_root *log = root->log_root;
1957 struct walk_control wc = {
1958 .write = 1,
1959 .process_func = process_one_buffer
1960 };
1961
1962 mutex_lock(&log->fs_info->tree_log_mutex);
1963 if (atomic_read(&log->fs_info->tree_log_commit)) {
1964 wait_log_commit(log);
1965 goto out;
1966 }
1967 atomic_set(&log->fs_info->tree_log_commit, 1);
1968
1969 while(1) {
Chris Mason49eb7e42008-09-11 15:53:12 -04001970 batch = log->fs_info->tree_log_batch;
Chris Masone02119d2008-09-05 16:13:11 -04001971 mutex_unlock(&log->fs_info->tree_log_mutex);
1972 schedule_timeout_uninterruptible(1);
1973 mutex_lock(&log->fs_info->tree_log_mutex);
Chris Masone02119d2008-09-05 16:13:11 -04001974
1975 while(atomic_read(&log->fs_info->tree_log_writers)) {
1976 DEFINE_WAIT(wait);
1977 prepare_to_wait(&log->fs_info->tree_log_wait, &wait,
1978 TASK_UNINTERRUPTIBLE);
Chris Masone02119d2008-09-05 16:13:11 -04001979 mutex_unlock(&log->fs_info->tree_log_mutex);
1980 if (atomic_read(&log->fs_info->tree_log_writers))
1981 schedule();
1982 mutex_lock(&log->fs_info->tree_log_mutex);
1983 finish_wait(&log->fs_info->tree_log_wait, &wait);
1984 }
1985 if (batch == log->fs_info->tree_log_batch)
1986 break;
1987 }
1988 ret = walk_log_tree(trans, log, &wc);
1989 BUG_ON(ret);
1990
1991 ret = walk_log_tree(trans, log->fs_info->log_root_tree, &wc);
1992 BUG_ON(ret);
1993
1994 wc.wait = 1;
1995
1996 ret = walk_log_tree(trans, log, &wc);
1997 BUG_ON(ret);
1998
1999 ret = walk_log_tree(trans, log->fs_info->log_root_tree, &wc);
2000 BUG_ON(ret);
2001
2002 btrfs_set_super_log_root(&root->fs_info->super_for_commit,
2003 log->fs_info->log_root_tree->node->start);
2004 btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
2005 btrfs_header_level(log->fs_info->log_root_tree->node));
2006
2007 write_ctree_super(trans, log->fs_info->tree_root);
2008 log->fs_info->tree_log_transid++;
2009 log->fs_info->tree_log_batch = 0;
2010 atomic_set(&log->fs_info->tree_log_commit, 0);
2011 smp_mb();
2012 if (waitqueue_active(&log->fs_info->tree_log_wait))
2013 wake_up(&log->fs_info->tree_log_wait);
2014out:
2015 mutex_unlock(&log->fs_info->tree_log_mutex);
2016 return 0;
2017
2018}
2019
Chris Mason3a5f1d42008-09-11 15:53:37 -04002020/* * free all the extents used by the tree log. This should be called
Chris Masone02119d2008-09-05 16:13:11 -04002021 * at commit time of the full transaction
2022 */
2023int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2024{
2025 int ret;
2026 struct btrfs_root *log;
2027 struct key;
2028 struct walk_control wc = {
2029 .free = 1,
2030 .process_func = process_one_buffer
2031 };
2032
2033 if (!root->log_root)
2034 return 0;
2035
2036 log = root->log_root;
2037 ret = walk_log_tree(trans, log, &wc);
2038 BUG_ON(ret);
2039
2040 log = root->log_root;
2041 ret = btrfs_del_root(trans, root->fs_info->log_root_tree,
2042 &log->root_key);
2043 BUG_ON(ret);
2044 root->log_root = NULL;
2045 kfree(root->log_root);
2046 return 0;
2047}
2048
2049/*
2050 * helper function to update the item for a given subvolumes log root
2051 * in the tree of log roots
2052 */
2053static int update_log_root(struct btrfs_trans_handle *trans,
2054 struct btrfs_root *log)
2055{
2056 u64 bytenr = btrfs_root_bytenr(&log->root_item);
2057 int ret;
2058
2059 if (log->node->start == bytenr)
2060 return 0;
2061
2062 btrfs_set_root_bytenr(&log->root_item, log->node->start);
2063 btrfs_set_root_level(&log->root_item, btrfs_header_level(log->node));
2064 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2065 &log->root_key, &log->root_item);
2066 BUG_ON(ret);
2067 return ret;
2068}
2069
2070/*
2071 * If both a file and directory are logged, and unlinks or renames are
2072 * mixed in, we have a few interesting corners:
2073 *
2074 * create file X in dir Y
2075 * link file X to X.link in dir Y
2076 * fsync file X
2077 * unlink file X but leave X.link
2078 * fsync dir Y
2079 *
2080 * After a crash we would expect only X.link to exist. But file X
2081 * didn't get fsync'd again so the log has back refs for X and X.link.
2082 *
2083 * We solve this by removing directory entries and inode backrefs from the
2084 * log when a file that was logged in the current transaction is
2085 * unlinked. Any later fsync will include the updated log entries, and
2086 * we'll be able to reconstruct the proper directory items from backrefs.
2087 *
2088 * This optimizations allows us to avoid relogging the entire inode
2089 * or the entire directory.
2090 */
2091int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2092 struct btrfs_root *root,
2093 const char *name, int name_len,
2094 struct inode *dir, u64 index)
2095{
2096 struct btrfs_root *log;
2097 struct btrfs_dir_item *di;
2098 struct btrfs_path *path;
2099 int ret;
2100 int bytes_del = 0;
2101
Chris Mason3a5f1d42008-09-11 15:53:37 -04002102 if (BTRFS_I(dir)->logged_trans < trans->transid)
2103 return 0;
2104
Chris Masone02119d2008-09-05 16:13:11 -04002105 ret = join_running_log_trans(root);
2106 if (ret)
2107 return 0;
2108
2109 mutex_lock(&BTRFS_I(dir)->log_mutex);
2110
2111 log = root->log_root;
2112 path = btrfs_alloc_path();
2113 di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2114 name, name_len, -1);
2115 if (di && !IS_ERR(di)) {
2116 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2117 bytes_del += name_len;
2118 BUG_ON(ret);
2119 }
2120 btrfs_release_path(log, path);
2121 di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2122 index, name, name_len, -1);
2123 if (di && !IS_ERR(di)) {
2124 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2125 bytes_del += name_len;
2126 BUG_ON(ret);
2127 }
2128
2129 /* update the directory size in the log to reflect the names
2130 * we have removed
2131 */
2132 if (bytes_del) {
2133 struct btrfs_key key;
2134
2135 key.objectid = dir->i_ino;
2136 key.offset = 0;
2137 key.type = BTRFS_INODE_ITEM_KEY;
2138 btrfs_release_path(log, path);
2139
2140 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2141 if (ret == 0) {
2142 struct btrfs_inode_item *item;
2143 u64 i_size;
2144
2145 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2146 struct btrfs_inode_item);
2147 i_size = btrfs_inode_size(path->nodes[0], item);
2148 if (i_size > bytes_del)
2149 i_size -= bytes_del;
2150 else
2151 i_size = 0;
2152 btrfs_set_inode_size(path->nodes[0], item, i_size);
2153 btrfs_mark_buffer_dirty(path->nodes[0]);
2154 } else
2155 ret = 0;
2156 btrfs_release_path(log, path);
2157 }
2158
2159 btrfs_free_path(path);
2160 mutex_unlock(&BTRFS_I(dir)->log_mutex);
2161 end_log_trans(root);
2162
2163 return 0;
2164}
2165
2166/* see comments for btrfs_del_dir_entries_in_log */
2167int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2168 struct btrfs_root *root,
2169 const char *name, int name_len,
2170 struct inode *inode, u64 dirid)
2171{
2172 struct btrfs_root *log;
2173 u64 index;
2174 int ret;
2175
Chris Mason3a5f1d42008-09-11 15:53:37 -04002176 if (BTRFS_I(inode)->logged_trans < trans->transid)
2177 return 0;
2178
Chris Masone02119d2008-09-05 16:13:11 -04002179 ret = join_running_log_trans(root);
2180 if (ret)
2181 return 0;
2182 log = root->log_root;
2183 mutex_lock(&BTRFS_I(inode)->log_mutex);
2184
2185 ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2186 dirid, &index);
2187 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2188 end_log_trans(root);
2189
Chris Masone02119d2008-09-05 16:13:11 -04002190 return ret;
2191}
2192
2193/*
2194 * creates a range item in the log for 'dirid'. first_offset and
2195 * last_offset tell us which parts of the key space the log should
2196 * be considered authoritative for.
2197 */
2198static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2199 struct btrfs_root *log,
2200 struct btrfs_path *path,
2201 int key_type, u64 dirid,
2202 u64 first_offset, u64 last_offset)
2203{
2204 int ret;
2205 struct btrfs_key key;
2206 struct btrfs_dir_log_item *item;
2207
2208 key.objectid = dirid;
2209 key.offset = first_offset;
2210 if (key_type == BTRFS_DIR_ITEM_KEY)
2211 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2212 else
2213 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2214 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2215 BUG_ON(ret);
2216
2217 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2218 struct btrfs_dir_log_item);
2219 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2220 btrfs_mark_buffer_dirty(path->nodes[0]);
2221 btrfs_release_path(log, path);
2222 return 0;
2223}
2224
2225/*
2226 * log all the items included in the current transaction for a given
2227 * directory. This also creates the range items in the log tree required
2228 * to replay anything deleted before the fsync
2229 */
2230static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2231 struct btrfs_root *root, struct inode *inode,
2232 struct btrfs_path *path,
2233 struct btrfs_path *dst_path, int key_type,
2234 u64 min_offset, u64 *last_offset_ret)
2235{
2236 struct btrfs_key min_key;
2237 struct btrfs_key max_key;
2238 struct btrfs_root *log = root->log_root;
2239 struct extent_buffer *src;
2240 int ret;
2241 int i;
2242 int nritems;
2243 u64 first_offset = min_offset;
2244 u64 last_offset = (u64)-1;
2245
2246 log = root->log_root;
2247 max_key.objectid = inode->i_ino;
2248 max_key.offset = (u64)-1;
2249 max_key.type = key_type;
2250
2251 min_key.objectid = inode->i_ino;
2252 min_key.type = key_type;
2253 min_key.offset = min_offset;
2254
2255 path->keep_locks = 1;
2256
2257 ret = btrfs_search_forward(root, &min_key, &max_key,
2258 path, 0, trans->transid);
2259
2260 /*
2261 * we didn't find anything from this transaction, see if there
2262 * is anything at all
2263 */
2264 if (ret != 0 || min_key.objectid != inode->i_ino ||
2265 min_key.type != key_type) {
2266 min_key.objectid = inode->i_ino;
2267 min_key.type = key_type;
2268 min_key.offset = (u64)-1;
2269 btrfs_release_path(root, path);
2270 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2271 if (ret < 0) {
2272 btrfs_release_path(root, path);
2273 return ret;
2274 }
2275 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2276
2277 /* if ret == 0 there are items for this type,
2278 * create a range to tell us the last key of this type.
2279 * otherwise, there are no items in this directory after
2280 * *min_offset, and we create a range to indicate that.
2281 */
2282 if (ret == 0) {
2283 struct btrfs_key tmp;
2284 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2285 path->slots[0]);
2286 if (key_type == tmp.type) {
2287 first_offset = max(min_offset, tmp.offset) + 1;
2288 }
2289 }
2290 goto done;
2291 }
2292
2293 /* go backward to find any previous key */
2294 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2295 if (ret == 0) {
2296 struct btrfs_key tmp;
2297 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2298 if (key_type == tmp.type) {
2299 first_offset = tmp.offset;
2300 ret = overwrite_item(trans, log, dst_path,
2301 path->nodes[0], path->slots[0],
2302 &tmp);
2303 }
2304 }
2305 btrfs_release_path(root, path);
2306
2307 /* find the first key from this transaction again */
2308 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2309 if (ret != 0) {
2310 WARN_ON(1);
2311 goto done;
2312 }
2313
2314 /*
2315 * we have a block from this transaction, log every item in it
2316 * from our directory
2317 */
2318 while(1) {
2319 struct btrfs_key tmp;
2320 src = path->nodes[0];
2321 nritems = btrfs_header_nritems(src);
2322 for (i = path->slots[0]; i < nritems; i++) {
2323 btrfs_item_key_to_cpu(src, &min_key, i);
2324
2325 if (min_key.objectid != inode->i_ino ||
2326 min_key.type != key_type)
2327 goto done;
2328 ret = overwrite_item(trans, log, dst_path, src, i,
2329 &min_key);
2330 BUG_ON(ret);
2331 }
2332 path->slots[0] = nritems;
2333
2334 /*
2335 * look ahead to the next item and see if it is also
2336 * from this directory and from this transaction
2337 */
2338 ret = btrfs_next_leaf(root, path);
2339 if (ret == 1) {
2340 last_offset = (u64)-1;
2341 goto done;
2342 }
2343 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2344 if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2345 last_offset = (u64)-1;
2346 goto done;
2347 }
2348 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2349 ret = overwrite_item(trans, log, dst_path,
2350 path->nodes[0], path->slots[0],
2351 &tmp);
2352
2353 BUG_ON(ret);
2354 last_offset = tmp.offset;
2355 goto done;
2356 }
2357 }
2358done:
2359 *last_offset_ret = last_offset;
2360 btrfs_release_path(root, path);
2361 btrfs_release_path(log, dst_path);
2362
2363 /* insert the log range keys to indicate where the log is valid */
2364 ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino,
2365 first_offset, last_offset);
2366 BUG_ON(ret);
2367 return 0;
2368}
2369
2370/*
2371 * logging directories is very similar to logging inodes, We find all the items
2372 * from the current transaction and write them to the log.
2373 *
2374 * The recovery code scans the directory in the subvolume, and if it finds a
2375 * key in the range logged that is not present in the log tree, then it means
2376 * that dir entry was unlinked during the transaction.
2377 *
2378 * In order for that scan to work, we must include one key smaller than
2379 * the smallest logged by this transaction and one key larger than the largest
2380 * key logged by this transaction.
2381 */
2382static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2383 struct btrfs_root *root, struct inode *inode,
2384 struct btrfs_path *path,
2385 struct btrfs_path *dst_path)
2386{
2387 u64 min_key;
2388 u64 max_key;
2389 int ret;
2390 int key_type = BTRFS_DIR_ITEM_KEY;
2391
2392again:
2393 min_key = 0;
2394 max_key = 0;
2395 while(1) {
2396 ret = log_dir_items(trans, root, inode, path,
2397 dst_path, key_type, min_key,
2398 &max_key);
2399 BUG_ON(ret);
2400 if (max_key == (u64)-1)
2401 break;
2402 min_key = max_key + 1;
2403 }
2404
2405 if (key_type == BTRFS_DIR_ITEM_KEY) {
2406 key_type = BTRFS_DIR_INDEX_KEY;
2407 goto again;
2408 }
2409 return 0;
2410}
2411
2412/*
2413 * a helper function to drop items from the log before we relog an
2414 * inode. max_key_type indicates the highest item type to remove.
2415 * This cannot be run for file data extents because it does not
2416 * free the extents they point to.
2417 */
2418static int drop_objectid_items(struct btrfs_trans_handle *trans,
2419 struct btrfs_root *log,
2420 struct btrfs_path *path,
2421 u64 objectid, int max_key_type)
2422{
2423 int ret;
2424 struct btrfs_key key;
2425 struct btrfs_key found_key;
2426
2427 key.objectid = objectid;
2428 key.type = max_key_type;
2429 key.offset = (u64)-1;
2430
2431 while(1) {
2432 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2433
2434 if (ret != 1)
2435 break;
2436
2437 if (path->slots[0] == 0)
2438 break;
2439
2440 path->slots[0]--;
2441 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2442 path->slots[0]);
2443
2444 if (found_key.objectid != objectid)
2445 break;
2446
2447 ret = btrfs_del_item(trans, log, path);
2448 BUG_ON(ret);
2449 btrfs_release_path(log, path);
2450 }
2451 btrfs_release_path(log, path);
2452 return 0;
2453}
2454
Chris Mason31ff1cd2008-09-11 16:17:57 -04002455static noinline int copy_items(struct btrfs_trans_handle *trans,
2456 struct btrfs_root *log,
2457 struct btrfs_path *dst_path,
2458 struct extent_buffer *src,
2459 int start_slot, int nr, int inode_only)
2460{
2461 unsigned long src_offset;
2462 unsigned long dst_offset;
2463 struct btrfs_file_extent_item *extent;
2464 struct btrfs_inode_item *inode_item;
2465 int ret;
2466 struct btrfs_key *ins_keys;
2467 u32 *ins_sizes;
2468 char *ins_data;
2469 int i;
2470
2471 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2472 nr * sizeof(u32), GFP_NOFS);
2473 ins_sizes = (u32 *)ins_data;
2474 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2475
2476 for (i = 0; i < nr; i++) {
2477 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2478 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2479 }
2480 ret = btrfs_insert_empty_items(trans, log, dst_path,
2481 ins_keys, ins_sizes, nr);
2482 BUG_ON(ret);
2483
2484 for (i = 0; i < nr; i++) {
2485 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2486 dst_path->slots[0]);
2487
2488 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2489
2490 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2491 src_offset, ins_sizes[i]);
2492
2493 if (inode_only == LOG_INODE_EXISTS &&
2494 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2495 inode_item = btrfs_item_ptr(dst_path->nodes[0],
2496 dst_path->slots[0],
2497 struct btrfs_inode_item);
2498 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2499
2500 /* set the generation to zero so the recover code
2501 * can tell the difference between an logging
2502 * just to say 'this inode exists' and a logging
2503 * to say 'update this inode with these values'
2504 */
2505 btrfs_set_inode_generation(dst_path->nodes[0],
2506 inode_item, 0);
2507 }
2508 /* take a reference on file data extents so that truncates
2509 * or deletes of this inode don't have to relog the inode
2510 * again
2511 */
2512 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2513 int found_type;
2514 extent = btrfs_item_ptr(src, start_slot + i,
2515 struct btrfs_file_extent_item);
2516
2517 found_type = btrfs_file_extent_type(src, extent);
2518 if (found_type == BTRFS_FILE_EXTENT_REG) {
2519 u64 ds = btrfs_file_extent_disk_bytenr(src,
2520 extent);
2521 u64 dl = btrfs_file_extent_disk_num_bytes(src,
2522 extent);
2523 /* ds == 0 is a hole */
2524 if (ds != 0) {
2525 ret = btrfs_inc_extent_ref(trans, log,
2526 ds, dl,
2527 BTRFS_TREE_LOG_OBJECTID,
2528 0, ins_keys[i].objectid,
2529 ins_keys[i].offset);
2530 BUG_ON(ret);
2531 }
2532 }
2533 }
2534 dst_path->slots[0]++;
2535 }
2536
2537 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2538 btrfs_release_path(log, dst_path);
2539 kfree(ins_data);
2540 return 0;
2541}
2542
Chris Masone02119d2008-09-05 16:13:11 -04002543/* log a single inode in the tree log.
2544 * At least one parent directory for this inode must exist in the tree
2545 * or be logged already.
2546 *
2547 * Any items from this inode changed by the current transaction are copied
2548 * to the log tree. An extra reference is taken on any extents in this
2549 * file, allowing us to avoid a whole pile of corner cases around logging
2550 * blocks that have been removed from the tree.
2551 *
2552 * See LOG_INODE_ALL and related defines for a description of what inode_only
2553 * does.
2554 *
2555 * This handles both files and directories.
2556 */
2557static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
2558 struct btrfs_root *root, struct inode *inode,
2559 int inode_only)
2560{
2561 struct btrfs_path *path;
2562 struct btrfs_path *dst_path;
2563 struct btrfs_key min_key;
2564 struct btrfs_key max_key;
2565 struct btrfs_root *log = root->log_root;
Chris Mason31ff1cd2008-09-11 16:17:57 -04002566 struct extent_buffer *src = NULL;
Chris Masone02119d2008-09-05 16:13:11 -04002567 u32 size;
2568 int ret;
Chris Mason3a5f1d42008-09-11 15:53:37 -04002569 int nritems;
Chris Mason31ff1cd2008-09-11 16:17:57 -04002570 int ins_start_slot = 0;
2571 int ins_nr;
Chris Masone02119d2008-09-05 16:13:11 -04002572
2573 log = root->log_root;
2574
2575 path = btrfs_alloc_path();
2576 dst_path = btrfs_alloc_path();
2577
2578 min_key.objectid = inode->i_ino;
2579 min_key.type = BTRFS_INODE_ITEM_KEY;
2580 min_key.offset = 0;
2581
2582 max_key.objectid = inode->i_ino;
2583 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2584 max_key.type = BTRFS_XATTR_ITEM_KEY;
2585 else
2586 max_key.type = (u8)-1;
2587 max_key.offset = (u64)-1;
2588
2589 /*
2590 * if this inode has already been logged and we're in inode_only
2591 * mode, we don't want to delete the things that have already
2592 * been written to the log.
2593 *
2594 * But, if the inode has been through an inode_only log,
2595 * the logged_trans field is not set. This allows us to catch
2596 * any new names for this inode in the backrefs by logging it
2597 * again
2598 */
2599 if (inode_only == LOG_INODE_EXISTS &&
2600 BTRFS_I(inode)->logged_trans == trans->transid) {
2601 btrfs_free_path(path);
2602 btrfs_free_path(dst_path);
2603 goto out;
2604 }
2605 mutex_lock(&BTRFS_I(inode)->log_mutex);
2606
2607 /*
2608 * a brute force approach to making sure we get the most uptodate
2609 * copies of everything.
2610 */
2611 if (S_ISDIR(inode->i_mode)) {
2612 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2613
2614 if (inode_only == LOG_INODE_EXISTS)
2615 max_key_type = BTRFS_XATTR_ITEM_KEY;
2616 ret = drop_objectid_items(trans, log, path,
2617 inode->i_ino, max_key_type);
2618 } else {
2619 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2620 }
2621 BUG_ON(ret);
2622 path->keep_locks = 1;
2623
2624 while(1) {
Chris Mason31ff1cd2008-09-11 16:17:57 -04002625 ins_nr = 0;
Chris Masone02119d2008-09-05 16:13:11 -04002626 ret = btrfs_search_forward(root, &min_key, &max_key,
2627 path, 0, trans->transid);
2628 if (ret != 0)
2629 break;
Chris Mason3a5f1d42008-09-11 15:53:37 -04002630again:
Chris Mason31ff1cd2008-09-11 16:17:57 -04002631 /* note, ins_nr might be > 0 here, cleanup outside the loop */
Chris Masone02119d2008-09-05 16:13:11 -04002632 if (min_key.objectid != inode->i_ino)
2633 break;
2634 if (min_key.type > max_key.type)
2635 break;
Chris Mason31ff1cd2008-09-11 16:17:57 -04002636
Chris Masone02119d2008-09-05 16:13:11 -04002637 src = path->nodes[0];
2638 size = btrfs_item_size_nr(src, path->slots[0]);
Chris Mason31ff1cd2008-09-11 16:17:57 -04002639 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2640 ins_nr++;
2641 goto next_slot;
2642 } else if (!ins_nr) {
2643 ins_start_slot = path->slots[0];
2644 ins_nr = 1;
2645 goto next_slot;
Chris Masone02119d2008-09-05 16:13:11 -04002646 }
2647
Chris Mason31ff1cd2008-09-11 16:17:57 -04002648 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2649 ins_nr, inode_only);
2650 BUG_ON(ret);
2651 ins_nr = 1;
2652 ins_start_slot = path->slots[0];
2653next_slot:
Chris Masone02119d2008-09-05 16:13:11 -04002654
Chris Mason3a5f1d42008-09-11 15:53:37 -04002655 nritems = btrfs_header_nritems(path->nodes[0]);
2656 path->slots[0]++;
2657 if (path->slots[0] < nritems) {
2658 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2659 path->slots[0]);
2660 goto again;
2661 }
Chris Mason31ff1cd2008-09-11 16:17:57 -04002662 if (ins_nr) {
2663 ret = copy_items(trans, log, dst_path, src,
2664 ins_start_slot,
2665 ins_nr, inode_only);
2666 BUG_ON(ret);
2667 ins_nr = 0;
2668 }
Chris Mason3a5f1d42008-09-11 15:53:37 -04002669 btrfs_release_path(root, path);
2670
Chris Masone02119d2008-09-05 16:13:11 -04002671 if (min_key.offset < (u64)-1)
2672 min_key.offset++;
2673 else if (min_key.type < (u8)-1)
2674 min_key.type++;
2675 else if (min_key.objectid < (u64)-1)
2676 min_key.objectid++;
2677 else
2678 break;
2679 }
Chris Mason31ff1cd2008-09-11 16:17:57 -04002680 if (ins_nr) {
2681 ret = copy_items(trans, log, dst_path, src,
2682 ins_start_slot,
2683 ins_nr, inode_only);
2684 BUG_ON(ret);
2685 ins_nr = 0;
2686 }
2687 WARN_ON(ins_nr);
Chris Mason49eb7e42008-09-11 15:53:12 -04002688 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode) &&
2689 BTRFS_I(inode)->log_dirty_trans >= trans->transid) {
Chris Masone02119d2008-09-05 16:13:11 -04002690 btrfs_release_path(root, path);
2691 btrfs_release_path(log, dst_path);
Chris Mason49eb7e42008-09-11 15:53:12 -04002692 BTRFS_I(inode)->log_dirty_trans = 0;
Chris Masone02119d2008-09-05 16:13:11 -04002693 ret = log_directory_changes(trans, root, inode, path, dst_path);
2694 BUG_ON(ret);
2695 }
Chris Mason3a5f1d42008-09-11 15:53:37 -04002696 BTRFS_I(inode)->logged_trans = trans->transid;
Chris Masone02119d2008-09-05 16:13:11 -04002697 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2698
2699 btrfs_free_path(path);
2700 btrfs_free_path(dst_path);
2701
2702 mutex_lock(&root->fs_info->tree_log_mutex);
2703 ret = update_log_root(trans, log);
2704 BUG_ON(ret);
2705 mutex_unlock(&root->fs_info->tree_log_mutex);
2706out:
2707 return 0;
2708}
2709
2710int btrfs_log_inode(struct btrfs_trans_handle *trans,
2711 struct btrfs_root *root, struct inode *inode,
2712 int inode_only)
2713{
2714 int ret;
2715
2716 start_log_trans(trans, root);
2717 ret = __btrfs_log_inode(trans, root, inode, inode_only);
2718 end_log_trans(root);
2719 return ret;
2720}
2721
2722/*
2723 * helper function around btrfs_log_inode to make sure newly created
2724 * parent directories also end up in the log. A minimal inode and backref
2725 * only logging is done of any parent directories that are older than
2726 * the last committed transaction
2727 */
2728int btrfs_log_dentry(struct btrfs_trans_handle *trans,
2729 struct btrfs_root *root, struct dentry *dentry)
2730{
2731 int inode_only = LOG_INODE_ALL;
2732 struct super_block *sb;
2733 int ret;
2734
2735 start_log_trans(trans, root);
2736 sb = dentry->d_inode->i_sb;
2737 while(1) {
2738 ret = __btrfs_log_inode(trans, root, dentry->d_inode,
2739 inode_only);
2740 BUG_ON(ret);
2741 inode_only = LOG_INODE_EXISTS;
2742
2743 dentry = dentry->d_parent;
2744 if (!dentry || !dentry->d_inode || sb != dentry->d_inode->i_sb)
2745 break;
2746
2747 if (BTRFS_I(dentry->d_inode)->generation <=
2748 root->fs_info->last_trans_committed)
2749 break;
2750 }
2751 end_log_trans(root);
2752 return 0;
2753}
2754
2755/*
2756 * it is not safe to log dentry if the chunk root has added new
2757 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
2758 * If this returns 1, you must commit the transaction to safely get your
2759 * data on disk.
2760 */
2761int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
2762 struct btrfs_root *root, struct dentry *dentry)
2763{
2764 u64 gen;
2765 gen = root->fs_info->last_trans_new_blockgroup;
2766 if (gen > root->fs_info->last_trans_committed)
2767 return 1;
2768 else
2769 return btrfs_log_dentry(trans, root, dentry);
2770}
2771
2772/*
2773 * should be called during mount to recover any replay any log trees
2774 * from the FS
2775 */
2776int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
2777{
2778 int ret;
2779 struct btrfs_path *path;
2780 struct btrfs_trans_handle *trans;
2781 struct btrfs_key key;
2782 struct btrfs_key found_key;
2783 struct btrfs_key tmp_key;
2784 struct btrfs_root *log;
2785 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
Chris Mason8d5bf1c2008-09-11 15:51:21 -04002786 u64 highest_inode;
Chris Masone02119d2008-09-05 16:13:11 -04002787 struct walk_control wc = {
2788 .process_func = process_one_buffer,
2789 .stage = 0,
2790 };
2791
2792 fs_info->log_root_recovering = 1;
2793 path = btrfs_alloc_path();
2794 BUG_ON(!path);
2795
2796 trans = btrfs_start_transaction(fs_info->tree_root, 1);
2797
2798 wc.trans = trans;
2799 wc.pin = 1;
2800
2801 walk_log_tree(trans, log_root_tree, &wc);
2802
2803again:
2804 key.objectid = BTRFS_TREE_LOG_OBJECTID;
2805 key.offset = (u64)-1;
2806 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
2807
2808 while(1) {
2809 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
2810 if (ret < 0)
2811 break;
2812 if (ret > 0) {
2813 if (path->slots[0] == 0)
2814 break;
2815 path->slots[0]--;
2816 }
2817 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2818 path->slots[0]);
2819 btrfs_release_path(log_root_tree, path);
2820 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
2821 break;
2822
2823 log = btrfs_read_fs_root_no_radix(log_root_tree,
2824 &found_key);
2825 BUG_ON(!log);
2826
2827
2828 tmp_key.objectid = found_key.offset;
2829 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
2830 tmp_key.offset = (u64)-1;
2831
2832 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
2833
2834 BUG_ON(!wc.replay_dest);
2835
2836 btrfs_record_root_in_trans(wc.replay_dest);
2837 ret = walk_log_tree(trans, log, &wc);
2838 BUG_ON(ret);
2839
2840 if (wc.stage == LOG_WALK_REPLAY_ALL) {
2841 ret = fixup_inode_link_counts(trans, wc.replay_dest,
2842 path);
2843 BUG_ON(ret);
2844 }
Chris Mason8d5bf1c2008-09-11 15:51:21 -04002845 ret = btrfs_find_highest_inode(wc.replay_dest, &highest_inode);
2846 if (ret == 0) {
2847 wc.replay_dest->highest_inode = highest_inode;
2848 wc.replay_dest->last_inode_alloc = highest_inode;
2849 }
Chris Masone02119d2008-09-05 16:13:11 -04002850
2851 key.offset = found_key.offset - 1;
2852 free_extent_buffer(log->node);
2853 kfree(log);
2854
2855 if (found_key.offset == 0)
2856 break;
2857 }
2858 btrfs_release_path(log_root_tree, path);
2859
2860 /* step one is to pin it all, step two is to replay just inodes */
2861 if (wc.pin) {
2862 wc.pin = 0;
2863 wc.process_func = replay_one_buffer;
2864 wc.stage = LOG_WALK_REPLAY_INODES;
2865 goto again;
2866 }
2867 /* step three is to replay everything */
2868 if (wc.stage < LOG_WALK_REPLAY_ALL) {
2869 wc.stage++;
2870 goto again;
2871 }
2872
2873 btrfs_free_path(path);
2874
2875 free_extent_buffer(log_root_tree->node);
2876 log_root_tree->log_root = NULL;
2877 fs_info->log_root_recovering = 0;
2878
2879 /* step 4: commit the transaction, which also unpins the blocks */
2880 btrfs_commit_transaction(trans, fs_info->tree_root);
2881
2882 kfree(log_root_tree);
2883 return 0;
2884}