Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2001-2002 by David Brownell |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify it |
| 5 | * under the terms of the GNU General Public License as published by the |
| 6 | * Free Software Foundation; either version 2 of the License, or (at your |
| 7 | * option) any later version. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, but |
| 10 | * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| 11 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License |
| 15 | * along with this program; if not, write to the Free Software Foundation, |
| 16 | * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| 17 | */ |
| 18 | |
| 19 | /* this file is part of ehci-hcd.c */ |
| 20 | |
| 21 | /*-------------------------------------------------------------------------*/ |
| 22 | |
| 23 | /* |
| 24 | * EHCI hardware queue manipulation ... the core. QH/QTD manipulation. |
| 25 | * |
| 26 | * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd" |
| 27 | * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned |
| 28 | * buffers needed for the larger number). We use one QH per endpoint, queue |
| 29 | * multiple urbs (all three types) per endpoint. URBs may need several qtds. |
| 30 | * |
| 31 | * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with |
| 32 | * interrupts) needs careful scheduling. Performance improvements can be |
| 33 | * an ongoing challenge. That's in "ehci-sched.c". |
| 34 | * |
| 35 | * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs, |
| 36 | * or otherwise through transaction translators (TTs) in USB 2.0 hubs using |
| 37 | * (b) special fields in qh entries or (c) split iso entries. TTs will |
| 38 | * buffer low/full speed data so the host collects it at high speed. |
| 39 | */ |
| 40 | |
| 41 | /*-------------------------------------------------------------------------*/ |
| 42 | |
| 43 | /* fill a qtd, returning how much of the buffer we were able to queue up */ |
| 44 | |
| 45 | static int |
| 46 | qtd_fill (struct ehci_qtd *qtd, dma_addr_t buf, size_t len, |
| 47 | int token, int maxpacket) |
| 48 | { |
| 49 | int i, count; |
| 50 | u64 addr = buf; |
| 51 | |
| 52 | /* one buffer entry per 4K ... first might be short or unaligned */ |
| 53 | qtd->hw_buf [0] = cpu_to_le32 ((u32)addr); |
| 54 | qtd->hw_buf_hi [0] = cpu_to_le32 ((u32)(addr >> 32)); |
| 55 | count = 0x1000 - (buf & 0x0fff); /* rest of that page */ |
| 56 | if (likely (len < count)) /* ... iff needed */ |
| 57 | count = len; |
| 58 | else { |
| 59 | buf += 0x1000; |
| 60 | buf &= ~0x0fff; |
| 61 | |
| 62 | /* per-qtd limit: from 16K to 20K (best alignment) */ |
| 63 | for (i = 1; count < len && i < 5; i++) { |
| 64 | addr = buf; |
| 65 | qtd->hw_buf [i] = cpu_to_le32 ((u32)addr); |
| 66 | qtd->hw_buf_hi [i] = cpu_to_le32 ((u32)(addr >> 32)); |
| 67 | buf += 0x1000; |
| 68 | if ((count + 0x1000) < len) |
| 69 | count += 0x1000; |
| 70 | else |
| 71 | count = len; |
| 72 | } |
| 73 | |
| 74 | /* short packets may only terminate transfers */ |
| 75 | if (count != len) |
| 76 | count -= (count % maxpacket); |
| 77 | } |
| 78 | qtd->hw_token = cpu_to_le32 ((count << 16) | token); |
| 79 | qtd->length = count; |
| 80 | |
| 81 | return count; |
| 82 | } |
| 83 | |
| 84 | /*-------------------------------------------------------------------------*/ |
| 85 | |
| 86 | static inline void |
| 87 | qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd) |
| 88 | { |
| 89 | /* writes to an active overlay are unsafe */ |
| 90 | BUG_ON(qh->qh_state != QH_STATE_IDLE); |
| 91 | |
| 92 | qh->hw_qtd_next = QTD_NEXT (qtd->qtd_dma); |
| 93 | qh->hw_alt_next = EHCI_LIST_END; |
| 94 | |
| 95 | /* Except for control endpoints, we make hardware maintain data |
| 96 | * toggle (like OHCI) ... here (re)initialize the toggle in the QH, |
| 97 | * and set the pseudo-toggle in udev. Only usb_clear_halt() will |
| 98 | * ever clear it. |
| 99 | */ |
| 100 | if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) { |
| 101 | unsigned is_out, epnum; |
| 102 | |
| 103 | is_out = !(qtd->hw_token & cpu_to_le32(1 << 8)); |
| 104 | epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f; |
| 105 | if (unlikely (!usb_gettoggle (qh->dev, epnum, is_out))) { |
| 106 | qh->hw_token &= ~__constant_cpu_to_le32 (QTD_TOGGLE); |
| 107 | usb_settoggle (qh->dev, epnum, is_out, 1); |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | /* HC must see latest qtd and qh data before we clear ACTIVE+HALT */ |
| 112 | wmb (); |
| 113 | qh->hw_token &= __constant_cpu_to_le32 (QTD_TOGGLE | QTD_STS_PING); |
| 114 | } |
| 115 | |
| 116 | /* if it weren't for a common silicon quirk (writing the dummy into the qh |
| 117 | * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault |
| 118 | * recovery (including urb dequeue) would need software changes to a QH... |
| 119 | */ |
| 120 | static void |
| 121 | qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh) |
| 122 | { |
| 123 | struct ehci_qtd *qtd; |
| 124 | |
| 125 | if (list_empty (&qh->qtd_list)) |
| 126 | qtd = qh->dummy; |
| 127 | else { |
| 128 | qtd = list_entry (qh->qtd_list.next, |
| 129 | struct ehci_qtd, qtd_list); |
| 130 | /* first qtd may already be partially processed */ |
| 131 | if (cpu_to_le32 (qtd->qtd_dma) == qh->hw_current) |
| 132 | qtd = NULL; |
| 133 | } |
| 134 | |
| 135 | if (qtd) |
| 136 | qh_update (ehci, qh, qtd); |
| 137 | } |
| 138 | |
| 139 | /*-------------------------------------------------------------------------*/ |
| 140 | |
| 141 | static void qtd_copy_status ( |
| 142 | struct ehci_hcd *ehci, |
| 143 | struct urb *urb, |
| 144 | size_t length, |
| 145 | u32 token |
| 146 | ) |
| 147 | { |
| 148 | /* count IN/OUT bytes, not SETUP (even short packets) */ |
| 149 | if (likely (QTD_PID (token) != 2)) |
| 150 | urb->actual_length += length - QTD_LENGTH (token); |
| 151 | |
| 152 | /* don't modify error codes */ |
| 153 | if (unlikely (urb->status != -EINPROGRESS)) |
| 154 | return; |
| 155 | |
| 156 | /* force cleanup after short read; not always an error */ |
| 157 | if (unlikely (IS_SHORT_READ (token))) |
| 158 | urb->status = -EREMOTEIO; |
| 159 | |
| 160 | /* serious "can't proceed" faults reported by the hardware */ |
| 161 | if (token & QTD_STS_HALT) { |
| 162 | if (token & QTD_STS_BABBLE) { |
| 163 | /* FIXME "must" disable babbling device's port too */ |
| 164 | urb->status = -EOVERFLOW; |
| 165 | } else if (token & QTD_STS_MMF) { |
| 166 | /* fs/ls interrupt xfer missed the complete-split */ |
| 167 | urb->status = -EPROTO; |
| 168 | } else if (token & QTD_STS_DBE) { |
| 169 | urb->status = (QTD_PID (token) == 1) /* IN ? */ |
| 170 | ? -ENOSR /* hc couldn't read data */ |
| 171 | : -ECOMM; /* hc couldn't write data */ |
| 172 | } else if (token & QTD_STS_XACT) { |
| 173 | /* timeout, bad crc, wrong PID, etc; retried */ |
| 174 | if (QTD_CERR (token)) |
| 175 | urb->status = -EPIPE; |
| 176 | else { |
| 177 | ehci_dbg (ehci, "devpath %s ep%d%s 3strikes\n", |
| 178 | urb->dev->devpath, |
| 179 | usb_pipeendpoint (urb->pipe), |
| 180 | usb_pipein (urb->pipe) ? "in" : "out"); |
| 181 | urb->status = -EPROTO; |
| 182 | } |
| 183 | /* CERR nonzero + no errors + halt --> stall */ |
| 184 | } else if (QTD_CERR (token)) |
| 185 | urb->status = -EPIPE; |
| 186 | else /* unknown */ |
| 187 | urb->status = -EPROTO; |
| 188 | |
| 189 | ehci_vdbg (ehci, |
| 190 | "dev%d ep%d%s qtd token %08x --> status %d\n", |
| 191 | usb_pipedevice (urb->pipe), |
| 192 | usb_pipeendpoint (urb->pipe), |
| 193 | usb_pipein (urb->pipe) ? "in" : "out", |
| 194 | token, urb->status); |
| 195 | |
| 196 | /* if async CSPLIT failed, try cleaning out the TT buffer */ |
| 197 | if (urb->status != -EPIPE |
| 198 | && urb->dev->tt && !usb_pipeint (urb->pipe) |
| 199 | && ((token & QTD_STS_MMF) != 0 |
| 200 | || QTD_CERR(token) == 0) |
| 201 | && (!ehci_is_TDI(ehci) |
| 202 | || urb->dev->tt->hub != |
| 203 | ehci_to_hcd(ehci)->self.root_hub)) { |
| 204 | #ifdef DEBUG |
| 205 | struct usb_device *tt = urb->dev->tt->hub; |
| 206 | dev_dbg (&tt->dev, |
| 207 | "clear tt buffer port %d, a%d ep%d t%08x\n", |
| 208 | urb->dev->ttport, urb->dev->devnum, |
| 209 | usb_pipeendpoint (urb->pipe), token); |
| 210 | #endif /* DEBUG */ |
| 211 | usb_hub_tt_clear_buffer (urb->dev, urb->pipe); |
| 212 | } |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | static void |
| 217 | ehci_urb_done (struct ehci_hcd *ehci, struct urb *urb, struct pt_regs *regs) |
| 218 | __releases(ehci->lock) |
| 219 | __acquires(ehci->lock) |
| 220 | { |
| 221 | if (likely (urb->hcpriv != NULL)) { |
| 222 | struct ehci_qh *qh = (struct ehci_qh *) urb->hcpriv; |
| 223 | |
| 224 | /* S-mask in a QH means it's an interrupt urb */ |
| 225 | if ((qh->hw_info2 & __constant_cpu_to_le32 (0x00ff)) != 0) { |
| 226 | |
| 227 | /* ... update hc-wide periodic stats (for usbfs) */ |
| 228 | ehci_to_hcd(ehci)->self.bandwidth_int_reqs--; |
| 229 | } |
| 230 | qh_put (qh); |
| 231 | } |
| 232 | |
| 233 | spin_lock (&urb->lock); |
| 234 | urb->hcpriv = NULL; |
| 235 | switch (urb->status) { |
| 236 | case -EINPROGRESS: /* success */ |
| 237 | urb->status = 0; |
| 238 | default: /* fault */ |
| 239 | COUNT (ehci->stats.complete); |
| 240 | break; |
| 241 | case -EREMOTEIO: /* fault or normal */ |
| 242 | if (!(urb->transfer_flags & URB_SHORT_NOT_OK)) |
| 243 | urb->status = 0; |
| 244 | COUNT (ehci->stats.complete); |
| 245 | break; |
| 246 | case -ECONNRESET: /* canceled */ |
| 247 | case -ENOENT: |
| 248 | COUNT (ehci->stats.unlink); |
| 249 | break; |
| 250 | } |
| 251 | spin_unlock (&urb->lock); |
| 252 | |
| 253 | #ifdef EHCI_URB_TRACE |
| 254 | ehci_dbg (ehci, |
| 255 | "%s %s urb %p ep%d%s status %d len %d/%d\n", |
| 256 | __FUNCTION__, urb->dev->devpath, urb, |
| 257 | usb_pipeendpoint (urb->pipe), |
| 258 | usb_pipein (urb->pipe) ? "in" : "out", |
| 259 | urb->status, |
| 260 | urb->actual_length, urb->transfer_buffer_length); |
| 261 | #endif |
| 262 | |
| 263 | /* complete() can reenter this HCD */ |
| 264 | spin_unlock (&ehci->lock); |
| 265 | usb_hcd_giveback_urb (ehci_to_hcd(ehci), urb, regs); |
| 266 | spin_lock (&ehci->lock); |
| 267 | } |
| 268 | |
| 269 | static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh); |
| 270 | static void unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh); |
| 271 | |
| 272 | static void intr_deschedule (struct ehci_hcd *ehci, struct ehci_qh *qh); |
| 273 | static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh); |
| 274 | |
| 275 | /* |
| 276 | * Process and free completed qtds for a qh, returning URBs to drivers. |
| 277 | * Chases up to qh->hw_current. Returns number of completions called, |
| 278 | * indicating how much "real" work we did. |
| 279 | */ |
| 280 | #define HALT_BIT __constant_cpu_to_le32(QTD_STS_HALT) |
| 281 | static unsigned |
| 282 | qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh, struct pt_regs *regs) |
| 283 | { |
| 284 | struct ehci_qtd *last = NULL, *end = qh->dummy; |
| 285 | struct list_head *entry, *tmp; |
| 286 | int stopped; |
| 287 | unsigned count = 0; |
| 288 | int do_status = 0; |
| 289 | u8 state; |
| 290 | |
| 291 | if (unlikely (list_empty (&qh->qtd_list))) |
| 292 | return count; |
| 293 | |
| 294 | /* completions (or tasks on other cpus) must never clobber HALT |
| 295 | * till we've gone through and cleaned everything up, even when |
| 296 | * they add urbs to this qh's queue or mark them for unlinking. |
| 297 | * |
| 298 | * NOTE: unlinking expects to be done in queue order. |
| 299 | */ |
| 300 | state = qh->qh_state; |
| 301 | qh->qh_state = QH_STATE_COMPLETING; |
| 302 | stopped = (state == QH_STATE_IDLE); |
| 303 | |
| 304 | /* remove de-activated QTDs from front of queue. |
| 305 | * after faults (including short reads), cleanup this urb |
| 306 | * then let the queue advance. |
| 307 | * if queue is stopped, handles unlinks. |
| 308 | */ |
| 309 | list_for_each_safe (entry, tmp, &qh->qtd_list) { |
| 310 | struct ehci_qtd *qtd; |
| 311 | struct urb *urb; |
| 312 | u32 token = 0; |
| 313 | |
| 314 | qtd = list_entry (entry, struct ehci_qtd, qtd_list); |
| 315 | urb = qtd->urb; |
| 316 | |
| 317 | /* clean up any state from previous QTD ...*/ |
| 318 | if (last) { |
| 319 | if (likely (last->urb != urb)) { |
| 320 | ehci_urb_done (ehci, last->urb, regs); |
| 321 | count++; |
| 322 | } |
| 323 | ehci_qtd_free (ehci, last); |
| 324 | last = NULL; |
| 325 | } |
| 326 | |
| 327 | /* ignore urbs submitted during completions we reported */ |
| 328 | if (qtd == end) |
| 329 | break; |
| 330 | |
| 331 | /* hardware copies qtd out of qh overlay */ |
| 332 | rmb (); |
| 333 | token = le32_to_cpu (qtd->hw_token); |
| 334 | |
| 335 | /* always clean up qtds the hc de-activated */ |
| 336 | if ((token & QTD_STS_ACTIVE) == 0) { |
| 337 | |
| 338 | if ((token & QTD_STS_HALT) != 0) { |
| 339 | stopped = 1; |
| 340 | |
| 341 | /* magic dummy for some short reads; qh won't advance. |
| 342 | * that silicon quirk can kick in with this dummy too. |
| 343 | */ |
| 344 | } else if (IS_SHORT_READ (token) |
| 345 | && !(qtd->hw_alt_next & EHCI_LIST_END)) { |
| 346 | stopped = 1; |
| 347 | goto halt; |
| 348 | } |
| 349 | |
| 350 | /* stop scanning when we reach qtds the hc is using */ |
| 351 | } else if (likely (!stopped |
| 352 | && HC_IS_RUNNING (ehci_to_hcd(ehci)->state))) { |
| 353 | break; |
| 354 | |
| 355 | } else { |
| 356 | stopped = 1; |
| 357 | |
| 358 | if (unlikely (!HC_IS_RUNNING (ehci_to_hcd(ehci)->state))) |
| 359 | urb->status = -ESHUTDOWN; |
| 360 | |
| 361 | /* ignore active urbs unless some previous qtd |
| 362 | * for the urb faulted (including short read) or |
| 363 | * its urb was canceled. we may patch qh or qtds. |
| 364 | */ |
| 365 | if (likely (urb->status == -EINPROGRESS)) |
| 366 | continue; |
| 367 | |
| 368 | /* issue status after short control reads */ |
| 369 | if (unlikely (do_status != 0) |
| 370 | && QTD_PID (token) == 0 /* OUT */) { |
| 371 | do_status = 0; |
| 372 | continue; |
| 373 | } |
| 374 | |
| 375 | /* token in overlay may be most current */ |
| 376 | if (state == QH_STATE_IDLE |
| 377 | && cpu_to_le32 (qtd->qtd_dma) |
| 378 | == qh->hw_current) |
| 379 | token = le32_to_cpu (qh->hw_token); |
| 380 | |
| 381 | /* force halt for unlinked or blocked qh, so we'll |
| 382 | * patch the qh later and so that completions can't |
| 383 | * activate it while we "know" it's stopped. |
| 384 | */ |
| 385 | if ((HALT_BIT & qh->hw_token) == 0) { |
| 386 | halt: |
| 387 | qh->hw_token |= HALT_BIT; |
| 388 | wmb (); |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | /* remove it from the queue */ |
| 393 | spin_lock (&urb->lock); |
| 394 | qtd_copy_status (ehci, urb, qtd->length, token); |
| 395 | do_status = (urb->status == -EREMOTEIO) |
| 396 | && usb_pipecontrol (urb->pipe); |
| 397 | spin_unlock (&urb->lock); |
| 398 | |
| 399 | if (stopped && qtd->qtd_list.prev != &qh->qtd_list) { |
| 400 | last = list_entry (qtd->qtd_list.prev, |
| 401 | struct ehci_qtd, qtd_list); |
| 402 | last->hw_next = qtd->hw_next; |
| 403 | } |
| 404 | list_del (&qtd->qtd_list); |
| 405 | last = qtd; |
| 406 | } |
| 407 | |
| 408 | /* last urb's completion might still need calling */ |
| 409 | if (likely (last != NULL)) { |
| 410 | ehci_urb_done (ehci, last->urb, regs); |
| 411 | count++; |
| 412 | ehci_qtd_free (ehci, last); |
| 413 | } |
| 414 | |
| 415 | /* restore original state; caller must unlink or relink */ |
| 416 | qh->qh_state = state; |
| 417 | |
| 418 | /* be sure the hardware's done with the qh before refreshing |
| 419 | * it after fault cleanup, or recovering from silicon wrongly |
| 420 | * overlaying the dummy qtd (which reduces DMA chatter). |
| 421 | */ |
| 422 | if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) { |
| 423 | switch (state) { |
| 424 | case QH_STATE_IDLE: |
| 425 | qh_refresh(ehci, qh); |
| 426 | break; |
| 427 | case QH_STATE_LINKED: |
| 428 | /* should be rare for periodic transfers, |
| 429 | * except maybe high bandwidth ... |
| 430 | */ |
| 431 | if (qh->period) { |
| 432 | intr_deschedule (ehci, qh); |
| 433 | (void) qh_schedule (ehci, qh); |
| 434 | } else |
| 435 | unlink_async (ehci, qh); |
| 436 | break; |
| 437 | /* otherwise, unlink already started */ |
| 438 | } |
| 439 | } |
| 440 | |
| 441 | return count; |
| 442 | } |
| 443 | |
| 444 | /*-------------------------------------------------------------------------*/ |
| 445 | |
| 446 | // high bandwidth multiplier, as encoded in highspeed endpoint descriptors |
| 447 | #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03)) |
| 448 | // ... and packet size, for any kind of endpoint descriptor |
| 449 | #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) |
| 450 | |
| 451 | /* |
| 452 | * reverse of qh_urb_transaction: free a list of TDs. |
| 453 | * used for cleanup after errors, before HC sees an URB's TDs. |
| 454 | */ |
| 455 | static void qtd_list_free ( |
| 456 | struct ehci_hcd *ehci, |
| 457 | struct urb *urb, |
| 458 | struct list_head *qtd_list |
| 459 | ) { |
| 460 | struct list_head *entry, *temp; |
| 461 | |
| 462 | list_for_each_safe (entry, temp, qtd_list) { |
| 463 | struct ehci_qtd *qtd; |
| 464 | |
| 465 | qtd = list_entry (entry, struct ehci_qtd, qtd_list); |
| 466 | list_del (&qtd->qtd_list); |
| 467 | ehci_qtd_free (ehci, qtd); |
| 468 | } |
| 469 | } |
| 470 | |
| 471 | /* |
| 472 | * create a list of filled qtds for this URB; won't link into qh. |
| 473 | */ |
| 474 | static struct list_head * |
| 475 | qh_urb_transaction ( |
| 476 | struct ehci_hcd *ehci, |
| 477 | struct urb *urb, |
| 478 | struct list_head *head, |
| 479 | int flags |
| 480 | ) { |
| 481 | struct ehci_qtd *qtd, *qtd_prev; |
| 482 | dma_addr_t buf; |
| 483 | int len, maxpacket; |
| 484 | int is_input; |
| 485 | u32 token; |
| 486 | |
| 487 | /* |
| 488 | * URBs map to sequences of QTDs: one logical transaction |
| 489 | */ |
| 490 | qtd = ehci_qtd_alloc (ehci, flags); |
| 491 | if (unlikely (!qtd)) |
| 492 | return NULL; |
| 493 | list_add_tail (&qtd->qtd_list, head); |
| 494 | qtd->urb = urb; |
| 495 | |
| 496 | token = QTD_STS_ACTIVE; |
| 497 | token |= (EHCI_TUNE_CERR << 10); |
| 498 | /* for split transactions, SplitXState initialized to zero */ |
| 499 | |
| 500 | len = urb->transfer_buffer_length; |
| 501 | is_input = usb_pipein (urb->pipe); |
| 502 | if (usb_pipecontrol (urb->pipe)) { |
| 503 | /* SETUP pid */ |
| 504 | qtd_fill (qtd, urb->setup_dma, sizeof (struct usb_ctrlrequest), |
| 505 | token | (2 /* "setup" */ << 8), 8); |
| 506 | |
| 507 | /* ... and always at least one more pid */ |
| 508 | token ^= QTD_TOGGLE; |
| 509 | qtd_prev = qtd; |
| 510 | qtd = ehci_qtd_alloc (ehci, flags); |
| 511 | if (unlikely (!qtd)) |
| 512 | goto cleanup; |
| 513 | qtd->urb = urb; |
| 514 | qtd_prev->hw_next = QTD_NEXT (qtd->qtd_dma); |
| 515 | list_add_tail (&qtd->qtd_list, head); |
| 516 | } |
| 517 | |
| 518 | /* |
| 519 | * data transfer stage: buffer setup |
| 520 | */ |
| 521 | if (likely (len > 0)) |
| 522 | buf = urb->transfer_dma; |
| 523 | else |
| 524 | buf = 0; |
| 525 | |
| 526 | /* for zero length DATA stages, STATUS is always IN */ |
| 527 | if (!buf || is_input) |
| 528 | token |= (1 /* "in" */ << 8); |
| 529 | /* else it's already initted to "out" pid (0 << 8) */ |
| 530 | |
| 531 | maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input)); |
| 532 | |
| 533 | /* |
| 534 | * buffer gets wrapped in one or more qtds; |
| 535 | * last one may be "short" (including zero len) |
| 536 | * and may serve as a control status ack |
| 537 | */ |
| 538 | for (;;) { |
| 539 | int this_qtd_len; |
| 540 | |
| 541 | this_qtd_len = qtd_fill (qtd, buf, len, token, maxpacket); |
| 542 | len -= this_qtd_len; |
| 543 | buf += this_qtd_len; |
| 544 | if (is_input) |
| 545 | qtd->hw_alt_next = ehci->async->hw_alt_next; |
| 546 | |
| 547 | /* qh makes control packets use qtd toggle; maybe switch it */ |
| 548 | if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0) |
| 549 | token ^= QTD_TOGGLE; |
| 550 | |
| 551 | if (likely (len <= 0)) |
| 552 | break; |
| 553 | |
| 554 | qtd_prev = qtd; |
| 555 | qtd = ehci_qtd_alloc (ehci, flags); |
| 556 | if (unlikely (!qtd)) |
| 557 | goto cleanup; |
| 558 | qtd->urb = urb; |
| 559 | qtd_prev->hw_next = QTD_NEXT (qtd->qtd_dma); |
| 560 | list_add_tail (&qtd->qtd_list, head); |
| 561 | } |
| 562 | |
| 563 | /* unless the bulk/interrupt caller wants a chance to clean |
| 564 | * up after short reads, hc should advance qh past this urb |
| 565 | */ |
| 566 | if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 |
| 567 | || usb_pipecontrol (urb->pipe))) |
| 568 | qtd->hw_alt_next = EHCI_LIST_END; |
| 569 | |
| 570 | /* |
| 571 | * control requests may need a terminating data "status" ack; |
| 572 | * bulk ones may need a terminating short packet (zero length). |
| 573 | */ |
| 574 | if (likely (buf != 0)) { |
| 575 | int one_more = 0; |
| 576 | |
| 577 | if (usb_pipecontrol (urb->pipe)) { |
| 578 | one_more = 1; |
| 579 | token ^= 0x0100; /* "in" <--> "out" */ |
| 580 | token |= QTD_TOGGLE; /* force DATA1 */ |
| 581 | } else if (usb_pipebulk (urb->pipe) |
| 582 | && (urb->transfer_flags & URB_ZERO_PACKET) |
| 583 | && !(urb->transfer_buffer_length % maxpacket)) { |
| 584 | one_more = 1; |
| 585 | } |
| 586 | if (one_more) { |
| 587 | qtd_prev = qtd; |
| 588 | qtd = ehci_qtd_alloc (ehci, flags); |
| 589 | if (unlikely (!qtd)) |
| 590 | goto cleanup; |
| 591 | qtd->urb = urb; |
| 592 | qtd_prev->hw_next = QTD_NEXT (qtd->qtd_dma); |
| 593 | list_add_tail (&qtd->qtd_list, head); |
| 594 | |
| 595 | /* never any data in such packets */ |
| 596 | qtd_fill (qtd, 0, 0, token, 0); |
| 597 | } |
| 598 | } |
| 599 | |
| 600 | /* by default, enable interrupt on urb completion */ |
| 601 | if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT))) |
| 602 | qtd->hw_token |= __constant_cpu_to_le32 (QTD_IOC); |
| 603 | return head; |
| 604 | |
| 605 | cleanup: |
| 606 | qtd_list_free (ehci, urb, head); |
| 607 | return NULL; |
| 608 | } |
| 609 | |
| 610 | /*-------------------------------------------------------------------------*/ |
| 611 | |
| 612 | // Would be best to create all qh's from config descriptors, |
| 613 | // when each interface/altsetting is established. Unlink |
| 614 | // any previous qh and cancel its urbs first; endpoints are |
| 615 | // implicitly reset then (data toggle too). |
| 616 | // That'd mean updating how usbcore talks to HCDs. (2.7?) |
| 617 | |
| 618 | |
| 619 | /* |
| 620 | * Each QH holds a qtd list; a QH is used for everything except iso. |
| 621 | * |
| 622 | * For interrupt urbs, the scheduler must set the microframe scheduling |
| 623 | * mask(s) each time the QH gets scheduled. For highspeed, that's |
| 624 | * just one microframe in the s-mask. For split interrupt transactions |
| 625 | * there are additional complications: c-mask, maybe FSTNs. |
| 626 | */ |
| 627 | static struct ehci_qh * |
| 628 | qh_make ( |
| 629 | struct ehci_hcd *ehci, |
| 630 | struct urb *urb, |
| 631 | int flags |
| 632 | ) { |
| 633 | struct ehci_qh *qh = ehci_qh_alloc (ehci, flags); |
| 634 | u32 info1 = 0, info2 = 0; |
| 635 | int is_input, type; |
| 636 | int maxp = 0; |
| 637 | |
| 638 | if (!qh) |
| 639 | return qh; |
| 640 | |
| 641 | /* |
| 642 | * init endpoint/device data for this QH |
| 643 | */ |
| 644 | info1 |= usb_pipeendpoint (urb->pipe) << 8; |
| 645 | info1 |= usb_pipedevice (urb->pipe) << 0; |
| 646 | |
| 647 | is_input = usb_pipein (urb->pipe); |
| 648 | type = usb_pipetype (urb->pipe); |
| 649 | maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input); |
| 650 | |
| 651 | /* Compute interrupt scheduling parameters just once, and save. |
| 652 | * - allowing for high bandwidth, how many nsec/uframe are used? |
| 653 | * - split transactions need a second CSPLIT uframe; same question |
| 654 | * - splits also need a schedule gap (for full/low speed I/O) |
| 655 | * - qh has a polling interval |
| 656 | * |
| 657 | * For control/bulk requests, the HC or TT handles these. |
| 658 | */ |
| 659 | if (type == PIPE_INTERRUPT) { |
| 660 | qh->usecs = usb_calc_bus_time (USB_SPEED_HIGH, is_input, 0, |
| 661 | hb_mult (maxp) * max_packet (maxp)); |
| 662 | qh->start = NO_FRAME; |
| 663 | |
| 664 | if (urb->dev->speed == USB_SPEED_HIGH) { |
| 665 | qh->c_usecs = 0; |
| 666 | qh->gap_uf = 0; |
| 667 | |
| 668 | qh->period = urb->interval >> 3; |
| 669 | if (qh->period == 0 && urb->interval != 1) { |
| 670 | /* NOTE interval 2 or 4 uframes could work. |
| 671 | * But interval 1 scheduling is simpler, and |
| 672 | * includes high bandwidth. |
| 673 | */ |
| 674 | dbg ("intr period %d uframes, NYET!", |
| 675 | urb->interval); |
| 676 | goto done; |
| 677 | } |
| 678 | } else { |
| 679 | /* gap is f(FS/LS transfer times) */ |
| 680 | qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed, |
| 681 | is_input, 0, maxp) / (125 * 1000); |
| 682 | |
| 683 | /* FIXME this just approximates SPLIT/CSPLIT times */ |
| 684 | if (is_input) { // SPLIT, gap, CSPLIT+DATA |
| 685 | qh->c_usecs = qh->usecs + HS_USECS (0); |
| 686 | qh->usecs = HS_USECS (1); |
| 687 | } else { // SPLIT+DATA, gap, CSPLIT |
| 688 | qh->usecs += HS_USECS (1); |
| 689 | qh->c_usecs = HS_USECS (0); |
| 690 | } |
| 691 | |
| 692 | qh->period = urb->interval; |
| 693 | } |
| 694 | } |
| 695 | |
| 696 | /* support for tt scheduling, and access to toggles */ |
| 697 | qh->dev = usb_get_dev (urb->dev); |
| 698 | |
| 699 | /* using TT? */ |
| 700 | switch (urb->dev->speed) { |
| 701 | case USB_SPEED_LOW: |
| 702 | info1 |= (1 << 12); /* EPS "low" */ |
| 703 | /* FALL THROUGH */ |
| 704 | |
| 705 | case USB_SPEED_FULL: |
| 706 | /* EPS 0 means "full" */ |
| 707 | if (type != PIPE_INTERRUPT) |
| 708 | info1 |= (EHCI_TUNE_RL_TT << 28); |
| 709 | if (type == PIPE_CONTROL) { |
| 710 | info1 |= (1 << 27); /* for TT */ |
| 711 | info1 |= 1 << 14; /* toggle from qtd */ |
| 712 | } |
| 713 | info1 |= maxp << 16; |
| 714 | |
| 715 | info2 |= (EHCI_TUNE_MULT_TT << 30); |
| 716 | info2 |= urb->dev->ttport << 23; |
| 717 | |
| 718 | /* set the address of the TT; for TDI's integrated |
| 719 | * root hub tt, leave it zeroed. |
| 720 | */ |
| 721 | if (!ehci_is_TDI(ehci) |
| 722 | || urb->dev->tt->hub != |
| 723 | ehci_to_hcd(ehci)->self.root_hub) |
| 724 | info2 |= urb->dev->tt->hub->devnum << 16; |
| 725 | |
| 726 | /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */ |
| 727 | |
| 728 | break; |
| 729 | |
| 730 | case USB_SPEED_HIGH: /* no TT involved */ |
| 731 | info1 |= (2 << 12); /* EPS "high" */ |
| 732 | if (type == PIPE_CONTROL) { |
| 733 | info1 |= (EHCI_TUNE_RL_HS << 28); |
| 734 | info1 |= 64 << 16; /* usb2 fixed maxpacket */ |
| 735 | info1 |= 1 << 14; /* toggle from qtd */ |
| 736 | info2 |= (EHCI_TUNE_MULT_HS << 30); |
| 737 | } else if (type == PIPE_BULK) { |
| 738 | info1 |= (EHCI_TUNE_RL_HS << 28); |
| 739 | info1 |= 512 << 16; /* usb2 fixed maxpacket */ |
| 740 | info2 |= (EHCI_TUNE_MULT_HS << 30); |
| 741 | } else { /* PIPE_INTERRUPT */ |
| 742 | info1 |= max_packet (maxp) << 16; |
| 743 | info2 |= hb_mult (maxp) << 30; |
| 744 | } |
| 745 | break; |
| 746 | default: |
| 747 | dbg ("bogus dev %p speed %d", urb->dev, urb->dev->speed); |
| 748 | done: |
| 749 | qh_put (qh); |
| 750 | return NULL; |
| 751 | } |
| 752 | |
| 753 | /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */ |
| 754 | |
| 755 | /* init as live, toggle clear, advance to dummy */ |
| 756 | qh->qh_state = QH_STATE_IDLE; |
| 757 | qh->hw_info1 = cpu_to_le32 (info1); |
| 758 | qh->hw_info2 = cpu_to_le32 (info2); |
| 759 | usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1); |
| 760 | qh_refresh (ehci, qh); |
| 761 | return qh; |
| 762 | } |
| 763 | |
| 764 | /*-------------------------------------------------------------------------*/ |
| 765 | |
| 766 | /* move qh (and its qtds) onto async queue; maybe enable queue. */ |
| 767 | |
| 768 | static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh) |
| 769 | { |
| 770 | __le32 dma = QH_NEXT (qh->qh_dma); |
| 771 | struct ehci_qh *head; |
| 772 | |
| 773 | /* (re)start the async schedule? */ |
| 774 | head = ehci->async; |
| 775 | timer_action_done (ehci, TIMER_ASYNC_OFF); |
| 776 | if (!head->qh_next.qh) { |
| 777 | u32 cmd = readl (&ehci->regs->command); |
| 778 | |
| 779 | if (!(cmd & CMD_ASE)) { |
| 780 | /* in case a clear of CMD_ASE didn't take yet */ |
| 781 | (void) handshake (&ehci->regs->status, STS_ASS, 0, 150); |
| 782 | cmd |= CMD_ASE | CMD_RUN; |
| 783 | writel (cmd, &ehci->regs->command); |
| 784 | ehci_to_hcd(ehci)->state = HC_STATE_RUNNING; |
| 785 | /* posted write need not be known to HC yet ... */ |
| 786 | } |
| 787 | } |
| 788 | |
| 789 | /* clear halt and/or toggle; and maybe recover from silicon quirk */ |
| 790 | if (qh->qh_state == QH_STATE_IDLE) |
| 791 | qh_refresh (ehci, qh); |
| 792 | |
| 793 | /* splice right after start */ |
| 794 | qh->qh_next = head->qh_next; |
| 795 | qh->hw_next = head->hw_next; |
| 796 | wmb (); |
| 797 | |
| 798 | head->qh_next.qh = qh; |
| 799 | head->hw_next = dma; |
| 800 | |
| 801 | qh->qh_state = QH_STATE_LINKED; |
| 802 | /* qtd completions reported later by interrupt */ |
| 803 | } |
| 804 | |
| 805 | /*-------------------------------------------------------------------------*/ |
| 806 | |
| 807 | #define QH_ADDR_MASK __constant_cpu_to_le32(0x7f) |
| 808 | |
| 809 | /* |
| 810 | * For control/bulk/interrupt, return QH with these TDs appended. |
| 811 | * Allocates and initializes the QH if necessary. |
| 812 | * Returns null if it can't allocate a QH it needs to. |
| 813 | * If the QH has TDs (urbs) already, that's great. |
| 814 | */ |
| 815 | static struct ehci_qh *qh_append_tds ( |
| 816 | struct ehci_hcd *ehci, |
| 817 | struct urb *urb, |
| 818 | struct list_head *qtd_list, |
| 819 | int epnum, |
| 820 | void **ptr |
| 821 | ) |
| 822 | { |
| 823 | struct ehci_qh *qh = NULL; |
| 824 | |
| 825 | qh = (struct ehci_qh *) *ptr; |
| 826 | if (unlikely (qh == NULL)) { |
| 827 | /* can't sleep here, we have ehci->lock... */ |
| 828 | qh = qh_make (ehci, urb, GFP_ATOMIC); |
| 829 | *ptr = qh; |
| 830 | } |
| 831 | if (likely (qh != NULL)) { |
| 832 | struct ehci_qtd *qtd; |
| 833 | |
| 834 | if (unlikely (list_empty (qtd_list))) |
| 835 | qtd = NULL; |
| 836 | else |
| 837 | qtd = list_entry (qtd_list->next, struct ehci_qtd, |
| 838 | qtd_list); |
| 839 | |
| 840 | /* control qh may need patching ... */ |
| 841 | if (unlikely (epnum == 0)) { |
| 842 | |
| 843 | /* usb_reset_device() briefly reverts to address 0 */ |
| 844 | if (usb_pipedevice (urb->pipe) == 0) |
| 845 | qh->hw_info1 &= ~QH_ADDR_MASK; |
| 846 | } |
| 847 | |
| 848 | /* just one way to queue requests: swap with the dummy qtd. |
| 849 | * only hc or qh_refresh() ever modify the overlay. |
| 850 | */ |
| 851 | if (likely (qtd != NULL)) { |
| 852 | struct ehci_qtd *dummy; |
| 853 | dma_addr_t dma; |
| 854 | __le32 token; |
| 855 | |
| 856 | /* to avoid racing the HC, use the dummy td instead of |
| 857 | * the first td of our list (becomes new dummy). both |
| 858 | * tds stay deactivated until we're done, when the |
| 859 | * HC is allowed to fetch the old dummy (4.10.2). |
| 860 | */ |
| 861 | token = qtd->hw_token; |
| 862 | qtd->hw_token = HALT_BIT; |
| 863 | wmb (); |
| 864 | dummy = qh->dummy; |
| 865 | |
| 866 | dma = dummy->qtd_dma; |
| 867 | *dummy = *qtd; |
| 868 | dummy->qtd_dma = dma; |
| 869 | |
| 870 | list_del (&qtd->qtd_list); |
| 871 | list_add (&dummy->qtd_list, qtd_list); |
| 872 | __list_splice (qtd_list, qh->qtd_list.prev); |
| 873 | |
| 874 | ehci_qtd_init (qtd, qtd->qtd_dma); |
| 875 | qh->dummy = qtd; |
| 876 | |
| 877 | /* hc must see the new dummy at list end */ |
| 878 | dma = qtd->qtd_dma; |
| 879 | qtd = list_entry (qh->qtd_list.prev, |
| 880 | struct ehci_qtd, qtd_list); |
| 881 | qtd->hw_next = QTD_NEXT (dma); |
| 882 | |
| 883 | /* let the hc process these next qtds */ |
| 884 | wmb (); |
| 885 | dummy->hw_token = token; |
| 886 | |
| 887 | urb->hcpriv = qh_get (qh); |
| 888 | } |
| 889 | } |
| 890 | return qh; |
| 891 | } |
| 892 | |
| 893 | /*-------------------------------------------------------------------------*/ |
| 894 | |
| 895 | static int |
| 896 | submit_async ( |
| 897 | struct ehci_hcd *ehci, |
| 898 | struct usb_host_endpoint *ep, |
| 899 | struct urb *urb, |
| 900 | struct list_head *qtd_list, |
| 901 | int mem_flags |
| 902 | ) { |
| 903 | struct ehci_qtd *qtd; |
| 904 | int epnum; |
| 905 | unsigned long flags; |
| 906 | struct ehci_qh *qh = NULL; |
| 907 | |
| 908 | qtd = list_entry (qtd_list->next, struct ehci_qtd, qtd_list); |
| 909 | epnum = ep->desc.bEndpointAddress; |
| 910 | |
| 911 | #ifdef EHCI_URB_TRACE |
| 912 | ehci_dbg (ehci, |
| 913 | "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n", |
| 914 | __FUNCTION__, urb->dev->devpath, urb, |
| 915 | epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out", |
| 916 | urb->transfer_buffer_length, |
| 917 | qtd, ep->hcpriv); |
| 918 | #endif |
| 919 | |
| 920 | spin_lock_irqsave (&ehci->lock, flags); |
| 921 | qh = qh_append_tds (ehci, urb, qtd_list, epnum, &ep->hcpriv); |
| 922 | |
| 923 | /* Control/bulk operations through TTs don't need scheduling, |
| 924 | * the HC and TT handle it when the TT has a buffer ready. |
| 925 | */ |
| 926 | if (likely (qh != NULL)) { |
| 927 | if (likely (qh->qh_state == QH_STATE_IDLE)) |
| 928 | qh_link_async (ehci, qh_get (qh)); |
| 929 | } |
| 930 | spin_unlock_irqrestore (&ehci->lock, flags); |
| 931 | if (unlikely (qh == NULL)) { |
| 932 | qtd_list_free (ehci, urb, qtd_list); |
| 933 | return -ENOMEM; |
| 934 | } |
| 935 | return 0; |
| 936 | } |
| 937 | |
| 938 | /*-------------------------------------------------------------------------*/ |
| 939 | |
| 940 | /* the async qh for the qtds being reclaimed are now unlinked from the HC */ |
| 941 | |
| 942 | static void end_unlink_async (struct ehci_hcd *ehci, struct pt_regs *regs) |
| 943 | { |
| 944 | struct ehci_qh *qh = ehci->reclaim; |
| 945 | struct ehci_qh *next; |
| 946 | |
| 947 | timer_action_done (ehci, TIMER_IAA_WATCHDOG); |
| 948 | |
| 949 | // qh->hw_next = cpu_to_le32 (qh->qh_dma); |
| 950 | qh->qh_state = QH_STATE_IDLE; |
| 951 | qh->qh_next.qh = NULL; |
| 952 | qh_put (qh); // refcount from reclaim |
| 953 | |
| 954 | /* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */ |
| 955 | next = qh->reclaim; |
| 956 | ehci->reclaim = next; |
| 957 | ehci->reclaim_ready = 0; |
| 958 | qh->reclaim = NULL; |
| 959 | |
| 960 | qh_completions (ehci, qh, regs); |
| 961 | |
| 962 | if (!list_empty (&qh->qtd_list) |
| 963 | && HC_IS_RUNNING (ehci_to_hcd(ehci)->state)) |
| 964 | qh_link_async (ehci, qh); |
| 965 | else { |
| 966 | qh_put (qh); // refcount from async list |
| 967 | |
| 968 | /* it's not free to turn the async schedule on/off; leave it |
| 969 | * active but idle for a while once it empties. |
| 970 | */ |
| 971 | if (HC_IS_RUNNING (ehci_to_hcd(ehci)->state) |
| 972 | && ehci->async->qh_next.qh == NULL) |
| 973 | timer_action (ehci, TIMER_ASYNC_OFF); |
| 974 | } |
| 975 | |
| 976 | if (next) { |
| 977 | ehci->reclaim = NULL; |
| 978 | start_unlink_async (ehci, next); |
| 979 | } |
| 980 | } |
| 981 | |
| 982 | /* makes sure the async qh will become idle */ |
| 983 | /* caller must own ehci->lock */ |
| 984 | |
| 985 | static void start_unlink_async (struct ehci_hcd *ehci, struct ehci_qh *qh) |
| 986 | { |
| 987 | int cmd = readl (&ehci->regs->command); |
| 988 | struct ehci_qh *prev; |
| 989 | |
| 990 | #ifdef DEBUG |
| 991 | assert_spin_locked(&ehci->lock); |
| 992 | if (ehci->reclaim |
| 993 | || (qh->qh_state != QH_STATE_LINKED |
| 994 | && qh->qh_state != QH_STATE_UNLINK_WAIT) |
| 995 | ) |
| 996 | BUG (); |
| 997 | #endif |
| 998 | |
| 999 | /* stop async schedule right now? */ |
| 1000 | if (unlikely (qh == ehci->async)) { |
| 1001 | /* can't get here without STS_ASS set */ |
| 1002 | if (ehci_to_hcd(ehci)->state != HC_STATE_HALT) { |
| 1003 | writel (cmd & ~CMD_ASE, &ehci->regs->command); |
| 1004 | wmb (); |
| 1005 | // handshake later, if we need to |
| 1006 | } |
| 1007 | timer_action_done (ehci, TIMER_ASYNC_OFF); |
| 1008 | return; |
| 1009 | } |
| 1010 | |
| 1011 | qh->qh_state = QH_STATE_UNLINK; |
| 1012 | ehci->reclaim = qh = qh_get (qh); |
| 1013 | |
| 1014 | prev = ehci->async; |
| 1015 | while (prev->qh_next.qh != qh) |
| 1016 | prev = prev->qh_next.qh; |
| 1017 | |
| 1018 | prev->hw_next = qh->hw_next; |
| 1019 | prev->qh_next = qh->qh_next; |
| 1020 | wmb (); |
| 1021 | |
| 1022 | if (unlikely (ehci_to_hcd(ehci)->state == HC_STATE_HALT)) { |
| 1023 | /* if (unlikely (qh->reclaim != 0)) |
| 1024 | * this will recurse, probably not much |
| 1025 | */ |
| 1026 | end_unlink_async (ehci, NULL); |
| 1027 | return; |
| 1028 | } |
| 1029 | |
| 1030 | ehci->reclaim_ready = 0; |
| 1031 | cmd |= CMD_IAAD; |
| 1032 | writel (cmd, &ehci->regs->command); |
| 1033 | (void) readl (&ehci->regs->command); |
| 1034 | timer_action (ehci, TIMER_IAA_WATCHDOG); |
| 1035 | } |
| 1036 | |
| 1037 | /*-------------------------------------------------------------------------*/ |
| 1038 | |
| 1039 | static void |
| 1040 | scan_async (struct ehci_hcd *ehci, struct pt_regs *regs) |
| 1041 | { |
| 1042 | struct ehci_qh *qh; |
| 1043 | enum ehci_timer_action action = TIMER_IO_WATCHDOG; |
| 1044 | |
| 1045 | if (!++(ehci->stamp)) |
| 1046 | ehci->stamp++; |
| 1047 | timer_action_done (ehci, TIMER_ASYNC_SHRINK); |
| 1048 | rescan: |
| 1049 | qh = ehci->async->qh_next.qh; |
| 1050 | if (likely (qh != NULL)) { |
| 1051 | do { |
| 1052 | /* clean any finished work for this qh */ |
| 1053 | if (!list_empty (&qh->qtd_list) |
| 1054 | && qh->stamp != ehci->stamp) { |
| 1055 | int temp; |
| 1056 | |
| 1057 | /* unlinks could happen here; completion |
| 1058 | * reporting drops the lock. rescan using |
| 1059 | * the latest schedule, but don't rescan |
| 1060 | * qhs we already finished (no looping). |
| 1061 | */ |
| 1062 | qh = qh_get (qh); |
| 1063 | qh->stamp = ehci->stamp; |
| 1064 | temp = qh_completions (ehci, qh, regs); |
| 1065 | qh_put (qh); |
| 1066 | if (temp != 0) { |
| 1067 | goto rescan; |
| 1068 | } |
| 1069 | } |
| 1070 | |
| 1071 | /* unlink idle entries, reducing HC PCI usage as well |
| 1072 | * as HCD schedule-scanning costs. delay for any qh |
| 1073 | * we just scanned, there's a not-unusual case that it |
| 1074 | * doesn't stay idle for long. |
| 1075 | * (plus, avoids some kind of re-activation race.) |
| 1076 | */ |
| 1077 | if (list_empty (&qh->qtd_list)) { |
| 1078 | if (qh->stamp == ehci->stamp) |
| 1079 | action = TIMER_ASYNC_SHRINK; |
| 1080 | else if (!ehci->reclaim |
| 1081 | && qh->qh_state == QH_STATE_LINKED) |
| 1082 | start_unlink_async (ehci, qh); |
| 1083 | } |
| 1084 | |
| 1085 | qh = qh->qh_next.qh; |
| 1086 | } while (qh); |
| 1087 | } |
| 1088 | if (action == TIMER_ASYNC_SHRINK) |
| 1089 | timer_action (ehci, TIMER_ASYNC_SHRINK); |
| 1090 | } |