Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * linux/mm/swapfile.c |
| 3 | * |
| 4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| 5 | * Swap reorganised 29.12.95, Stephen Tweedie |
| 6 | */ |
| 7 | |
| 8 | #include <linux/config.h> |
| 9 | #include <linux/mm.h> |
| 10 | #include <linux/hugetlb.h> |
| 11 | #include <linux/mman.h> |
| 12 | #include <linux/slab.h> |
| 13 | #include <linux/kernel_stat.h> |
| 14 | #include <linux/swap.h> |
| 15 | #include <linux/vmalloc.h> |
| 16 | #include <linux/pagemap.h> |
| 17 | #include <linux/namei.h> |
| 18 | #include <linux/shm.h> |
| 19 | #include <linux/blkdev.h> |
| 20 | #include <linux/writeback.h> |
| 21 | #include <linux/proc_fs.h> |
| 22 | #include <linux/seq_file.h> |
| 23 | #include <linux/init.h> |
| 24 | #include <linux/module.h> |
| 25 | #include <linux/rmap.h> |
| 26 | #include <linux/security.h> |
| 27 | #include <linux/backing-dev.h> |
| 28 | #include <linux/syscalls.h> |
| 29 | |
| 30 | #include <asm/pgtable.h> |
| 31 | #include <asm/tlbflush.h> |
| 32 | #include <linux/swapops.h> |
| 33 | |
| 34 | DEFINE_SPINLOCK(swaplock); |
| 35 | unsigned int nr_swapfiles; |
| 36 | long total_swap_pages; |
| 37 | static int swap_overflow; |
| 38 | |
| 39 | EXPORT_SYMBOL(total_swap_pages); |
| 40 | |
| 41 | static const char Bad_file[] = "Bad swap file entry "; |
| 42 | static const char Unused_file[] = "Unused swap file entry "; |
| 43 | static const char Bad_offset[] = "Bad swap offset entry "; |
| 44 | static const char Unused_offset[] = "Unused swap offset entry "; |
| 45 | |
| 46 | struct swap_list_t swap_list = {-1, -1}; |
| 47 | |
| 48 | struct swap_info_struct swap_info[MAX_SWAPFILES]; |
| 49 | |
| 50 | static DECLARE_MUTEX(swapon_sem); |
| 51 | |
| 52 | /* |
| 53 | * We need this because the bdev->unplug_fn can sleep and we cannot |
| 54 | * hold swap_list_lock while calling the unplug_fn. And swap_list_lock |
| 55 | * cannot be turned into a semaphore. |
| 56 | */ |
| 57 | static DECLARE_RWSEM(swap_unplug_sem); |
| 58 | |
| 59 | #define SWAPFILE_CLUSTER 256 |
| 60 | |
| 61 | void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page) |
| 62 | { |
| 63 | swp_entry_t entry; |
| 64 | |
| 65 | down_read(&swap_unplug_sem); |
| 66 | entry.val = page->private; |
| 67 | if (PageSwapCache(page)) { |
| 68 | struct block_device *bdev = swap_info[swp_type(entry)].bdev; |
| 69 | struct backing_dev_info *bdi; |
| 70 | |
| 71 | /* |
| 72 | * If the page is removed from swapcache from under us (with a |
| 73 | * racy try_to_unuse/swapoff) we need an additional reference |
| 74 | * count to avoid reading garbage from page->private above. If |
| 75 | * the WARN_ON triggers during a swapoff it maybe the race |
| 76 | * condition and it's harmless. However if it triggers without |
| 77 | * swapoff it signals a problem. |
| 78 | */ |
| 79 | WARN_ON(page_count(page) <= 1); |
| 80 | |
| 81 | bdi = bdev->bd_inode->i_mapping->backing_dev_info; |
McMullan, Jason | ba32311 | 2005-05-16 21:53:40 -0700 | [diff] [blame] | 82 | blk_run_backing_dev(bdi, page); |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 83 | } |
| 84 | up_read(&swap_unplug_sem); |
| 85 | } |
| 86 | |
| 87 | static inline int scan_swap_map(struct swap_info_struct *si) |
| 88 | { |
| 89 | unsigned long offset; |
| 90 | /* |
| 91 | * We try to cluster swap pages by allocating them |
| 92 | * sequentially in swap. Once we've allocated |
| 93 | * SWAPFILE_CLUSTER pages this way, however, we resort to |
| 94 | * first-free allocation, starting a new cluster. This |
| 95 | * prevents us from scattering swap pages all over the entire |
| 96 | * swap partition, so that we reduce overall disk seek times |
| 97 | * between swap pages. -- sct */ |
| 98 | if (si->cluster_nr) { |
| 99 | while (si->cluster_next <= si->highest_bit) { |
| 100 | offset = si->cluster_next++; |
| 101 | if (si->swap_map[offset]) |
| 102 | continue; |
| 103 | si->cluster_nr--; |
| 104 | goto got_page; |
| 105 | } |
| 106 | } |
| 107 | si->cluster_nr = SWAPFILE_CLUSTER; |
| 108 | |
| 109 | /* try to find an empty (even not aligned) cluster. */ |
| 110 | offset = si->lowest_bit; |
| 111 | check_next_cluster: |
| 112 | if (offset+SWAPFILE_CLUSTER-1 <= si->highest_bit) |
| 113 | { |
| 114 | unsigned long nr; |
| 115 | for (nr = offset; nr < offset+SWAPFILE_CLUSTER; nr++) |
| 116 | if (si->swap_map[nr]) |
| 117 | { |
| 118 | offset = nr+1; |
| 119 | goto check_next_cluster; |
| 120 | } |
| 121 | /* We found a completly empty cluster, so start |
| 122 | * using it. |
| 123 | */ |
| 124 | goto got_page; |
| 125 | } |
| 126 | /* No luck, so now go finegrined as usual. -Andrea */ |
| 127 | for (offset = si->lowest_bit; offset <= si->highest_bit ; offset++) { |
| 128 | if (si->swap_map[offset]) |
| 129 | continue; |
| 130 | si->lowest_bit = offset+1; |
| 131 | got_page: |
| 132 | if (offset == si->lowest_bit) |
| 133 | si->lowest_bit++; |
| 134 | if (offset == si->highest_bit) |
| 135 | si->highest_bit--; |
| 136 | if (si->lowest_bit > si->highest_bit) { |
| 137 | si->lowest_bit = si->max; |
| 138 | si->highest_bit = 0; |
| 139 | } |
| 140 | si->swap_map[offset] = 1; |
| 141 | si->inuse_pages++; |
| 142 | nr_swap_pages--; |
| 143 | si->cluster_next = offset+1; |
| 144 | return offset; |
| 145 | } |
| 146 | si->lowest_bit = si->max; |
| 147 | si->highest_bit = 0; |
| 148 | return 0; |
| 149 | } |
| 150 | |
| 151 | swp_entry_t get_swap_page(void) |
| 152 | { |
| 153 | struct swap_info_struct * p; |
| 154 | unsigned long offset; |
| 155 | swp_entry_t entry; |
| 156 | int type, wrapped = 0; |
| 157 | |
| 158 | entry.val = 0; /* Out of memory */ |
| 159 | swap_list_lock(); |
| 160 | type = swap_list.next; |
| 161 | if (type < 0) |
| 162 | goto out; |
| 163 | if (nr_swap_pages <= 0) |
| 164 | goto out; |
| 165 | |
| 166 | while (1) { |
| 167 | p = &swap_info[type]; |
| 168 | if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) { |
| 169 | swap_device_lock(p); |
| 170 | offset = scan_swap_map(p); |
| 171 | swap_device_unlock(p); |
| 172 | if (offset) { |
| 173 | entry = swp_entry(type,offset); |
| 174 | type = swap_info[type].next; |
| 175 | if (type < 0 || |
| 176 | p->prio != swap_info[type].prio) { |
| 177 | swap_list.next = swap_list.head; |
| 178 | } else { |
| 179 | swap_list.next = type; |
| 180 | } |
| 181 | goto out; |
| 182 | } |
| 183 | } |
| 184 | type = p->next; |
| 185 | if (!wrapped) { |
| 186 | if (type < 0 || p->prio != swap_info[type].prio) { |
| 187 | type = swap_list.head; |
| 188 | wrapped = 1; |
| 189 | } |
| 190 | } else |
| 191 | if (type < 0) |
| 192 | goto out; /* out of swap space */ |
| 193 | } |
| 194 | out: |
| 195 | swap_list_unlock(); |
| 196 | return entry; |
| 197 | } |
| 198 | |
| 199 | static struct swap_info_struct * swap_info_get(swp_entry_t entry) |
| 200 | { |
| 201 | struct swap_info_struct * p; |
| 202 | unsigned long offset, type; |
| 203 | |
| 204 | if (!entry.val) |
| 205 | goto out; |
| 206 | type = swp_type(entry); |
| 207 | if (type >= nr_swapfiles) |
| 208 | goto bad_nofile; |
| 209 | p = & swap_info[type]; |
| 210 | if (!(p->flags & SWP_USED)) |
| 211 | goto bad_device; |
| 212 | offset = swp_offset(entry); |
| 213 | if (offset >= p->max) |
| 214 | goto bad_offset; |
| 215 | if (!p->swap_map[offset]) |
| 216 | goto bad_free; |
| 217 | swap_list_lock(); |
| 218 | if (p->prio > swap_info[swap_list.next].prio) |
| 219 | swap_list.next = type; |
| 220 | swap_device_lock(p); |
| 221 | return p; |
| 222 | |
| 223 | bad_free: |
| 224 | printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); |
| 225 | goto out; |
| 226 | bad_offset: |
| 227 | printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); |
| 228 | goto out; |
| 229 | bad_device: |
| 230 | printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); |
| 231 | goto out; |
| 232 | bad_nofile: |
| 233 | printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); |
| 234 | out: |
| 235 | return NULL; |
| 236 | } |
| 237 | |
| 238 | static void swap_info_put(struct swap_info_struct * p) |
| 239 | { |
| 240 | swap_device_unlock(p); |
| 241 | swap_list_unlock(); |
| 242 | } |
| 243 | |
| 244 | static int swap_entry_free(struct swap_info_struct *p, unsigned long offset) |
| 245 | { |
| 246 | int count = p->swap_map[offset]; |
| 247 | |
| 248 | if (count < SWAP_MAP_MAX) { |
| 249 | count--; |
| 250 | p->swap_map[offset] = count; |
| 251 | if (!count) { |
| 252 | if (offset < p->lowest_bit) |
| 253 | p->lowest_bit = offset; |
| 254 | if (offset > p->highest_bit) |
| 255 | p->highest_bit = offset; |
| 256 | nr_swap_pages++; |
| 257 | p->inuse_pages--; |
| 258 | } |
| 259 | } |
| 260 | return count; |
| 261 | } |
| 262 | |
| 263 | /* |
| 264 | * Caller has made sure that the swapdevice corresponding to entry |
| 265 | * is still around or has not been recycled. |
| 266 | */ |
| 267 | void swap_free(swp_entry_t entry) |
| 268 | { |
| 269 | struct swap_info_struct * p; |
| 270 | |
| 271 | p = swap_info_get(entry); |
| 272 | if (p) { |
| 273 | swap_entry_free(p, swp_offset(entry)); |
| 274 | swap_info_put(p); |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | /* |
| 279 | * Check if we're the only user of a swap page, |
| 280 | * when the page is locked. |
| 281 | */ |
| 282 | static int exclusive_swap_page(struct page *page) |
| 283 | { |
| 284 | int retval = 0; |
| 285 | struct swap_info_struct * p; |
| 286 | swp_entry_t entry; |
| 287 | |
| 288 | entry.val = page->private; |
| 289 | p = swap_info_get(entry); |
| 290 | if (p) { |
| 291 | /* Is the only swap cache user the cache itself? */ |
| 292 | if (p->swap_map[swp_offset(entry)] == 1) { |
| 293 | /* Recheck the page count with the swapcache lock held.. */ |
| 294 | write_lock_irq(&swapper_space.tree_lock); |
| 295 | if (page_count(page) == 2) |
| 296 | retval = 1; |
| 297 | write_unlock_irq(&swapper_space.tree_lock); |
| 298 | } |
| 299 | swap_info_put(p); |
| 300 | } |
| 301 | return retval; |
| 302 | } |
| 303 | |
| 304 | /* |
| 305 | * We can use this swap cache entry directly |
| 306 | * if there are no other references to it. |
| 307 | * |
| 308 | * Here "exclusive_swap_page()" does the real |
| 309 | * work, but we opportunistically check whether |
| 310 | * we need to get all the locks first.. |
| 311 | */ |
| 312 | int can_share_swap_page(struct page *page) |
| 313 | { |
| 314 | int retval = 0; |
| 315 | |
| 316 | if (!PageLocked(page)) |
| 317 | BUG(); |
| 318 | switch (page_count(page)) { |
| 319 | case 3: |
| 320 | if (!PagePrivate(page)) |
| 321 | break; |
| 322 | /* Fallthrough */ |
| 323 | case 2: |
| 324 | if (!PageSwapCache(page)) |
| 325 | break; |
| 326 | retval = exclusive_swap_page(page); |
| 327 | break; |
| 328 | case 1: |
| 329 | if (PageReserved(page)) |
| 330 | break; |
| 331 | retval = 1; |
| 332 | } |
| 333 | return retval; |
| 334 | } |
| 335 | |
| 336 | /* |
| 337 | * Work out if there are any other processes sharing this |
| 338 | * swap cache page. Free it if you can. Return success. |
| 339 | */ |
| 340 | int remove_exclusive_swap_page(struct page *page) |
| 341 | { |
| 342 | int retval; |
| 343 | struct swap_info_struct * p; |
| 344 | swp_entry_t entry; |
| 345 | |
| 346 | BUG_ON(PagePrivate(page)); |
| 347 | BUG_ON(!PageLocked(page)); |
| 348 | |
| 349 | if (!PageSwapCache(page)) |
| 350 | return 0; |
| 351 | if (PageWriteback(page)) |
| 352 | return 0; |
| 353 | if (page_count(page) != 2) /* 2: us + cache */ |
| 354 | return 0; |
| 355 | |
| 356 | entry.val = page->private; |
| 357 | p = swap_info_get(entry); |
| 358 | if (!p) |
| 359 | return 0; |
| 360 | |
| 361 | /* Is the only swap cache user the cache itself? */ |
| 362 | retval = 0; |
| 363 | if (p->swap_map[swp_offset(entry)] == 1) { |
| 364 | /* Recheck the page count with the swapcache lock held.. */ |
| 365 | write_lock_irq(&swapper_space.tree_lock); |
| 366 | if ((page_count(page) == 2) && !PageWriteback(page)) { |
| 367 | __delete_from_swap_cache(page); |
| 368 | SetPageDirty(page); |
| 369 | retval = 1; |
| 370 | } |
| 371 | write_unlock_irq(&swapper_space.tree_lock); |
| 372 | } |
| 373 | swap_info_put(p); |
| 374 | |
| 375 | if (retval) { |
| 376 | swap_free(entry); |
| 377 | page_cache_release(page); |
| 378 | } |
| 379 | |
| 380 | return retval; |
| 381 | } |
| 382 | |
| 383 | /* |
| 384 | * Free the swap entry like above, but also try to |
| 385 | * free the page cache entry if it is the last user. |
| 386 | */ |
| 387 | void free_swap_and_cache(swp_entry_t entry) |
| 388 | { |
| 389 | struct swap_info_struct * p; |
| 390 | struct page *page = NULL; |
| 391 | |
| 392 | p = swap_info_get(entry); |
| 393 | if (p) { |
| 394 | if (swap_entry_free(p, swp_offset(entry)) == 1) |
| 395 | page = find_trylock_page(&swapper_space, entry.val); |
| 396 | swap_info_put(p); |
| 397 | } |
| 398 | if (page) { |
| 399 | int one_user; |
| 400 | |
| 401 | BUG_ON(PagePrivate(page)); |
| 402 | page_cache_get(page); |
| 403 | one_user = (page_count(page) == 2); |
| 404 | /* Only cache user (+us), or swap space full? Free it! */ |
| 405 | if (!PageWriteback(page) && (one_user || vm_swap_full())) { |
| 406 | delete_from_swap_cache(page); |
| 407 | SetPageDirty(page); |
| 408 | } |
| 409 | unlock_page(page); |
| 410 | page_cache_release(page); |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | /* |
| 415 | * Always set the resulting pte to be nowrite (the same as COW pages |
| 416 | * after one process has exited). We don't know just how many PTEs will |
| 417 | * share this swap entry, so be cautious and let do_wp_page work out |
| 418 | * what to do if a write is requested later. |
| 419 | * |
| 420 | * vma->vm_mm->page_table_lock is held. |
| 421 | */ |
| 422 | static void unuse_pte(struct vm_area_struct *vma, pte_t *pte, |
| 423 | unsigned long addr, swp_entry_t entry, struct page *page) |
| 424 | { |
| 425 | inc_mm_counter(vma->vm_mm, rss); |
| 426 | get_page(page); |
| 427 | set_pte_at(vma->vm_mm, addr, pte, |
| 428 | pte_mkold(mk_pte(page, vma->vm_page_prot))); |
| 429 | page_add_anon_rmap(page, vma, addr); |
| 430 | swap_free(entry); |
| 431 | /* |
| 432 | * Move the page to the active list so it is not |
| 433 | * immediately swapped out again after swapon. |
| 434 | */ |
| 435 | activate_page(page); |
| 436 | } |
| 437 | |
| 438 | static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, |
| 439 | unsigned long addr, unsigned long end, |
| 440 | swp_entry_t entry, struct page *page) |
| 441 | { |
| 442 | pte_t *pte; |
| 443 | pte_t swp_pte = swp_entry_to_pte(entry); |
| 444 | |
| 445 | pte = pte_offset_map(pmd, addr); |
| 446 | do { |
| 447 | /* |
| 448 | * swapoff spends a _lot_ of time in this loop! |
| 449 | * Test inline before going to call unuse_pte. |
| 450 | */ |
| 451 | if (unlikely(pte_same(*pte, swp_pte))) { |
| 452 | unuse_pte(vma, pte, addr, entry, page); |
| 453 | pte_unmap(pte); |
| 454 | return 1; |
| 455 | } |
| 456 | } while (pte++, addr += PAGE_SIZE, addr != end); |
| 457 | pte_unmap(pte - 1); |
| 458 | return 0; |
| 459 | } |
| 460 | |
| 461 | static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, |
| 462 | unsigned long addr, unsigned long end, |
| 463 | swp_entry_t entry, struct page *page) |
| 464 | { |
| 465 | pmd_t *pmd; |
| 466 | unsigned long next; |
| 467 | |
| 468 | pmd = pmd_offset(pud, addr); |
| 469 | do { |
| 470 | next = pmd_addr_end(addr, end); |
| 471 | if (pmd_none_or_clear_bad(pmd)) |
| 472 | continue; |
| 473 | if (unuse_pte_range(vma, pmd, addr, next, entry, page)) |
| 474 | return 1; |
| 475 | } while (pmd++, addr = next, addr != end); |
| 476 | return 0; |
| 477 | } |
| 478 | |
| 479 | static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, |
| 480 | unsigned long addr, unsigned long end, |
| 481 | swp_entry_t entry, struct page *page) |
| 482 | { |
| 483 | pud_t *pud; |
| 484 | unsigned long next; |
| 485 | |
| 486 | pud = pud_offset(pgd, addr); |
| 487 | do { |
| 488 | next = pud_addr_end(addr, end); |
| 489 | if (pud_none_or_clear_bad(pud)) |
| 490 | continue; |
| 491 | if (unuse_pmd_range(vma, pud, addr, next, entry, page)) |
| 492 | return 1; |
| 493 | } while (pud++, addr = next, addr != end); |
| 494 | return 0; |
| 495 | } |
| 496 | |
| 497 | static int unuse_vma(struct vm_area_struct *vma, |
| 498 | swp_entry_t entry, struct page *page) |
| 499 | { |
| 500 | pgd_t *pgd; |
| 501 | unsigned long addr, end, next; |
| 502 | |
| 503 | if (page->mapping) { |
| 504 | addr = page_address_in_vma(page, vma); |
| 505 | if (addr == -EFAULT) |
| 506 | return 0; |
| 507 | else |
| 508 | end = addr + PAGE_SIZE; |
| 509 | } else { |
| 510 | addr = vma->vm_start; |
| 511 | end = vma->vm_end; |
| 512 | } |
| 513 | |
| 514 | pgd = pgd_offset(vma->vm_mm, addr); |
| 515 | do { |
| 516 | next = pgd_addr_end(addr, end); |
| 517 | if (pgd_none_or_clear_bad(pgd)) |
| 518 | continue; |
| 519 | if (unuse_pud_range(vma, pgd, addr, next, entry, page)) |
| 520 | return 1; |
| 521 | } while (pgd++, addr = next, addr != end); |
| 522 | return 0; |
| 523 | } |
| 524 | |
| 525 | static int unuse_mm(struct mm_struct *mm, |
| 526 | swp_entry_t entry, struct page *page) |
| 527 | { |
| 528 | struct vm_area_struct *vma; |
| 529 | |
| 530 | if (!down_read_trylock(&mm->mmap_sem)) { |
| 531 | /* |
| 532 | * Our reference to the page stops try_to_unmap_one from |
| 533 | * unmapping its ptes, so swapoff can make progress. |
| 534 | */ |
| 535 | unlock_page(page); |
| 536 | down_read(&mm->mmap_sem); |
| 537 | lock_page(page); |
| 538 | } |
| 539 | spin_lock(&mm->page_table_lock); |
| 540 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
| 541 | if (vma->anon_vma && unuse_vma(vma, entry, page)) |
| 542 | break; |
| 543 | } |
| 544 | spin_unlock(&mm->page_table_lock); |
| 545 | up_read(&mm->mmap_sem); |
| 546 | /* |
| 547 | * Currently unuse_mm cannot fail, but leave error handling |
| 548 | * at call sites for now, since we change it from time to time. |
| 549 | */ |
| 550 | return 0; |
| 551 | } |
| 552 | |
| 553 | /* |
| 554 | * Scan swap_map from current position to next entry still in use. |
| 555 | * Recycle to start on reaching the end, returning 0 when empty. |
| 556 | */ |
| 557 | static int find_next_to_unuse(struct swap_info_struct *si, int prev) |
| 558 | { |
| 559 | int max = si->max; |
| 560 | int i = prev; |
| 561 | int count; |
| 562 | |
| 563 | /* |
| 564 | * No need for swap_device_lock(si) here: we're just looking |
| 565 | * for whether an entry is in use, not modifying it; false |
| 566 | * hits are okay, and sys_swapoff() has already prevented new |
| 567 | * allocations from this area (while holding swap_list_lock()). |
| 568 | */ |
| 569 | for (;;) { |
| 570 | if (++i >= max) { |
| 571 | if (!prev) { |
| 572 | i = 0; |
| 573 | break; |
| 574 | } |
| 575 | /* |
| 576 | * No entries in use at top of swap_map, |
| 577 | * loop back to start and recheck there. |
| 578 | */ |
| 579 | max = prev + 1; |
| 580 | prev = 0; |
| 581 | i = 1; |
| 582 | } |
| 583 | count = si->swap_map[i]; |
| 584 | if (count && count != SWAP_MAP_BAD) |
| 585 | break; |
| 586 | } |
| 587 | return i; |
| 588 | } |
| 589 | |
| 590 | /* |
| 591 | * We completely avoid races by reading each swap page in advance, |
| 592 | * and then search for the process using it. All the necessary |
| 593 | * page table adjustments can then be made atomically. |
| 594 | */ |
| 595 | static int try_to_unuse(unsigned int type) |
| 596 | { |
| 597 | struct swap_info_struct * si = &swap_info[type]; |
| 598 | struct mm_struct *start_mm; |
| 599 | unsigned short *swap_map; |
| 600 | unsigned short swcount; |
| 601 | struct page *page; |
| 602 | swp_entry_t entry; |
| 603 | int i = 0; |
| 604 | int retval = 0; |
| 605 | int reset_overflow = 0; |
| 606 | int shmem; |
| 607 | |
| 608 | /* |
| 609 | * When searching mms for an entry, a good strategy is to |
| 610 | * start at the first mm we freed the previous entry from |
| 611 | * (though actually we don't notice whether we or coincidence |
| 612 | * freed the entry). Initialize this start_mm with a hold. |
| 613 | * |
| 614 | * A simpler strategy would be to start at the last mm we |
| 615 | * freed the previous entry from; but that would take less |
| 616 | * advantage of mmlist ordering, which clusters forked mms |
| 617 | * together, child after parent. If we race with dup_mmap(), we |
| 618 | * prefer to resolve parent before child, lest we miss entries |
| 619 | * duplicated after we scanned child: using last mm would invert |
| 620 | * that. Though it's only a serious concern when an overflowed |
| 621 | * swap count is reset from SWAP_MAP_MAX, preventing a rescan. |
| 622 | */ |
| 623 | start_mm = &init_mm; |
| 624 | atomic_inc(&init_mm.mm_users); |
| 625 | |
| 626 | /* |
| 627 | * Keep on scanning until all entries have gone. Usually, |
| 628 | * one pass through swap_map is enough, but not necessarily: |
| 629 | * there are races when an instance of an entry might be missed. |
| 630 | */ |
| 631 | while ((i = find_next_to_unuse(si, i)) != 0) { |
| 632 | if (signal_pending(current)) { |
| 633 | retval = -EINTR; |
| 634 | break; |
| 635 | } |
| 636 | |
| 637 | /* |
| 638 | * Get a page for the entry, using the existing swap |
| 639 | * cache page if there is one. Otherwise, get a clean |
| 640 | * page and read the swap into it. |
| 641 | */ |
| 642 | swap_map = &si->swap_map[i]; |
| 643 | entry = swp_entry(type, i); |
| 644 | page = read_swap_cache_async(entry, NULL, 0); |
| 645 | if (!page) { |
| 646 | /* |
| 647 | * Either swap_duplicate() failed because entry |
| 648 | * has been freed independently, and will not be |
| 649 | * reused since sys_swapoff() already disabled |
| 650 | * allocation from here, or alloc_page() failed. |
| 651 | */ |
| 652 | if (!*swap_map) |
| 653 | continue; |
| 654 | retval = -ENOMEM; |
| 655 | break; |
| 656 | } |
| 657 | |
| 658 | /* |
| 659 | * Don't hold on to start_mm if it looks like exiting. |
| 660 | */ |
| 661 | if (atomic_read(&start_mm->mm_users) == 1) { |
| 662 | mmput(start_mm); |
| 663 | start_mm = &init_mm; |
| 664 | atomic_inc(&init_mm.mm_users); |
| 665 | } |
| 666 | |
| 667 | /* |
| 668 | * Wait for and lock page. When do_swap_page races with |
| 669 | * try_to_unuse, do_swap_page can handle the fault much |
| 670 | * faster than try_to_unuse can locate the entry. This |
| 671 | * apparently redundant "wait_on_page_locked" lets try_to_unuse |
| 672 | * defer to do_swap_page in such a case - in some tests, |
| 673 | * do_swap_page and try_to_unuse repeatedly compete. |
| 674 | */ |
| 675 | wait_on_page_locked(page); |
| 676 | wait_on_page_writeback(page); |
| 677 | lock_page(page); |
| 678 | wait_on_page_writeback(page); |
| 679 | |
| 680 | /* |
| 681 | * Remove all references to entry. |
| 682 | * Whenever we reach init_mm, there's no address space |
| 683 | * to search, but use it as a reminder to search shmem. |
| 684 | */ |
| 685 | shmem = 0; |
| 686 | swcount = *swap_map; |
| 687 | if (swcount > 1) { |
| 688 | if (start_mm == &init_mm) |
| 689 | shmem = shmem_unuse(entry, page); |
| 690 | else |
| 691 | retval = unuse_mm(start_mm, entry, page); |
| 692 | } |
| 693 | if (*swap_map > 1) { |
| 694 | int set_start_mm = (*swap_map >= swcount); |
| 695 | struct list_head *p = &start_mm->mmlist; |
| 696 | struct mm_struct *new_start_mm = start_mm; |
| 697 | struct mm_struct *prev_mm = start_mm; |
| 698 | struct mm_struct *mm; |
| 699 | |
| 700 | atomic_inc(&new_start_mm->mm_users); |
| 701 | atomic_inc(&prev_mm->mm_users); |
| 702 | spin_lock(&mmlist_lock); |
| 703 | while (*swap_map > 1 && !retval && |
| 704 | (p = p->next) != &start_mm->mmlist) { |
| 705 | mm = list_entry(p, struct mm_struct, mmlist); |
| 706 | if (atomic_inc_return(&mm->mm_users) == 1) { |
| 707 | atomic_dec(&mm->mm_users); |
| 708 | continue; |
| 709 | } |
| 710 | spin_unlock(&mmlist_lock); |
| 711 | mmput(prev_mm); |
| 712 | prev_mm = mm; |
| 713 | |
| 714 | cond_resched(); |
| 715 | |
| 716 | swcount = *swap_map; |
| 717 | if (swcount <= 1) |
| 718 | ; |
| 719 | else if (mm == &init_mm) { |
| 720 | set_start_mm = 1; |
| 721 | shmem = shmem_unuse(entry, page); |
| 722 | } else |
| 723 | retval = unuse_mm(mm, entry, page); |
| 724 | if (set_start_mm && *swap_map < swcount) { |
| 725 | mmput(new_start_mm); |
| 726 | atomic_inc(&mm->mm_users); |
| 727 | new_start_mm = mm; |
| 728 | set_start_mm = 0; |
| 729 | } |
| 730 | spin_lock(&mmlist_lock); |
| 731 | } |
| 732 | spin_unlock(&mmlist_lock); |
| 733 | mmput(prev_mm); |
| 734 | mmput(start_mm); |
| 735 | start_mm = new_start_mm; |
| 736 | } |
| 737 | if (retval) { |
| 738 | unlock_page(page); |
| 739 | page_cache_release(page); |
| 740 | break; |
| 741 | } |
| 742 | |
| 743 | /* |
| 744 | * How could swap count reach 0x7fff when the maximum |
| 745 | * pid is 0x7fff, and there's no way to repeat a swap |
| 746 | * page within an mm (except in shmem, where it's the |
| 747 | * shared object which takes the reference count)? |
| 748 | * We believe SWAP_MAP_MAX cannot occur in Linux 2.4. |
| 749 | * |
| 750 | * If that's wrong, then we should worry more about |
| 751 | * exit_mmap() and do_munmap() cases described above: |
| 752 | * we might be resetting SWAP_MAP_MAX too early here. |
| 753 | * We know "Undead"s can happen, they're okay, so don't |
| 754 | * report them; but do report if we reset SWAP_MAP_MAX. |
| 755 | */ |
| 756 | if (*swap_map == SWAP_MAP_MAX) { |
| 757 | swap_device_lock(si); |
| 758 | *swap_map = 1; |
| 759 | swap_device_unlock(si); |
| 760 | reset_overflow = 1; |
| 761 | } |
| 762 | |
| 763 | /* |
| 764 | * If a reference remains (rare), we would like to leave |
| 765 | * the page in the swap cache; but try_to_unmap could |
| 766 | * then re-duplicate the entry once we drop page lock, |
| 767 | * so we might loop indefinitely; also, that page could |
| 768 | * not be swapped out to other storage meanwhile. So: |
| 769 | * delete from cache even if there's another reference, |
| 770 | * after ensuring that the data has been saved to disk - |
| 771 | * since if the reference remains (rarer), it will be |
| 772 | * read from disk into another page. Splitting into two |
| 773 | * pages would be incorrect if swap supported "shared |
| 774 | * private" pages, but they are handled by tmpfs files. |
| 775 | * |
| 776 | * Note shmem_unuse already deleted a swappage from |
| 777 | * the swap cache, unless the move to filepage failed: |
| 778 | * in which case it left swappage in cache, lowered its |
| 779 | * swap count to pass quickly through the loops above, |
| 780 | * and now we must reincrement count to try again later. |
| 781 | */ |
| 782 | if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) { |
| 783 | struct writeback_control wbc = { |
| 784 | .sync_mode = WB_SYNC_NONE, |
| 785 | }; |
| 786 | |
| 787 | swap_writepage(page, &wbc); |
| 788 | lock_page(page); |
| 789 | wait_on_page_writeback(page); |
| 790 | } |
| 791 | if (PageSwapCache(page)) { |
| 792 | if (shmem) |
| 793 | swap_duplicate(entry); |
| 794 | else |
| 795 | delete_from_swap_cache(page); |
| 796 | } |
| 797 | |
| 798 | /* |
| 799 | * So we could skip searching mms once swap count went |
| 800 | * to 1, we did not mark any present ptes as dirty: must |
| 801 | * mark page dirty so shrink_list will preserve it. |
| 802 | */ |
| 803 | SetPageDirty(page); |
| 804 | unlock_page(page); |
| 805 | page_cache_release(page); |
| 806 | |
| 807 | /* |
| 808 | * Make sure that we aren't completely killing |
| 809 | * interactive performance. |
| 810 | */ |
| 811 | cond_resched(); |
| 812 | } |
| 813 | |
| 814 | mmput(start_mm); |
| 815 | if (reset_overflow) { |
| 816 | printk(KERN_WARNING "swapoff: cleared swap entry overflow\n"); |
| 817 | swap_overflow = 0; |
| 818 | } |
| 819 | return retval; |
| 820 | } |
| 821 | |
| 822 | /* |
| 823 | * After a successful try_to_unuse, if no swap is now in use, we know we |
| 824 | * can empty the mmlist. swap_list_lock must be held on entry and exit. |
| 825 | * Note that mmlist_lock nests inside swap_list_lock, and an mm must be |
| 826 | * added to the mmlist just after page_duplicate - before would be racy. |
| 827 | */ |
| 828 | static void drain_mmlist(void) |
| 829 | { |
| 830 | struct list_head *p, *next; |
| 831 | unsigned int i; |
| 832 | |
| 833 | for (i = 0; i < nr_swapfiles; i++) |
| 834 | if (swap_info[i].inuse_pages) |
| 835 | return; |
| 836 | spin_lock(&mmlist_lock); |
| 837 | list_for_each_safe(p, next, &init_mm.mmlist) |
| 838 | list_del_init(p); |
| 839 | spin_unlock(&mmlist_lock); |
| 840 | } |
| 841 | |
| 842 | /* |
| 843 | * Use this swapdev's extent info to locate the (PAGE_SIZE) block which |
| 844 | * corresponds to page offset `offset'. |
| 845 | */ |
| 846 | sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset) |
| 847 | { |
| 848 | struct swap_extent *se = sis->curr_swap_extent; |
| 849 | struct swap_extent *start_se = se; |
| 850 | |
| 851 | for ( ; ; ) { |
| 852 | struct list_head *lh; |
| 853 | |
| 854 | if (se->start_page <= offset && |
| 855 | offset < (se->start_page + se->nr_pages)) { |
| 856 | return se->start_block + (offset - se->start_page); |
| 857 | } |
| 858 | lh = se->list.prev; |
| 859 | if (lh == &sis->extent_list) |
| 860 | lh = lh->prev; |
| 861 | se = list_entry(lh, struct swap_extent, list); |
| 862 | sis->curr_swap_extent = se; |
| 863 | BUG_ON(se == start_se); /* It *must* be present */ |
| 864 | } |
| 865 | } |
| 866 | |
| 867 | /* |
| 868 | * Free all of a swapdev's extent information |
| 869 | */ |
| 870 | static void destroy_swap_extents(struct swap_info_struct *sis) |
| 871 | { |
| 872 | while (!list_empty(&sis->extent_list)) { |
| 873 | struct swap_extent *se; |
| 874 | |
| 875 | se = list_entry(sis->extent_list.next, |
| 876 | struct swap_extent, list); |
| 877 | list_del(&se->list); |
| 878 | kfree(se); |
| 879 | } |
| 880 | sis->nr_extents = 0; |
| 881 | } |
| 882 | |
| 883 | /* |
| 884 | * Add a block range (and the corresponding page range) into this swapdev's |
| 885 | * extent list. The extent list is kept sorted in block order. |
| 886 | * |
| 887 | * This function rather assumes that it is called in ascending sector_t order. |
| 888 | * It doesn't look for extent coalescing opportunities. |
| 889 | */ |
| 890 | static int |
| 891 | add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, |
| 892 | unsigned long nr_pages, sector_t start_block) |
| 893 | { |
| 894 | struct swap_extent *se; |
| 895 | struct swap_extent *new_se; |
| 896 | struct list_head *lh; |
| 897 | |
| 898 | lh = sis->extent_list.next; /* The highest-addressed block */ |
| 899 | while (lh != &sis->extent_list) { |
| 900 | se = list_entry(lh, struct swap_extent, list); |
| 901 | if (se->start_block + se->nr_pages == start_block && |
| 902 | se->start_page + se->nr_pages == start_page) { |
| 903 | /* Merge it */ |
| 904 | se->nr_pages += nr_pages; |
| 905 | return 0; |
| 906 | } |
| 907 | lh = lh->next; |
| 908 | } |
| 909 | |
| 910 | /* |
| 911 | * No merge. Insert a new extent, preserving ordering. |
| 912 | */ |
| 913 | new_se = kmalloc(sizeof(*se), GFP_KERNEL); |
| 914 | if (new_se == NULL) |
| 915 | return -ENOMEM; |
| 916 | new_se->start_page = start_page; |
| 917 | new_se->nr_pages = nr_pages; |
| 918 | new_se->start_block = start_block; |
| 919 | |
| 920 | lh = sis->extent_list.prev; /* The lowest block */ |
| 921 | while (lh != &sis->extent_list) { |
| 922 | se = list_entry(lh, struct swap_extent, list); |
| 923 | if (se->start_block > start_block) |
| 924 | break; |
| 925 | lh = lh->prev; |
| 926 | } |
| 927 | list_add_tail(&new_se->list, lh); |
| 928 | sis->nr_extents++; |
| 929 | return 0; |
| 930 | } |
| 931 | |
| 932 | /* |
| 933 | * A `swap extent' is a simple thing which maps a contiguous range of pages |
| 934 | * onto a contiguous range of disk blocks. An ordered list of swap extents |
| 935 | * is built at swapon time and is then used at swap_writepage/swap_readpage |
| 936 | * time for locating where on disk a page belongs. |
| 937 | * |
| 938 | * If the swapfile is an S_ISBLK block device, a single extent is installed. |
| 939 | * This is done so that the main operating code can treat S_ISBLK and S_ISREG |
| 940 | * swap files identically. |
| 941 | * |
| 942 | * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap |
| 943 | * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK |
| 944 | * swapfiles are handled *identically* after swapon time. |
| 945 | * |
| 946 | * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks |
| 947 | * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If |
| 948 | * some stray blocks are found which do not fall within the PAGE_SIZE alignment |
| 949 | * requirements, they are simply tossed out - we will never use those blocks |
| 950 | * for swapping. |
| 951 | * |
| 952 | * For S_ISREG swapfiles we hold i_sem across the life of the swapon. This |
| 953 | * prevents root from shooting her foot off by ftruncating an in-use swapfile, |
| 954 | * which will scribble on the fs. |
| 955 | * |
| 956 | * The amount of disk space which a single swap extent represents varies. |
| 957 | * Typically it is in the 1-4 megabyte range. So we can have hundreds of |
| 958 | * extents in the list. To avoid much list walking, we cache the previous |
| 959 | * search location in `curr_swap_extent', and start new searches from there. |
| 960 | * This is extremely effective. The average number of iterations in |
| 961 | * map_swap_page() has been measured at about 0.3 per page. - akpm. |
| 962 | */ |
| 963 | static int setup_swap_extents(struct swap_info_struct *sis) |
| 964 | { |
| 965 | struct inode *inode; |
| 966 | unsigned blocks_per_page; |
| 967 | unsigned long page_no; |
| 968 | unsigned blkbits; |
| 969 | sector_t probe_block; |
| 970 | sector_t last_block; |
| 971 | int ret; |
| 972 | |
| 973 | inode = sis->swap_file->f_mapping->host; |
| 974 | if (S_ISBLK(inode->i_mode)) { |
| 975 | ret = add_swap_extent(sis, 0, sis->max, 0); |
| 976 | goto done; |
| 977 | } |
| 978 | |
| 979 | blkbits = inode->i_blkbits; |
| 980 | blocks_per_page = PAGE_SIZE >> blkbits; |
| 981 | |
| 982 | /* |
| 983 | * Map all the blocks into the extent list. This code doesn't try |
| 984 | * to be very smart. |
| 985 | */ |
| 986 | probe_block = 0; |
| 987 | page_no = 0; |
| 988 | last_block = i_size_read(inode) >> blkbits; |
| 989 | while ((probe_block + blocks_per_page) <= last_block && |
| 990 | page_no < sis->max) { |
| 991 | unsigned block_in_page; |
| 992 | sector_t first_block; |
| 993 | |
| 994 | first_block = bmap(inode, probe_block); |
| 995 | if (first_block == 0) |
| 996 | goto bad_bmap; |
| 997 | |
| 998 | /* |
| 999 | * It must be PAGE_SIZE aligned on-disk |
| 1000 | */ |
| 1001 | if (first_block & (blocks_per_page - 1)) { |
| 1002 | probe_block++; |
| 1003 | goto reprobe; |
| 1004 | } |
| 1005 | |
| 1006 | for (block_in_page = 1; block_in_page < blocks_per_page; |
| 1007 | block_in_page++) { |
| 1008 | sector_t block; |
| 1009 | |
| 1010 | block = bmap(inode, probe_block + block_in_page); |
| 1011 | if (block == 0) |
| 1012 | goto bad_bmap; |
| 1013 | if (block != first_block + block_in_page) { |
| 1014 | /* Discontiguity */ |
| 1015 | probe_block++; |
| 1016 | goto reprobe; |
| 1017 | } |
| 1018 | } |
| 1019 | |
| 1020 | /* |
| 1021 | * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks |
| 1022 | */ |
| 1023 | ret = add_swap_extent(sis, page_no, 1, |
| 1024 | first_block >> (PAGE_SHIFT - blkbits)); |
| 1025 | if (ret) |
| 1026 | goto out; |
| 1027 | page_no++; |
| 1028 | probe_block += blocks_per_page; |
| 1029 | reprobe: |
| 1030 | continue; |
| 1031 | } |
| 1032 | ret = 0; |
| 1033 | if (page_no == 0) |
| 1034 | ret = -EINVAL; |
| 1035 | sis->max = page_no; |
| 1036 | sis->highest_bit = page_no - 1; |
| 1037 | done: |
| 1038 | sis->curr_swap_extent = list_entry(sis->extent_list.prev, |
| 1039 | struct swap_extent, list); |
| 1040 | goto out; |
| 1041 | bad_bmap: |
| 1042 | printk(KERN_ERR "swapon: swapfile has holes\n"); |
| 1043 | ret = -EINVAL; |
| 1044 | out: |
| 1045 | return ret; |
| 1046 | } |
| 1047 | |
| 1048 | #if 0 /* We don't need this yet */ |
| 1049 | #include <linux/backing-dev.h> |
| 1050 | int page_queue_congested(struct page *page) |
| 1051 | { |
| 1052 | struct backing_dev_info *bdi; |
| 1053 | |
| 1054 | BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */ |
| 1055 | |
| 1056 | if (PageSwapCache(page)) { |
| 1057 | swp_entry_t entry = { .val = page->private }; |
| 1058 | struct swap_info_struct *sis; |
| 1059 | |
| 1060 | sis = get_swap_info_struct(swp_type(entry)); |
| 1061 | bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info; |
| 1062 | } else |
| 1063 | bdi = page->mapping->backing_dev_info; |
| 1064 | return bdi_write_congested(bdi); |
| 1065 | } |
| 1066 | #endif |
| 1067 | |
| 1068 | asmlinkage long sys_swapoff(const char __user * specialfile) |
| 1069 | { |
| 1070 | struct swap_info_struct * p = NULL; |
| 1071 | unsigned short *swap_map; |
| 1072 | struct file *swap_file, *victim; |
| 1073 | struct address_space *mapping; |
| 1074 | struct inode *inode; |
| 1075 | char * pathname; |
| 1076 | int i, type, prev; |
| 1077 | int err; |
| 1078 | |
| 1079 | if (!capable(CAP_SYS_ADMIN)) |
| 1080 | return -EPERM; |
| 1081 | |
| 1082 | pathname = getname(specialfile); |
| 1083 | err = PTR_ERR(pathname); |
| 1084 | if (IS_ERR(pathname)) |
| 1085 | goto out; |
| 1086 | |
| 1087 | victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0); |
| 1088 | putname(pathname); |
| 1089 | err = PTR_ERR(victim); |
| 1090 | if (IS_ERR(victim)) |
| 1091 | goto out; |
| 1092 | |
| 1093 | mapping = victim->f_mapping; |
| 1094 | prev = -1; |
| 1095 | swap_list_lock(); |
| 1096 | for (type = swap_list.head; type >= 0; type = swap_info[type].next) { |
| 1097 | p = swap_info + type; |
| 1098 | if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) { |
| 1099 | if (p->swap_file->f_mapping == mapping) |
| 1100 | break; |
| 1101 | } |
| 1102 | prev = type; |
| 1103 | } |
| 1104 | if (type < 0) { |
| 1105 | err = -EINVAL; |
| 1106 | swap_list_unlock(); |
| 1107 | goto out_dput; |
| 1108 | } |
| 1109 | if (!security_vm_enough_memory(p->pages)) |
| 1110 | vm_unacct_memory(p->pages); |
| 1111 | else { |
| 1112 | err = -ENOMEM; |
| 1113 | swap_list_unlock(); |
| 1114 | goto out_dput; |
| 1115 | } |
| 1116 | if (prev < 0) { |
| 1117 | swap_list.head = p->next; |
| 1118 | } else { |
| 1119 | swap_info[prev].next = p->next; |
| 1120 | } |
| 1121 | if (type == swap_list.next) { |
| 1122 | /* just pick something that's safe... */ |
| 1123 | swap_list.next = swap_list.head; |
| 1124 | } |
| 1125 | nr_swap_pages -= p->pages; |
| 1126 | total_swap_pages -= p->pages; |
| 1127 | p->flags &= ~SWP_WRITEOK; |
| 1128 | swap_list_unlock(); |
| 1129 | current->flags |= PF_SWAPOFF; |
| 1130 | err = try_to_unuse(type); |
| 1131 | current->flags &= ~PF_SWAPOFF; |
| 1132 | |
| 1133 | /* wait for any unplug function to finish */ |
| 1134 | down_write(&swap_unplug_sem); |
| 1135 | up_write(&swap_unplug_sem); |
| 1136 | |
| 1137 | if (err) { |
| 1138 | /* re-insert swap space back into swap_list */ |
| 1139 | swap_list_lock(); |
| 1140 | for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next) |
| 1141 | if (p->prio >= swap_info[i].prio) |
| 1142 | break; |
| 1143 | p->next = i; |
| 1144 | if (prev < 0) |
| 1145 | swap_list.head = swap_list.next = p - swap_info; |
| 1146 | else |
| 1147 | swap_info[prev].next = p - swap_info; |
| 1148 | nr_swap_pages += p->pages; |
| 1149 | total_swap_pages += p->pages; |
| 1150 | p->flags |= SWP_WRITEOK; |
| 1151 | swap_list_unlock(); |
| 1152 | goto out_dput; |
| 1153 | } |
| 1154 | down(&swapon_sem); |
| 1155 | swap_list_lock(); |
| 1156 | drain_mmlist(); |
| 1157 | swap_device_lock(p); |
| 1158 | swap_file = p->swap_file; |
| 1159 | p->swap_file = NULL; |
| 1160 | p->max = 0; |
| 1161 | swap_map = p->swap_map; |
| 1162 | p->swap_map = NULL; |
| 1163 | p->flags = 0; |
| 1164 | destroy_swap_extents(p); |
| 1165 | swap_device_unlock(p); |
| 1166 | swap_list_unlock(); |
| 1167 | up(&swapon_sem); |
| 1168 | vfree(swap_map); |
| 1169 | inode = mapping->host; |
| 1170 | if (S_ISBLK(inode->i_mode)) { |
| 1171 | struct block_device *bdev = I_BDEV(inode); |
| 1172 | set_blocksize(bdev, p->old_block_size); |
| 1173 | bd_release(bdev); |
| 1174 | } else { |
| 1175 | down(&inode->i_sem); |
| 1176 | inode->i_flags &= ~S_SWAPFILE; |
| 1177 | up(&inode->i_sem); |
| 1178 | } |
| 1179 | filp_close(swap_file, NULL); |
| 1180 | err = 0; |
| 1181 | |
| 1182 | out_dput: |
| 1183 | filp_close(victim, NULL); |
| 1184 | out: |
| 1185 | return err; |
| 1186 | } |
| 1187 | |
| 1188 | #ifdef CONFIG_PROC_FS |
| 1189 | /* iterator */ |
| 1190 | static void *swap_start(struct seq_file *swap, loff_t *pos) |
| 1191 | { |
| 1192 | struct swap_info_struct *ptr = swap_info; |
| 1193 | int i; |
| 1194 | loff_t l = *pos; |
| 1195 | |
| 1196 | down(&swapon_sem); |
| 1197 | |
| 1198 | for (i = 0; i < nr_swapfiles; i++, ptr++) { |
| 1199 | if (!(ptr->flags & SWP_USED) || !ptr->swap_map) |
| 1200 | continue; |
| 1201 | if (!l--) |
| 1202 | return ptr; |
| 1203 | } |
| 1204 | |
| 1205 | return NULL; |
| 1206 | } |
| 1207 | |
| 1208 | static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) |
| 1209 | { |
| 1210 | struct swap_info_struct *ptr = v; |
| 1211 | struct swap_info_struct *endptr = swap_info + nr_swapfiles; |
| 1212 | |
| 1213 | for (++ptr; ptr < endptr; ptr++) { |
| 1214 | if (!(ptr->flags & SWP_USED) || !ptr->swap_map) |
| 1215 | continue; |
| 1216 | ++*pos; |
| 1217 | return ptr; |
| 1218 | } |
| 1219 | |
| 1220 | return NULL; |
| 1221 | } |
| 1222 | |
| 1223 | static void swap_stop(struct seq_file *swap, void *v) |
| 1224 | { |
| 1225 | up(&swapon_sem); |
| 1226 | } |
| 1227 | |
| 1228 | static int swap_show(struct seq_file *swap, void *v) |
| 1229 | { |
| 1230 | struct swap_info_struct *ptr = v; |
| 1231 | struct file *file; |
| 1232 | int len; |
| 1233 | |
| 1234 | if (v == swap_info) |
| 1235 | seq_puts(swap, "Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); |
| 1236 | |
| 1237 | file = ptr->swap_file; |
| 1238 | len = seq_path(swap, file->f_vfsmnt, file->f_dentry, " \t\n\\"); |
| 1239 | seq_printf(swap, "%*s%s\t%d\t%ld\t%d\n", |
| 1240 | len < 40 ? 40 - len : 1, " ", |
| 1241 | S_ISBLK(file->f_dentry->d_inode->i_mode) ? |
| 1242 | "partition" : "file\t", |
| 1243 | ptr->pages << (PAGE_SHIFT - 10), |
| 1244 | ptr->inuse_pages << (PAGE_SHIFT - 10), |
| 1245 | ptr->prio); |
| 1246 | return 0; |
| 1247 | } |
| 1248 | |
| 1249 | static struct seq_operations swaps_op = { |
| 1250 | .start = swap_start, |
| 1251 | .next = swap_next, |
| 1252 | .stop = swap_stop, |
| 1253 | .show = swap_show |
| 1254 | }; |
| 1255 | |
| 1256 | static int swaps_open(struct inode *inode, struct file *file) |
| 1257 | { |
| 1258 | return seq_open(file, &swaps_op); |
| 1259 | } |
| 1260 | |
| 1261 | static struct file_operations proc_swaps_operations = { |
| 1262 | .open = swaps_open, |
| 1263 | .read = seq_read, |
| 1264 | .llseek = seq_lseek, |
| 1265 | .release = seq_release, |
| 1266 | }; |
| 1267 | |
| 1268 | static int __init procswaps_init(void) |
| 1269 | { |
| 1270 | struct proc_dir_entry *entry; |
| 1271 | |
| 1272 | entry = create_proc_entry("swaps", 0, NULL); |
| 1273 | if (entry) |
| 1274 | entry->proc_fops = &proc_swaps_operations; |
| 1275 | return 0; |
| 1276 | } |
| 1277 | __initcall(procswaps_init); |
| 1278 | #endif /* CONFIG_PROC_FS */ |
| 1279 | |
| 1280 | /* |
| 1281 | * Written 01/25/92 by Simmule Turner, heavily changed by Linus. |
| 1282 | * |
| 1283 | * The swapon system call |
| 1284 | */ |
| 1285 | asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) |
| 1286 | { |
| 1287 | struct swap_info_struct * p; |
| 1288 | char *name = NULL; |
| 1289 | struct block_device *bdev = NULL; |
| 1290 | struct file *swap_file = NULL; |
| 1291 | struct address_space *mapping; |
| 1292 | unsigned int type; |
| 1293 | int i, prev; |
| 1294 | int error; |
| 1295 | static int least_priority; |
| 1296 | union swap_header *swap_header = NULL; |
| 1297 | int swap_header_version; |
| 1298 | int nr_good_pages = 0; |
| 1299 | unsigned long maxpages = 1; |
| 1300 | int swapfilesize; |
| 1301 | unsigned short *swap_map; |
| 1302 | struct page *page = NULL; |
| 1303 | struct inode *inode = NULL; |
| 1304 | int did_down = 0; |
| 1305 | |
| 1306 | if (!capable(CAP_SYS_ADMIN)) |
| 1307 | return -EPERM; |
| 1308 | swap_list_lock(); |
| 1309 | p = swap_info; |
| 1310 | for (type = 0 ; type < nr_swapfiles ; type++,p++) |
| 1311 | if (!(p->flags & SWP_USED)) |
| 1312 | break; |
| 1313 | error = -EPERM; |
| 1314 | /* |
| 1315 | * Test if adding another swap device is possible. There are |
| 1316 | * two limiting factors: 1) the number of bits for the swap |
| 1317 | * type swp_entry_t definition and 2) the number of bits for |
| 1318 | * the swap type in the swap ptes as defined by the different |
| 1319 | * architectures. To honor both limitations a swap entry |
| 1320 | * with swap offset 0 and swap type ~0UL is created, encoded |
| 1321 | * to a swap pte, decoded to a swp_entry_t again and finally |
| 1322 | * the swap type part is extracted. This will mask all bits |
| 1323 | * from the initial ~0UL that can't be encoded in either the |
| 1324 | * swp_entry_t or the architecture definition of a swap pte. |
| 1325 | */ |
| 1326 | if (type > swp_type(pte_to_swp_entry(swp_entry_to_pte(swp_entry(~0UL,0))))) { |
| 1327 | swap_list_unlock(); |
| 1328 | goto out; |
| 1329 | } |
| 1330 | if (type >= nr_swapfiles) |
| 1331 | nr_swapfiles = type+1; |
| 1332 | INIT_LIST_HEAD(&p->extent_list); |
| 1333 | p->flags = SWP_USED; |
| 1334 | p->nr_extents = 0; |
| 1335 | p->swap_file = NULL; |
| 1336 | p->old_block_size = 0; |
| 1337 | p->swap_map = NULL; |
| 1338 | p->lowest_bit = 0; |
| 1339 | p->highest_bit = 0; |
| 1340 | p->cluster_nr = 0; |
| 1341 | p->inuse_pages = 0; |
| 1342 | spin_lock_init(&p->sdev_lock); |
| 1343 | p->next = -1; |
| 1344 | if (swap_flags & SWAP_FLAG_PREFER) { |
| 1345 | p->prio = |
| 1346 | (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT; |
| 1347 | } else { |
| 1348 | p->prio = --least_priority; |
| 1349 | } |
| 1350 | swap_list_unlock(); |
| 1351 | name = getname(specialfile); |
| 1352 | error = PTR_ERR(name); |
| 1353 | if (IS_ERR(name)) { |
| 1354 | name = NULL; |
| 1355 | goto bad_swap_2; |
| 1356 | } |
| 1357 | swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); |
| 1358 | error = PTR_ERR(swap_file); |
| 1359 | if (IS_ERR(swap_file)) { |
| 1360 | swap_file = NULL; |
| 1361 | goto bad_swap_2; |
| 1362 | } |
| 1363 | |
| 1364 | p->swap_file = swap_file; |
| 1365 | mapping = swap_file->f_mapping; |
| 1366 | inode = mapping->host; |
| 1367 | |
| 1368 | error = -EBUSY; |
| 1369 | for (i = 0; i < nr_swapfiles; i++) { |
| 1370 | struct swap_info_struct *q = &swap_info[i]; |
| 1371 | |
| 1372 | if (i == type || !q->swap_file) |
| 1373 | continue; |
| 1374 | if (mapping == q->swap_file->f_mapping) |
| 1375 | goto bad_swap; |
| 1376 | } |
| 1377 | |
| 1378 | error = -EINVAL; |
| 1379 | if (S_ISBLK(inode->i_mode)) { |
| 1380 | bdev = I_BDEV(inode); |
| 1381 | error = bd_claim(bdev, sys_swapon); |
| 1382 | if (error < 0) { |
| 1383 | bdev = NULL; |
| 1384 | goto bad_swap; |
| 1385 | } |
| 1386 | p->old_block_size = block_size(bdev); |
| 1387 | error = set_blocksize(bdev, PAGE_SIZE); |
| 1388 | if (error < 0) |
| 1389 | goto bad_swap; |
| 1390 | p->bdev = bdev; |
| 1391 | } else if (S_ISREG(inode->i_mode)) { |
| 1392 | p->bdev = inode->i_sb->s_bdev; |
| 1393 | down(&inode->i_sem); |
| 1394 | did_down = 1; |
| 1395 | if (IS_SWAPFILE(inode)) { |
| 1396 | error = -EBUSY; |
| 1397 | goto bad_swap; |
| 1398 | } |
| 1399 | } else { |
| 1400 | goto bad_swap; |
| 1401 | } |
| 1402 | |
| 1403 | swapfilesize = i_size_read(inode) >> PAGE_SHIFT; |
| 1404 | |
| 1405 | /* |
| 1406 | * Read the swap header. |
| 1407 | */ |
| 1408 | if (!mapping->a_ops->readpage) { |
| 1409 | error = -EINVAL; |
| 1410 | goto bad_swap; |
| 1411 | } |
| 1412 | page = read_cache_page(mapping, 0, |
| 1413 | (filler_t *)mapping->a_ops->readpage, swap_file); |
| 1414 | if (IS_ERR(page)) { |
| 1415 | error = PTR_ERR(page); |
| 1416 | goto bad_swap; |
| 1417 | } |
| 1418 | wait_on_page_locked(page); |
| 1419 | if (!PageUptodate(page)) |
| 1420 | goto bad_swap; |
| 1421 | kmap(page); |
| 1422 | swap_header = page_address(page); |
| 1423 | |
| 1424 | if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10)) |
| 1425 | swap_header_version = 1; |
| 1426 | else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10)) |
| 1427 | swap_header_version = 2; |
| 1428 | else { |
| 1429 | printk("Unable to find swap-space signature\n"); |
| 1430 | error = -EINVAL; |
| 1431 | goto bad_swap; |
| 1432 | } |
| 1433 | |
| 1434 | switch (swap_header_version) { |
| 1435 | case 1: |
| 1436 | printk(KERN_ERR "version 0 swap is no longer supported. " |
| 1437 | "Use mkswap -v1 %s\n", name); |
| 1438 | error = -EINVAL; |
| 1439 | goto bad_swap; |
| 1440 | case 2: |
| 1441 | /* Check the swap header's sub-version and the size of |
| 1442 | the swap file and bad block lists */ |
| 1443 | if (swap_header->info.version != 1) { |
| 1444 | printk(KERN_WARNING |
| 1445 | "Unable to handle swap header version %d\n", |
| 1446 | swap_header->info.version); |
| 1447 | error = -EINVAL; |
| 1448 | goto bad_swap; |
| 1449 | } |
| 1450 | |
| 1451 | p->lowest_bit = 1; |
| 1452 | /* |
| 1453 | * Find out how many pages are allowed for a single swap |
| 1454 | * device. There are two limiting factors: 1) the number of |
| 1455 | * bits for the swap offset in the swp_entry_t type and |
| 1456 | * 2) the number of bits in the a swap pte as defined by |
| 1457 | * the different architectures. In order to find the |
| 1458 | * largest possible bit mask a swap entry with swap type 0 |
| 1459 | * and swap offset ~0UL is created, encoded to a swap pte, |
| 1460 | * decoded to a swp_entry_t again and finally the swap |
| 1461 | * offset is extracted. This will mask all the bits from |
| 1462 | * the initial ~0UL mask that can't be encoded in either |
| 1463 | * the swp_entry_t or the architecture definition of a |
| 1464 | * swap pte. |
| 1465 | */ |
| 1466 | maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1; |
| 1467 | if (maxpages > swap_header->info.last_page) |
| 1468 | maxpages = swap_header->info.last_page; |
| 1469 | p->highest_bit = maxpages - 1; |
| 1470 | |
| 1471 | error = -EINVAL; |
| 1472 | if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) |
| 1473 | goto bad_swap; |
| 1474 | |
| 1475 | /* OK, set up the swap map and apply the bad block list */ |
| 1476 | if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) { |
| 1477 | error = -ENOMEM; |
| 1478 | goto bad_swap; |
| 1479 | } |
| 1480 | |
| 1481 | error = 0; |
| 1482 | memset(p->swap_map, 0, maxpages * sizeof(short)); |
| 1483 | for (i=0; i<swap_header->info.nr_badpages; i++) { |
| 1484 | int page = swap_header->info.badpages[i]; |
| 1485 | if (page <= 0 || page >= swap_header->info.last_page) |
| 1486 | error = -EINVAL; |
| 1487 | else |
| 1488 | p->swap_map[page] = SWAP_MAP_BAD; |
| 1489 | } |
| 1490 | nr_good_pages = swap_header->info.last_page - |
| 1491 | swap_header->info.nr_badpages - |
| 1492 | 1 /* header page */; |
| 1493 | if (error) |
| 1494 | goto bad_swap; |
| 1495 | } |
| 1496 | |
| 1497 | if (swapfilesize && maxpages > swapfilesize) { |
| 1498 | printk(KERN_WARNING |
| 1499 | "Swap area shorter than signature indicates\n"); |
| 1500 | error = -EINVAL; |
| 1501 | goto bad_swap; |
| 1502 | } |
| 1503 | if (!nr_good_pages) { |
| 1504 | printk(KERN_WARNING "Empty swap-file\n"); |
| 1505 | error = -EINVAL; |
| 1506 | goto bad_swap; |
| 1507 | } |
| 1508 | p->swap_map[0] = SWAP_MAP_BAD; |
| 1509 | p->max = maxpages; |
| 1510 | p->pages = nr_good_pages; |
| 1511 | |
| 1512 | error = setup_swap_extents(p); |
| 1513 | if (error) |
| 1514 | goto bad_swap; |
| 1515 | |
| 1516 | down(&swapon_sem); |
| 1517 | swap_list_lock(); |
| 1518 | swap_device_lock(p); |
| 1519 | p->flags = SWP_ACTIVE; |
| 1520 | nr_swap_pages += nr_good_pages; |
| 1521 | total_swap_pages += nr_good_pages; |
| 1522 | printk(KERN_INFO "Adding %dk swap on %s. Priority:%d extents:%d\n", |
| 1523 | nr_good_pages<<(PAGE_SHIFT-10), name, |
| 1524 | p->prio, p->nr_extents); |
| 1525 | |
| 1526 | /* insert swap space into swap_list: */ |
| 1527 | prev = -1; |
| 1528 | for (i = swap_list.head; i >= 0; i = swap_info[i].next) { |
| 1529 | if (p->prio >= swap_info[i].prio) { |
| 1530 | break; |
| 1531 | } |
| 1532 | prev = i; |
| 1533 | } |
| 1534 | p->next = i; |
| 1535 | if (prev < 0) { |
| 1536 | swap_list.head = swap_list.next = p - swap_info; |
| 1537 | } else { |
| 1538 | swap_info[prev].next = p - swap_info; |
| 1539 | } |
| 1540 | swap_device_unlock(p); |
| 1541 | swap_list_unlock(); |
| 1542 | up(&swapon_sem); |
| 1543 | error = 0; |
| 1544 | goto out; |
| 1545 | bad_swap: |
| 1546 | if (bdev) { |
| 1547 | set_blocksize(bdev, p->old_block_size); |
| 1548 | bd_release(bdev); |
| 1549 | } |
| 1550 | bad_swap_2: |
| 1551 | swap_list_lock(); |
| 1552 | swap_map = p->swap_map; |
| 1553 | p->swap_file = NULL; |
| 1554 | p->swap_map = NULL; |
| 1555 | p->flags = 0; |
| 1556 | if (!(swap_flags & SWAP_FLAG_PREFER)) |
| 1557 | ++least_priority; |
| 1558 | swap_list_unlock(); |
| 1559 | destroy_swap_extents(p); |
| 1560 | vfree(swap_map); |
| 1561 | if (swap_file) |
| 1562 | filp_close(swap_file, NULL); |
| 1563 | out: |
| 1564 | if (page && !IS_ERR(page)) { |
| 1565 | kunmap(page); |
| 1566 | page_cache_release(page); |
| 1567 | } |
| 1568 | if (name) |
| 1569 | putname(name); |
| 1570 | if (did_down) { |
| 1571 | if (!error) |
| 1572 | inode->i_flags |= S_SWAPFILE; |
| 1573 | up(&inode->i_sem); |
| 1574 | } |
| 1575 | return error; |
| 1576 | } |
| 1577 | |
| 1578 | void si_swapinfo(struct sysinfo *val) |
| 1579 | { |
| 1580 | unsigned int i; |
| 1581 | unsigned long nr_to_be_unused = 0; |
| 1582 | |
| 1583 | swap_list_lock(); |
| 1584 | for (i = 0; i < nr_swapfiles; i++) { |
| 1585 | if (!(swap_info[i].flags & SWP_USED) || |
| 1586 | (swap_info[i].flags & SWP_WRITEOK)) |
| 1587 | continue; |
| 1588 | nr_to_be_unused += swap_info[i].inuse_pages; |
| 1589 | } |
| 1590 | val->freeswap = nr_swap_pages + nr_to_be_unused; |
| 1591 | val->totalswap = total_swap_pages + nr_to_be_unused; |
| 1592 | swap_list_unlock(); |
| 1593 | } |
| 1594 | |
| 1595 | /* |
| 1596 | * Verify that a swap entry is valid and increment its swap map count. |
| 1597 | * |
| 1598 | * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as |
| 1599 | * "permanent", but will be reclaimed by the next swapoff. |
| 1600 | */ |
| 1601 | int swap_duplicate(swp_entry_t entry) |
| 1602 | { |
| 1603 | struct swap_info_struct * p; |
| 1604 | unsigned long offset, type; |
| 1605 | int result = 0; |
| 1606 | |
| 1607 | type = swp_type(entry); |
| 1608 | if (type >= nr_swapfiles) |
| 1609 | goto bad_file; |
| 1610 | p = type + swap_info; |
| 1611 | offset = swp_offset(entry); |
| 1612 | |
| 1613 | swap_device_lock(p); |
| 1614 | if (offset < p->max && p->swap_map[offset]) { |
| 1615 | if (p->swap_map[offset] < SWAP_MAP_MAX - 1) { |
| 1616 | p->swap_map[offset]++; |
| 1617 | result = 1; |
| 1618 | } else if (p->swap_map[offset] <= SWAP_MAP_MAX) { |
| 1619 | if (swap_overflow++ < 5) |
| 1620 | printk(KERN_WARNING "swap_dup: swap entry overflow\n"); |
| 1621 | p->swap_map[offset] = SWAP_MAP_MAX; |
| 1622 | result = 1; |
| 1623 | } |
| 1624 | } |
| 1625 | swap_device_unlock(p); |
| 1626 | out: |
| 1627 | return result; |
| 1628 | |
| 1629 | bad_file: |
| 1630 | printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); |
| 1631 | goto out; |
| 1632 | } |
| 1633 | |
| 1634 | struct swap_info_struct * |
| 1635 | get_swap_info_struct(unsigned type) |
| 1636 | { |
| 1637 | return &swap_info[type]; |
| 1638 | } |
| 1639 | |
| 1640 | /* |
| 1641 | * swap_device_lock prevents swap_map being freed. Don't grab an extra |
| 1642 | * reference on the swaphandle, it doesn't matter if it becomes unused. |
| 1643 | */ |
| 1644 | int valid_swaphandles(swp_entry_t entry, unsigned long *offset) |
| 1645 | { |
| 1646 | int ret = 0, i = 1 << page_cluster; |
| 1647 | unsigned long toff; |
| 1648 | struct swap_info_struct *swapdev = swp_type(entry) + swap_info; |
| 1649 | |
| 1650 | if (!page_cluster) /* no readahead */ |
| 1651 | return 0; |
| 1652 | toff = (swp_offset(entry) >> page_cluster) << page_cluster; |
| 1653 | if (!toff) /* first page is swap header */ |
| 1654 | toff++, i--; |
| 1655 | *offset = toff; |
| 1656 | |
| 1657 | swap_device_lock(swapdev); |
| 1658 | do { |
| 1659 | /* Don't read-ahead past the end of the swap area */ |
| 1660 | if (toff >= swapdev->max) |
| 1661 | break; |
| 1662 | /* Don't read in free or bad pages */ |
| 1663 | if (!swapdev->swap_map[toff]) |
| 1664 | break; |
| 1665 | if (swapdev->swap_map[toff] == SWAP_MAP_BAD) |
| 1666 | break; |
| 1667 | toff++; |
| 1668 | ret++; |
| 1669 | } while (--i); |
| 1670 | swap_device_unlock(swapdev); |
| 1671 | return ret; |
| 1672 | } |