blob: e0fa0ea2b1870f17291acc9890c47150f1e092f5 [file] [log] [blame]
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001The Definitive KVM (Kernel-based Virtual Machine) API Documentation
2===================================================================
3
41. General description
Jan Kiszka414fa982012-04-24 16:40:15 +02005----------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +03006
7The kvm API is a set of ioctls that are issued to control various aspects
8of a virtual machine. The ioctls belong to three classes
9
10 - System ioctls: These query and set global attributes which affect the
11 whole kvm subsystem. In addition a system ioctl is used to create
12 virtual machines
13
14 - VM ioctls: These query and set attributes that affect an entire virtual
15 machine, for example memory layout. In addition a VM ioctl is used to
16 create virtual cpus (vcpus).
17
18 Only run VM ioctls from the same process (address space) that was used
19 to create the VM.
20
21 - vcpu ioctls: These query and set attributes that control the operation
22 of a single virtual cpu.
23
24 Only run vcpu ioctls from the same thread that was used to create the
25 vcpu.
26
Jan Kiszka414fa982012-04-24 16:40:15 +020027
Wu Fengguang2044892d2009-12-24 09:04:16 +0800282. File descriptors
Jan Kiszka414fa982012-04-24 16:40:15 +020029-------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +030030
31The kvm API is centered around file descriptors. An initial
32open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
33can be used to issue system ioctls. A KVM_CREATE_VM ioctl on this
Wu Fengguang2044892d2009-12-24 09:04:16 +080034handle will create a VM file descriptor which can be used to issue VM
Avi Kivity9c1b96e2009-06-09 12:37:58 +030035ioctls. A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
36and return a file descriptor pointing to it. Finally, ioctls on a vcpu
37fd can be used to control the vcpu, including the important task of
38actually running guest code.
39
40In general file descriptors can be migrated among processes by means
41of fork() and the SCM_RIGHTS facility of unix domain socket. These
42kinds of tricks are explicitly not supported by kvm. While they will
43not cause harm to the host, their actual behavior is not guaranteed by
44the API. The only supported use is one virtual machine per process,
45and one vcpu per thread.
46
Jan Kiszka414fa982012-04-24 16:40:15 +020047
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300483. Extensions
Jan Kiszka414fa982012-04-24 16:40:15 +020049-------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +030050
51As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
52incompatible change are allowed. However, there is an extension
53facility that allows backward-compatible extensions to the API to be
54queried and used.
55
56The extension mechanism is not based on on the Linux version number.
57Instead, kvm defines extension identifiers and a facility to query
58whether a particular extension identifier is available. If it is, a
59set of ioctls is available for application use.
60
Jan Kiszka414fa982012-04-24 16:40:15 +020061
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300624. API description
Jan Kiszka414fa982012-04-24 16:40:15 +020063------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +030064
65This section describes ioctls that can be used to control kvm guests.
66For each ioctl, the following information is provided along with a
67description:
68
69 Capability: which KVM extension provides this ioctl. Can be 'basic',
70 which means that is will be provided by any kernel that supports
71 API version 12 (see section 4.1), or a KVM_CAP_xyz constant, which
72 means availability needs to be checked with KVM_CHECK_EXTENSION
73 (see section 4.4).
74
75 Architectures: which instruction set architectures provide this ioctl.
76 x86 includes both i386 and x86_64.
77
78 Type: system, vm, or vcpu.
79
80 Parameters: what parameters are accepted by the ioctl.
81
82 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
83 are not detailed, but errors with specific meanings are.
84
Jan Kiszka414fa982012-04-24 16:40:15 +020085
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300864.1 KVM_GET_API_VERSION
87
88Capability: basic
89Architectures: all
90Type: system ioctl
91Parameters: none
92Returns: the constant KVM_API_VERSION (=12)
93
94This identifies the API version as the stable kvm API. It is not
95expected that this number will change. However, Linux 2.6.20 and
962.6.21 report earlier versions; these are not documented and not
97supported. Applications should refuse to run if KVM_GET_API_VERSION
98returns a value other than 12. If this check passes, all ioctls
99described as 'basic' will be available.
100
Jan Kiszka414fa982012-04-24 16:40:15 +0200101
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001024.2 KVM_CREATE_VM
103
104Capability: basic
105Architectures: all
106Type: system ioctl
Carsten Ottee08b9632012-01-04 10:25:20 +0100107Parameters: machine type identifier (KVM_VM_*)
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300108Returns: a VM fd that can be used to control the new virtual machine.
109
110The new VM has no virtual cpus and no memory. An mmap() of a VM fd
111will access the virtual machine's physical address space; offset zero
112corresponds to guest physical address zero. Use of mmap() on a VM fd
113is discouraged if userspace memory allocation (KVM_CAP_USER_MEMORY) is
114available.
Carsten Ottee08b9632012-01-04 10:25:20 +0100115You most certainly want to use 0 as machine type.
116
117In order to create user controlled virtual machines on S390, check
118KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
119privileged user (CAP_SYS_ADMIN).
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300120
Jan Kiszka414fa982012-04-24 16:40:15 +0200121
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001224.3 KVM_GET_MSR_INDEX_LIST
123
124Capability: basic
125Architectures: x86
126Type: system
127Parameters: struct kvm_msr_list (in/out)
128Returns: 0 on success; -1 on error
129Errors:
130 E2BIG: the msr index list is to be to fit in the array specified by
131 the user.
132
133struct kvm_msr_list {
134 __u32 nmsrs; /* number of msrs in entries */
135 __u32 indices[0];
136};
137
138This ioctl returns the guest msrs that are supported. The list varies
139by kvm version and host processor, but does not change otherwise. The
140user fills in the size of the indices array in nmsrs, and in return
141kvm adjusts nmsrs to reflect the actual number of msrs and fills in
142the indices array with their numbers.
143
Avi Kivity2e2602c2010-07-07 14:09:39 +0300144Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
145not returned in the MSR list, as different vcpus can have a different number
146of banks, as set via the KVM_X86_SETUP_MCE ioctl.
147
Jan Kiszka414fa982012-04-24 16:40:15 +0200148
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001494.4 KVM_CHECK_EXTENSION
150
151Capability: basic
152Architectures: all
153Type: system ioctl
154Parameters: extension identifier (KVM_CAP_*)
155Returns: 0 if unsupported; 1 (or some other positive integer) if supported
156
157The API allows the application to query about extensions to the core
158kvm API. Userspace passes an extension identifier (an integer) and
159receives an integer that describes the extension availability.
160Generally 0 means no and 1 means yes, but some extensions may report
161additional information in the integer return value.
162
Jan Kiszka414fa982012-04-24 16:40:15 +0200163
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001644.5 KVM_GET_VCPU_MMAP_SIZE
165
166Capability: basic
167Architectures: all
168Type: system ioctl
169Parameters: none
170Returns: size of vcpu mmap area, in bytes
171
172The KVM_RUN ioctl (cf.) communicates with userspace via a shared
173memory region. This ioctl returns the size of that region. See the
174KVM_RUN documentation for details.
175
Jan Kiszka414fa982012-04-24 16:40:15 +0200176
Avi Kivity9c1b96e2009-06-09 12:37:58 +03001774.6 KVM_SET_MEMORY_REGION
178
179Capability: basic
180Architectures: all
181Type: vm ioctl
182Parameters: struct kvm_memory_region (in)
183Returns: 0 on success, -1 on error
184
Avi Kivityb74a07b2010-06-21 11:48:05 +0300185This ioctl is obsolete and has been removed.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300186
Jan Kiszka414fa982012-04-24 16:40:15 +0200187
Paul Bolle68ba6972011-02-15 00:05:59 +01001884.7 KVM_CREATE_VCPU
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300189
190Capability: basic
191Architectures: all
192Type: vm ioctl
193Parameters: vcpu id (apic id on x86)
194Returns: vcpu fd on success, -1 on error
195
196This API adds a vcpu to a virtual machine. The vcpu id is a small integer
Sasha Levin8c3ba332011-07-18 17:17:15 +0300197in the range [0, max_vcpus).
198
199The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
200the KVM_CHECK_EXTENSION ioctl() at run-time.
201The maximum possible value for max_vcpus can be retrieved using the
202KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
203
Pekka Enberg76d25402011-05-09 22:48:54 +0300204If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
205cpus max.
Sasha Levin8c3ba332011-07-18 17:17:15 +0300206If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
207same as the value returned from KVM_CAP_NR_VCPUS.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300208
Paul Mackerras371fefd2011-06-29 00:23:08 +0000209On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
210threads in one or more virtual CPU cores. (This is because the
211hardware requires all the hardware threads in a CPU core to be in the
212same partition.) The KVM_CAP_PPC_SMT capability indicates the number
213of vcpus per virtual core (vcore). The vcore id is obtained by
214dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
215given vcore will always be in the same physical core as each other
216(though that might be a different physical core from time to time).
217Userspace can control the threading (SMT) mode of the guest by its
218allocation of vcpu ids. For example, if userspace wants
219single-threaded guest vcpus, it should make all vcpu ids be a multiple
220of the number of vcpus per vcore.
221
Avi Kivity36442682011-08-29 16:27:08 +0300222On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
223threads in one or more virtual CPU cores. (This is because the
224hardware requires all the hardware threads in a CPU core to be in the
225same partition.) The KVM_CAP_PPC_SMT capability indicates the number
226of vcpus per virtual core (vcore). The vcore id is obtained by
227dividing the vcpu id by the number of vcpus per vcore. The vcpus in a
228given vcore will always be in the same physical core as each other
229(though that might be a different physical core from time to time).
230Userspace can control the threading (SMT) mode of the guest by its
231allocation of vcpu ids. For example, if userspace wants
232single-threaded guest vcpus, it should make all vcpu ids be a multiple
233of the number of vcpus per vcore.
234
Carsten Otte5b1c1492012-01-04 10:25:23 +0100235For virtual cpus that have been created with S390 user controlled virtual
236machines, the resulting vcpu fd can be memory mapped at page offset
237KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
238cpu's hardware control block.
239
Jan Kiszka414fa982012-04-24 16:40:15 +0200240
Paul Bolle68ba6972011-02-15 00:05:59 +01002414.8 KVM_GET_DIRTY_LOG (vm ioctl)
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300242
243Capability: basic
244Architectures: x86
245Type: vm ioctl
246Parameters: struct kvm_dirty_log (in/out)
247Returns: 0 on success, -1 on error
248
249/* for KVM_GET_DIRTY_LOG */
250struct kvm_dirty_log {
251 __u32 slot;
252 __u32 padding;
253 union {
254 void __user *dirty_bitmap; /* one bit per page */
255 __u64 padding;
256 };
257};
258
259Given a memory slot, return a bitmap containing any pages dirtied
260since the last call to this ioctl. Bit 0 is the first page in the
261memory slot. Ensure the entire structure is cleared to avoid padding
262issues.
263
Jan Kiszka414fa982012-04-24 16:40:15 +0200264
Paul Bolle68ba6972011-02-15 00:05:59 +01002654.9 KVM_SET_MEMORY_ALIAS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300266
267Capability: basic
268Architectures: x86
269Type: vm ioctl
270Parameters: struct kvm_memory_alias (in)
271Returns: 0 (success), -1 (error)
272
Avi Kivitya1f4d3952010-06-21 11:44:20 +0300273This ioctl is obsolete and has been removed.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300274
Jan Kiszka414fa982012-04-24 16:40:15 +0200275
Paul Bolle68ba6972011-02-15 00:05:59 +01002764.10 KVM_RUN
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300277
278Capability: basic
279Architectures: all
280Type: vcpu ioctl
281Parameters: none
282Returns: 0 on success, -1 on error
283Errors:
284 EINTR: an unmasked signal is pending
285
286This ioctl is used to run a guest virtual cpu. While there are no
287explicit parameters, there is an implicit parameter block that can be
288obtained by mmap()ing the vcpu fd at offset 0, with the size given by
289KVM_GET_VCPU_MMAP_SIZE. The parameter block is formatted as a 'struct
290kvm_run' (see below).
291
Jan Kiszka414fa982012-04-24 16:40:15 +0200292
Paul Bolle68ba6972011-02-15 00:05:59 +01002934.11 KVM_GET_REGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300294
295Capability: basic
Christoffer Dall749cf76c2013-01-20 18:28:06 -0500296Architectures: all except ARM
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300297Type: vcpu ioctl
298Parameters: struct kvm_regs (out)
299Returns: 0 on success, -1 on error
300
301Reads the general purpose registers from the vcpu.
302
303/* x86 */
304struct kvm_regs {
305 /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
306 __u64 rax, rbx, rcx, rdx;
307 __u64 rsi, rdi, rsp, rbp;
308 __u64 r8, r9, r10, r11;
309 __u64 r12, r13, r14, r15;
310 __u64 rip, rflags;
311};
312
Jan Kiszka414fa982012-04-24 16:40:15 +0200313
Paul Bolle68ba6972011-02-15 00:05:59 +01003144.12 KVM_SET_REGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300315
316Capability: basic
Christoffer Dall749cf76c2013-01-20 18:28:06 -0500317Architectures: all except ARM
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300318Type: vcpu ioctl
319Parameters: struct kvm_regs (in)
320Returns: 0 on success, -1 on error
321
322Writes the general purpose registers into the vcpu.
323
324See KVM_GET_REGS for the data structure.
325
Jan Kiszka414fa982012-04-24 16:40:15 +0200326
Paul Bolle68ba6972011-02-15 00:05:59 +01003274.13 KVM_GET_SREGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300328
329Capability: basic
Scott Wood5ce941e2011-04-27 17:24:21 -0500330Architectures: x86, ppc
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300331Type: vcpu ioctl
332Parameters: struct kvm_sregs (out)
333Returns: 0 on success, -1 on error
334
335Reads special registers from the vcpu.
336
337/* x86 */
338struct kvm_sregs {
339 struct kvm_segment cs, ds, es, fs, gs, ss;
340 struct kvm_segment tr, ldt;
341 struct kvm_dtable gdt, idt;
342 __u64 cr0, cr2, cr3, cr4, cr8;
343 __u64 efer;
344 __u64 apic_base;
345 __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
346};
347
Scott Wood5ce941e2011-04-27 17:24:21 -0500348/* ppc -- see arch/powerpc/include/asm/kvm.h */
349
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300350interrupt_bitmap is a bitmap of pending external interrupts. At most
351one bit may be set. This interrupt has been acknowledged by the APIC
352but not yet injected into the cpu core.
353
Jan Kiszka414fa982012-04-24 16:40:15 +0200354
Paul Bolle68ba6972011-02-15 00:05:59 +01003554.14 KVM_SET_SREGS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300356
357Capability: basic
Scott Wood5ce941e2011-04-27 17:24:21 -0500358Architectures: x86, ppc
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300359Type: vcpu ioctl
360Parameters: struct kvm_sregs (in)
361Returns: 0 on success, -1 on error
362
363Writes special registers into the vcpu. See KVM_GET_SREGS for the
364data structures.
365
Jan Kiszka414fa982012-04-24 16:40:15 +0200366
Paul Bolle68ba6972011-02-15 00:05:59 +01003674.15 KVM_TRANSLATE
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300368
369Capability: basic
370Architectures: x86
371Type: vcpu ioctl
372Parameters: struct kvm_translation (in/out)
373Returns: 0 on success, -1 on error
374
375Translates a virtual address according to the vcpu's current address
376translation mode.
377
378struct kvm_translation {
379 /* in */
380 __u64 linear_address;
381
382 /* out */
383 __u64 physical_address;
384 __u8 valid;
385 __u8 writeable;
386 __u8 usermode;
387 __u8 pad[5];
388};
389
Jan Kiszka414fa982012-04-24 16:40:15 +0200390
Paul Bolle68ba6972011-02-15 00:05:59 +01003914.16 KVM_INTERRUPT
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300392
393Capability: basic
Alexander Graf6f7a2bd2010-08-31 02:03:32 +0200394Architectures: x86, ppc
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300395Type: vcpu ioctl
396Parameters: struct kvm_interrupt (in)
397Returns: 0 on success, -1 on error
398
399Queues a hardware interrupt vector to be injected. This is only
Alexander Graf6f7a2bd2010-08-31 02:03:32 +0200400useful if in-kernel local APIC or equivalent is not used.
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300401
402/* for KVM_INTERRUPT */
403struct kvm_interrupt {
404 /* in */
405 __u32 irq;
406};
407
Alexander Graf6f7a2bd2010-08-31 02:03:32 +0200408X86:
409
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300410Note 'irq' is an interrupt vector, not an interrupt pin or line.
411
Alexander Graf6f7a2bd2010-08-31 02:03:32 +0200412PPC:
413
414Queues an external interrupt to be injected. This ioctl is overleaded
415with 3 different irq values:
416
417a) KVM_INTERRUPT_SET
418
419 This injects an edge type external interrupt into the guest once it's ready
420 to receive interrupts. When injected, the interrupt is done.
421
422b) KVM_INTERRUPT_UNSET
423
424 This unsets any pending interrupt.
425
426 Only available with KVM_CAP_PPC_UNSET_IRQ.
427
428c) KVM_INTERRUPT_SET_LEVEL
429
430 This injects a level type external interrupt into the guest context. The
431 interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
432 is triggered.
433
434 Only available with KVM_CAP_PPC_IRQ_LEVEL.
435
436Note that any value for 'irq' other than the ones stated above is invalid
437and incurs unexpected behavior.
438
Jan Kiszka414fa982012-04-24 16:40:15 +0200439
Paul Bolle68ba6972011-02-15 00:05:59 +01004404.17 KVM_DEBUG_GUEST
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300441
442Capability: basic
443Architectures: none
444Type: vcpu ioctl
445Parameters: none)
446Returns: -1 on error
447
448Support for this has been removed. Use KVM_SET_GUEST_DEBUG instead.
449
Jan Kiszka414fa982012-04-24 16:40:15 +0200450
Paul Bolle68ba6972011-02-15 00:05:59 +01004514.18 KVM_GET_MSRS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300452
453Capability: basic
454Architectures: x86
455Type: vcpu ioctl
456Parameters: struct kvm_msrs (in/out)
457Returns: 0 on success, -1 on error
458
459Reads model-specific registers from the vcpu. Supported msr indices can
460be obtained using KVM_GET_MSR_INDEX_LIST.
461
462struct kvm_msrs {
463 __u32 nmsrs; /* number of msrs in entries */
464 __u32 pad;
465
466 struct kvm_msr_entry entries[0];
467};
468
469struct kvm_msr_entry {
470 __u32 index;
471 __u32 reserved;
472 __u64 data;
473};
474
475Application code should set the 'nmsrs' member (which indicates the
476size of the entries array) and the 'index' member of each array entry.
477kvm will fill in the 'data' member.
478
Jan Kiszka414fa982012-04-24 16:40:15 +0200479
Paul Bolle68ba6972011-02-15 00:05:59 +01004804.19 KVM_SET_MSRS
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300481
482Capability: basic
483Architectures: x86
484Type: vcpu ioctl
485Parameters: struct kvm_msrs (in)
486Returns: 0 on success, -1 on error
487
488Writes model-specific registers to the vcpu. See KVM_GET_MSRS for the
489data structures.
490
491Application code should set the 'nmsrs' member (which indicates the
492size of the entries array), and the 'index' and 'data' members of each
493array entry.
494
Jan Kiszka414fa982012-04-24 16:40:15 +0200495
Paul Bolle68ba6972011-02-15 00:05:59 +01004964.20 KVM_SET_CPUID
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300497
498Capability: basic
499Architectures: x86
500Type: vcpu ioctl
501Parameters: struct kvm_cpuid (in)
502Returns: 0 on success, -1 on error
503
504Defines the vcpu responses to the cpuid instruction. Applications
505should use the KVM_SET_CPUID2 ioctl if available.
506
507
508struct kvm_cpuid_entry {
509 __u32 function;
510 __u32 eax;
511 __u32 ebx;
512 __u32 ecx;
513 __u32 edx;
514 __u32 padding;
515};
516
517/* for KVM_SET_CPUID */
518struct kvm_cpuid {
519 __u32 nent;
520 __u32 padding;
521 struct kvm_cpuid_entry entries[0];
522};
523
Jan Kiszka414fa982012-04-24 16:40:15 +0200524
Paul Bolle68ba6972011-02-15 00:05:59 +01005254.21 KVM_SET_SIGNAL_MASK
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300526
527Capability: basic
528Architectures: x86
529Type: vcpu ioctl
530Parameters: struct kvm_signal_mask (in)
531Returns: 0 on success, -1 on error
532
533Defines which signals are blocked during execution of KVM_RUN. This
534signal mask temporarily overrides the threads signal mask. Any
535unblocked signal received (except SIGKILL and SIGSTOP, which retain
536their traditional behaviour) will cause KVM_RUN to return with -EINTR.
537
538Note the signal will only be delivered if not blocked by the original
539signal mask.
540
541/* for KVM_SET_SIGNAL_MASK */
542struct kvm_signal_mask {
543 __u32 len;
544 __u8 sigset[0];
545};
546
Jan Kiszka414fa982012-04-24 16:40:15 +0200547
Paul Bolle68ba6972011-02-15 00:05:59 +01005484.22 KVM_GET_FPU
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300549
550Capability: basic
551Architectures: x86
552Type: vcpu ioctl
553Parameters: struct kvm_fpu (out)
554Returns: 0 on success, -1 on error
555
556Reads the floating point state from the vcpu.
557
558/* for KVM_GET_FPU and KVM_SET_FPU */
559struct kvm_fpu {
560 __u8 fpr[8][16];
561 __u16 fcw;
562 __u16 fsw;
563 __u8 ftwx; /* in fxsave format */
564 __u8 pad1;
565 __u16 last_opcode;
566 __u64 last_ip;
567 __u64 last_dp;
568 __u8 xmm[16][16];
569 __u32 mxcsr;
570 __u32 pad2;
571};
572
Jan Kiszka414fa982012-04-24 16:40:15 +0200573
Paul Bolle68ba6972011-02-15 00:05:59 +01005744.23 KVM_SET_FPU
Avi Kivity9c1b96e2009-06-09 12:37:58 +0300575
576Capability: basic
577Architectures: x86
578Type: vcpu ioctl
579Parameters: struct kvm_fpu (in)
580Returns: 0 on success, -1 on error
581
582Writes the floating point state to the vcpu.
583
584/* for KVM_GET_FPU and KVM_SET_FPU */
585struct kvm_fpu {
586 __u8 fpr[8][16];
587 __u16 fcw;
588 __u16 fsw;
589 __u8 ftwx; /* in fxsave format */
590 __u8 pad1;
591 __u16 last_opcode;
592 __u64 last_ip;
593 __u64 last_dp;
594 __u8 xmm[16][16];
595 __u32 mxcsr;
596 __u32 pad2;
597};
598
Jan Kiszka414fa982012-04-24 16:40:15 +0200599
Paul Bolle68ba6972011-02-15 00:05:59 +01006004.24 KVM_CREATE_IRQCHIP
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300601
602Capability: KVM_CAP_IRQCHIP
Christoffer Dall749cf76c2013-01-20 18:28:06 -0500603Architectures: x86, ia64, ARM
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300604Type: vm ioctl
605Parameters: none
606Returns: 0 on success, -1 on error
607
608Creates an interrupt controller model in the kernel. On x86, creates a virtual
609ioapic, a virtual PIC (two PICs, nested), and sets up future vcpus to have a
610local APIC. IRQ routing for GSIs 0-15 is set to both PIC and IOAPIC; GSI 16-23
Christoffer Dall749cf76c2013-01-20 18:28:06 -0500611only go to the IOAPIC. On ia64, a IOSAPIC is created. On ARM, a GIC is
612created.
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300613
Jan Kiszka414fa982012-04-24 16:40:15 +0200614
Paul Bolle68ba6972011-02-15 00:05:59 +01006154.25 KVM_IRQ_LINE
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300616
617Capability: KVM_CAP_IRQCHIP
Christoffer Dall86ce85352013-01-20 18:28:08 -0500618Architectures: x86, ia64, arm
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300619Type: vm ioctl
620Parameters: struct kvm_irq_level
621Returns: 0 on success, -1 on error
622
623Sets the level of a GSI input to the interrupt controller model in the kernel.
Christoffer Dall86ce85352013-01-20 18:28:08 -0500624On some architectures it is required that an interrupt controller model has
625been previously created with KVM_CREATE_IRQCHIP. Note that edge-triggered
626interrupts require the level to be set to 1 and then back to 0.
627
628ARM can signal an interrupt either at the CPU level, or at the in-kernel irqchip
629(GIC), and for in-kernel irqchip can tell the GIC to use PPIs designated for
630specific cpus. The irq field is interpreted like this:
631
632  bits: | 31 ... 24 | 23 ... 16 | 15 ... 0 |
633 field: | irq_type | vcpu_index | irq_id |
634
635The irq_type field has the following values:
636- irq_type[0]: out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ
637- irq_type[1]: in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.)
638 (the vcpu_index field is ignored)
639- irq_type[2]: in-kernel GIC: PPI, irq_id between 16 and 31 (incl.)
640
641(The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs)
642
643In both cases, level is used to raise/lower the line.
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300644
645struct kvm_irq_level {
646 union {
647 __u32 irq; /* GSI */
648 __s32 status; /* not used for KVM_IRQ_LEVEL */
649 };
650 __u32 level; /* 0 or 1 */
651};
652
Jan Kiszka414fa982012-04-24 16:40:15 +0200653
Paul Bolle68ba6972011-02-15 00:05:59 +01006544.26 KVM_GET_IRQCHIP
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300655
656Capability: KVM_CAP_IRQCHIP
657Architectures: x86, ia64
658Type: vm ioctl
659Parameters: struct kvm_irqchip (in/out)
660Returns: 0 on success, -1 on error
661
662Reads the state of a kernel interrupt controller created with
663KVM_CREATE_IRQCHIP into a buffer provided by the caller.
664
665struct kvm_irqchip {
666 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
667 __u32 pad;
668 union {
669 char dummy[512]; /* reserving space */
670 struct kvm_pic_state pic;
671 struct kvm_ioapic_state ioapic;
672 } chip;
673};
674
Jan Kiszka414fa982012-04-24 16:40:15 +0200675
Paul Bolle68ba6972011-02-15 00:05:59 +01006764.27 KVM_SET_IRQCHIP
Avi Kivity5dadbfd2009-08-23 17:08:04 +0300677
678Capability: KVM_CAP_IRQCHIP
679Architectures: x86, ia64
680Type: vm ioctl
681Parameters: struct kvm_irqchip (in)
682Returns: 0 on success, -1 on error
683
684Sets the state of a kernel interrupt controller created with
685KVM_CREATE_IRQCHIP from a buffer provided by the caller.
686
687struct kvm_irqchip {
688 __u32 chip_id; /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
689 __u32 pad;
690 union {
691 char dummy[512]; /* reserving space */
692 struct kvm_pic_state pic;
693 struct kvm_ioapic_state ioapic;
694 } chip;
695};
696
Jan Kiszka414fa982012-04-24 16:40:15 +0200697
Paul Bolle68ba6972011-02-15 00:05:59 +01006984.28 KVM_XEN_HVM_CONFIG
Ed Swierkffde22a2009-10-15 15:21:43 -0700699
700Capability: KVM_CAP_XEN_HVM
701Architectures: x86
702Type: vm ioctl
703Parameters: struct kvm_xen_hvm_config (in)
704Returns: 0 on success, -1 on error
705
706Sets the MSR that the Xen HVM guest uses to initialize its hypercall
707page, and provides the starting address and size of the hypercall
708blobs in userspace. When the guest writes the MSR, kvm copies one
709page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
710memory.
711
712struct kvm_xen_hvm_config {
713 __u32 flags;
714 __u32 msr;
715 __u64 blob_addr_32;
716 __u64 blob_addr_64;
717 __u8 blob_size_32;
718 __u8 blob_size_64;
719 __u8 pad2[30];
720};
721
Jan Kiszka414fa982012-04-24 16:40:15 +0200722
Paul Bolle68ba6972011-02-15 00:05:59 +01007234.29 KVM_GET_CLOCK
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400724
725Capability: KVM_CAP_ADJUST_CLOCK
726Architectures: x86
727Type: vm ioctl
728Parameters: struct kvm_clock_data (out)
729Returns: 0 on success, -1 on error
730
731Gets the current timestamp of kvmclock as seen by the current guest. In
732conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
733such as migration.
734
735struct kvm_clock_data {
736 __u64 clock; /* kvmclock current value */
737 __u32 flags;
738 __u32 pad[9];
739};
740
Jan Kiszka414fa982012-04-24 16:40:15 +0200741
Paul Bolle68ba6972011-02-15 00:05:59 +01007424.30 KVM_SET_CLOCK
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400743
744Capability: KVM_CAP_ADJUST_CLOCK
745Architectures: x86
746Type: vm ioctl
747Parameters: struct kvm_clock_data (in)
748Returns: 0 on success, -1 on error
749
Wu Fengguang2044892d2009-12-24 09:04:16 +0800750Sets the current timestamp of kvmclock to the value specified in its parameter.
Glauber Costaafbcf7a2009-10-16 15:28:36 -0400751In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
752such as migration.
753
754struct kvm_clock_data {
755 __u64 clock; /* kvmclock current value */
756 __u32 flags;
757 __u32 pad[9];
758};
759
Jan Kiszka414fa982012-04-24 16:40:15 +0200760
Paul Bolle68ba6972011-02-15 00:05:59 +01007614.31 KVM_GET_VCPU_EVENTS
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100762
763Capability: KVM_CAP_VCPU_EVENTS
Jan Kiszka48005f62010-02-19 19:38:07 +0100764Extended by: KVM_CAP_INTR_SHADOW
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100765Architectures: x86
766Type: vm ioctl
767Parameters: struct kvm_vcpu_event (out)
768Returns: 0 on success, -1 on error
769
770Gets currently pending exceptions, interrupts, and NMIs as well as related
771states of the vcpu.
772
773struct kvm_vcpu_events {
774 struct {
775 __u8 injected;
776 __u8 nr;
777 __u8 has_error_code;
778 __u8 pad;
779 __u32 error_code;
780 } exception;
781 struct {
782 __u8 injected;
783 __u8 nr;
784 __u8 soft;
Jan Kiszka48005f62010-02-19 19:38:07 +0100785 __u8 shadow;
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100786 } interrupt;
787 struct {
788 __u8 injected;
789 __u8 pending;
790 __u8 masked;
791 __u8 pad;
792 } nmi;
793 __u32 sipi_vector;
Jan Kiszkadab4b912009-12-06 18:24:15 +0100794 __u32 flags;
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100795};
796
Jan Kiszka48005f62010-02-19 19:38:07 +0100797KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
798interrupt.shadow contains a valid state. Otherwise, this field is undefined.
799
Jan Kiszka414fa982012-04-24 16:40:15 +0200800
Paul Bolle68ba6972011-02-15 00:05:59 +01008014.32 KVM_SET_VCPU_EVENTS
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100802
803Capability: KVM_CAP_VCPU_EVENTS
Jan Kiszka48005f62010-02-19 19:38:07 +0100804Extended by: KVM_CAP_INTR_SHADOW
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100805Architectures: x86
806Type: vm ioctl
807Parameters: struct kvm_vcpu_event (in)
808Returns: 0 on success, -1 on error
809
810Set pending exceptions, interrupts, and NMIs as well as related states of the
811vcpu.
812
813See KVM_GET_VCPU_EVENTS for the data structure.
814
Jan Kiszkadab4b912009-12-06 18:24:15 +0100815Fields that may be modified asynchronously by running VCPUs can be excluded
816from the update. These fields are nmi.pending and sipi_vector. Keep the
817corresponding bits in the flags field cleared to suppress overwriting the
818current in-kernel state. The bits are:
819
820KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
821KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
822
Jan Kiszka48005f62010-02-19 19:38:07 +0100823If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
824the flags field to signal that interrupt.shadow contains a valid state and
825shall be written into the VCPU.
826
Jan Kiszka414fa982012-04-24 16:40:15 +0200827
Paul Bolle68ba6972011-02-15 00:05:59 +01008284.33 KVM_GET_DEBUGREGS
Jan Kiszkaa1efbe72010-02-15 10:45:43 +0100829
830Capability: KVM_CAP_DEBUGREGS
831Architectures: x86
832Type: vm ioctl
833Parameters: struct kvm_debugregs (out)
834Returns: 0 on success, -1 on error
835
836Reads debug registers from the vcpu.
837
838struct kvm_debugregs {
839 __u64 db[4];
840 __u64 dr6;
841 __u64 dr7;
842 __u64 flags;
843 __u64 reserved[9];
844};
845
Jan Kiszka414fa982012-04-24 16:40:15 +0200846
Paul Bolle68ba6972011-02-15 00:05:59 +01008474.34 KVM_SET_DEBUGREGS
Jan Kiszkaa1efbe72010-02-15 10:45:43 +0100848
849Capability: KVM_CAP_DEBUGREGS
850Architectures: x86
851Type: vm ioctl
852Parameters: struct kvm_debugregs (in)
853Returns: 0 on success, -1 on error
854
855Writes debug registers into the vcpu.
856
857See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
858yet and must be cleared on entry.
859
Jan Kiszka414fa982012-04-24 16:40:15 +0200860
Paul Bolle68ba6972011-02-15 00:05:59 +01008614.35 KVM_SET_USER_MEMORY_REGION
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200862
863Capability: KVM_CAP_USER_MEM
864Architectures: all
865Type: vm ioctl
866Parameters: struct kvm_userspace_memory_region (in)
867Returns: 0 on success, -1 on error
868
869struct kvm_userspace_memory_region {
870 __u32 slot;
871 __u32 flags;
872 __u64 guest_phys_addr;
873 __u64 memory_size; /* bytes */
874 __u64 userspace_addr; /* start of the userspace allocated memory */
875};
876
877/* for kvm_memory_region::flags */
Xiao Guangrong4d8b81a2012-08-21 11:02:51 +0800878#define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
879#define KVM_MEM_READONLY (1UL << 1)
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200880
881This ioctl allows the user to create or modify a guest physical memory
882slot. When changing an existing slot, it may be moved in the guest
883physical memory space, or its flags may be modified. It may not be
884resized. Slots may not overlap in guest physical address space.
885
886Memory for the region is taken starting at the address denoted by the
887field userspace_addr, which must point at user addressable memory for
888the entire memory slot size. Any object may back this memory, including
889anonymous memory, ordinary files, and hugetlbfs.
890
891It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
892be identical. This allows large pages in the guest to be backed by large
893pages in the host.
894
Jan Kiszka7efd8fa2012-09-07 13:17:47 +0200895The flags field supports two flag, KVM_MEM_LOG_DIRTY_PAGES, which instructs
896kvm to keep track of writes to memory within the slot. See KVM_GET_DIRTY_LOG
897ioctl. The KVM_CAP_READONLY_MEM capability indicates the availability of the
898KVM_MEM_READONLY flag. When this flag is set for a memory region, KVM only
899allows read accesses. Writes will be posted to userspace as KVM_EXIT_MMIO
900exits.
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200901
Jan Kiszka7efd8fa2012-09-07 13:17:47 +0200902When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
903the memory region are automatically reflected into the guest. For example, an
904mmap() that affects the region will be made visible immediately. Another
905example is madvise(MADV_DROP).
Avi Kivity0f2d8f42010-03-25 12:16:48 +0200906
907It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
908The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
909allocation and is deprecated.
Jan Kiszka3cfc3092009-11-12 01:04:25 +0100910
Jan Kiszka414fa982012-04-24 16:40:15 +0200911
Paul Bolle68ba6972011-02-15 00:05:59 +01009124.36 KVM_SET_TSS_ADDR
Avi Kivity8a5416d2010-03-25 12:27:30 +0200913
914Capability: KVM_CAP_SET_TSS_ADDR
915Architectures: x86
916Type: vm ioctl
917Parameters: unsigned long tss_address (in)
918Returns: 0 on success, -1 on error
919
920This ioctl defines the physical address of a three-page region in the guest
921physical address space. The region must be within the first 4GB of the
922guest physical address space and must not conflict with any memory slot
923or any mmio address. The guest may malfunction if it accesses this memory
924region.
925
926This ioctl is required on Intel-based hosts. This is needed on Intel hardware
927because of a quirk in the virtualization implementation (see the internals
928documentation when it pops into existence).
929
Jan Kiszka414fa982012-04-24 16:40:15 +0200930
Paul Bolle68ba6972011-02-15 00:05:59 +01009314.37 KVM_ENABLE_CAP
Alexander Graf71fbfd52010-03-24 21:48:29 +0100932
933Capability: KVM_CAP_ENABLE_CAP
934Architectures: ppc
935Type: vcpu ioctl
936Parameters: struct kvm_enable_cap (in)
937Returns: 0 on success; -1 on error
938
939+Not all extensions are enabled by default. Using this ioctl the application
940can enable an extension, making it available to the guest.
941
942On systems that do not support this ioctl, it always fails. On systems that
943do support it, it only works for extensions that are supported for enablement.
944
945To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
946be used.
947
948struct kvm_enable_cap {
949 /* in */
950 __u32 cap;
951
952The capability that is supposed to get enabled.
953
954 __u32 flags;
955
956A bitfield indicating future enhancements. Has to be 0 for now.
957
958 __u64 args[4];
959
960Arguments for enabling a feature. If a feature needs initial values to
961function properly, this is the place to put them.
962
963 __u8 pad[64];
964};
965
Jan Kiszka414fa982012-04-24 16:40:15 +0200966
Paul Bolle68ba6972011-02-15 00:05:59 +01009674.38 KVM_GET_MP_STATE
Avi Kivityb843f062010-04-25 15:51:46 +0300968
969Capability: KVM_CAP_MP_STATE
970Architectures: x86, ia64
971Type: vcpu ioctl
972Parameters: struct kvm_mp_state (out)
973Returns: 0 on success; -1 on error
974
975struct kvm_mp_state {
976 __u32 mp_state;
977};
978
979Returns the vcpu's current "multiprocessing state" (though also valid on
980uniprocessor guests).
981
982Possible values are:
983
984 - KVM_MP_STATE_RUNNABLE: the vcpu is currently running
985 - KVM_MP_STATE_UNINITIALIZED: the vcpu is an application processor (AP)
986 which has not yet received an INIT signal
987 - KVM_MP_STATE_INIT_RECEIVED: the vcpu has received an INIT signal, and is
988 now ready for a SIPI
989 - KVM_MP_STATE_HALTED: the vcpu has executed a HLT instruction and
990 is waiting for an interrupt
991 - KVM_MP_STATE_SIPI_RECEIVED: the vcpu has just received a SIPI (vector
Uwe Kleine-Königb5950762010-11-01 15:38:34 -0400992 accessible via KVM_GET_VCPU_EVENTS)
Avi Kivityb843f062010-04-25 15:51:46 +0300993
994This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel
995irqchip, the multiprocessing state must be maintained by userspace.
996
Jan Kiszka414fa982012-04-24 16:40:15 +0200997
Paul Bolle68ba6972011-02-15 00:05:59 +01009984.39 KVM_SET_MP_STATE
Avi Kivityb843f062010-04-25 15:51:46 +0300999
1000Capability: KVM_CAP_MP_STATE
1001Architectures: x86, ia64
1002Type: vcpu ioctl
1003Parameters: struct kvm_mp_state (in)
1004Returns: 0 on success; -1 on error
1005
1006Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
1007arguments.
1008
1009This ioctl is only useful after KVM_CREATE_IRQCHIP. Without an in-kernel
1010irqchip, the multiprocessing state must be maintained by userspace.
1011
Jan Kiszka414fa982012-04-24 16:40:15 +02001012
Paul Bolle68ba6972011-02-15 00:05:59 +010010134.40 KVM_SET_IDENTITY_MAP_ADDR
Avi Kivity47dbb842010-04-29 12:08:56 +03001014
1015Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
1016Architectures: x86
1017Type: vm ioctl
1018Parameters: unsigned long identity (in)
1019Returns: 0 on success, -1 on error
1020
1021This ioctl defines the physical address of a one-page region in the guest
1022physical address space. The region must be within the first 4GB of the
1023guest physical address space and must not conflict with any memory slot
1024or any mmio address. The guest may malfunction if it accesses this memory
1025region.
1026
1027This ioctl is required on Intel-based hosts. This is needed on Intel hardware
1028because of a quirk in the virtualization implementation (see the internals
1029documentation when it pops into existence).
1030
Jan Kiszka414fa982012-04-24 16:40:15 +02001031
Paul Bolle68ba6972011-02-15 00:05:59 +010010324.41 KVM_SET_BOOT_CPU_ID
Avi Kivity57bc24c2010-04-29 12:12:57 +03001033
1034Capability: KVM_CAP_SET_BOOT_CPU_ID
1035Architectures: x86, ia64
1036Type: vm ioctl
1037Parameters: unsigned long vcpu_id
1038Returns: 0 on success, -1 on error
1039
1040Define which vcpu is the Bootstrap Processor (BSP). Values are the same
1041as the vcpu id in KVM_CREATE_VCPU. If this ioctl is not called, the default
1042is vcpu 0.
1043
Jan Kiszka414fa982012-04-24 16:40:15 +02001044
Paul Bolle68ba6972011-02-15 00:05:59 +010010454.42 KVM_GET_XSAVE
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001046
1047Capability: KVM_CAP_XSAVE
1048Architectures: x86
1049Type: vcpu ioctl
1050Parameters: struct kvm_xsave (out)
1051Returns: 0 on success, -1 on error
1052
1053struct kvm_xsave {
1054 __u32 region[1024];
1055};
1056
1057This ioctl would copy current vcpu's xsave struct to the userspace.
1058
Jan Kiszka414fa982012-04-24 16:40:15 +02001059
Paul Bolle68ba6972011-02-15 00:05:59 +010010604.43 KVM_SET_XSAVE
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001061
1062Capability: KVM_CAP_XSAVE
1063Architectures: x86
1064Type: vcpu ioctl
1065Parameters: struct kvm_xsave (in)
1066Returns: 0 on success, -1 on error
1067
1068struct kvm_xsave {
1069 __u32 region[1024];
1070};
1071
1072This ioctl would copy userspace's xsave struct to the kernel.
1073
Jan Kiszka414fa982012-04-24 16:40:15 +02001074
Paul Bolle68ba6972011-02-15 00:05:59 +010010754.44 KVM_GET_XCRS
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001076
1077Capability: KVM_CAP_XCRS
1078Architectures: x86
1079Type: vcpu ioctl
1080Parameters: struct kvm_xcrs (out)
1081Returns: 0 on success, -1 on error
1082
1083struct kvm_xcr {
1084 __u32 xcr;
1085 __u32 reserved;
1086 __u64 value;
1087};
1088
1089struct kvm_xcrs {
1090 __u32 nr_xcrs;
1091 __u32 flags;
1092 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1093 __u64 padding[16];
1094};
1095
1096This ioctl would copy current vcpu's xcrs to the userspace.
1097
Jan Kiszka414fa982012-04-24 16:40:15 +02001098
Paul Bolle68ba6972011-02-15 00:05:59 +010010994.45 KVM_SET_XCRS
Sheng Yang2d5b5a62010-06-13 17:29:39 +08001100
1101Capability: KVM_CAP_XCRS
1102Architectures: x86
1103Type: vcpu ioctl
1104Parameters: struct kvm_xcrs (in)
1105Returns: 0 on success, -1 on error
1106
1107struct kvm_xcr {
1108 __u32 xcr;
1109 __u32 reserved;
1110 __u64 value;
1111};
1112
1113struct kvm_xcrs {
1114 __u32 nr_xcrs;
1115 __u32 flags;
1116 struct kvm_xcr xcrs[KVM_MAX_XCRS];
1117 __u64 padding[16];
1118};
1119
1120This ioctl would set vcpu's xcr to the value userspace specified.
1121
Jan Kiszka414fa982012-04-24 16:40:15 +02001122
Paul Bolle68ba6972011-02-15 00:05:59 +010011234.46 KVM_GET_SUPPORTED_CPUID
Avi Kivityd1535132010-07-14 09:45:21 +03001124
1125Capability: KVM_CAP_EXT_CPUID
1126Architectures: x86
1127Type: system ioctl
1128Parameters: struct kvm_cpuid2 (in/out)
1129Returns: 0 on success, -1 on error
1130
1131struct kvm_cpuid2 {
1132 __u32 nent;
1133 __u32 padding;
1134 struct kvm_cpuid_entry2 entries[0];
1135};
1136
1137#define KVM_CPUID_FLAG_SIGNIFCANT_INDEX 1
1138#define KVM_CPUID_FLAG_STATEFUL_FUNC 2
1139#define KVM_CPUID_FLAG_STATE_READ_NEXT 4
1140
1141struct kvm_cpuid_entry2 {
1142 __u32 function;
1143 __u32 index;
1144 __u32 flags;
1145 __u32 eax;
1146 __u32 ebx;
1147 __u32 ecx;
1148 __u32 edx;
1149 __u32 padding[3];
1150};
1151
1152This ioctl returns x86 cpuid features which are supported by both the hardware
1153and kvm. Userspace can use the information returned by this ioctl to
1154construct cpuid information (for KVM_SET_CPUID2) that is consistent with
1155hardware, kernel, and userspace capabilities, and with user requirements (for
1156example, the user may wish to constrain cpuid to emulate older hardware,
1157or for feature consistency across a cluster).
1158
1159Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
1160with the 'nent' field indicating the number of entries in the variable-size
1161array 'entries'. If the number of entries is too low to describe the cpu
1162capabilities, an error (E2BIG) is returned. If the number is too high,
1163the 'nent' field is adjusted and an error (ENOMEM) is returned. If the
1164number is just right, the 'nent' field is adjusted to the number of valid
1165entries in the 'entries' array, which is then filled.
1166
1167The entries returned are the host cpuid as returned by the cpuid instruction,
Avi Kivityc39cbd22010-09-12 16:39:11 +02001168with unknown or unsupported features masked out. Some features (for example,
1169x2apic), may not be present in the host cpu, but are exposed by kvm if it can
1170emulate them efficiently. The fields in each entry are defined as follows:
Avi Kivityd1535132010-07-14 09:45:21 +03001171
1172 function: the eax value used to obtain the entry
1173 index: the ecx value used to obtain the entry (for entries that are
1174 affected by ecx)
1175 flags: an OR of zero or more of the following:
1176 KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
1177 if the index field is valid
1178 KVM_CPUID_FLAG_STATEFUL_FUNC:
1179 if cpuid for this function returns different values for successive
1180 invocations; there will be several entries with the same function,
1181 all with this flag set
1182 KVM_CPUID_FLAG_STATE_READ_NEXT:
1183 for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
1184 the first entry to be read by a cpu
1185 eax, ebx, ecx, edx: the values returned by the cpuid instruction for
1186 this function/index combination
1187
Jan Kiszka4d25a0662011-12-21 12:28:29 +01001188The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
1189as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
1190support. Instead it is reported via
1191
1192 ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
1193
1194if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
1195feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
1196
Jan Kiszka414fa982012-04-24 16:40:15 +02001197
Paul Bolle68ba6972011-02-15 00:05:59 +010011984.47 KVM_PPC_GET_PVINFO
Alexander Graf15711e92010-07-29 14:48:08 +02001199
1200Capability: KVM_CAP_PPC_GET_PVINFO
1201Architectures: ppc
1202Type: vm ioctl
1203Parameters: struct kvm_ppc_pvinfo (out)
1204Returns: 0 on success, !0 on error
1205
1206struct kvm_ppc_pvinfo {
1207 __u32 flags;
1208 __u32 hcall[4];
1209 __u8 pad[108];
1210};
1211
1212This ioctl fetches PV specific information that need to be passed to the guest
1213using the device tree or other means from vm context.
1214
Liu Yu-B132019202e072012-07-03 05:48:52 +00001215The hcall array defines 4 instructions that make up a hypercall.
Alexander Graf15711e92010-07-29 14:48:08 +02001216
1217If any additional field gets added to this structure later on, a bit for that
1218additional piece of information will be set in the flags bitmap.
1219
Liu Yu-B132019202e072012-07-03 05:48:52 +00001220The flags bitmap is defined as:
1221
1222 /* the host supports the ePAPR idle hcall
1223 #define KVM_PPC_PVINFO_FLAGS_EV_IDLE (1<<0)
Jan Kiszka414fa982012-04-24 16:40:15 +02001224
Paul Bolle68ba6972011-02-15 00:05:59 +010012254.48 KVM_ASSIGN_PCI_DEVICE
Jan Kiszka49f48172010-11-16 22:30:07 +01001226
1227Capability: KVM_CAP_DEVICE_ASSIGNMENT
1228Architectures: x86 ia64
1229Type: vm ioctl
1230Parameters: struct kvm_assigned_pci_dev (in)
1231Returns: 0 on success, -1 on error
1232
1233Assigns a host PCI device to the VM.
1234
1235struct kvm_assigned_pci_dev {
1236 __u32 assigned_dev_id;
1237 __u32 busnr;
1238 __u32 devfn;
1239 __u32 flags;
1240 __u32 segnr;
1241 union {
1242 __u32 reserved[11];
1243 };
1244};
1245
1246The PCI device is specified by the triple segnr, busnr, and devfn.
1247Identification in succeeding service requests is done via assigned_dev_id. The
1248following flags are specified:
1249
1250/* Depends on KVM_CAP_IOMMU */
1251#define KVM_DEV_ASSIGN_ENABLE_IOMMU (1 << 0)
Jan Kiszka07700a92012-02-28 14:19:54 +01001252/* The following two depend on KVM_CAP_PCI_2_3 */
1253#define KVM_DEV_ASSIGN_PCI_2_3 (1 << 1)
1254#define KVM_DEV_ASSIGN_MASK_INTX (1 << 2)
1255
1256If KVM_DEV_ASSIGN_PCI_2_3 is set, the kernel will manage legacy INTx interrupts
1257via the PCI-2.3-compliant device-level mask, thus enable IRQ sharing with other
1258assigned devices or host devices. KVM_DEV_ASSIGN_MASK_INTX specifies the
1259guest's view on the INTx mask, see KVM_ASSIGN_SET_INTX_MASK for details.
Jan Kiszka49f48172010-11-16 22:30:07 +01001260
Alex Williamson42387372011-12-20 21:59:03 -07001261The KVM_DEV_ASSIGN_ENABLE_IOMMU flag is a mandatory option to ensure
1262isolation of the device. Usages not specifying this flag are deprecated.
1263
Alex Williamson3d27e232011-12-20 21:59:09 -07001264Only PCI header type 0 devices with PCI BAR resources are supported by
1265device assignment. The user requesting this ioctl must have read/write
1266access to the PCI sysfs resource files associated with the device.
1267
Jan Kiszka414fa982012-04-24 16:40:15 +02001268
Paul Bolle68ba6972011-02-15 00:05:59 +010012694.49 KVM_DEASSIGN_PCI_DEVICE
Jan Kiszka49f48172010-11-16 22:30:07 +01001270
1271Capability: KVM_CAP_DEVICE_DEASSIGNMENT
1272Architectures: x86 ia64
1273Type: vm ioctl
1274Parameters: struct kvm_assigned_pci_dev (in)
1275Returns: 0 on success, -1 on error
1276
1277Ends PCI device assignment, releasing all associated resources.
1278
1279See KVM_CAP_DEVICE_ASSIGNMENT for the data structure. Only assigned_dev_id is
1280used in kvm_assigned_pci_dev to identify the device.
1281
Jan Kiszka414fa982012-04-24 16:40:15 +02001282
Paul Bolle68ba6972011-02-15 00:05:59 +010012834.50 KVM_ASSIGN_DEV_IRQ
Jan Kiszka49f48172010-11-16 22:30:07 +01001284
1285Capability: KVM_CAP_ASSIGN_DEV_IRQ
1286Architectures: x86 ia64
1287Type: vm ioctl
1288Parameters: struct kvm_assigned_irq (in)
1289Returns: 0 on success, -1 on error
1290
1291Assigns an IRQ to a passed-through device.
1292
1293struct kvm_assigned_irq {
1294 __u32 assigned_dev_id;
Jan Kiszka91e3d712011-06-03 08:51:05 +02001295 __u32 host_irq; /* ignored (legacy field) */
Jan Kiszka49f48172010-11-16 22:30:07 +01001296 __u32 guest_irq;
1297 __u32 flags;
1298 union {
Jan Kiszka49f48172010-11-16 22:30:07 +01001299 __u32 reserved[12];
1300 };
1301};
1302
1303The following flags are defined:
1304
1305#define KVM_DEV_IRQ_HOST_INTX (1 << 0)
1306#define KVM_DEV_IRQ_HOST_MSI (1 << 1)
1307#define KVM_DEV_IRQ_HOST_MSIX (1 << 2)
1308
1309#define KVM_DEV_IRQ_GUEST_INTX (1 << 8)
1310#define KVM_DEV_IRQ_GUEST_MSI (1 << 9)
1311#define KVM_DEV_IRQ_GUEST_MSIX (1 << 10)
1312
1313It is not valid to specify multiple types per host or guest IRQ. However, the
1314IRQ type of host and guest can differ or can even be null.
1315
Jan Kiszka414fa982012-04-24 16:40:15 +02001316
Paul Bolle68ba6972011-02-15 00:05:59 +010013174.51 KVM_DEASSIGN_DEV_IRQ
Jan Kiszka49f48172010-11-16 22:30:07 +01001318
1319Capability: KVM_CAP_ASSIGN_DEV_IRQ
1320Architectures: x86 ia64
1321Type: vm ioctl
1322Parameters: struct kvm_assigned_irq (in)
1323Returns: 0 on success, -1 on error
1324
1325Ends an IRQ assignment to a passed-through device.
1326
1327See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1328by assigned_dev_id, flags must correspond to the IRQ type specified on
1329KVM_ASSIGN_DEV_IRQ. Partial deassignment of host or guest IRQ is allowed.
1330
Jan Kiszka414fa982012-04-24 16:40:15 +02001331
Paul Bolle68ba6972011-02-15 00:05:59 +010013324.52 KVM_SET_GSI_ROUTING
Jan Kiszka49f48172010-11-16 22:30:07 +01001333
1334Capability: KVM_CAP_IRQ_ROUTING
1335Architectures: x86 ia64
1336Type: vm ioctl
1337Parameters: struct kvm_irq_routing (in)
1338Returns: 0 on success, -1 on error
1339
1340Sets the GSI routing table entries, overwriting any previously set entries.
1341
1342struct kvm_irq_routing {
1343 __u32 nr;
1344 __u32 flags;
1345 struct kvm_irq_routing_entry entries[0];
1346};
1347
1348No flags are specified so far, the corresponding field must be set to zero.
1349
1350struct kvm_irq_routing_entry {
1351 __u32 gsi;
1352 __u32 type;
1353 __u32 flags;
1354 __u32 pad;
1355 union {
1356 struct kvm_irq_routing_irqchip irqchip;
1357 struct kvm_irq_routing_msi msi;
1358 __u32 pad[8];
1359 } u;
1360};
1361
1362/* gsi routing entry types */
1363#define KVM_IRQ_ROUTING_IRQCHIP 1
1364#define KVM_IRQ_ROUTING_MSI 2
1365
1366No flags are specified so far, the corresponding field must be set to zero.
1367
1368struct kvm_irq_routing_irqchip {
1369 __u32 irqchip;
1370 __u32 pin;
1371};
1372
1373struct kvm_irq_routing_msi {
1374 __u32 address_lo;
1375 __u32 address_hi;
1376 __u32 data;
1377 __u32 pad;
1378};
1379
Jan Kiszka414fa982012-04-24 16:40:15 +02001380
Paul Bolle68ba6972011-02-15 00:05:59 +010013814.53 KVM_ASSIGN_SET_MSIX_NR
Jan Kiszka49f48172010-11-16 22:30:07 +01001382
1383Capability: KVM_CAP_DEVICE_MSIX
1384Architectures: x86 ia64
1385Type: vm ioctl
1386Parameters: struct kvm_assigned_msix_nr (in)
1387Returns: 0 on success, -1 on error
1388
Jan Kiszka58f09642011-06-11 12:24:24 +02001389Set the number of MSI-X interrupts for an assigned device. The number is
1390reset again by terminating the MSI-X assignment of the device via
1391KVM_DEASSIGN_DEV_IRQ. Calling this service more than once at any earlier
1392point will fail.
Jan Kiszka49f48172010-11-16 22:30:07 +01001393
1394struct kvm_assigned_msix_nr {
1395 __u32 assigned_dev_id;
1396 __u16 entry_nr;
1397 __u16 padding;
1398};
1399
1400#define KVM_MAX_MSIX_PER_DEV 256
1401
Jan Kiszka414fa982012-04-24 16:40:15 +02001402
Paul Bolle68ba6972011-02-15 00:05:59 +010014034.54 KVM_ASSIGN_SET_MSIX_ENTRY
Jan Kiszka49f48172010-11-16 22:30:07 +01001404
1405Capability: KVM_CAP_DEVICE_MSIX
1406Architectures: x86 ia64
1407Type: vm ioctl
1408Parameters: struct kvm_assigned_msix_entry (in)
1409Returns: 0 on success, -1 on error
1410
1411Specifies the routing of an MSI-X assigned device interrupt to a GSI. Setting
1412the GSI vector to zero means disabling the interrupt.
1413
1414struct kvm_assigned_msix_entry {
1415 __u32 assigned_dev_id;
1416 __u32 gsi;
1417 __u16 entry; /* The index of entry in the MSI-X table */
1418 __u16 padding[3];
1419};
1420
Jan Kiszka414fa982012-04-24 16:40:15 +02001421
14224.55 KVM_SET_TSC_KHZ
Joerg Roedel92a1f122011-03-25 09:44:51 +01001423
1424Capability: KVM_CAP_TSC_CONTROL
1425Architectures: x86
1426Type: vcpu ioctl
1427Parameters: virtual tsc_khz
1428Returns: 0 on success, -1 on error
1429
1430Specifies the tsc frequency for the virtual machine. The unit of the
1431frequency is KHz.
1432
Jan Kiszka414fa982012-04-24 16:40:15 +02001433
14344.56 KVM_GET_TSC_KHZ
Joerg Roedel92a1f122011-03-25 09:44:51 +01001435
1436Capability: KVM_CAP_GET_TSC_KHZ
1437Architectures: x86
1438Type: vcpu ioctl
1439Parameters: none
1440Returns: virtual tsc-khz on success, negative value on error
1441
1442Returns the tsc frequency of the guest. The unit of the return value is
1443KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
1444error.
1445
Jan Kiszka414fa982012-04-24 16:40:15 +02001446
14474.57 KVM_GET_LAPIC
Avi Kivitye7677932011-05-11 08:30:51 -04001448
1449Capability: KVM_CAP_IRQCHIP
1450Architectures: x86
1451Type: vcpu ioctl
1452Parameters: struct kvm_lapic_state (out)
1453Returns: 0 on success, -1 on error
1454
1455#define KVM_APIC_REG_SIZE 0x400
1456struct kvm_lapic_state {
1457 char regs[KVM_APIC_REG_SIZE];
1458};
1459
1460Reads the Local APIC registers and copies them into the input argument. The
1461data format and layout are the same as documented in the architecture manual.
1462
Jan Kiszka414fa982012-04-24 16:40:15 +02001463
14644.58 KVM_SET_LAPIC
Avi Kivitye7677932011-05-11 08:30:51 -04001465
1466Capability: KVM_CAP_IRQCHIP
1467Architectures: x86
1468Type: vcpu ioctl
1469Parameters: struct kvm_lapic_state (in)
1470Returns: 0 on success, -1 on error
1471
1472#define KVM_APIC_REG_SIZE 0x400
1473struct kvm_lapic_state {
1474 char regs[KVM_APIC_REG_SIZE];
1475};
1476
1477Copies the input argument into the the Local APIC registers. The data format
1478and layout are the same as documented in the architecture manual.
1479
Jan Kiszka414fa982012-04-24 16:40:15 +02001480
14814.59 KVM_IOEVENTFD
Sasha Levin55399a02011-05-28 14:12:30 +03001482
1483Capability: KVM_CAP_IOEVENTFD
1484Architectures: all
1485Type: vm ioctl
1486Parameters: struct kvm_ioeventfd (in)
1487Returns: 0 on success, !0 on error
1488
1489This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
1490within the guest. A guest write in the registered address will signal the
1491provided event instead of triggering an exit.
1492
1493struct kvm_ioeventfd {
1494 __u64 datamatch;
1495 __u64 addr; /* legal pio/mmio address */
1496 __u32 len; /* 1, 2, 4, or 8 bytes */
1497 __s32 fd;
1498 __u32 flags;
1499 __u8 pad[36];
1500};
1501
1502The following flags are defined:
1503
1504#define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
1505#define KVM_IOEVENTFD_FLAG_PIO (1 << kvm_ioeventfd_flag_nr_pio)
1506#define KVM_IOEVENTFD_FLAG_DEASSIGN (1 << kvm_ioeventfd_flag_nr_deassign)
1507
1508If datamatch flag is set, the event will be signaled only if the written value
1509to the registered address is equal to datamatch in struct kvm_ioeventfd.
1510
Jan Kiszka414fa982012-04-24 16:40:15 +02001511
15124.60 KVM_DIRTY_TLB
Scott Wooddc83b8b2011-08-18 15:25:21 -05001513
1514Capability: KVM_CAP_SW_TLB
1515Architectures: ppc
1516Type: vcpu ioctl
1517Parameters: struct kvm_dirty_tlb (in)
1518Returns: 0 on success, -1 on error
1519
1520struct kvm_dirty_tlb {
1521 __u64 bitmap;
1522 __u32 num_dirty;
1523};
1524
1525This must be called whenever userspace has changed an entry in the shared
1526TLB, prior to calling KVM_RUN on the associated vcpu.
1527
1528The "bitmap" field is the userspace address of an array. This array
1529consists of a number of bits, equal to the total number of TLB entries as
1530determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
1531nearest multiple of 64.
1532
1533Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
1534array.
1535
1536The array is little-endian: the bit 0 is the least significant bit of the
1537first byte, bit 8 is the least significant bit of the second byte, etc.
1538This avoids any complications with differing word sizes.
1539
1540The "num_dirty" field is a performance hint for KVM to determine whether it
1541should skip processing the bitmap and just invalidate everything. It must
1542be set to the number of set bits in the bitmap.
1543
Jan Kiszka414fa982012-04-24 16:40:15 +02001544
15454.61 KVM_ASSIGN_SET_INTX_MASK
Jan Kiszka07700a92012-02-28 14:19:54 +01001546
1547Capability: KVM_CAP_PCI_2_3
1548Architectures: x86
1549Type: vm ioctl
1550Parameters: struct kvm_assigned_pci_dev (in)
1551Returns: 0 on success, -1 on error
1552
1553Allows userspace to mask PCI INTx interrupts from the assigned device. The
1554kernel will not deliver INTx interrupts to the guest between setting and
1555clearing of KVM_ASSIGN_SET_INTX_MASK via this interface. This enables use of
1556and emulation of PCI 2.3 INTx disable command register behavior.
1557
1558This may be used for both PCI 2.3 devices supporting INTx disable natively and
1559older devices lacking this support. Userspace is responsible for emulating the
1560read value of the INTx disable bit in the guest visible PCI command register.
1561When modifying the INTx disable state, userspace should precede updating the
1562physical device command register by calling this ioctl to inform the kernel of
1563the new intended INTx mask state.
1564
1565Note that the kernel uses the device INTx disable bit to internally manage the
1566device interrupt state for PCI 2.3 devices. Reads of this register may
1567therefore not match the expected value. Writes should always use the guest
1568intended INTx disable value rather than attempting to read-copy-update the
1569current physical device state. Races between user and kernel updates to the
1570INTx disable bit are handled lazily in the kernel. It's possible the device
1571may generate unintended interrupts, but they will not be injected into the
1572guest.
1573
1574See KVM_ASSIGN_DEV_IRQ for the data structure. The target device is specified
1575by assigned_dev_id. In the flags field, only KVM_DEV_ASSIGN_MASK_INTX is
1576evaluated.
1577
Jan Kiszka414fa982012-04-24 16:40:15 +02001578
David Gibson54738c02011-06-29 00:22:41 +000015794.62 KVM_CREATE_SPAPR_TCE
1580
1581Capability: KVM_CAP_SPAPR_TCE
1582Architectures: powerpc
1583Type: vm ioctl
1584Parameters: struct kvm_create_spapr_tce (in)
1585Returns: file descriptor for manipulating the created TCE table
1586
1587This creates a virtual TCE (translation control entry) table, which
1588is an IOMMU for PAPR-style virtual I/O. It is used to translate
1589logical addresses used in virtual I/O into guest physical addresses,
1590and provides a scatter/gather capability for PAPR virtual I/O.
1591
1592/* for KVM_CAP_SPAPR_TCE */
1593struct kvm_create_spapr_tce {
1594 __u64 liobn;
1595 __u32 window_size;
1596};
1597
1598The liobn field gives the logical IO bus number for which to create a
1599TCE table. The window_size field specifies the size of the DMA window
1600which this TCE table will translate - the table will contain one 64
1601bit TCE entry for every 4kiB of the DMA window.
1602
1603When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
1604table has been created using this ioctl(), the kernel will handle it
1605in real mode, updating the TCE table. H_PUT_TCE calls for other
1606liobns will cause a vm exit and must be handled by userspace.
1607
1608The return value is a file descriptor which can be passed to mmap(2)
1609to map the created TCE table into userspace. This lets userspace read
1610the entries written by kernel-handled H_PUT_TCE calls, and also lets
1611userspace update the TCE table directly which is useful in some
1612circumstances.
1613
Jan Kiszka414fa982012-04-24 16:40:15 +02001614
Paul Mackerrasaa04b4c2011-06-29 00:25:44 +000016154.63 KVM_ALLOCATE_RMA
1616
1617Capability: KVM_CAP_PPC_RMA
1618Architectures: powerpc
1619Type: vm ioctl
1620Parameters: struct kvm_allocate_rma (out)
1621Returns: file descriptor for mapping the allocated RMA
1622
1623This allocates a Real Mode Area (RMA) from the pool allocated at boot
1624time by the kernel. An RMA is a physically-contiguous, aligned region
1625of memory used on older POWER processors to provide the memory which
1626will be accessed by real-mode (MMU off) accesses in a KVM guest.
1627POWER processors support a set of sizes for the RMA that usually
1628includes 64MB, 128MB, 256MB and some larger powers of two.
1629
1630/* for KVM_ALLOCATE_RMA */
1631struct kvm_allocate_rma {
1632 __u64 rma_size;
1633};
1634
1635The return value is a file descriptor which can be passed to mmap(2)
1636to map the allocated RMA into userspace. The mapped area can then be
1637passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
1638RMA for a virtual machine. The size of the RMA in bytes (which is
1639fixed at host kernel boot time) is returned in the rma_size field of
1640the argument structure.
1641
1642The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
1643is supported; 2 if the processor requires all virtual machines to have
1644an RMA, or 1 if the processor can use an RMA but doesn't require it,
1645because it supports the Virtual RMA (VRMA) facility.
1646
Jan Kiszka414fa982012-04-24 16:40:15 +02001647
Avi Kivity3f745f12011-12-07 12:42:47 +020016484.64 KVM_NMI
1649
1650Capability: KVM_CAP_USER_NMI
1651Architectures: x86
1652Type: vcpu ioctl
1653Parameters: none
1654Returns: 0 on success, -1 on error
1655
1656Queues an NMI on the thread's vcpu. Note this is well defined only
1657when KVM_CREATE_IRQCHIP has not been called, since this is an interface
1658between the virtual cpu core and virtual local APIC. After KVM_CREATE_IRQCHIP
1659has been called, this interface is completely emulated within the kernel.
1660
1661To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
1662following algorithm:
1663
1664 - pause the vpcu
1665 - read the local APIC's state (KVM_GET_LAPIC)
1666 - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
1667 - if so, issue KVM_NMI
1668 - resume the vcpu
1669
1670Some guests configure the LINT1 NMI input to cause a panic, aiding in
1671debugging.
1672
Jan Kiszka414fa982012-04-24 16:40:15 +02001673
Alexander Grafe24ed812011-09-14 10:02:41 +020016744.65 KVM_S390_UCAS_MAP
Carsten Otte27e03932012-01-04 10:25:21 +01001675
1676Capability: KVM_CAP_S390_UCONTROL
1677Architectures: s390
1678Type: vcpu ioctl
1679Parameters: struct kvm_s390_ucas_mapping (in)
1680Returns: 0 in case of success
1681
1682The parameter is defined like this:
1683 struct kvm_s390_ucas_mapping {
1684 __u64 user_addr;
1685 __u64 vcpu_addr;
1686 __u64 length;
1687 };
1688
1689This ioctl maps the memory at "user_addr" with the length "length" to
1690the vcpu's address space starting at "vcpu_addr". All parameters need to
1691be alligned by 1 megabyte.
1692
Jan Kiszka414fa982012-04-24 16:40:15 +02001693
Alexander Grafe24ed812011-09-14 10:02:41 +020016944.66 KVM_S390_UCAS_UNMAP
Carsten Otte27e03932012-01-04 10:25:21 +01001695
1696Capability: KVM_CAP_S390_UCONTROL
1697Architectures: s390
1698Type: vcpu ioctl
1699Parameters: struct kvm_s390_ucas_mapping (in)
1700Returns: 0 in case of success
1701
1702The parameter is defined like this:
1703 struct kvm_s390_ucas_mapping {
1704 __u64 user_addr;
1705 __u64 vcpu_addr;
1706 __u64 length;
1707 };
1708
1709This ioctl unmaps the memory in the vcpu's address space starting at
1710"vcpu_addr" with the length "length". The field "user_addr" is ignored.
1711All parameters need to be alligned by 1 megabyte.
1712
Jan Kiszka414fa982012-04-24 16:40:15 +02001713
Alexander Grafe24ed812011-09-14 10:02:41 +020017144.67 KVM_S390_VCPU_FAULT
Carsten Otteccc79102012-01-04 10:25:26 +01001715
1716Capability: KVM_CAP_S390_UCONTROL
1717Architectures: s390
1718Type: vcpu ioctl
1719Parameters: vcpu absolute address (in)
1720Returns: 0 in case of success
1721
1722This call creates a page table entry on the virtual cpu's address space
1723(for user controlled virtual machines) or the virtual machine's address
1724space (for regular virtual machines). This only works for minor faults,
1725thus it's recommended to access subject memory page via the user page
1726table upfront. This is useful to handle validity intercepts for user
1727controlled virtual machines to fault in the virtual cpu's lowcore pages
1728prior to calling the KVM_RUN ioctl.
1729
Jan Kiszka414fa982012-04-24 16:40:15 +02001730
Alexander Grafe24ed812011-09-14 10:02:41 +020017314.68 KVM_SET_ONE_REG
1732
1733Capability: KVM_CAP_ONE_REG
1734Architectures: all
1735Type: vcpu ioctl
1736Parameters: struct kvm_one_reg (in)
1737Returns: 0 on success, negative value on failure
1738
1739struct kvm_one_reg {
1740 __u64 id;
1741 __u64 addr;
1742};
1743
1744Using this ioctl, a single vcpu register can be set to a specific value
1745defined by user space with the passed in struct kvm_one_reg, where id
1746refers to the register identifier as described below and addr is a pointer
1747to a variable with the respective size. There can be architecture agnostic
1748and architecture specific registers. Each have their own range of operation
1749and their own constants and width. To keep track of the implemented
1750registers, find a list below:
1751
1752 Arch | Register | Width (bits)
1753 | |
Alexander Graf1022fc32011-09-14 21:45:23 +02001754 PPC | KVM_REG_PPC_HIOR | 64
Bharat Bhushan2e232702012-08-15 17:37:13 +00001755 PPC | KVM_REG_PPC_IAC1 | 64
1756 PPC | KVM_REG_PPC_IAC2 | 64
1757 PPC | KVM_REG_PPC_IAC3 | 64
1758 PPC | KVM_REG_PPC_IAC4 | 64
1759 PPC | KVM_REG_PPC_DAC1 | 64
1760 PPC | KVM_REG_PPC_DAC2 | 64
Paul Mackerrasa136a8b2012-09-25 20:31:56 +00001761 PPC | KVM_REG_PPC_DABR | 64
1762 PPC | KVM_REG_PPC_DSCR | 64
1763 PPC | KVM_REG_PPC_PURR | 64
1764 PPC | KVM_REG_PPC_SPURR | 64
1765 PPC | KVM_REG_PPC_DAR | 64
1766 PPC | KVM_REG_PPC_DSISR | 32
1767 PPC | KVM_REG_PPC_AMR | 64
1768 PPC | KVM_REG_PPC_UAMOR | 64
1769 PPC | KVM_REG_PPC_MMCR0 | 64
1770 PPC | KVM_REG_PPC_MMCR1 | 64
1771 PPC | KVM_REG_PPC_MMCRA | 64
1772 PPC | KVM_REG_PPC_PMC1 | 32
1773 PPC | KVM_REG_PPC_PMC2 | 32
1774 PPC | KVM_REG_PPC_PMC3 | 32
1775 PPC | KVM_REG_PPC_PMC4 | 32
1776 PPC | KVM_REG_PPC_PMC5 | 32
1777 PPC | KVM_REG_PPC_PMC6 | 32
1778 PPC | KVM_REG_PPC_PMC7 | 32
1779 PPC | KVM_REG_PPC_PMC8 | 32
Paul Mackerrasa8bd19e2012-09-25 20:32:30 +00001780 PPC | KVM_REG_PPC_FPR0 | 64
1781 ...
1782 PPC | KVM_REG_PPC_FPR31 | 64
1783 PPC | KVM_REG_PPC_VR0 | 128
1784 ...
1785 PPC | KVM_REG_PPC_VR31 | 128
1786 PPC | KVM_REG_PPC_VSR0 | 128
1787 ...
1788 PPC | KVM_REG_PPC_VSR31 | 128
1789 PPC | KVM_REG_PPC_FPSCR | 64
1790 PPC | KVM_REG_PPC_VSCR | 32
Paul Mackerras55b665b2012-09-25 20:33:06 +00001791 PPC | KVM_REG_PPC_VPA_ADDR | 64
1792 PPC | KVM_REG_PPC_VPA_SLB | 128
1793 PPC | KVM_REG_PPC_VPA_DTL | 128
Mihai Caraman352df1d2012-10-11 06:13:29 +00001794 PPC | KVM_REG_PPC_EPCR | 32
Jan Kiszka414fa982012-04-24 16:40:15 +02001795
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001796ARM registers are mapped using the lower 32 bits. The upper 16 of that
1797is the register group type, or coprocessor number:
1798
1799ARM core registers have the following id bit patterns:
1800 0x4002 0000 0010 <index into the kvm_regs struct:16>
1801
Christoffer Dall11382452013-01-20 18:28:10 -05001802ARM 32-bit CP15 registers have the following id bit patterns:
1803 0x4002 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
1804
1805ARM 64-bit CP15 registers have the following id bit patterns:
1806 0x4003 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001807
Christoffer Dallc27581e2013-01-20 18:28:10 -05001808ARM CCSIDR registers are demultiplexed by CSSELR value:
1809 0x4002 0000 0011 00 <csselr:8>
Christoffer Dall749cf76c2013-01-20 18:28:06 -05001810
Rusty Russell4fe21e42013-01-20 18:28:11 -05001811ARM 32-bit VFP control registers have the following id bit patterns:
1812 0x4002 0000 0012 1 <regno:12>
1813
1814ARM 64-bit FP registers have the following id bit patterns:
1815 0x4002 0000 0012 0 <regno:12>
1816
Alexander Grafe24ed812011-09-14 10:02:41 +020018174.69 KVM_GET_ONE_REG
1818
1819Capability: KVM_CAP_ONE_REG
1820Architectures: all
1821Type: vcpu ioctl
1822Parameters: struct kvm_one_reg (in and out)
1823Returns: 0 on success, negative value on failure
1824
1825This ioctl allows to receive the value of a single register implemented
1826in a vcpu. The register to read is indicated by the "id" field of the
1827kvm_one_reg struct passed in. On success, the register value can be found
1828at the memory location pointed to by "addr".
1829
1830The list of registers accessible using this interface is identical to the
Bharat Bhushan2e232702012-08-15 17:37:13 +00001831list in 4.68.
Alexander Grafe24ed812011-09-14 10:02:41 +02001832
Jan Kiszka414fa982012-04-24 16:40:15 +02001833
Eric B Munson1c0b28c2012-03-10 14:37:27 -050018344.70 KVM_KVMCLOCK_CTRL
1835
1836Capability: KVM_CAP_KVMCLOCK_CTRL
1837Architectures: Any that implement pvclocks (currently x86 only)
1838Type: vcpu ioctl
1839Parameters: None
1840Returns: 0 on success, -1 on error
1841
1842This signals to the host kernel that the specified guest is being paused by
1843userspace. The host will set a flag in the pvclock structure that is checked
1844from the soft lockup watchdog. The flag is part of the pvclock structure that
1845is shared between guest and host, specifically the second bit of the flags
1846field of the pvclock_vcpu_time_info structure. It will be set exclusively by
1847the host and read/cleared exclusively by the guest. The guest operation of
1848checking and clearing the flag must an atomic operation so
1849load-link/store-conditional, or equivalent must be used. There are two cases
1850where the guest will clear the flag: when the soft lockup watchdog timer resets
1851itself or when a soft lockup is detected. This ioctl can be called any time
1852after pausing the vcpu, but before it is resumed.
1853
Jan Kiszka414fa982012-04-24 16:40:15 +02001854
Jan Kiszka07975ad2012-03-29 21:14:12 +020018554.71 KVM_SIGNAL_MSI
1856
1857Capability: KVM_CAP_SIGNAL_MSI
1858Architectures: x86
1859Type: vm ioctl
1860Parameters: struct kvm_msi (in)
1861Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
1862
1863Directly inject a MSI message. Only valid with in-kernel irqchip that handles
1864MSI messages.
1865
1866struct kvm_msi {
1867 __u32 address_lo;
1868 __u32 address_hi;
1869 __u32 data;
1870 __u32 flags;
1871 __u8 pad[16];
1872};
1873
1874No flags are defined so far. The corresponding field must be 0.
1875
Jan Kiszka414fa982012-04-24 16:40:15 +02001876
Jan Kiszka0589ff62012-04-24 16:40:16 +020018774.71 KVM_CREATE_PIT2
1878
1879Capability: KVM_CAP_PIT2
1880Architectures: x86
1881Type: vm ioctl
1882Parameters: struct kvm_pit_config (in)
1883Returns: 0 on success, -1 on error
1884
1885Creates an in-kernel device model for the i8254 PIT. This call is only valid
1886after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
1887parameters have to be passed:
1888
1889struct kvm_pit_config {
1890 __u32 flags;
1891 __u32 pad[15];
1892};
1893
1894Valid flags are:
1895
1896#define KVM_PIT_SPEAKER_DUMMY 1 /* emulate speaker port stub */
1897
Jan Kiszkab6ddf052012-04-24 16:40:17 +02001898PIT timer interrupts may use a per-VM kernel thread for injection. If it
1899exists, this thread will have a name of the following pattern:
1900
1901kvm-pit/<owner-process-pid>
1902
1903When running a guest with elevated priorities, the scheduling parameters of
1904this thread may have to be adjusted accordingly.
1905
Jan Kiszka0589ff62012-04-24 16:40:16 +02001906This IOCTL replaces the obsolete KVM_CREATE_PIT.
1907
1908
19094.72 KVM_GET_PIT2
1910
1911Capability: KVM_CAP_PIT_STATE2
1912Architectures: x86
1913Type: vm ioctl
1914Parameters: struct kvm_pit_state2 (out)
1915Returns: 0 on success, -1 on error
1916
1917Retrieves the state of the in-kernel PIT model. Only valid after
1918KVM_CREATE_PIT2. The state is returned in the following structure:
1919
1920struct kvm_pit_state2 {
1921 struct kvm_pit_channel_state channels[3];
1922 __u32 flags;
1923 __u32 reserved[9];
1924};
1925
1926Valid flags are:
1927
1928/* disable PIT in HPET legacy mode */
1929#define KVM_PIT_FLAGS_HPET_LEGACY 0x00000001
1930
1931This IOCTL replaces the obsolete KVM_GET_PIT.
1932
1933
19344.73 KVM_SET_PIT2
1935
1936Capability: KVM_CAP_PIT_STATE2
1937Architectures: x86
1938Type: vm ioctl
1939Parameters: struct kvm_pit_state2 (in)
1940Returns: 0 on success, -1 on error
1941
1942Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
1943See KVM_GET_PIT2 for details on struct kvm_pit_state2.
1944
1945This IOCTL replaces the obsolete KVM_SET_PIT.
1946
1947
Benjamin Herrenschmidt5b747162012-04-26 19:43:42 +000019484.74 KVM_PPC_GET_SMMU_INFO
1949
1950Capability: KVM_CAP_PPC_GET_SMMU_INFO
1951Architectures: powerpc
1952Type: vm ioctl
1953Parameters: None
1954Returns: 0 on success, -1 on error
1955
1956This populates and returns a structure describing the features of
1957the "Server" class MMU emulation supported by KVM.
1958This can in turn be used by userspace to generate the appropariate
1959device-tree properties for the guest operating system.
1960
1961The structure contains some global informations, followed by an
1962array of supported segment page sizes:
1963
1964 struct kvm_ppc_smmu_info {
1965 __u64 flags;
1966 __u32 slb_size;
1967 __u32 pad;
1968 struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
1969 };
1970
1971The supported flags are:
1972
1973 - KVM_PPC_PAGE_SIZES_REAL:
1974 When that flag is set, guest page sizes must "fit" the backing
1975 store page sizes. When not set, any page size in the list can
1976 be used regardless of how they are backed by userspace.
1977
1978 - KVM_PPC_1T_SEGMENTS
1979 The emulated MMU supports 1T segments in addition to the
1980 standard 256M ones.
1981
1982The "slb_size" field indicates how many SLB entries are supported
1983
1984The "sps" array contains 8 entries indicating the supported base
1985page sizes for a segment in increasing order. Each entry is defined
1986as follow:
1987
1988 struct kvm_ppc_one_seg_page_size {
1989 __u32 page_shift; /* Base page shift of segment (or 0) */
1990 __u32 slb_enc; /* SLB encoding for BookS */
1991 struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
1992 };
1993
1994An entry with a "page_shift" of 0 is unused. Because the array is
1995organized in increasing order, a lookup can stop when encoutering
1996such an entry.
1997
1998The "slb_enc" field provides the encoding to use in the SLB for the
1999page size. The bits are in positions such as the value can directly
2000be OR'ed into the "vsid" argument of the slbmte instruction.
2001
2002The "enc" array is a list which for each of those segment base page
2003size provides the list of supported actual page sizes (which can be
2004only larger or equal to the base page size), along with the
2005corresponding encoding in the hash PTE. Similarily, the array is
20068 entries sorted by increasing sizes and an entry with a "0" shift
2007is an empty entry and a terminator:
2008
2009 struct kvm_ppc_one_page_size {
2010 __u32 page_shift; /* Page shift (or 0) */
2011 __u32 pte_enc; /* Encoding in the HPTE (>>12) */
2012 };
2013
2014The "pte_enc" field provides a value that can OR'ed into the hash
2015PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
2016into the hash PTE second double word).
2017
Alex Williamsonf36992e2012-06-29 09:56:16 -060020184.75 KVM_IRQFD
2019
2020Capability: KVM_CAP_IRQFD
2021Architectures: x86
2022Type: vm ioctl
2023Parameters: struct kvm_irqfd (in)
2024Returns: 0 on success, -1 on error
2025
2026Allows setting an eventfd to directly trigger a guest interrupt.
2027kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
2028kvm_irqfd.gsi specifies the irqchip pin toggled by this event. When
2029an event is tiggered on the eventfd, an interrupt is injected into
2030the guest using the specified gsi pin. The irqfd is removed using
2031the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
2032and kvm_irqfd.gsi.
2033
Alex Williamson7a844282012-09-21 11:58:03 -06002034With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
2035mechanism allowing emulation of level-triggered, irqfd-based
2036interrupts. When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
2037additional eventfd in the kvm_irqfd.resamplefd field. When operating
2038in resample mode, posting of an interrupt through kvm_irq.fd asserts
2039the specified gsi in the irqchip. When the irqchip is resampled, such
2040as from an EOI, the gsi is de-asserted and the user is notifed via
2041kvm_irqfd.resamplefd. It is the user's responsibility to re-queue
2042the interrupt if the device making use of it still requires service.
2043Note that closing the resamplefd is not sufficient to disable the
2044irqfd. The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
2045and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
2046
Linus Torvalds5fecc9d2012-07-24 12:01:20 -070020474.76 KVM_PPC_ALLOCATE_HTAB
Paul Mackerras32fad282012-05-04 02:32:53 +00002048
2049Capability: KVM_CAP_PPC_ALLOC_HTAB
2050Architectures: powerpc
2051Type: vm ioctl
2052Parameters: Pointer to u32 containing hash table order (in/out)
2053Returns: 0 on success, -1 on error
2054
2055This requests the host kernel to allocate an MMU hash table for a
2056guest using the PAPR paravirtualization interface. This only does
2057anything if the kernel is configured to use the Book 3S HV style of
2058virtualization. Otherwise the capability doesn't exist and the ioctl
2059returns an ENOTTY error. The rest of this description assumes Book 3S
2060HV.
2061
2062There must be no vcpus running when this ioctl is called; if there
2063are, it will do nothing and return an EBUSY error.
2064
2065The parameter is a pointer to a 32-bit unsigned integer variable
2066containing the order (log base 2) of the desired size of the hash
2067table, which must be between 18 and 46. On successful return from the
2068ioctl, it will have been updated with the order of the hash table that
2069was allocated.
2070
2071If no hash table has been allocated when any vcpu is asked to run
2072(with the KVM_RUN ioctl), the host kernel will allocate a
2073default-sized hash table (16 MB).
2074
2075If this ioctl is called when a hash table has already been allocated,
2076the kernel will clear out the existing hash table (zero all HPTEs) and
2077return the hash table order in the parameter. (If the guest is using
2078the virtualized real-mode area (VRMA) facility, the kernel will
2079re-create the VMRA HPTEs on the next KVM_RUN of any vcpu.)
2080
Cornelia Huck416ad652012-10-02 16:25:37 +020020814.77 KVM_S390_INTERRUPT
2082
2083Capability: basic
2084Architectures: s390
2085Type: vm ioctl, vcpu ioctl
2086Parameters: struct kvm_s390_interrupt (in)
2087Returns: 0 on success, -1 on error
2088
2089Allows to inject an interrupt to the guest. Interrupts can be floating
2090(vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type.
2091
2092Interrupt parameters are passed via kvm_s390_interrupt:
2093
2094struct kvm_s390_interrupt {
2095 __u32 type;
2096 __u32 parm;
2097 __u64 parm64;
2098};
2099
2100type can be one of the following:
2101
2102KVM_S390_SIGP_STOP (vcpu) - sigp restart
2103KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm
2104KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm
2105KVM_S390_RESTART (vcpu) - restart
2106KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt
2107 parameters in parm and parm64
2108KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm
2109KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm
2110KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm
2111
2112Note that the vcpu ioctl is asynchronous to vcpu execution.
2113
Paul Mackerrasa2932922012-11-19 22:57:20 +000021144.78 KVM_PPC_GET_HTAB_FD
2115
2116Capability: KVM_CAP_PPC_HTAB_FD
2117Architectures: powerpc
2118Type: vm ioctl
2119Parameters: Pointer to struct kvm_get_htab_fd (in)
2120Returns: file descriptor number (>= 0) on success, -1 on error
2121
2122This returns a file descriptor that can be used either to read out the
2123entries in the guest's hashed page table (HPT), or to write entries to
2124initialize the HPT. The returned fd can only be written to if the
2125KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and
2126can only be read if that bit is clear. The argument struct looks like
2127this:
2128
2129/* For KVM_PPC_GET_HTAB_FD */
2130struct kvm_get_htab_fd {
2131 __u64 flags;
2132 __u64 start_index;
2133 __u64 reserved[2];
2134};
2135
2136/* Values for kvm_get_htab_fd.flags */
2137#define KVM_GET_HTAB_BOLTED_ONLY ((__u64)0x1)
2138#define KVM_GET_HTAB_WRITE ((__u64)0x2)
2139
2140The `start_index' field gives the index in the HPT of the entry at
2141which to start reading. It is ignored when writing.
2142
2143Reads on the fd will initially supply information about all
2144"interesting" HPT entries. Interesting entries are those with the
2145bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise
2146all entries. When the end of the HPT is reached, the read() will
2147return. If read() is called again on the fd, it will start again from
2148the beginning of the HPT, but will only return HPT entries that have
2149changed since they were last read.
2150
2151Data read or written is structured as a header (8 bytes) followed by a
2152series of valid HPT entries (16 bytes) each. The header indicates how
2153many valid HPT entries there are and how many invalid entries follow
2154the valid entries. The invalid entries are not represented explicitly
2155in the stream. The header format is:
2156
2157struct kvm_get_htab_header {
2158 __u32 index;
2159 __u16 n_valid;
2160 __u16 n_invalid;
2161};
2162
2163Writes to the fd create HPT entries starting at the index given in the
2164header; first `n_valid' valid entries with contents from the data
2165written, then `n_invalid' invalid entries, invalidating any previously
2166valid entries found.
2167
Alex Williamsonf36992e2012-06-29 09:56:16 -06002168
Christoffer Dall749cf76c2013-01-20 18:28:06 -050021694.77 KVM_ARM_VCPU_INIT
2170
2171Capability: basic
2172Architectures: arm
2173Type: vcpu ioctl
2174Parameters: struct struct kvm_vcpu_init (in)
2175Returns: 0 on success; -1 on error
2176Errors:
2177  EINVAL:    the target is unknown, or the combination of features is invalid.
2178  ENOENT:    a features bit specified is unknown.
2179
2180This tells KVM what type of CPU to present to the guest, and what
2181optional features it should have.  This will cause a reset of the cpu
2182registers to their initial values.  If this is not called, KVM_RUN will
2183return ENOEXEC for that vcpu.
2184
2185Note that because some registers reflect machine topology, all vcpus
2186should be created before this ioctl is invoked.
2187
Marc Zyngieraa024c2f2013-01-20 18:28:13 -05002188Possible features:
2189 - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state.
2190 Depends on KVM_CAP_ARM_PSCI.
2191
Christoffer Dall749cf76c2013-01-20 18:28:06 -05002192
21934.78 KVM_GET_REG_LIST
2194
2195Capability: basic
2196Architectures: arm
2197Type: vcpu ioctl
2198Parameters: struct kvm_reg_list (in/out)
2199Returns: 0 on success; -1 on error
2200Errors:
2201  E2BIG:     the reg index list is too big to fit in the array specified by
2202             the user (the number required will be written into n).
2203
2204struct kvm_reg_list {
2205 __u64 n; /* number of registers in reg[] */
2206 __u64 reg[0];
2207};
2208
2209This ioctl returns the guest registers that are supported for the
2210KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
2211
2212
Christoffer Dall3401d5462013-01-23 13:18:04 -050022134.80 KVM_ARM_SET_DEVICE_ADDR
2214
2215Capability: KVM_CAP_ARM_SET_DEVICE_ADDR
2216Architectures: arm
2217Type: vm ioctl
2218Parameters: struct kvm_arm_device_address (in)
2219Returns: 0 on success, -1 on error
2220Errors:
2221 ENODEV: The device id is unknown
2222 ENXIO: Device not supported on current system
2223 EEXIST: Address already set
2224 E2BIG: Address outside guest physical address space
Christoffer Dall330690c2013-01-21 19:36:13 -05002225 EBUSY: Address overlaps with other device range
Christoffer Dall3401d5462013-01-23 13:18:04 -05002226
2227struct kvm_arm_device_addr {
2228 __u64 id;
2229 __u64 addr;
2230};
2231
2232Specify a device address in the guest's physical address space where guests
2233can access emulated or directly exposed devices, which the host kernel needs
2234to know about. The id field is an architecture specific identifier for a
2235specific device.
2236
2237ARM divides the id field into two parts, a device id and an address type id
2238specific to the individual device.
2239
2240  bits: | 63 ... 32 | 31 ... 16 | 15 ... 0 |
2241 field: | 0x00000000 | device id | addr type id |
2242
2243ARM currently only require this when using the in-kernel GIC support for the
2244hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2 as the device id. When
2245setting the base address for the guest's mapping of the VGIC virtual CPU
2246and distributor interface, the ioctl must be called after calling
2247KVM_CREATE_IRQCHIP, but before calling KVM_RUN on any of the VCPUs. Calling
2248this ioctl twice for any of the base addresses will return -EEXIST.
2249
2250
Avi Kivity9c1b96e2009-06-09 12:37:58 +030022515. The kvm_run structure
Jan Kiszka414fa982012-04-24 16:40:15 +02002252------------------------
Avi Kivity9c1b96e2009-06-09 12:37:58 +03002253
2254Application code obtains a pointer to the kvm_run structure by
2255mmap()ing a vcpu fd. From that point, application code can control
2256execution by changing fields in kvm_run prior to calling the KVM_RUN
2257ioctl, and obtain information about the reason KVM_RUN returned by
2258looking up structure members.
2259
2260struct kvm_run {
2261 /* in */
2262 __u8 request_interrupt_window;
2263
2264Request that KVM_RUN return when it becomes possible to inject external
2265interrupts into the guest. Useful in conjunction with KVM_INTERRUPT.
2266
2267 __u8 padding1[7];
2268
2269 /* out */
2270 __u32 exit_reason;
2271
2272When KVM_RUN has returned successfully (return value 0), this informs
2273application code why KVM_RUN has returned. Allowable values for this
2274field are detailed below.
2275
2276 __u8 ready_for_interrupt_injection;
2277
2278If request_interrupt_window has been specified, this field indicates
2279an interrupt can be injected now with KVM_INTERRUPT.
2280
2281 __u8 if_flag;
2282
2283The value of the current interrupt flag. Only valid if in-kernel
2284local APIC is not used.
2285
2286 __u8 padding2[2];
2287
2288 /* in (pre_kvm_run), out (post_kvm_run) */
2289 __u64 cr8;
2290
2291The value of the cr8 register. Only valid if in-kernel local APIC is
2292not used. Both input and output.
2293
2294 __u64 apic_base;
2295
2296The value of the APIC BASE msr. Only valid if in-kernel local
2297APIC is not used. Both input and output.
2298
2299 union {
2300 /* KVM_EXIT_UNKNOWN */
2301 struct {
2302 __u64 hardware_exit_reason;
2303 } hw;
2304
2305If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
2306reasons. Further architecture-specific information is available in
2307hardware_exit_reason.
2308
2309 /* KVM_EXIT_FAIL_ENTRY */
2310 struct {
2311 __u64 hardware_entry_failure_reason;
2312 } fail_entry;
2313
2314If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
2315to unknown reasons. Further architecture-specific information is
2316available in hardware_entry_failure_reason.
2317
2318 /* KVM_EXIT_EXCEPTION */
2319 struct {
2320 __u32 exception;
2321 __u32 error_code;
2322 } ex;
2323
2324Unused.
2325
2326 /* KVM_EXIT_IO */
2327 struct {
2328#define KVM_EXIT_IO_IN 0
2329#define KVM_EXIT_IO_OUT 1
2330 __u8 direction;
2331 __u8 size; /* bytes */
2332 __u16 port;
2333 __u32 count;
2334 __u64 data_offset; /* relative to kvm_run start */
2335 } io;
2336
Wu Fengguang2044892d2009-12-24 09:04:16 +08002337If exit_reason is KVM_EXIT_IO, then the vcpu has
Avi Kivity9c1b96e2009-06-09 12:37:58 +03002338executed a port I/O instruction which could not be satisfied by kvm.
2339data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
2340where kvm expects application code to place the data for the next
Wu Fengguang2044892d2009-12-24 09:04:16 +08002341KVM_RUN invocation (KVM_EXIT_IO_IN). Data format is a packed array.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03002342
2343 struct {
2344 struct kvm_debug_exit_arch arch;
2345 } debug;
2346
2347Unused.
2348
2349 /* KVM_EXIT_MMIO */
2350 struct {
2351 __u64 phys_addr;
2352 __u8 data[8];
2353 __u32 len;
2354 __u8 is_write;
2355 } mmio;
2356
Wu Fengguang2044892d2009-12-24 09:04:16 +08002357If exit_reason is KVM_EXIT_MMIO, then the vcpu has
Avi Kivity9c1b96e2009-06-09 12:37:58 +03002358executed a memory-mapped I/O instruction which could not be satisfied
2359by kvm. The 'data' member contains the written data if 'is_write' is
2360true, and should be filled by application code otherwise.
2361
Alexander Graf686de182012-10-07 15:22:59 +02002362NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_DCR
2363 and KVM_EXIT_PAPR the corresponding
Alexander Grafad0a0482010-03-24 21:48:30 +01002364operations are complete (and guest state is consistent) only after userspace
2365has re-entered the kernel with KVM_RUN. The kernel side will first finish
Marcelo Tosatti67961342010-02-13 16:10:26 -02002366incomplete operations and then check for pending signals. Userspace
2367can re-enter the guest with an unmasked signal pending to complete
2368pending operations.
2369
Avi Kivity9c1b96e2009-06-09 12:37:58 +03002370 /* KVM_EXIT_HYPERCALL */
2371 struct {
2372 __u64 nr;
2373 __u64 args[6];
2374 __u64 ret;
2375 __u32 longmode;
2376 __u32 pad;
2377 } hypercall;
2378
Avi Kivity647dc492010-04-01 14:39:21 +03002379Unused. This was once used for 'hypercall to userspace'. To implement
2380such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
2381Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
Avi Kivity9c1b96e2009-06-09 12:37:58 +03002382
2383 /* KVM_EXIT_TPR_ACCESS */
2384 struct {
2385 __u64 rip;
2386 __u32 is_write;
2387 __u32 pad;
2388 } tpr_access;
2389
2390To be documented (KVM_TPR_ACCESS_REPORTING).
2391
2392 /* KVM_EXIT_S390_SIEIC */
2393 struct {
2394 __u8 icptcode;
2395 __u64 mask; /* psw upper half */
2396 __u64 addr; /* psw lower half */
2397 __u16 ipa;
2398 __u32 ipb;
2399 } s390_sieic;
2400
2401s390 specific.
2402
2403 /* KVM_EXIT_S390_RESET */
2404#define KVM_S390_RESET_POR 1
2405#define KVM_S390_RESET_CLEAR 2
2406#define KVM_S390_RESET_SUBSYSTEM 4
2407#define KVM_S390_RESET_CPU_INIT 8
2408#define KVM_S390_RESET_IPL 16
2409 __u64 s390_reset_flags;
2410
2411s390 specific.
2412
Carsten Ottee168bf82012-01-04 10:25:22 +01002413 /* KVM_EXIT_S390_UCONTROL */
2414 struct {
2415 __u64 trans_exc_code;
2416 __u32 pgm_code;
2417 } s390_ucontrol;
2418
2419s390 specific. A page fault has occurred for a user controlled virtual
2420machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
2421resolved by the kernel.
2422The program code and the translation exception code that were placed
2423in the cpu's lowcore are presented here as defined by the z Architecture
2424Principles of Operation Book in the Chapter for Dynamic Address Translation
2425(DAT)
2426
Avi Kivity9c1b96e2009-06-09 12:37:58 +03002427 /* KVM_EXIT_DCR */
2428 struct {
2429 __u32 dcrn;
2430 __u32 data;
2431 __u8 is_write;
2432 } dcr;
2433
2434powerpc specific.
2435
Alexander Grafad0a0482010-03-24 21:48:30 +01002436 /* KVM_EXIT_OSI */
2437 struct {
2438 __u64 gprs[32];
2439 } osi;
2440
2441MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
2442hypercalls and exit with this exit struct that contains all the guest gprs.
2443
2444If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
2445Userspace can now handle the hypercall and when it's done modify the gprs as
2446necessary. Upon guest entry all guest GPRs will then be replaced by the values
2447in this struct.
2448
Paul Mackerrasde56a942011-06-29 00:21:34 +00002449 /* KVM_EXIT_PAPR_HCALL */
2450 struct {
2451 __u64 nr;
2452 __u64 ret;
2453 __u64 args[9];
2454 } papr_hcall;
2455
2456This is used on 64-bit PowerPC when emulating a pSeries partition,
2457e.g. with the 'pseries' machine type in qemu. It occurs when the
2458guest does a hypercall using the 'sc 1' instruction. The 'nr' field
2459contains the hypercall number (from the guest R3), and 'args' contains
2460the arguments (from the guest R4 - R12). Userspace should put the
2461return code in 'ret' and any extra returned values in args[].
2462The possible hypercalls are defined in the Power Architecture Platform
2463Requirements (PAPR) document available from www.power.org (free
2464developer registration required to access it).
2465
Avi Kivity9c1b96e2009-06-09 12:37:58 +03002466 /* Fix the size of the union. */
2467 char padding[256];
2468 };
Christian Borntraegerb9e5dc82012-01-11 11:20:30 +01002469
2470 /*
2471 * shared registers between kvm and userspace.
2472 * kvm_valid_regs specifies the register classes set by the host
2473 * kvm_dirty_regs specified the register classes dirtied by userspace
2474 * struct kvm_sync_regs is architecture specific, as well as the
2475 * bits for kvm_valid_regs and kvm_dirty_regs
2476 */
2477 __u64 kvm_valid_regs;
2478 __u64 kvm_dirty_regs;
2479 union {
2480 struct kvm_sync_regs regs;
2481 char padding[1024];
2482 } s;
2483
2484If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
2485certain guest registers without having to call SET/GET_*REGS. Thus we can
2486avoid some system call overhead if userspace has to handle the exit.
2487Userspace can query the validity of the structure by checking
2488kvm_valid_regs for specific bits. These bits are architecture specific
2489and usually define the validity of a groups of registers. (e.g. one bit
2490 for general purpose registers)
2491
Avi Kivity9c1b96e2009-06-09 12:37:58 +03002492};
Alexander Graf821246a2011-08-31 10:58:55 +02002493
Jan Kiszka414fa982012-04-24 16:40:15 +02002494
Alexander Graf821246a2011-08-31 10:58:55 +020024956. Capabilities that can be enabled
Jan Kiszka414fa982012-04-24 16:40:15 +02002496-----------------------------------
Alexander Graf821246a2011-08-31 10:58:55 +02002497
2498There are certain capabilities that change the behavior of the virtual CPU when
2499enabled. To enable them, please see section 4.37. Below you can find a list of
2500capabilities and what their effect on the vCPU is when enabling them.
2501
2502The following information is provided along with the description:
2503
2504 Architectures: which instruction set architectures provide this ioctl.
2505 x86 includes both i386 and x86_64.
2506
2507 Parameters: what parameters are accepted by the capability.
2508
2509 Returns: the return value. General error numbers (EBADF, ENOMEM, EINVAL)
2510 are not detailed, but errors with specific meanings are.
2511
Jan Kiszka414fa982012-04-24 16:40:15 +02002512
Alexander Graf821246a2011-08-31 10:58:55 +020025136.1 KVM_CAP_PPC_OSI
2514
2515Architectures: ppc
2516Parameters: none
2517Returns: 0 on success; -1 on error
2518
2519This capability enables interception of OSI hypercalls that otherwise would
2520be treated as normal system calls to be injected into the guest. OSI hypercalls
2521were invented by Mac-on-Linux to have a standardized communication mechanism
2522between the guest and the host.
2523
2524When this capability is enabled, KVM_EXIT_OSI can occur.
2525
Jan Kiszka414fa982012-04-24 16:40:15 +02002526
Alexander Graf821246a2011-08-31 10:58:55 +020025276.2 KVM_CAP_PPC_PAPR
2528
2529Architectures: ppc
2530Parameters: none
2531Returns: 0 on success; -1 on error
2532
2533This capability enables interception of PAPR hypercalls. PAPR hypercalls are
2534done using the hypercall instruction "sc 1".
2535
2536It also sets the guest privilege level to "supervisor" mode. Usually the guest
2537runs in "hypervisor" privilege mode with a few missing features.
2538
2539In addition to the above, it changes the semantics of SDR1. In this mode, the
2540HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
2541HTAB invisible to the guest.
2542
2543When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
Scott Wooddc83b8b2011-08-18 15:25:21 -05002544
Jan Kiszka414fa982012-04-24 16:40:15 +02002545
Scott Wooddc83b8b2011-08-18 15:25:21 -050025466.3 KVM_CAP_SW_TLB
2547
2548Architectures: ppc
2549Parameters: args[0] is the address of a struct kvm_config_tlb
2550Returns: 0 on success; -1 on error
2551
2552struct kvm_config_tlb {
2553 __u64 params;
2554 __u64 array;
2555 __u32 mmu_type;
2556 __u32 array_len;
2557};
2558
2559Configures the virtual CPU's TLB array, establishing a shared memory area
2560between userspace and KVM. The "params" and "array" fields are userspace
2561addresses of mmu-type-specific data structures. The "array_len" field is an
2562safety mechanism, and should be set to the size in bytes of the memory that
2563userspace has reserved for the array. It must be at least the size dictated
2564by "mmu_type" and "params".
2565
2566While KVM_RUN is active, the shared region is under control of KVM. Its
2567contents are undefined, and any modification by userspace results in
2568boundedly undefined behavior.
2569
2570On return from KVM_RUN, the shared region will reflect the current state of
2571the guest's TLB. If userspace makes any changes, it must call KVM_DIRTY_TLB
2572to tell KVM which entries have been changed, prior to calling KVM_RUN again
2573on this vcpu.
2574
2575For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
2576 - The "params" field is of type "struct kvm_book3e_206_tlb_params".
2577 - The "array" field points to an array of type "struct
2578 kvm_book3e_206_tlb_entry".
2579 - The array consists of all entries in the first TLB, followed by all
2580 entries in the second TLB.
2581 - Within a TLB, entries are ordered first by increasing set number. Within a
2582 set, entries are ordered by way (increasing ESEL).
2583 - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
2584 where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
2585 - The tsize field of mas1 shall be set to 4K on TLB0, even though the
2586 hardware ignores this value for TLB0.