Stephen M. Cameron | edd1636 | 2009-12-08 14:09:11 -0800 | [diff] [blame] | 1 | /* |
| 2 | * Disk Array driver for HP Smart Array SAS controllers |
| 3 | * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P. |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify |
| 6 | * it under the terms of the GNU General Public License as published by |
| 7 | * the Free Software Foundation; version 2 of the License. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| 12 | * NON INFRINGEMENT. See the GNU General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License |
| 15 | * along with this program; if not, write to the Free Software |
| 16 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| 17 | * |
| 18 | * Questions/Comments/Bugfixes to iss_storagedev@hp.com |
| 19 | * |
| 20 | */ |
| 21 | |
| 22 | #include <linux/module.h> |
| 23 | #include <linux/interrupt.h> |
| 24 | #include <linux/types.h> |
| 25 | #include <linux/pci.h> |
| 26 | #include <linux/kernel.h> |
| 27 | #include <linux/slab.h> |
| 28 | #include <linux/delay.h> |
| 29 | #include <linux/fs.h> |
| 30 | #include <linux/timer.h> |
| 31 | #include <linux/seq_file.h> |
| 32 | #include <linux/init.h> |
| 33 | #include <linux/spinlock.h> |
| 34 | #include <linux/smp_lock.h> |
| 35 | #include <linux/compat.h> |
| 36 | #include <linux/blktrace_api.h> |
| 37 | #include <linux/uaccess.h> |
| 38 | #include <linux/io.h> |
| 39 | #include <linux/dma-mapping.h> |
| 40 | #include <linux/completion.h> |
| 41 | #include <linux/moduleparam.h> |
| 42 | #include <scsi/scsi.h> |
| 43 | #include <scsi/scsi_cmnd.h> |
| 44 | #include <scsi/scsi_device.h> |
| 45 | #include <scsi/scsi_host.h> |
| 46 | #include <linux/cciss_ioctl.h> |
| 47 | #include <linux/string.h> |
| 48 | #include <linux/bitmap.h> |
| 49 | #include <asm/atomic.h> |
| 50 | #include <linux/kthread.h> |
| 51 | #include "hpsa_cmd.h" |
| 52 | #include "hpsa.h" |
| 53 | |
| 54 | /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */ |
| 55 | #define HPSA_DRIVER_VERSION "1.0.0" |
| 56 | #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")" |
| 57 | |
| 58 | /* How long to wait (in milliseconds) for board to go into simple mode */ |
| 59 | #define MAX_CONFIG_WAIT 30000 |
| 60 | #define MAX_IOCTL_CONFIG_WAIT 1000 |
| 61 | |
| 62 | /*define how many times we will try a command because of bus resets */ |
| 63 | #define MAX_CMD_RETRIES 3 |
| 64 | |
| 65 | /* Embedded module documentation macros - see modules.h */ |
| 66 | MODULE_AUTHOR("Hewlett-Packard Company"); |
| 67 | MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \ |
| 68 | HPSA_DRIVER_VERSION); |
| 69 | MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers"); |
| 70 | MODULE_VERSION(HPSA_DRIVER_VERSION); |
| 71 | MODULE_LICENSE("GPL"); |
| 72 | |
| 73 | static int hpsa_allow_any; |
| 74 | module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR); |
| 75 | MODULE_PARM_DESC(hpsa_allow_any, |
| 76 | "Allow hpsa driver to access unknown HP Smart Array hardware"); |
| 77 | |
| 78 | /* define the PCI info for the cards we can control */ |
| 79 | static const struct pci_device_id hpsa_pci_device_id[] = { |
| 80 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223}, |
| 81 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234}, |
| 82 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D}, |
| 83 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241}, |
| 84 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243}, |
| 85 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245}, |
| 86 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247}, |
| 87 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249}, |
| 88 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a}, |
| 89 | {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b}, |
| 90 | {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID, |
| 91 | PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0}, |
| 92 | {0,} |
| 93 | }; |
| 94 | |
| 95 | MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id); |
| 96 | |
| 97 | /* board_id = Subsystem Device ID & Vendor ID |
| 98 | * product = Marketing Name for the board |
| 99 | * access = Address of the struct of function pointers |
| 100 | */ |
| 101 | static struct board_type products[] = { |
| 102 | {0x3223103C, "Smart Array P800", &SA5_access}, |
| 103 | {0x3234103C, "Smart Array P400", &SA5_access}, |
| 104 | {0x323d103c, "Smart Array P700M", &SA5_access}, |
| 105 | {0x3241103C, "Smart Array P212", &SA5_access}, |
| 106 | {0x3243103C, "Smart Array P410", &SA5_access}, |
| 107 | {0x3245103C, "Smart Array P410i", &SA5_access}, |
| 108 | {0x3247103C, "Smart Array P411", &SA5_access}, |
| 109 | {0x3249103C, "Smart Array P812", &SA5_access}, |
| 110 | {0x324a103C, "Smart Array P712m", &SA5_access}, |
| 111 | {0x324b103C, "Smart Array P711m", &SA5_access}, |
| 112 | {0xFFFF103C, "Unknown Smart Array", &SA5_access}, |
| 113 | }; |
| 114 | |
| 115 | static int number_of_controllers; |
| 116 | |
| 117 | static irqreturn_t do_hpsa_intr(int irq, void *dev_id); |
| 118 | static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg); |
| 119 | static void start_io(struct ctlr_info *h); |
| 120 | |
| 121 | #ifdef CONFIG_COMPAT |
| 122 | static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg); |
| 123 | #endif |
| 124 | |
| 125 | static void cmd_free(struct ctlr_info *h, struct CommandList *c); |
| 126 | static void cmd_special_free(struct ctlr_info *h, struct CommandList *c); |
| 127 | static struct CommandList *cmd_alloc(struct ctlr_info *h); |
| 128 | static struct CommandList *cmd_special_alloc(struct ctlr_info *h); |
| 129 | static void fill_cmd(struct CommandList *c, __u8 cmd, struct ctlr_info *h, |
| 130 | void *buff, size_t size, __u8 page_code, unsigned char *scsi3addr, |
| 131 | int cmd_type); |
| 132 | |
| 133 | static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd, |
| 134 | void (*done)(struct scsi_cmnd *)); |
| 135 | |
| 136 | static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd); |
| 137 | static int hpsa_slave_alloc(struct scsi_device *sdev); |
| 138 | static void hpsa_slave_destroy(struct scsi_device *sdev); |
| 139 | |
| 140 | static ssize_t raid_level_show(struct device *dev, |
| 141 | struct device_attribute *attr, char *buf); |
| 142 | static ssize_t lunid_show(struct device *dev, |
| 143 | struct device_attribute *attr, char *buf); |
| 144 | static ssize_t unique_id_show(struct device *dev, |
| 145 | struct device_attribute *attr, char *buf); |
| 146 | static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno); |
| 147 | static ssize_t host_store_rescan(struct device *dev, |
| 148 | struct device_attribute *attr, const char *buf, size_t count); |
| 149 | static int check_for_unit_attention(struct ctlr_info *h, |
| 150 | struct CommandList *c); |
| 151 | static void check_ioctl_unit_attention(struct ctlr_info *h, |
| 152 | struct CommandList *c); |
| 153 | |
| 154 | static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL); |
| 155 | static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL); |
| 156 | static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL); |
| 157 | static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan); |
| 158 | |
| 159 | static struct device_attribute *hpsa_sdev_attrs[] = { |
| 160 | &dev_attr_raid_level, |
| 161 | &dev_attr_lunid, |
| 162 | &dev_attr_unique_id, |
| 163 | NULL, |
| 164 | }; |
| 165 | |
| 166 | static struct device_attribute *hpsa_shost_attrs[] = { |
| 167 | &dev_attr_rescan, |
| 168 | NULL, |
| 169 | }; |
| 170 | |
| 171 | static struct scsi_host_template hpsa_driver_template = { |
| 172 | .module = THIS_MODULE, |
| 173 | .name = "hpsa", |
| 174 | .proc_name = "hpsa", |
| 175 | .queuecommand = hpsa_scsi_queue_command, |
| 176 | .can_queue = 512, |
| 177 | .this_id = -1, |
| 178 | .sg_tablesize = MAXSGENTRIES, |
| 179 | .cmd_per_lun = 512, |
| 180 | .use_clustering = ENABLE_CLUSTERING, |
| 181 | .eh_device_reset_handler = hpsa_eh_device_reset_handler, |
| 182 | .ioctl = hpsa_ioctl, |
| 183 | .slave_alloc = hpsa_slave_alloc, |
| 184 | .slave_destroy = hpsa_slave_destroy, |
| 185 | #ifdef CONFIG_COMPAT |
| 186 | .compat_ioctl = hpsa_compat_ioctl, |
| 187 | #endif |
| 188 | .sdev_attrs = hpsa_sdev_attrs, |
| 189 | .shost_attrs = hpsa_shost_attrs, |
| 190 | }; |
| 191 | |
| 192 | static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev) |
| 193 | { |
| 194 | unsigned long *priv = shost_priv(sdev->host); |
| 195 | return (struct ctlr_info *) *priv; |
| 196 | } |
| 197 | |
| 198 | static struct task_struct *hpsa_scan_thread; |
| 199 | static DEFINE_MUTEX(hpsa_scan_mutex); |
| 200 | static LIST_HEAD(hpsa_scan_q); |
| 201 | static int hpsa_scan_func(void *data); |
| 202 | |
| 203 | /** |
| 204 | * add_to_scan_list() - add controller to rescan queue |
| 205 | * @h: Pointer to the controller. |
| 206 | * |
| 207 | * Adds the controller to the rescan queue if not already on the queue. |
| 208 | * |
| 209 | * returns 1 if added to the queue, 0 if skipped (could be on the |
| 210 | * queue already, or the controller could be initializing or shutting |
| 211 | * down). |
| 212 | **/ |
| 213 | static int add_to_scan_list(struct ctlr_info *h) |
| 214 | { |
| 215 | struct ctlr_info *test_h; |
| 216 | int found = 0; |
| 217 | int ret = 0; |
| 218 | |
| 219 | if (h->busy_initializing) |
| 220 | return 0; |
| 221 | |
| 222 | /* |
| 223 | * If we don't get the lock, it means the driver is unloading |
| 224 | * and there's no point in scheduling a new scan. |
| 225 | */ |
| 226 | if (!mutex_trylock(&h->busy_shutting_down)) |
| 227 | return 0; |
| 228 | |
| 229 | mutex_lock(&hpsa_scan_mutex); |
| 230 | list_for_each_entry(test_h, &hpsa_scan_q, scan_list) { |
| 231 | if (test_h == h) { |
| 232 | found = 1; |
| 233 | break; |
| 234 | } |
| 235 | } |
| 236 | if (!found && !h->busy_scanning) { |
| 237 | INIT_COMPLETION(h->scan_wait); |
| 238 | list_add_tail(&h->scan_list, &hpsa_scan_q); |
| 239 | ret = 1; |
| 240 | } |
| 241 | mutex_unlock(&hpsa_scan_mutex); |
| 242 | mutex_unlock(&h->busy_shutting_down); |
| 243 | |
| 244 | return ret; |
| 245 | } |
| 246 | |
| 247 | /** |
| 248 | * remove_from_scan_list() - remove controller from rescan queue |
| 249 | * @h: Pointer to the controller. |
| 250 | * |
| 251 | * Removes the controller from the rescan queue if present. Blocks if |
| 252 | * the controller is currently conducting a rescan. The controller |
| 253 | * can be in one of three states: |
| 254 | * 1. Doesn't need a scan |
| 255 | * 2. On the scan list, but not scanning yet (we remove it) |
| 256 | * 3. Busy scanning (and not on the list). In this case we want to wait for |
| 257 | * the scan to complete to make sure the scanning thread for this |
| 258 | * controller is completely idle. |
| 259 | **/ |
| 260 | static void remove_from_scan_list(struct ctlr_info *h) |
| 261 | { |
| 262 | struct ctlr_info *test_h, *tmp_h; |
| 263 | |
| 264 | mutex_lock(&hpsa_scan_mutex); |
| 265 | list_for_each_entry_safe(test_h, tmp_h, &hpsa_scan_q, scan_list) { |
| 266 | if (test_h == h) { /* state 2. */ |
| 267 | list_del(&h->scan_list); |
| 268 | complete_all(&h->scan_wait); |
| 269 | mutex_unlock(&hpsa_scan_mutex); |
| 270 | return; |
| 271 | } |
| 272 | } |
| 273 | if (h->busy_scanning) { /* state 3. */ |
| 274 | mutex_unlock(&hpsa_scan_mutex); |
| 275 | wait_for_completion(&h->scan_wait); |
| 276 | } else { /* state 1, nothing to do. */ |
| 277 | mutex_unlock(&hpsa_scan_mutex); |
| 278 | } |
| 279 | } |
| 280 | |
| 281 | /* hpsa_scan_func() - kernel thread used to rescan controllers |
| 282 | * @data: Ignored. |
| 283 | * |
| 284 | * A kernel thread used scan for drive topology changes on |
| 285 | * controllers. The thread processes only one controller at a time |
| 286 | * using a queue. Controllers are added to the queue using |
| 287 | * add_to_scan_list() and removed from the queue either after done |
| 288 | * processing or using remove_from_scan_list(). |
| 289 | * |
| 290 | * returns 0. |
| 291 | **/ |
| 292 | static int hpsa_scan_func(__attribute__((unused)) void *data) |
| 293 | { |
| 294 | struct ctlr_info *h; |
| 295 | int host_no; |
| 296 | |
| 297 | while (1) { |
| 298 | set_current_state(TASK_INTERRUPTIBLE); |
| 299 | schedule(); |
| 300 | if (kthread_should_stop()) |
| 301 | break; |
| 302 | |
| 303 | while (1) { |
| 304 | mutex_lock(&hpsa_scan_mutex); |
| 305 | if (list_empty(&hpsa_scan_q)) { |
| 306 | mutex_unlock(&hpsa_scan_mutex); |
| 307 | break; |
| 308 | } |
| 309 | h = list_entry(hpsa_scan_q.next, struct ctlr_info, |
| 310 | scan_list); |
| 311 | list_del(&h->scan_list); |
| 312 | h->busy_scanning = 1; |
| 313 | mutex_unlock(&hpsa_scan_mutex); |
| 314 | host_no = h->scsi_host ? h->scsi_host->host_no : -1; |
| 315 | hpsa_update_scsi_devices(h, host_no); |
| 316 | complete_all(&h->scan_wait); |
| 317 | mutex_lock(&hpsa_scan_mutex); |
| 318 | h->busy_scanning = 0; |
| 319 | mutex_unlock(&hpsa_scan_mutex); |
| 320 | } |
| 321 | } |
| 322 | return 0; |
| 323 | } |
| 324 | |
| 325 | static int check_for_unit_attention(struct ctlr_info *h, |
| 326 | struct CommandList *c) |
| 327 | { |
| 328 | if (c->err_info->SenseInfo[2] != UNIT_ATTENTION) |
| 329 | return 0; |
| 330 | |
| 331 | switch (c->err_info->SenseInfo[12]) { |
| 332 | case STATE_CHANGED: |
| 333 | dev_warn(&h->pdev->dev, "hpsa%d: a state change " |
| 334 | "detected, command retried\n", h->ctlr); |
| 335 | break; |
| 336 | case LUN_FAILED: |
| 337 | dev_warn(&h->pdev->dev, "hpsa%d: LUN failure " |
| 338 | "detected, action required\n", h->ctlr); |
| 339 | break; |
| 340 | case REPORT_LUNS_CHANGED: |
| 341 | dev_warn(&h->pdev->dev, "hpsa%d: report LUN data " |
| 342 | "changed\n", h->ctlr); |
| 343 | /* |
| 344 | * Here, we could call add_to_scan_list and wake up the scan thread, |
| 345 | * except that it's quite likely that we will get more than one |
| 346 | * REPORT_LUNS_CHANGED condition in quick succession, which means |
| 347 | * that those which occur after the first one will likely happen |
| 348 | * *during* the hpsa_scan_thread's rescan. And the rescan code is not |
| 349 | * robust enough to restart in the middle, undoing what it has already |
| 350 | * done, and it's not clear that it's even possible to do this, since |
| 351 | * part of what it does is notify the SCSI mid layer, which starts |
| 352 | * doing it's own i/o to read partition tables and so on, and the |
| 353 | * driver doesn't have visibility to know what might need undoing. |
| 354 | * In any event, if possible, it is horribly complicated to get right |
| 355 | * so we just don't do it for now. |
| 356 | * |
| 357 | * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012. |
| 358 | */ |
| 359 | break; |
| 360 | case POWER_OR_RESET: |
| 361 | dev_warn(&h->pdev->dev, "hpsa%d: a power on " |
| 362 | "or device reset detected\n", h->ctlr); |
| 363 | break; |
| 364 | case UNIT_ATTENTION_CLEARED: |
| 365 | dev_warn(&h->pdev->dev, "hpsa%d: unit attention " |
| 366 | "cleared by another initiator\n", h->ctlr); |
| 367 | break; |
| 368 | default: |
| 369 | dev_warn(&h->pdev->dev, "hpsa%d: unknown " |
| 370 | "unit attention detected\n", h->ctlr); |
| 371 | break; |
| 372 | } |
| 373 | return 1; |
| 374 | } |
| 375 | |
| 376 | static ssize_t host_store_rescan(struct device *dev, |
| 377 | struct device_attribute *attr, |
| 378 | const char *buf, size_t count) |
| 379 | { |
| 380 | struct ctlr_info *h; |
| 381 | struct Scsi_Host *shost = class_to_shost(dev); |
| 382 | unsigned long *priv = shost_priv(shost); |
| 383 | h = (struct ctlr_info *) *priv; |
| 384 | if (add_to_scan_list(h)) { |
| 385 | wake_up_process(hpsa_scan_thread); |
| 386 | wait_for_completion_interruptible(&h->scan_wait); |
| 387 | } |
| 388 | return count; |
| 389 | } |
| 390 | |
| 391 | /* Enqueuing and dequeuing functions for cmdlists. */ |
| 392 | static inline void addQ(struct hlist_head *list, struct CommandList *c) |
| 393 | { |
| 394 | hlist_add_head(&c->list, list); |
| 395 | } |
| 396 | |
| 397 | static void enqueue_cmd_and_start_io(struct ctlr_info *h, |
| 398 | struct CommandList *c) |
| 399 | { |
| 400 | unsigned long flags; |
| 401 | spin_lock_irqsave(&h->lock, flags); |
| 402 | addQ(&h->reqQ, c); |
| 403 | h->Qdepth++; |
| 404 | start_io(h); |
| 405 | spin_unlock_irqrestore(&h->lock, flags); |
| 406 | } |
| 407 | |
| 408 | static inline void removeQ(struct CommandList *c) |
| 409 | { |
| 410 | if (WARN_ON(hlist_unhashed(&c->list))) |
| 411 | return; |
| 412 | hlist_del_init(&c->list); |
| 413 | } |
| 414 | |
| 415 | static inline int is_hba_lunid(unsigned char scsi3addr[]) |
| 416 | { |
| 417 | return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0; |
| 418 | } |
| 419 | |
| 420 | static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[]) |
| 421 | { |
| 422 | return (scsi3addr[3] & 0xC0) == 0x40; |
| 423 | } |
| 424 | |
| 425 | static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG", |
| 426 | "UNKNOWN" |
| 427 | }; |
| 428 | #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1) |
| 429 | |
| 430 | static ssize_t raid_level_show(struct device *dev, |
| 431 | struct device_attribute *attr, char *buf) |
| 432 | { |
| 433 | ssize_t l = 0; |
| 434 | int rlevel; |
| 435 | struct ctlr_info *h; |
| 436 | struct scsi_device *sdev; |
| 437 | struct hpsa_scsi_dev_t *hdev; |
| 438 | unsigned long flags; |
| 439 | |
| 440 | sdev = to_scsi_device(dev); |
| 441 | h = sdev_to_hba(sdev); |
| 442 | spin_lock_irqsave(&h->lock, flags); |
| 443 | hdev = sdev->hostdata; |
| 444 | if (!hdev) { |
| 445 | spin_unlock_irqrestore(&h->lock, flags); |
| 446 | return -ENODEV; |
| 447 | } |
| 448 | |
| 449 | /* Is this even a logical drive? */ |
| 450 | if (!is_logical_dev_addr_mode(hdev->scsi3addr)) { |
| 451 | spin_unlock_irqrestore(&h->lock, flags); |
| 452 | l = snprintf(buf, PAGE_SIZE, "N/A\n"); |
| 453 | return l; |
| 454 | } |
| 455 | |
| 456 | rlevel = hdev->raid_level; |
| 457 | spin_unlock_irqrestore(&h->lock, flags); |
| 458 | if (rlevel < 0 || rlevel > RAID_UNKNOWN) |
| 459 | rlevel = RAID_UNKNOWN; |
| 460 | l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]); |
| 461 | return l; |
| 462 | } |
| 463 | |
| 464 | static ssize_t lunid_show(struct device *dev, |
| 465 | struct device_attribute *attr, char *buf) |
| 466 | { |
| 467 | struct ctlr_info *h; |
| 468 | struct scsi_device *sdev; |
| 469 | struct hpsa_scsi_dev_t *hdev; |
| 470 | unsigned long flags; |
| 471 | unsigned char lunid[8]; |
| 472 | |
| 473 | sdev = to_scsi_device(dev); |
| 474 | h = sdev_to_hba(sdev); |
| 475 | spin_lock_irqsave(&h->lock, flags); |
| 476 | hdev = sdev->hostdata; |
| 477 | if (!hdev) { |
| 478 | spin_unlock_irqrestore(&h->lock, flags); |
| 479 | return -ENODEV; |
| 480 | } |
| 481 | memcpy(lunid, hdev->scsi3addr, sizeof(lunid)); |
| 482 | spin_unlock_irqrestore(&h->lock, flags); |
| 483 | return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n", |
| 484 | lunid[0], lunid[1], lunid[2], lunid[3], |
| 485 | lunid[4], lunid[5], lunid[6], lunid[7]); |
| 486 | } |
| 487 | |
| 488 | static ssize_t unique_id_show(struct device *dev, |
| 489 | struct device_attribute *attr, char *buf) |
| 490 | { |
| 491 | struct ctlr_info *h; |
| 492 | struct scsi_device *sdev; |
| 493 | struct hpsa_scsi_dev_t *hdev; |
| 494 | unsigned long flags; |
| 495 | unsigned char sn[16]; |
| 496 | |
| 497 | sdev = to_scsi_device(dev); |
| 498 | h = sdev_to_hba(sdev); |
| 499 | spin_lock_irqsave(&h->lock, flags); |
| 500 | hdev = sdev->hostdata; |
| 501 | if (!hdev) { |
| 502 | spin_unlock_irqrestore(&h->lock, flags); |
| 503 | return -ENODEV; |
| 504 | } |
| 505 | memcpy(sn, hdev->device_id, sizeof(sn)); |
| 506 | spin_unlock_irqrestore(&h->lock, flags); |
| 507 | return snprintf(buf, 16 * 2 + 2, |
| 508 | "%02X%02X%02X%02X%02X%02X%02X%02X" |
| 509 | "%02X%02X%02X%02X%02X%02X%02X%02X\n", |
| 510 | sn[0], sn[1], sn[2], sn[3], |
| 511 | sn[4], sn[5], sn[6], sn[7], |
| 512 | sn[8], sn[9], sn[10], sn[11], |
| 513 | sn[12], sn[13], sn[14], sn[15]); |
| 514 | } |
| 515 | |
| 516 | static int hpsa_find_target_lun(struct ctlr_info *h, |
| 517 | unsigned char scsi3addr[], int bus, int *target, int *lun) |
| 518 | { |
| 519 | /* finds an unused bus, target, lun for a new physical device |
| 520 | * assumes h->devlock is held |
| 521 | */ |
| 522 | int i, found = 0; |
| 523 | DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA); |
| 524 | |
| 525 | memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3); |
| 526 | |
| 527 | for (i = 0; i < h->ndevices; i++) { |
| 528 | if (h->dev[i]->bus == bus && h->dev[i]->target != -1) |
| 529 | set_bit(h->dev[i]->target, lun_taken); |
| 530 | } |
| 531 | |
| 532 | for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) { |
| 533 | if (!test_bit(i, lun_taken)) { |
| 534 | /* *bus = 1; */ |
| 535 | *target = i; |
| 536 | *lun = 0; |
| 537 | found = 1; |
| 538 | break; |
| 539 | } |
| 540 | } |
| 541 | return !found; |
| 542 | } |
| 543 | |
| 544 | /* Add an entry into h->dev[] array. */ |
| 545 | static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno, |
| 546 | struct hpsa_scsi_dev_t *device, |
| 547 | struct hpsa_scsi_dev_t *added[], int *nadded) |
| 548 | { |
| 549 | /* assumes h->devlock is held */ |
| 550 | int n = h->ndevices; |
| 551 | int i; |
| 552 | unsigned char addr1[8], addr2[8]; |
| 553 | struct hpsa_scsi_dev_t *sd; |
| 554 | |
| 555 | if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) { |
| 556 | dev_err(&h->pdev->dev, "too many devices, some will be " |
| 557 | "inaccessible.\n"); |
| 558 | return -1; |
| 559 | } |
| 560 | |
| 561 | /* physical devices do not have lun or target assigned until now. */ |
| 562 | if (device->lun != -1) |
| 563 | /* Logical device, lun is already assigned. */ |
| 564 | goto lun_assigned; |
| 565 | |
| 566 | /* If this device a non-zero lun of a multi-lun device |
| 567 | * byte 4 of the 8-byte LUN addr will contain the logical |
| 568 | * unit no, zero otherise. |
| 569 | */ |
| 570 | if (device->scsi3addr[4] == 0) { |
| 571 | /* This is not a non-zero lun of a multi-lun device */ |
| 572 | if (hpsa_find_target_lun(h, device->scsi3addr, |
| 573 | device->bus, &device->target, &device->lun) != 0) |
| 574 | return -1; |
| 575 | goto lun_assigned; |
| 576 | } |
| 577 | |
| 578 | /* This is a non-zero lun of a multi-lun device. |
| 579 | * Search through our list and find the device which |
| 580 | * has the same 8 byte LUN address, excepting byte 4. |
| 581 | * Assign the same bus and target for this new LUN. |
| 582 | * Use the logical unit number from the firmware. |
| 583 | */ |
| 584 | memcpy(addr1, device->scsi3addr, 8); |
| 585 | addr1[4] = 0; |
| 586 | for (i = 0; i < n; i++) { |
| 587 | sd = h->dev[i]; |
| 588 | memcpy(addr2, sd->scsi3addr, 8); |
| 589 | addr2[4] = 0; |
| 590 | /* differ only in byte 4? */ |
| 591 | if (memcmp(addr1, addr2, 8) == 0) { |
| 592 | device->bus = sd->bus; |
| 593 | device->target = sd->target; |
| 594 | device->lun = device->scsi3addr[4]; |
| 595 | break; |
| 596 | } |
| 597 | } |
| 598 | if (device->lun == -1) { |
| 599 | dev_warn(&h->pdev->dev, "physical device with no LUN=0," |
| 600 | " suspect firmware bug or unsupported hardware " |
| 601 | "configuration.\n"); |
| 602 | return -1; |
| 603 | } |
| 604 | |
| 605 | lun_assigned: |
| 606 | |
| 607 | h->dev[n] = device; |
| 608 | h->ndevices++; |
| 609 | added[*nadded] = device; |
| 610 | (*nadded)++; |
| 611 | |
| 612 | /* initially, (before registering with scsi layer) we don't |
| 613 | * know our hostno and we don't want to print anything first |
| 614 | * time anyway (the scsi layer's inquiries will show that info) |
| 615 | */ |
| 616 | /* if (hostno != -1) */ |
| 617 | dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n", |
| 618 | scsi_device_type(device->devtype), hostno, |
| 619 | device->bus, device->target, device->lun); |
| 620 | return 0; |
| 621 | } |
| 622 | |
| 623 | /* Remove an entry from h->dev[] array. */ |
| 624 | static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry, |
| 625 | struct hpsa_scsi_dev_t *removed[], int *nremoved) |
| 626 | { |
| 627 | /* assumes h->devlock is held */ |
| 628 | int i; |
| 629 | struct hpsa_scsi_dev_t *sd; |
| 630 | |
| 631 | if (entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA) |
| 632 | BUG(); |
| 633 | |
| 634 | sd = h->dev[entry]; |
| 635 | removed[*nremoved] = h->dev[entry]; |
| 636 | (*nremoved)++; |
| 637 | |
| 638 | for (i = entry; i < h->ndevices-1; i++) |
| 639 | h->dev[i] = h->dev[i+1]; |
| 640 | h->ndevices--; |
| 641 | dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n", |
| 642 | scsi_device_type(sd->devtype), hostno, sd->bus, sd->target, |
| 643 | sd->lun); |
| 644 | } |
| 645 | |
| 646 | #define SCSI3ADDR_EQ(a, b) ( \ |
| 647 | (a)[7] == (b)[7] && \ |
| 648 | (a)[6] == (b)[6] && \ |
| 649 | (a)[5] == (b)[5] && \ |
| 650 | (a)[4] == (b)[4] && \ |
| 651 | (a)[3] == (b)[3] && \ |
| 652 | (a)[2] == (b)[2] && \ |
| 653 | (a)[1] == (b)[1] && \ |
| 654 | (a)[0] == (b)[0]) |
| 655 | |
| 656 | static void fixup_botched_add(struct ctlr_info *h, |
| 657 | struct hpsa_scsi_dev_t *added) |
| 658 | { |
| 659 | /* called when scsi_add_device fails in order to re-adjust |
| 660 | * h->dev[] to match the mid layer's view. |
| 661 | */ |
| 662 | unsigned long flags; |
| 663 | int i, j; |
| 664 | |
| 665 | spin_lock_irqsave(&h->lock, flags); |
| 666 | for (i = 0; i < h->ndevices; i++) { |
| 667 | if (h->dev[i] == added) { |
| 668 | for (j = i; j < h->ndevices-1; j++) |
| 669 | h->dev[j] = h->dev[j+1]; |
| 670 | h->ndevices--; |
| 671 | break; |
| 672 | } |
| 673 | } |
| 674 | spin_unlock_irqrestore(&h->lock, flags); |
| 675 | kfree(added); |
| 676 | } |
| 677 | |
| 678 | static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1, |
| 679 | struct hpsa_scsi_dev_t *dev2) |
| 680 | { |
| 681 | if ((is_logical_dev_addr_mode(dev1->scsi3addr) || |
| 682 | (dev1->lun != -1 && dev2->lun != -1)) && |
| 683 | dev1->devtype != 0x0C) |
| 684 | return (memcmp(dev1, dev2, sizeof(*dev1)) == 0); |
| 685 | |
| 686 | /* we compare everything except lun and target as these |
| 687 | * are not yet assigned. Compare parts likely |
| 688 | * to differ first |
| 689 | */ |
| 690 | if (memcmp(dev1->scsi3addr, dev2->scsi3addr, |
| 691 | sizeof(dev1->scsi3addr)) != 0) |
| 692 | return 0; |
| 693 | if (memcmp(dev1->device_id, dev2->device_id, |
| 694 | sizeof(dev1->device_id)) != 0) |
| 695 | return 0; |
| 696 | if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0) |
| 697 | return 0; |
| 698 | if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0) |
| 699 | return 0; |
| 700 | if (memcmp(dev1->revision, dev2->revision, sizeof(dev1->revision)) != 0) |
| 701 | return 0; |
| 702 | if (dev1->devtype != dev2->devtype) |
| 703 | return 0; |
| 704 | if (dev1->raid_level != dev2->raid_level) |
| 705 | return 0; |
| 706 | if (dev1->bus != dev2->bus) |
| 707 | return 0; |
| 708 | return 1; |
| 709 | } |
| 710 | |
| 711 | /* Find needle in haystack. If exact match found, return DEVICE_SAME, |
| 712 | * and return needle location in *index. If scsi3addr matches, but not |
| 713 | * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle |
| 714 | * location in *index. If needle not found, return DEVICE_NOT_FOUND. |
| 715 | */ |
| 716 | static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle, |
| 717 | struct hpsa_scsi_dev_t *haystack[], int haystack_size, |
| 718 | int *index) |
| 719 | { |
| 720 | int i; |
| 721 | #define DEVICE_NOT_FOUND 0 |
| 722 | #define DEVICE_CHANGED 1 |
| 723 | #define DEVICE_SAME 2 |
| 724 | for (i = 0; i < haystack_size; i++) { |
| 725 | if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) { |
| 726 | *index = i; |
| 727 | if (device_is_the_same(needle, haystack[i])) |
| 728 | return DEVICE_SAME; |
| 729 | else |
| 730 | return DEVICE_CHANGED; |
| 731 | } |
| 732 | } |
| 733 | *index = -1; |
| 734 | return DEVICE_NOT_FOUND; |
| 735 | } |
| 736 | |
| 737 | static int adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno, |
| 738 | struct hpsa_scsi_dev_t *sd[], int nsds) |
| 739 | { |
| 740 | /* sd contains scsi3 addresses and devtypes, and inquiry |
| 741 | * data. This function takes what's in sd to be the current |
| 742 | * reality and updates h->dev[] to reflect that reality. |
| 743 | */ |
| 744 | int i, entry, device_change, changes = 0; |
| 745 | struct hpsa_scsi_dev_t *csd; |
| 746 | unsigned long flags; |
| 747 | struct hpsa_scsi_dev_t **added, **removed; |
| 748 | int nadded, nremoved; |
| 749 | struct Scsi_Host *sh = NULL; |
| 750 | |
| 751 | added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA, |
| 752 | GFP_KERNEL); |
| 753 | removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA, |
| 754 | GFP_KERNEL); |
| 755 | |
| 756 | if (!added || !removed) { |
| 757 | dev_warn(&h->pdev->dev, "out of memory in " |
| 758 | "adjust_hpsa_scsi_table\n"); |
| 759 | goto free_and_out; |
| 760 | } |
| 761 | |
| 762 | spin_lock_irqsave(&h->devlock, flags); |
| 763 | |
| 764 | /* find any devices in h->dev[] that are not in |
| 765 | * sd[] and remove them from h->dev[], and for any |
| 766 | * devices which have changed, remove the old device |
| 767 | * info and add the new device info. |
| 768 | */ |
| 769 | i = 0; |
| 770 | nremoved = 0; |
| 771 | nadded = 0; |
| 772 | while (i < h->ndevices) { |
| 773 | csd = h->dev[i]; |
| 774 | device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry); |
| 775 | if (device_change == DEVICE_NOT_FOUND) { |
| 776 | changes++; |
| 777 | hpsa_scsi_remove_entry(h, hostno, i, |
| 778 | removed, &nremoved); |
| 779 | continue; /* remove ^^^, hence i not incremented */ |
| 780 | } else if (device_change == DEVICE_CHANGED) { |
| 781 | changes++; |
| 782 | hpsa_scsi_remove_entry(h, hostno, i, |
| 783 | removed, &nremoved); |
| 784 | (void) hpsa_scsi_add_entry(h, hostno, sd[entry], |
| 785 | added, &nadded); |
| 786 | /* add can't fail, we just removed one. */ |
| 787 | sd[entry] = NULL; /* prevent it from being freed */ |
| 788 | } |
| 789 | i++; |
| 790 | } |
| 791 | |
| 792 | /* Now, make sure every device listed in sd[] is also |
| 793 | * listed in h->dev[], adding them if they aren't found |
| 794 | */ |
| 795 | |
| 796 | for (i = 0; i < nsds; i++) { |
| 797 | if (!sd[i]) /* if already added above. */ |
| 798 | continue; |
| 799 | device_change = hpsa_scsi_find_entry(sd[i], h->dev, |
| 800 | h->ndevices, &entry); |
| 801 | if (device_change == DEVICE_NOT_FOUND) { |
| 802 | changes++; |
| 803 | if (hpsa_scsi_add_entry(h, hostno, sd[i], |
| 804 | added, &nadded) != 0) |
| 805 | break; |
| 806 | sd[i] = NULL; /* prevent from being freed later. */ |
| 807 | } else if (device_change == DEVICE_CHANGED) { |
| 808 | /* should never happen... */ |
| 809 | changes++; |
| 810 | dev_warn(&h->pdev->dev, |
| 811 | "device unexpectedly changed.\n"); |
| 812 | /* but if it does happen, we just ignore that device */ |
| 813 | } |
| 814 | } |
| 815 | spin_unlock_irqrestore(&h->devlock, flags); |
| 816 | |
| 817 | /* Don't notify scsi mid layer of any changes the first time through |
| 818 | * (or if there are no changes) scsi_scan_host will do it later the |
| 819 | * first time through. |
| 820 | */ |
| 821 | if (hostno == -1 || !changes) |
| 822 | goto free_and_out; |
| 823 | |
| 824 | sh = h->scsi_host; |
| 825 | /* Notify scsi mid layer of any removed devices */ |
| 826 | for (i = 0; i < nremoved; i++) { |
| 827 | struct scsi_device *sdev = |
| 828 | scsi_device_lookup(sh, removed[i]->bus, |
| 829 | removed[i]->target, removed[i]->lun); |
| 830 | if (sdev != NULL) { |
| 831 | scsi_remove_device(sdev); |
| 832 | scsi_device_put(sdev); |
| 833 | } else { |
| 834 | /* We don't expect to get here. |
| 835 | * future cmds to this device will get selection |
| 836 | * timeout as if the device was gone. |
| 837 | */ |
| 838 | dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d " |
| 839 | " for removal.", hostno, removed[i]->bus, |
| 840 | removed[i]->target, removed[i]->lun); |
| 841 | } |
| 842 | kfree(removed[i]); |
| 843 | removed[i] = NULL; |
| 844 | } |
| 845 | |
| 846 | /* Notify scsi mid layer of any added devices */ |
| 847 | for (i = 0; i < nadded; i++) { |
| 848 | if (scsi_add_device(sh, added[i]->bus, |
| 849 | added[i]->target, added[i]->lun) == 0) |
| 850 | continue; |
| 851 | dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, " |
| 852 | "device not added.\n", hostno, added[i]->bus, |
| 853 | added[i]->target, added[i]->lun); |
| 854 | /* now we have to remove it from h->dev, |
| 855 | * since it didn't get added to scsi mid layer |
| 856 | */ |
| 857 | fixup_botched_add(h, added[i]); |
| 858 | } |
| 859 | |
| 860 | free_and_out: |
| 861 | kfree(added); |
| 862 | kfree(removed); |
| 863 | return 0; |
| 864 | } |
| 865 | |
| 866 | /* |
| 867 | * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t * |
| 868 | * Assume's h->devlock is held. |
| 869 | */ |
| 870 | static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h, |
| 871 | int bus, int target, int lun) |
| 872 | { |
| 873 | int i; |
| 874 | struct hpsa_scsi_dev_t *sd; |
| 875 | |
| 876 | for (i = 0; i < h->ndevices; i++) { |
| 877 | sd = h->dev[i]; |
| 878 | if (sd->bus == bus && sd->target == target && sd->lun == lun) |
| 879 | return sd; |
| 880 | } |
| 881 | return NULL; |
| 882 | } |
| 883 | |
| 884 | /* link sdev->hostdata to our per-device structure. */ |
| 885 | static int hpsa_slave_alloc(struct scsi_device *sdev) |
| 886 | { |
| 887 | struct hpsa_scsi_dev_t *sd; |
| 888 | unsigned long flags; |
| 889 | struct ctlr_info *h; |
| 890 | |
| 891 | h = sdev_to_hba(sdev); |
| 892 | spin_lock_irqsave(&h->devlock, flags); |
| 893 | sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev), |
| 894 | sdev_id(sdev), sdev->lun); |
| 895 | if (sd != NULL) |
| 896 | sdev->hostdata = sd; |
| 897 | spin_unlock_irqrestore(&h->devlock, flags); |
| 898 | return 0; |
| 899 | } |
| 900 | |
| 901 | static void hpsa_slave_destroy(struct scsi_device *sdev) |
| 902 | { |
| 903 | return; /* nothing to do. */ |
| 904 | } |
| 905 | |
| 906 | static void hpsa_scsi_setup(struct ctlr_info *h) |
| 907 | { |
| 908 | h->ndevices = 0; |
| 909 | h->scsi_host = NULL; |
| 910 | spin_lock_init(&h->devlock); |
| 911 | return; |
| 912 | } |
| 913 | |
| 914 | static void complete_scsi_command(struct CommandList *cp, |
| 915 | int timeout, __u32 tag) |
| 916 | { |
| 917 | struct scsi_cmnd *cmd; |
| 918 | struct ctlr_info *h; |
| 919 | struct ErrorInfo *ei; |
| 920 | |
| 921 | unsigned char sense_key; |
| 922 | unsigned char asc; /* additional sense code */ |
| 923 | unsigned char ascq; /* additional sense code qualifier */ |
| 924 | |
| 925 | ei = cp->err_info; |
| 926 | cmd = (struct scsi_cmnd *) cp->scsi_cmd; |
| 927 | h = cp->h; |
| 928 | |
| 929 | scsi_dma_unmap(cmd); /* undo the DMA mappings */ |
| 930 | |
| 931 | cmd->result = (DID_OK << 16); /* host byte */ |
| 932 | cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */ |
| 933 | cmd->result |= (ei->ScsiStatus << 1); |
| 934 | |
| 935 | /* copy the sense data whether we need to or not. */ |
| 936 | memcpy(cmd->sense_buffer, ei->SenseInfo, |
| 937 | ei->SenseLen > SCSI_SENSE_BUFFERSIZE ? |
| 938 | SCSI_SENSE_BUFFERSIZE : |
| 939 | ei->SenseLen); |
| 940 | scsi_set_resid(cmd, ei->ResidualCnt); |
| 941 | |
| 942 | if (ei->CommandStatus == 0) { |
| 943 | cmd->scsi_done(cmd); |
| 944 | cmd_free(h, cp); |
| 945 | return; |
| 946 | } |
| 947 | |
| 948 | /* an error has occurred */ |
| 949 | switch (ei->CommandStatus) { |
| 950 | |
| 951 | case CMD_TARGET_STATUS: |
| 952 | if (ei->ScsiStatus) { |
| 953 | /* Get sense key */ |
| 954 | sense_key = 0xf & ei->SenseInfo[2]; |
| 955 | /* Get additional sense code */ |
| 956 | asc = ei->SenseInfo[12]; |
| 957 | /* Get addition sense code qualifier */ |
| 958 | ascq = ei->SenseInfo[13]; |
| 959 | } |
| 960 | |
| 961 | if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) { |
| 962 | if (check_for_unit_attention(h, cp)) { |
| 963 | cmd->result = DID_SOFT_ERROR << 16; |
| 964 | break; |
| 965 | } |
| 966 | if (sense_key == ILLEGAL_REQUEST) { |
| 967 | /* |
| 968 | * SCSI REPORT_LUNS is commonly unsupported on |
| 969 | * Smart Array. Suppress noisy complaint. |
| 970 | */ |
| 971 | if (cp->Request.CDB[0] == REPORT_LUNS) |
| 972 | break; |
| 973 | |
| 974 | /* If ASC/ASCQ indicate Logical Unit |
| 975 | * Not Supported condition, |
| 976 | */ |
| 977 | if ((asc == 0x25) && (ascq == 0x0)) { |
| 978 | dev_warn(&h->pdev->dev, "cp %p " |
| 979 | "has check condition\n", cp); |
| 980 | break; |
| 981 | } |
| 982 | } |
| 983 | |
| 984 | if (sense_key == NOT_READY) { |
| 985 | /* If Sense is Not Ready, Logical Unit |
| 986 | * Not ready, Manual Intervention |
| 987 | * required |
| 988 | */ |
| 989 | if ((asc == 0x04) && (ascq == 0x03)) { |
| 990 | cmd->result = DID_NO_CONNECT << 16; |
| 991 | dev_warn(&h->pdev->dev, "cp %p " |
| 992 | "has check condition: unit " |
| 993 | "not ready, manual " |
| 994 | "intervention required\n", cp); |
| 995 | break; |
| 996 | } |
| 997 | } |
| 998 | |
| 999 | |
| 1000 | /* Must be some other type of check condition */ |
| 1001 | dev_warn(&h->pdev->dev, "cp %p has check condition: " |
| 1002 | "unknown type: " |
| 1003 | "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " |
| 1004 | "Returning result: 0x%x, " |
| 1005 | "cmd=[%02x %02x %02x %02x %02x " |
| 1006 | "%02x %02x %02x %02x %02x]\n", |
| 1007 | cp, sense_key, asc, ascq, |
| 1008 | cmd->result, |
| 1009 | cmd->cmnd[0], cmd->cmnd[1], |
| 1010 | cmd->cmnd[2], cmd->cmnd[3], |
| 1011 | cmd->cmnd[4], cmd->cmnd[5], |
| 1012 | cmd->cmnd[6], cmd->cmnd[7], |
| 1013 | cmd->cmnd[8], cmd->cmnd[9]); |
| 1014 | break; |
| 1015 | } |
| 1016 | |
| 1017 | |
| 1018 | /* Problem was not a check condition |
| 1019 | * Pass it up to the upper layers... |
| 1020 | */ |
| 1021 | if (ei->ScsiStatus) { |
| 1022 | dev_warn(&h->pdev->dev, "cp %p has status 0x%x " |
| 1023 | "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, " |
| 1024 | "Returning result: 0x%x\n", |
| 1025 | cp, ei->ScsiStatus, |
| 1026 | sense_key, asc, ascq, |
| 1027 | cmd->result); |
| 1028 | } else { /* scsi status is zero??? How??? */ |
| 1029 | dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. " |
| 1030 | "Returning no connection.\n", cp), |
| 1031 | |
| 1032 | /* Ordinarily, this case should never happen, |
| 1033 | * but there is a bug in some released firmware |
| 1034 | * revisions that allows it to happen if, for |
| 1035 | * example, a 4100 backplane loses power and |
| 1036 | * the tape drive is in it. We assume that |
| 1037 | * it's a fatal error of some kind because we |
| 1038 | * can't show that it wasn't. We will make it |
| 1039 | * look like selection timeout since that is |
| 1040 | * the most common reason for this to occur, |
| 1041 | * and it's severe enough. |
| 1042 | */ |
| 1043 | |
| 1044 | cmd->result = DID_NO_CONNECT << 16; |
| 1045 | } |
| 1046 | break; |
| 1047 | |
| 1048 | case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ |
| 1049 | break; |
| 1050 | case CMD_DATA_OVERRUN: |
| 1051 | dev_warn(&h->pdev->dev, "cp %p has" |
| 1052 | " completed with data overrun " |
| 1053 | "reported\n", cp); |
| 1054 | break; |
| 1055 | case CMD_INVALID: { |
| 1056 | /* print_bytes(cp, sizeof(*cp), 1, 0); |
| 1057 | print_cmd(cp); */ |
| 1058 | /* We get CMD_INVALID if you address a non-existent device |
| 1059 | * instead of a selection timeout (no response). You will |
| 1060 | * see this if you yank out a drive, then try to access it. |
| 1061 | * This is kind of a shame because it means that any other |
| 1062 | * CMD_INVALID (e.g. driver bug) will get interpreted as a |
| 1063 | * missing target. */ |
| 1064 | cmd->result = DID_NO_CONNECT << 16; |
| 1065 | } |
| 1066 | break; |
| 1067 | case CMD_PROTOCOL_ERR: |
| 1068 | dev_warn(&h->pdev->dev, "cp %p has " |
| 1069 | "protocol error \n", cp); |
| 1070 | break; |
| 1071 | case CMD_HARDWARE_ERR: |
| 1072 | cmd->result = DID_ERROR << 16; |
| 1073 | dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp); |
| 1074 | break; |
| 1075 | case CMD_CONNECTION_LOST: |
| 1076 | cmd->result = DID_ERROR << 16; |
| 1077 | dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp); |
| 1078 | break; |
| 1079 | case CMD_ABORTED: |
| 1080 | cmd->result = DID_ABORT << 16; |
| 1081 | dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n", |
| 1082 | cp, ei->ScsiStatus); |
| 1083 | break; |
| 1084 | case CMD_ABORT_FAILED: |
| 1085 | cmd->result = DID_ERROR << 16; |
| 1086 | dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp); |
| 1087 | break; |
| 1088 | case CMD_UNSOLICITED_ABORT: |
| 1089 | cmd->result = DID_ABORT << 16; |
| 1090 | dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited " |
| 1091 | "abort\n", cp); |
| 1092 | break; |
| 1093 | case CMD_TIMEOUT: |
| 1094 | cmd->result = DID_TIME_OUT << 16; |
| 1095 | dev_warn(&h->pdev->dev, "cp %p timedout\n", cp); |
| 1096 | break; |
| 1097 | default: |
| 1098 | cmd->result = DID_ERROR << 16; |
| 1099 | dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n", |
| 1100 | cp, ei->CommandStatus); |
| 1101 | } |
| 1102 | cmd->scsi_done(cmd); |
| 1103 | cmd_free(h, cp); |
| 1104 | } |
| 1105 | |
| 1106 | static int hpsa_scsi_detect(struct ctlr_info *h) |
| 1107 | { |
| 1108 | struct Scsi_Host *sh; |
| 1109 | int error; |
| 1110 | |
| 1111 | sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h)); |
| 1112 | if (sh == NULL) |
| 1113 | goto fail; |
| 1114 | |
| 1115 | sh->io_port = 0; |
| 1116 | sh->n_io_port = 0; |
| 1117 | sh->this_id = -1; |
| 1118 | sh->max_channel = 3; |
| 1119 | sh->max_cmd_len = MAX_COMMAND_SIZE; |
| 1120 | sh->max_lun = HPSA_MAX_LUN; |
| 1121 | sh->max_id = HPSA_MAX_LUN; |
| 1122 | h->scsi_host = sh; |
| 1123 | sh->hostdata[0] = (unsigned long) h; |
| 1124 | sh->irq = h->intr[SIMPLE_MODE_INT]; |
| 1125 | sh->unique_id = sh->irq; |
| 1126 | error = scsi_add_host(sh, &h->pdev->dev); |
| 1127 | if (error) |
| 1128 | goto fail_host_put; |
| 1129 | scsi_scan_host(sh); |
| 1130 | return 0; |
| 1131 | |
| 1132 | fail_host_put: |
| 1133 | dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host" |
| 1134 | " failed for controller %d\n", h->ctlr); |
| 1135 | scsi_host_put(sh); |
| 1136 | return -1; |
| 1137 | fail: |
| 1138 | dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc" |
| 1139 | " failed for controller %d\n", h->ctlr); |
| 1140 | return -1; |
| 1141 | } |
| 1142 | |
| 1143 | static void hpsa_pci_unmap(struct pci_dev *pdev, |
| 1144 | struct CommandList *c, int sg_used, int data_direction) |
| 1145 | { |
| 1146 | int i; |
| 1147 | union u64bit addr64; |
| 1148 | |
| 1149 | for (i = 0; i < sg_used; i++) { |
| 1150 | addr64.val32.lower = c->SG[i].Addr.lower; |
| 1151 | addr64.val32.upper = c->SG[i].Addr.upper; |
| 1152 | pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len, |
| 1153 | data_direction); |
| 1154 | } |
| 1155 | } |
| 1156 | |
| 1157 | static void hpsa_map_one(struct pci_dev *pdev, |
| 1158 | struct CommandList *cp, |
| 1159 | unsigned char *buf, |
| 1160 | size_t buflen, |
| 1161 | int data_direction) |
| 1162 | { |
| 1163 | __u64 addr64; |
| 1164 | |
| 1165 | if (buflen == 0 || data_direction == PCI_DMA_NONE) { |
| 1166 | cp->Header.SGList = 0; |
| 1167 | cp->Header.SGTotal = 0; |
| 1168 | return; |
| 1169 | } |
| 1170 | |
| 1171 | addr64 = (__u64) pci_map_single(pdev, buf, buflen, data_direction); |
| 1172 | cp->SG[0].Addr.lower = |
| 1173 | (__u32) (addr64 & (__u64) 0x00000000FFFFFFFF); |
| 1174 | cp->SG[0].Addr.upper = |
| 1175 | (__u32) ((addr64 >> 32) & (__u64) 0x00000000FFFFFFFF); |
| 1176 | cp->SG[0].Len = buflen; |
| 1177 | cp->Header.SGList = (__u8) 1; /* no. SGs contig in this cmd */ |
| 1178 | cp->Header.SGTotal = (__u16) 1; /* total sgs in this cmd list */ |
| 1179 | } |
| 1180 | |
| 1181 | static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h, |
| 1182 | struct CommandList *c) |
| 1183 | { |
| 1184 | DECLARE_COMPLETION_ONSTACK(wait); |
| 1185 | |
| 1186 | c->waiting = &wait; |
| 1187 | enqueue_cmd_and_start_io(h, c); |
| 1188 | wait_for_completion(&wait); |
| 1189 | } |
| 1190 | |
| 1191 | static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h, |
| 1192 | struct CommandList *c, int data_direction) |
| 1193 | { |
| 1194 | int retry_count = 0; |
| 1195 | |
| 1196 | do { |
| 1197 | memset(c->err_info, 0, sizeof(c->err_info)); |
| 1198 | hpsa_scsi_do_simple_cmd_core(h, c); |
| 1199 | retry_count++; |
| 1200 | } while (check_for_unit_attention(h, c) && retry_count <= 3); |
| 1201 | hpsa_pci_unmap(h->pdev, c, 1, data_direction); |
| 1202 | } |
| 1203 | |
| 1204 | static void hpsa_scsi_interpret_error(struct CommandList *cp) |
| 1205 | { |
| 1206 | struct ErrorInfo *ei; |
| 1207 | struct device *d = &cp->h->pdev->dev; |
| 1208 | |
| 1209 | ei = cp->err_info; |
| 1210 | switch (ei->CommandStatus) { |
| 1211 | case CMD_TARGET_STATUS: |
| 1212 | dev_warn(d, "cmd %p has completed with errors\n", cp); |
| 1213 | dev_warn(d, "cmd %p has SCSI Status = %x\n", cp, |
| 1214 | ei->ScsiStatus); |
| 1215 | if (ei->ScsiStatus == 0) |
| 1216 | dev_warn(d, "SCSI status is abnormally zero. " |
| 1217 | "(probably indicates selection timeout " |
| 1218 | "reported incorrectly due to a known " |
| 1219 | "firmware bug, circa July, 2001.)\n"); |
| 1220 | break; |
| 1221 | case CMD_DATA_UNDERRUN: /* let mid layer handle it. */ |
| 1222 | dev_info(d, "UNDERRUN\n"); |
| 1223 | break; |
| 1224 | case CMD_DATA_OVERRUN: |
| 1225 | dev_warn(d, "cp %p has completed with data overrun\n", cp); |
| 1226 | break; |
| 1227 | case CMD_INVALID: { |
| 1228 | /* controller unfortunately reports SCSI passthru's |
| 1229 | * to non-existent targets as invalid commands. |
| 1230 | */ |
| 1231 | dev_warn(d, "cp %p is reported invalid (probably means " |
| 1232 | "target device no longer present)\n", cp); |
| 1233 | /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0); |
| 1234 | print_cmd(cp); */ |
| 1235 | } |
| 1236 | break; |
| 1237 | case CMD_PROTOCOL_ERR: |
| 1238 | dev_warn(d, "cp %p has protocol error \n", cp); |
| 1239 | break; |
| 1240 | case CMD_HARDWARE_ERR: |
| 1241 | /* cmd->result = DID_ERROR << 16; */ |
| 1242 | dev_warn(d, "cp %p had hardware error\n", cp); |
| 1243 | break; |
| 1244 | case CMD_CONNECTION_LOST: |
| 1245 | dev_warn(d, "cp %p had connection lost\n", cp); |
| 1246 | break; |
| 1247 | case CMD_ABORTED: |
| 1248 | dev_warn(d, "cp %p was aborted\n", cp); |
| 1249 | break; |
| 1250 | case CMD_ABORT_FAILED: |
| 1251 | dev_warn(d, "cp %p reports abort failed\n", cp); |
| 1252 | break; |
| 1253 | case CMD_UNSOLICITED_ABORT: |
| 1254 | dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp); |
| 1255 | break; |
| 1256 | case CMD_TIMEOUT: |
| 1257 | dev_warn(d, "cp %p timed out\n", cp); |
| 1258 | break; |
| 1259 | default: |
| 1260 | dev_warn(d, "cp %p returned unknown status %x\n", cp, |
| 1261 | ei->CommandStatus); |
| 1262 | } |
| 1263 | } |
| 1264 | |
| 1265 | static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr, |
| 1266 | unsigned char page, unsigned char *buf, |
| 1267 | unsigned char bufsize) |
| 1268 | { |
| 1269 | int rc = IO_OK; |
| 1270 | struct CommandList *c; |
| 1271 | struct ErrorInfo *ei; |
| 1272 | |
| 1273 | c = cmd_special_alloc(h); |
| 1274 | |
| 1275 | if (c == NULL) { /* trouble... */ |
| 1276 | dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); |
| 1277 | return -1; |
| 1278 | } |
| 1279 | |
| 1280 | fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD); |
| 1281 | hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); |
| 1282 | ei = c->err_info; |
| 1283 | if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) { |
| 1284 | hpsa_scsi_interpret_error(c); |
| 1285 | rc = -1; |
| 1286 | } |
| 1287 | cmd_special_free(h, c); |
| 1288 | return rc; |
| 1289 | } |
| 1290 | |
| 1291 | static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr) |
| 1292 | { |
| 1293 | int rc = IO_OK; |
| 1294 | struct CommandList *c; |
| 1295 | struct ErrorInfo *ei; |
| 1296 | |
| 1297 | c = cmd_special_alloc(h); |
| 1298 | |
| 1299 | if (c == NULL) { /* trouble... */ |
| 1300 | dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); |
| 1301 | return -1; |
| 1302 | } |
| 1303 | |
| 1304 | fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG); |
| 1305 | hpsa_scsi_do_simple_cmd_core(h, c); |
| 1306 | /* no unmap needed here because no data xfer. */ |
| 1307 | |
| 1308 | ei = c->err_info; |
| 1309 | if (ei->CommandStatus != 0) { |
| 1310 | hpsa_scsi_interpret_error(c); |
| 1311 | rc = -1; |
| 1312 | } |
| 1313 | cmd_special_free(h, c); |
| 1314 | return rc; |
| 1315 | } |
| 1316 | |
| 1317 | static void hpsa_get_raid_level(struct ctlr_info *h, |
| 1318 | unsigned char *scsi3addr, unsigned char *raid_level) |
| 1319 | { |
| 1320 | int rc; |
| 1321 | unsigned char *buf; |
| 1322 | |
| 1323 | *raid_level = RAID_UNKNOWN; |
| 1324 | buf = kzalloc(64, GFP_KERNEL); |
| 1325 | if (!buf) |
| 1326 | return; |
| 1327 | rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64); |
| 1328 | if (rc == 0) |
| 1329 | *raid_level = buf[8]; |
| 1330 | if (*raid_level > RAID_UNKNOWN) |
| 1331 | *raid_level = RAID_UNKNOWN; |
| 1332 | kfree(buf); |
| 1333 | return; |
| 1334 | } |
| 1335 | |
| 1336 | /* Get the device id from inquiry page 0x83 */ |
| 1337 | static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr, |
| 1338 | unsigned char *device_id, int buflen) |
| 1339 | { |
| 1340 | int rc; |
| 1341 | unsigned char *buf; |
| 1342 | |
| 1343 | if (buflen > 16) |
| 1344 | buflen = 16; |
| 1345 | buf = kzalloc(64, GFP_KERNEL); |
| 1346 | if (!buf) |
| 1347 | return -1; |
| 1348 | rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64); |
| 1349 | if (rc == 0) |
| 1350 | memcpy(device_id, &buf[8], buflen); |
| 1351 | kfree(buf); |
| 1352 | return rc != 0; |
| 1353 | } |
| 1354 | |
| 1355 | static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical, |
| 1356 | struct ReportLUNdata *buf, int bufsize, |
| 1357 | int extended_response) |
| 1358 | { |
| 1359 | int rc = IO_OK; |
| 1360 | struct CommandList *c; |
| 1361 | unsigned char scsi3addr[8]; |
| 1362 | struct ErrorInfo *ei; |
| 1363 | |
| 1364 | c = cmd_special_alloc(h); |
| 1365 | if (c == NULL) { /* trouble... */ |
| 1366 | dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); |
| 1367 | return -1; |
| 1368 | } |
| 1369 | |
| 1370 | memset(&scsi3addr[0], 0, 8); /* address the controller */ |
| 1371 | |
| 1372 | fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h, |
| 1373 | buf, bufsize, 0, scsi3addr, TYPE_CMD); |
| 1374 | if (extended_response) |
| 1375 | c->Request.CDB[1] = extended_response; |
| 1376 | hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE); |
| 1377 | ei = c->err_info; |
| 1378 | if (ei->CommandStatus != 0 && |
| 1379 | ei->CommandStatus != CMD_DATA_UNDERRUN) { |
| 1380 | hpsa_scsi_interpret_error(c); |
| 1381 | rc = -1; |
| 1382 | } |
| 1383 | cmd_special_free(h, c); |
| 1384 | return rc; |
| 1385 | } |
| 1386 | |
| 1387 | static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h, |
| 1388 | struct ReportLUNdata *buf, |
| 1389 | int bufsize, int extended_response) |
| 1390 | { |
| 1391 | return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response); |
| 1392 | } |
| 1393 | |
| 1394 | static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h, |
| 1395 | struct ReportLUNdata *buf, int bufsize) |
| 1396 | { |
| 1397 | return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0); |
| 1398 | } |
| 1399 | |
| 1400 | static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device, |
| 1401 | int bus, int target, int lun) |
| 1402 | { |
| 1403 | device->bus = bus; |
| 1404 | device->target = target; |
| 1405 | device->lun = lun; |
| 1406 | } |
| 1407 | |
| 1408 | static int hpsa_update_device_info(struct ctlr_info *h, |
| 1409 | unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device) |
| 1410 | { |
| 1411 | #define OBDR_TAPE_INQ_SIZE 49 |
| 1412 | unsigned char *inq_buff = NULL; |
| 1413 | |
| 1414 | inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); |
| 1415 | if (!inq_buff) |
| 1416 | goto bail_out; |
| 1417 | |
| 1418 | memset(inq_buff, 0, OBDR_TAPE_INQ_SIZE); |
| 1419 | /* Do an inquiry to the device to see what it is. */ |
| 1420 | if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff, |
| 1421 | (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) { |
| 1422 | /* Inquiry failed (msg printed already) */ |
| 1423 | dev_err(&h->pdev->dev, |
| 1424 | "hpsa_update_device_info: inquiry failed\n"); |
| 1425 | goto bail_out; |
| 1426 | } |
| 1427 | |
| 1428 | /* As a side effect, record the firmware version number |
| 1429 | * if we happen to be talking to the RAID controller. |
| 1430 | */ |
| 1431 | if (is_hba_lunid(scsi3addr)) |
| 1432 | memcpy(h->firm_ver, &inq_buff[32], 4); |
| 1433 | |
| 1434 | this_device->devtype = (inq_buff[0] & 0x1f); |
| 1435 | memcpy(this_device->scsi3addr, scsi3addr, 8); |
| 1436 | memcpy(this_device->vendor, &inq_buff[8], |
| 1437 | sizeof(this_device->vendor)); |
| 1438 | memcpy(this_device->model, &inq_buff[16], |
| 1439 | sizeof(this_device->model)); |
| 1440 | memcpy(this_device->revision, &inq_buff[32], |
| 1441 | sizeof(this_device->revision)); |
| 1442 | memset(this_device->device_id, 0, |
| 1443 | sizeof(this_device->device_id)); |
| 1444 | hpsa_get_device_id(h, scsi3addr, this_device->device_id, |
| 1445 | sizeof(this_device->device_id)); |
| 1446 | |
| 1447 | if (this_device->devtype == TYPE_DISK && |
| 1448 | is_logical_dev_addr_mode(scsi3addr)) |
| 1449 | hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level); |
| 1450 | else |
| 1451 | this_device->raid_level = RAID_UNKNOWN; |
| 1452 | |
| 1453 | kfree(inq_buff); |
| 1454 | return 0; |
| 1455 | |
| 1456 | bail_out: |
| 1457 | kfree(inq_buff); |
| 1458 | return 1; |
| 1459 | } |
| 1460 | |
| 1461 | static unsigned char *msa2xxx_model[] = { |
| 1462 | "MSA2012", |
| 1463 | "MSA2024", |
| 1464 | "MSA2312", |
| 1465 | "MSA2324", |
| 1466 | NULL, |
| 1467 | }; |
| 1468 | |
| 1469 | static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device) |
| 1470 | { |
| 1471 | int i; |
| 1472 | |
| 1473 | for (i = 0; msa2xxx_model[i]; i++) |
| 1474 | if (strncmp(device->model, msa2xxx_model[i], |
| 1475 | strlen(msa2xxx_model[i])) == 0) |
| 1476 | return 1; |
| 1477 | return 0; |
| 1478 | } |
| 1479 | |
| 1480 | /* Helper function to assign bus, target, lun mapping of devices. |
| 1481 | * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical |
| 1482 | * volumes on bus 1, physical devices on bus 2. and the hba on bus 3. |
| 1483 | * Logical drive target and lun are assigned at this time, but |
| 1484 | * physical device lun and target assignment are deferred (assigned |
| 1485 | * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.) |
| 1486 | */ |
| 1487 | static void figure_bus_target_lun(struct ctlr_info *h, |
| 1488 | __u8 *lunaddrbytes, int *bus, int *target, int *lun, |
| 1489 | struct hpsa_scsi_dev_t *device) |
| 1490 | { |
| 1491 | |
| 1492 | __u32 lunid; |
| 1493 | |
| 1494 | if (is_logical_dev_addr_mode(lunaddrbytes)) { |
| 1495 | /* logical device */ |
| 1496 | memcpy(&lunid, lunaddrbytes, sizeof(lunid)); |
| 1497 | lunid = le32_to_cpu(lunid); |
| 1498 | |
| 1499 | if (is_msa2xxx(h, device)) { |
| 1500 | *bus = 1; |
| 1501 | *target = (lunid >> 16) & 0x3fff; |
| 1502 | *lun = lunid & 0x00ff; |
| 1503 | } else { |
| 1504 | *bus = 0; |
| 1505 | *lun = 0; |
| 1506 | *target = lunid & 0x3fff; |
| 1507 | } |
| 1508 | } else { |
| 1509 | /* physical device */ |
| 1510 | if (is_hba_lunid(lunaddrbytes)) |
| 1511 | *bus = 3; |
| 1512 | else |
| 1513 | *bus = 2; |
| 1514 | *target = -1; |
| 1515 | *lun = -1; /* we will fill these in later. */ |
| 1516 | } |
| 1517 | } |
| 1518 | |
| 1519 | /* |
| 1520 | * If there is no lun 0 on a target, linux won't find any devices. |
| 1521 | * For the MSA2xxx boxes, we have to manually detect the enclosure |
| 1522 | * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report |
| 1523 | * it for some reason. *tmpdevice is the target we're adding, |
| 1524 | * this_device is a pointer into the current element of currentsd[] |
| 1525 | * that we're building up in update_scsi_devices(), below. |
| 1526 | * lunzerobits is a bitmap that tracks which targets already have a |
| 1527 | * lun 0 assigned. |
| 1528 | * Returns 1 if an enclosure was added, 0 if not. |
| 1529 | */ |
| 1530 | static int add_msa2xxx_enclosure_device(struct ctlr_info *h, |
| 1531 | struct hpsa_scsi_dev_t *tmpdevice, |
| 1532 | struct hpsa_scsi_dev_t *this_device, __u8 *lunaddrbytes, |
| 1533 | int bus, int target, int lun, unsigned long lunzerobits[], |
| 1534 | int *nmsa2xxx_enclosures) |
| 1535 | { |
| 1536 | unsigned char scsi3addr[8]; |
| 1537 | |
| 1538 | if (test_bit(target, lunzerobits)) |
| 1539 | return 0; /* There is already a lun 0 on this target. */ |
| 1540 | |
| 1541 | if (!is_logical_dev_addr_mode(lunaddrbytes)) |
| 1542 | return 0; /* It's the logical targets that may lack lun 0. */ |
| 1543 | |
| 1544 | if (!is_msa2xxx(h, tmpdevice)) |
| 1545 | return 0; /* It's only the MSA2xxx that have this problem. */ |
| 1546 | |
| 1547 | if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */ |
| 1548 | return 0; |
| 1549 | |
| 1550 | if (is_hba_lunid(scsi3addr)) |
| 1551 | return 0; /* Don't add the RAID controller here. */ |
| 1552 | |
| 1553 | #define MAX_MSA2XXX_ENCLOSURES 32 |
| 1554 | if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) { |
| 1555 | dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX " |
| 1556 | "enclosures exceeded. Check your hardware " |
| 1557 | "configuration."); |
| 1558 | return 0; |
| 1559 | } |
| 1560 | |
| 1561 | memset(scsi3addr, 0, 8); |
| 1562 | scsi3addr[3] = target; |
| 1563 | if (hpsa_update_device_info(h, scsi3addr, this_device)) |
| 1564 | return 0; |
| 1565 | (*nmsa2xxx_enclosures)++; |
| 1566 | hpsa_set_bus_target_lun(this_device, bus, target, 0); |
| 1567 | set_bit(target, lunzerobits); |
| 1568 | return 1; |
| 1569 | } |
| 1570 | |
| 1571 | /* |
| 1572 | * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev, |
| 1573 | * logdev. The number of luns in physdev and logdev are returned in |
| 1574 | * *nphysicals and *nlogicals, respectively. |
| 1575 | * Returns 0 on success, -1 otherwise. |
| 1576 | */ |
| 1577 | static int hpsa_gather_lun_info(struct ctlr_info *h, |
| 1578 | int reportlunsize, |
| 1579 | struct ReportLUNdata *physdev, __u32 *nphysicals, |
| 1580 | struct ReportLUNdata *logdev, __u32 *nlogicals) |
| 1581 | { |
| 1582 | if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) { |
| 1583 | dev_err(&h->pdev->dev, "report physical LUNs failed.\n"); |
| 1584 | return -1; |
| 1585 | } |
| 1586 | memcpy(nphysicals, &physdev->LUNListLength[0], sizeof(*nphysicals)); |
| 1587 | *nphysicals = be32_to_cpu(*nphysicals) / 8; |
| 1588 | #ifdef DEBUG |
| 1589 | dev_info(&h->pdev->dev, "number of physical luns is %d\n", *nphysicals); |
| 1590 | #endif |
| 1591 | if (*nphysicals > HPSA_MAX_PHYS_LUN) { |
| 1592 | dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded." |
| 1593 | " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, |
| 1594 | *nphysicals - HPSA_MAX_PHYS_LUN); |
| 1595 | *nphysicals = HPSA_MAX_PHYS_LUN; |
| 1596 | } |
| 1597 | if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) { |
| 1598 | dev_err(&h->pdev->dev, "report logical LUNs failed.\n"); |
| 1599 | return -1; |
| 1600 | } |
| 1601 | memcpy(nlogicals, &logdev->LUNListLength[0], sizeof(*nlogicals)); |
| 1602 | *nlogicals = be32_to_cpu(*nlogicals) / 8; |
| 1603 | #ifdef DEBUG |
| 1604 | dev_info(&h->pdev->dev, "number of logical luns is %d\n", *nlogicals); |
| 1605 | #endif |
| 1606 | /* Reject Logicals in excess of our max capability. */ |
| 1607 | if (*nlogicals > HPSA_MAX_LUN) { |
| 1608 | dev_warn(&h->pdev->dev, |
| 1609 | "maximum logical LUNs (%d) exceeded. " |
| 1610 | "%d LUNs ignored.\n", HPSA_MAX_LUN, |
| 1611 | *nlogicals - HPSA_MAX_LUN); |
| 1612 | *nlogicals = HPSA_MAX_LUN; |
| 1613 | } |
| 1614 | if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) { |
| 1615 | dev_warn(&h->pdev->dev, |
| 1616 | "maximum logical + physical LUNs (%d) exceeded. " |
| 1617 | "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN, |
| 1618 | *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN); |
| 1619 | *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals; |
| 1620 | } |
| 1621 | return 0; |
| 1622 | } |
| 1623 | |
| 1624 | static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno) |
| 1625 | { |
| 1626 | /* the idea here is we could get notified |
| 1627 | * that some devices have changed, so we do a report |
| 1628 | * physical luns and report logical luns cmd, and adjust |
| 1629 | * our list of devices accordingly. |
| 1630 | * |
| 1631 | * The scsi3addr's of devices won't change so long as the |
| 1632 | * adapter is not reset. That means we can rescan and |
| 1633 | * tell which devices we already know about, vs. new |
| 1634 | * devices, vs. disappearing devices. |
| 1635 | */ |
| 1636 | struct ReportLUNdata *physdev_list = NULL; |
| 1637 | struct ReportLUNdata *logdev_list = NULL; |
| 1638 | unsigned char *inq_buff = NULL; |
| 1639 | __u32 nphysicals = 0; |
| 1640 | __u32 nlogicals = 0; |
| 1641 | __u32 ndev_allocated = 0; |
| 1642 | struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice; |
| 1643 | int ncurrent = 0; |
| 1644 | int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8; |
| 1645 | int i, nmsa2xxx_enclosures, ndevs_to_allocate; |
| 1646 | int bus, target, lun; |
| 1647 | DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR); |
| 1648 | |
| 1649 | currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA, |
| 1650 | GFP_KERNEL); |
| 1651 | physdev_list = kzalloc(reportlunsize, GFP_KERNEL); |
| 1652 | logdev_list = kzalloc(reportlunsize, GFP_KERNEL); |
| 1653 | inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL); |
| 1654 | tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL); |
| 1655 | |
| 1656 | if (!currentsd || !physdev_list || !logdev_list || |
| 1657 | !inq_buff || !tmpdevice) { |
| 1658 | dev_err(&h->pdev->dev, "out of memory\n"); |
| 1659 | goto out; |
| 1660 | } |
| 1661 | memset(lunzerobits, 0, sizeof(lunzerobits)); |
| 1662 | |
| 1663 | if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals, |
| 1664 | logdev_list, &nlogicals)) |
| 1665 | goto out; |
| 1666 | |
| 1667 | /* We might see up to 32 MSA2xxx enclosures, actually 8 of them |
| 1668 | * but each of them 4 times through different paths. The plus 1 |
| 1669 | * is for the RAID controller. |
| 1670 | */ |
| 1671 | ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1; |
| 1672 | |
| 1673 | /* Allocate the per device structures */ |
| 1674 | for (i = 0; i < ndevs_to_allocate; i++) { |
| 1675 | currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL); |
| 1676 | if (!currentsd[i]) { |
| 1677 | dev_warn(&h->pdev->dev, "out of memory at %s:%d\n", |
| 1678 | __FILE__, __LINE__); |
| 1679 | goto out; |
| 1680 | } |
| 1681 | ndev_allocated++; |
| 1682 | } |
| 1683 | |
| 1684 | /* adjust our table of devices */ |
| 1685 | nmsa2xxx_enclosures = 0; |
| 1686 | for (i = 0; i < nphysicals + nlogicals + 1; i++) { |
| 1687 | __u8 *lunaddrbytes; |
| 1688 | |
| 1689 | /* Figure out where the LUN ID info is coming from */ |
| 1690 | if (i < nphysicals) |
| 1691 | lunaddrbytes = &physdev_list->LUN[i][0]; |
| 1692 | else |
| 1693 | if (i < nphysicals + nlogicals) |
| 1694 | lunaddrbytes = |
| 1695 | &logdev_list->LUN[i-nphysicals][0]; |
| 1696 | else /* jam in the RAID controller at the end */ |
| 1697 | lunaddrbytes = RAID_CTLR_LUNID; |
| 1698 | |
| 1699 | /* skip masked physical devices. */ |
| 1700 | if (lunaddrbytes[3] & 0xC0 && i < nphysicals) |
| 1701 | continue; |
| 1702 | |
| 1703 | /* Get device type, vendor, model, device id */ |
| 1704 | if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice)) |
| 1705 | continue; /* skip it if we can't talk to it. */ |
| 1706 | figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun, |
| 1707 | tmpdevice); |
| 1708 | this_device = currentsd[ncurrent]; |
| 1709 | |
| 1710 | /* |
| 1711 | * For the msa2xxx boxes, we have to insert a LUN 0 which |
| 1712 | * doesn't show up in CCISS_REPORT_PHYSICAL data, but there |
| 1713 | * is nonetheless an enclosure device there. We have to |
| 1714 | * present that otherwise linux won't find anything if |
| 1715 | * there is no lun 0. |
| 1716 | */ |
| 1717 | if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device, |
| 1718 | lunaddrbytes, bus, target, lun, lunzerobits, |
| 1719 | &nmsa2xxx_enclosures)) { |
| 1720 | ncurrent++; |
| 1721 | this_device = currentsd[ncurrent]; |
| 1722 | } |
| 1723 | |
| 1724 | *this_device = *tmpdevice; |
| 1725 | hpsa_set_bus_target_lun(this_device, bus, target, lun); |
| 1726 | |
| 1727 | switch (this_device->devtype) { |
| 1728 | case TYPE_ROM: { |
| 1729 | /* We don't *really* support actual CD-ROM devices, |
| 1730 | * just "One Button Disaster Recovery" tape drive |
| 1731 | * which temporarily pretends to be a CD-ROM drive. |
| 1732 | * So we check that the device is really an OBDR tape |
| 1733 | * device by checking for "$DR-10" in bytes 43-48 of |
| 1734 | * the inquiry data. |
| 1735 | */ |
| 1736 | char obdr_sig[7]; |
| 1737 | #define OBDR_TAPE_SIG "$DR-10" |
| 1738 | strncpy(obdr_sig, &inq_buff[43], 6); |
| 1739 | obdr_sig[6] = '\0'; |
| 1740 | if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0) |
| 1741 | /* Not OBDR device, ignore it. */ |
| 1742 | break; |
| 1743 | } |
| 1744 | ncurrent++; |
| 1745 | break; |
| 1746 | case TYPE_DISK: |
| 1747 | if (i < nphysicals) |
| 1748 | break; |
| 1749 | ncurrent++; |
| 1750 | break; |
| 1751 | case TYPE_TAPE: |
| 1752 | case TYPE_MEDIUM_CHANGER: |
| 1753 | ncurrent++; |
| 1754 | break; |
| 1755 | case TYPE_RAID: |
| 1756 | /* Only present the Smartarray HBA as a RAID controller. |
| 1757 | * If it's a RAID controller other than the HBA itself |
| 1758 | * (an external RAID controller, MSA500 or similar) |
| 1759 | * don't present it. |
| 1760 | */ |
| 1761 | if (!is_hba_lunid(lunaddrbytes)) |
| 1762 | break; |
| 1763 | ncurrent++; |
| 1764 | break; |
| 1765 | default: |
| 1766 | break; |
| 1767 | } |
| 1768 | if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA) |
| 1769 | break; |
| 1770 | } |
| 1771 | adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent); |
| 1772 | out: |
| 1773 | kfree(tmpdevice); |
| 1774 | for (i = 0; i < ndev_allocated; i++) |
| 1775 | kfree(currentsd[i]); |
| 1776 | kfree(currentsd); |
| 1777 | kfree(inq_buff); |
| 1778 | kfree(physdev_list); |
| 1779 | kfree(logdev_list); |
| 1780 | return; |
| 1781 | } |
| 1782 | |
| 1783 | /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci |
| 1784 | * dma mapping and fills in the scatter gather entries of the |
| 1785 | * hpsa command, cp. |
| 1786 | */ |
| 1787 | static int hpsa_scatter_gather(struct pci_dev *pdev, |
| 1788 | struct CommandList *cp, |
| 1789 | struct scsi_cmnd *cmd) |
| 1790 | { |
| 1791 | unsigned int len; |
| 1792 | struct scatterlist *sg; |
| 1793 | __u64 addr64; |
| 1794 | int use_sg, i; |
| 1795 | |
| 1796 | BUG_ON(scsi_sg_count(cmd) > MAXSGENTRIES); |
| 1797 | |
| 1798 | use_sg = scsi_dma_map(cmd); |
| 1799 | if (use_sg < 0) |
| 1800 | return use_sg; |
| 1801 | |
| 1802 | if (!use_sg) |
| 1803 | goto sglist_finished; |
| 1804 | |
| 1805 | scsi_for_each_sg(cmd, sg, use_sg, i) { |
| 1806 | addr64 = (__u64) sg_dma_address(sg); |
| 1807 | len = sg_dma_len(sg); |
| 1808 | cp->SG[i].Addr.lower = |
| 1809 | (__u32) (addr64 & (__u64) 0x00000000FFFFFFFF); |
| 1810 | cp->SG[i].Addr.upper = |
| 1811 | (__u32) ((addr64 >> 32) & (__u64) 0x00000000FFFFFFFF); |
| 1812 | cp->SG[i].Len = len; |
| 1813 | cp->SG[i].Ext = 0; /* we are not chaining */ |
| 1814 | } |
| 1815 | |
| 1816 | sglist_finished: |
| 1817 | |
| 1818 | cp->Header.SGList = (__u8) use_sg; /* no. SGs contig in this cmd */ |
| 1819 | cp->Header.SGTotal = (__u16) use_sg; /* total sgs in this cmd list */ |
| 1820 | return 0; |
| 1821 | } |
| 1822 | |
| 1823 | |
| 1824 | static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd, |
| 1825 | void (*done)(struct scsi_cmnd *)) |
| 1826 | { |
| 1827 | struct ctlr_info *h; |
| 1828 | struct hpsa_scsi_dev_t *dev; |
| 1829 | unsigned char scsi3addr[8]; |
| 1830 | struct CommandList *c; |
| 1831 | unsigned long flags; |
| 1832 | |
| 1833 | /* Get the ptr to our adapter structure out of cmd->host. */ |
| 1834 | h = sdev_to_hba(cmd->device); |
| 1835 | dev = cmd->device->hostdata; |
| 1836 | if (!dev) { |
| 1837 | cmd->result = DID_NO_CONNECT << 16; |
| 1838 | done(cmd); |
| 1839 | return 0; |
| 1840 | } |
| 1841 | memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr)); |
| 1842 | |
| 1843 | /* Need a lock as this is being allocated from the pool */ |
| 1844 | spin_lock_irqsave(&h->lock, flags); |
| 1845 | c = cmd_alloc(h); |
| 1846 | spin_unlock_irqrestore(&h->lock, flags); |
| 1847 | if (c == NULL) { /* trouble... */ |
| 1848 | dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n"); |
| 1849 | return SCSI_MLQUEUE_HOST_BUSY; |
| 1850 | } |
| 1851 | |
| 1852 | /* Fill in the command list header */ |
| 1853 | |
| 1854 | cmd->scsi_done = done; /* save this for use by completion code */ |
| 1855 | |
| 1856 | /* save c in case we have to abort it */ |
| 1857 | cmd->host_scribble = (unsigned char *) c; |
| 1858 | |
| 1859 | c->cmd_type = CMD_SCSI; |
| 1860 | c->scsi_cmd = cmd; |
| 1861 | c->Header.ReplyQueue = 0; /* unused in simple mode */ |
| 1862 | memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8); |
| 1863 | c->Header.Tag.lower = c->busaddr; /* Use k. address of cmd as tag */ |
| 1864 | |
| 1865 | /* Fill in the request block... */ |
| 1866 | |
| 1867 | c->Request.Timeout = 0; |
| 1868 | memset(c->Request.CDB, 0, sizeof(c->Request.CDB)); |
| 1869 | BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB)); |
| 1870 | c->Request.CDBLen = cmd->cmd_len; |
| 1871 | memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len); |
| 1872 | c->Request.Type.Type = TYPE_CMD; |
| 1873 | c->Request.Type.Attribute = ATTR_SIMPLE; |
| 1874 | switch (cmd->sc_data_direction) { |
| 1875 | case DMA_TO_DEVICE: |
| 1876 | c->Request.Type.Direction = XFER_WRITE; |
| 1877 | break; |
| 1878 | case DMA_FROM_DEVICE: |
| 1879 | c->Request.Type.Direction = XFER_READ; |
| 1880 | break; |
| 1881 | case DMA_NONE: |
| 1882 | c->Request.Type.Direction = XFER_NONE; |
| 1883 | break; |
| 1884 | case DMA_BIDIRECTIONAL: |
| 1885 | /* This can happen if a buggy application does a scsi passthru |
| 1886 | * and sets both inlen and outlen to non-zero. ( see |
| 1887 | * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() ) |
| 1888 | */ |
| 1889 | |
| 1890 | c->Request.Type.Direction = XFER_RSVD; |
| 1891 | /* This is technically wrong, and hpsa controllers should |
| 1892 | * reject it with CMD_INVALID, which is the most correct |
| 1893 | * response, but non-fibre backends appear to let it |
| 1894 | * slide by, and give the same results as if this field |
| 1895 | * were set correctly. Either way is acceptable for |
| 1896 | * our purposes here. |
| 1897 | */ |
| 1898 | |
| 1899 | break; |
| 1900 | |
| 1901 | default: |
| 1902 | dev_err(&h->pdev->dev, "unknown data direction: %d\n", |
| 1903 | cmd->sc_data_direction); |
| 1904 | BUG(); |
| 1905 | break; |
| 1906 | } |
| 1907 | |
| 1908 | if (hpsa_scatter_gather(h->pdev, c, cmd) < 0) { /* Fill SG list */ |
| 1909 | cmd_free(h, c); |
| 1910 | return SCSI_MLQUEUE_HOST_BUSY; |
| 1911 | } |
| 1912 | enqueue_cmd_and_start_io(h, c); |
| 1913 | /* the cmd'll come back via intr handler in complete_scsi_command() */ |
| 1914 | return 0; |
| 1915 | } |
| 1916 | |
| 1917 | static void hpsa_unregister_scsi(struct ctlr_info *h) |
| 1918 | { |
| 1919 | /* we are being forcibly unloaded, and may not refuse. */ |
| 1920 | scsi_remove_host(h->scsi_host); |
| 1921 | scsi_host_put(h->scsi_host); |
| 1922 | h->scsi_host = NULL; |
| 1923 | } |
| 1924 | |
| 1925 | static int hpsa_register_scsi(struct ctlr_info *h) |
| 1926 | { |
| 1927 | int rc; |
| 1928 | |
| 1929 | hpsa_update_scsi_devices(h, -1); |
| 1930 | rc = hpsa_scsi_detect(h); |
| 1931 | if (rc != 0) |
| 1932 | dev_err(&h->pdev->dev, "hpsa_register_scsi: failed" |
| 1933 | " hpsa_scsi_detect(), rc is %d\n", rc); |
| 1934 | return rc; |
| 1935 | } |
| 1936 | |
| 1937 | static int wait_for_device_to_become_ready(struct ctlr_info *h, |
| 1938 | unsigned char lunaddr[]) |
| 1939 | { |
| 1940 | int rc = 0; |
| 1941 | int count = 0; |
| 1942 | int waittime = 1; /* seconds */ |
| 1943 | struct CommandList *c; |
| 1944 | |
| 1945 | c = cmd_special_alloc(h); |
| 1946 | if (!c) { |
| 1947 | dev_warn(&h->pdev->dev, "out of memory in " |
| 1948 | "wait_for_device_to_become_ready.\n"); |
| 1949 | return IO_ERROR; |
| 1950 | } |
| 1951 | |
| 1952 | /* Send test unit ready until device ready, or give up. */ |
| 1953 | while (count < HPSA_TUR_RETRY_LIMIT) { |
| 1954 | |
| 1955 | /* Wait for a bit. do this first, because if we send |
| 1956 | * the TUR right away, the reset will just abort it. |
| 1957 | */ |
| 1958 | msleep(1000 * waittime); |
| 1959 | count++; |
| 1960 | |
| 1961 | /* Increase wait time with each try, up to a point. */ |
| 1962 | if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS) |
| 1963 | waittime = waittime * 2; |
| 1964 | |
| 1965 | /* Send the Test Unit Ready */ |
| 1966 | fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD); |
| 1967 | hpsa_scsi_do_simple_cmd_core(h, c); |
| 1968 | /* no unmap needed here because no data xfer. */ |
| 1969 | |
| 1970 | if (c->err_info->CommandStatus == CMD_SUCCESS) |
| 1971 | break; |
| 1972 | |
| 1973 | if (c->err_info->CommandStatus == CMD_TARGET_STATUS && |
| 1974 | c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION && |
| 1975 | (c->err_info->SenseInfo[2] == NO_SENSE || |
| 1976 | c->err_info->SenseInfo[2] == UNIT_ATTENTION)) |
| 1977 | break; |
| 1978 | |
| 1979 | dev_warn(&h->pdev->dev, "waiting %d secs " |
| 1980 | "for device to become ready.\n", waittime); |
| 1981 | rc = 1; /* device not ready. */ |
| 1982 | } |
| 1983 | |
| 1984 | if (rc) |
| 1985 | dev_warn(&h->pdev->dev, "giving up on device.\n"); |
| 1986 | else |
| 1987 | dev_warn(&h->pdev->dev, "device is ready.\n"); |
| 1988 | |
| 1989 | cmd_special_free(h, c); |
| 1990 | return rc; |
| 1991 | } |
| 1992 | |
| 1993 | /* Need at least one of these error handlers to keep ../scsi/hosts.c from |
| 1994 | * complaining. Doing a host- or bus-reset can't do anything good here. |
| 1995 | */ |
| 1996 | static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd) |
| 1997 | { |
| 1998 | int rc; |
| 1999 | struct ctlr_info *h; |
| 2000 | struct hpsa_scsi_dev_t *dev; |
| 2001 | |
| 2002 | /* find the controller to which the command to be aborted was sent */ |
| 2003 | h = sdev_to_hba(scsicmd->device); |
| 2004 | if (h == NULL) /* paranoia */ |
| 2005 | return FAILED; |
| 2006 | dev_warn(&h->pdev->dev, "resetting drive\n"); |
| 2007 | |
| 2008 | dev = scsicmd->device->hostdata; |
| 2009 | if (!dev) { |
| 2010 | dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: " |
| 2011 | "device lookup failed.\n"); |
| 2012 | return FAILED; |
| 2013 | } |
| 2014 | /* send a reset to the SCSI LUN which the command was sent to */ |
| 2015 | rc = hpsa_send_reset(h, dev->scsi3addr); |
| 2016 | if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0) |
| 2017 | return SUCCESS; |
| 2018 | |
| 2019 | dev_warn(&h->pdev->dev, "resetting device failed.\n"); |
| 2020 | return FAILED; |
| 2021 | } |
| 2022 | |
| 2023 | /* |
| 2024 | * For operations that cannot sleep, a command block is allocated at init, |
| 2025 | * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track |
| 2026 | * which ones are free or in use. Lock must be held when calling this. |
| 2027 | * cmd_free() is the complement. |
| 2028 | */ |
| 2029 | static struct CommandList *cmd_alloc(struct ctlr_info *h) |
| 2030 | { |
| 2031 | struct CommandList *c; |
| 2032 | int i; |
| 2033 | union u64bit temp64; |
| 2034 | dma_addr_t cmd_dma_handle, err_dma_handle; |
| 2035 | |
| 2036 | do { |
| 2037 | i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds); |
| 2038 | if (i == h->nr_cmds) |
| 2039 | return NULL; |
| 2040 | } while (test_and_set_bit |
| 2041 | (i & (BITS_PER_LONG - 1), |
| 2042 | h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0); |
| 2043 | c = h->cmd_pool + i; |
| 2044 | memset(c, 0, sizeof(*c)); |
| 2045 | cmd_dma_handle = h->cmd_pool_dhandle |
| 2046 | + i * sizeof(*c); |
| 2047 | c->err_info = h->errinfo_pool + i; |
| 2048 | memset(c->err_info, 0, sizeof(*c->err_info)); |
| 2049 | err_dma_handle = h->errinfo_pool_dhandle |
| 2050 | + i * sizeof(*c->err_info); |
| 2051 | h->nr_allocs++; |
| 2052 | |
| 2053 | c->cmdindex = i; |
| 2054 | |
| 2055 | INIT_HLIST_NODE(&c->list); |
| 2056 | c->busaddr = (__u32) cmd_dma_handle; |
| 2057 | temp64.val = (__u64) err_dma_handle; |
| 2058 | c->ErrDesc.Addr.lower = temp64.val32.lower; |
| 2059 | c->ErrDesc.Addr.upper = temp64.val32.upper; |
| 2060 | c->ErrDesc.Len = sizeof(*c->err_info); |
| 2061 | |
| 2062 | c->h = h; |
| 2063 | return c; |
| 2064 | } |
| 2065 | |
| 2066 | /* For operations that can wait for kmalloc to possibly sleep, |
| 2067 | * this routine can be called. Lock need not be held to call |
| 2068 | * cmd_special_alloc. cmd_special_free() is the complement. |
| 2069 | */ |
| 2070 | static struct CommandList *cmd_special_alloc(struct ctlr_info *h) |
| 2071 | { |
| 2072 | struct CommandList *c; |
| 2073 | union u64bit temp64; |
| 2074 | dma_addr_t cmd_dma_handle, err_dma_handle; |
| 2075 | |
| 2076 | c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle); |
| 2077 | if (c == NULL) |
| 2078 | return NULL; |
| 2079 | memset(c, 0, sizeof(*c)); |
| 2080 | |
| 2081 | c->cmdindex = -1; |
| 2082 | |
| 2083 | c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info), |
| 2084 | &err_dma_handle); |
| 2085 | |
| 2086 | if (c->err_info == NULL) { |
| 2087 | pci_free_consistent(h->pdev, |
| 2088 | sizeof(*c), c, cmd_dma_handle); |
| 2089 | return NULL; |
| 2090 | } |
| 2091 | memset(c->err_info, 0, sizeof(*c->err_info)); |
| 2092 | |
| 2093 | INIT_HLIST_NODE(&c->list); |
| 2094 | c->busaddr = (__u32) cmd_dma_handle; |
| 2095 | temp64.val = (__u64) err_dma_handle; |
| 2096 | c->ErrDesc.Addr.lower = temp64.val32.lower; |
| 2097 | c->ErrDesc.Addr.upper = temp64.val32.upper; |
| 2098 | c->ErrDesc.Len = sizeof(*c->err_info); |
| 2099 | |
| 2100 | c->h = h; |
| 2101 | return c; |
| 2102 | } |
| 2103 | |
| 2104 | static void cmd_free(struct ctlr_info *h, struct CommandList *c) |
| 2105 | { |
| 2106 | int i; |
| 2107 | |
| 2108 | i = c - h->cmd_pool; |
| 2109 | clear_bit(i & (BITS_PER_LONG - 1), |
| 2110 | h->cmd_pool_bits + (i / BITS_PER_LONG)); |
| 2111 | h->nr_frees++; |
| 2112 | } |
| 2113 | |
| 2114 | static void cmd_special_free(struct ctlr_info *h, struct CommandList *c) |
| 2115 | { |
| 2116 | union u64bit temp64; |
| 2117 | |
| 2118 | temp64.val32.lower = c->ErrDesc.Addr.lower; |
| 2119 | temp64.val32.upper = c->ErrDesc.Addr.upper; |
| 2120 | pci_free_consistent(h->pdev, sizeof(*c->err_info), |
| 2121 | c->err_info, (dma_addr_t) temp64.val); |
| 2122 | pci_free_consistent(h->pdev, sizeof(*c), |
| 2123 | c, (dma_addr_t) c->busaddr); |
| 2124 | } |
| 2125 | |
| 2126 | #ifdef CONFIG_COMPAT |
| 2127 | |
| 2128 | static int do_ioctl(struct scsi_device *dev, int cmd, void *arg) |
| 2129 | { |
| 2130 | int ret; |
| 2131 | |
| 2132 | lock_kernel(); |
| 2133 | ret = hpsa_ioctl(dev, cmd, arg); |
| 2134 | unlock_kernel(); |
| 2135 | return ret; |
| 2136 | } |
| 2137 | |
| 2138 | static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg); |
| 2139 | static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, |
| 2140 | int cmd, void *arg); |
| 2141 | |
| 2142 | static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg) |
| 2143 | { |
| 2144 | switch (cmd) { |
| 2145 | case CCISS_GETPCIINFO: |
| 2146 | case CCISS_GETINTINFO: |
| 2147 | case CCISS_SETINTINFO: |
| 2148 | case CCISS_GETNODENAME: |
| 2149 | case CCISS_SETNODENAME: |
| 2150 | case CCISS_GETHEARTBEAT: |
| 2151 | case CCISS_GETBUSTYPES: |
| 2152 | case CCISS_GETFIRMVER: |
| 2153 | case CCISS_GETDRIVVER: |
| 2154 | case CCISS_REVALIDVOLS: |
| 2155 | case CCISS_DEREGDISK: |
| 2156 | case CCISS_REGNEWDISK: |
| 2157 | case CCISS_REGNEWD: |
| 2158 | case CCISS_RESCANDISK: |
| 2159 | case CCISS_GETLUNINFO: |
| 2160 | return do_ioctl(dev, cmd, arg); |
| 2161 | |
| 2162 | case CCISS_PASSTHRU32: |
| 2163 | return hpsa_ioctl32_passthru(dev, cmd, arg); |
| 2164 | case CCISS_BIG_PASSTHRU32: |
| 2165 | return hpsa_ioctl32_big_passthru(dev, cmd, arg); |
| 2166 | |
| 2167 | default: |
| 2168 | return -ENOIOCTLCMD; |
| 2169 | } |
| 2170 | } |
| 2171 | |
| 2172 | static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg) |
| 2173 | { |
| 2174 | IOCTL32_Command_struct __user *arg32 = |
| 2175 | (IOCTL32_Command_struct __user *) arg; |
| 2176 | IOCTL_Command_struct arg64; |
| 2177 | IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64)); |
| 2178 | int err; |
| 2179 | u32 cp; |
| 2180 | |
| 2181 | err = 0; |
| 2182 | err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, |
| 2183 | sizeof(arg64.LUN_info)); |
| 2184 | err |= copy_from_user(&arg64.Request, &arg32->Request, |
| 2185 | sizeof(arg64.Request)); |
| 2186 | err |= copy_from_user(&arg64.error_info, &arg32->error_info, |
| 2187 | sizeof(arg64.error_info)); |
| 2188 | err |= get_user(arg64.buf_size, &arg32->buf_size); |
| 2189 | err |= get_user(cp, &arg32->buf); |
| 2190 | arg64.buf = compat_ptr(cp); |
| 2191 | err |= copy_to_user(p, &arg64, sizeof(arg64)); |
| 2192 | |
| 2193 | if (err) |
| 2194 | return -EFAULT; |
| 2195 | |
| 2196 | err = do_ioctl(dev, CCISS_PASSTHRU, (void *)p); |
| 2197 | if (err) |
| 2198 | return err; |
| 2199 | err |= copy_in_user(&arg32->error_info, &p->error_info, |
| 2200 | sizeof(arg32->error_info)); |
| 2201 | if (err) |
| 2202 | return -EFAULT; |
| 2203 | return err; |
| 2204 | } |
| 2205 | |
| 2206 | static int hpsa_ioctl32_big_passthru(struct scsi_device *dev, |
| 2207 | int cmd, void *arg) |
| 2208 | { |
| 2209 | BIG_IOCTL32_Command_struct __user *arg32 = |
| 2210 | (BIG_IOCTL32_Command_struct __user *) arg; |
| 2211 | BIG_IOCTL_Command_struct arg64; |
| 2212 | BIG_IOCTL_Command_struct __user *p = |
| 2213 | compat_alloc_user_space(sizeof(arg64)); |
| 2214 | int err; |
| 2215 | u32 cp; |
| 2216 | |
| 2217 | err = 0; |
| 2218 | err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info, |
| 2219 | sizeof(arg64.LUN_info)); |
| 2220 | err |= copy_from_user(&arg64.Request, &arg32->Request, |
| 2221 | sizeof(arg64.Request)); |
| 2222 | err |= copy_from_user(&arg64.error_info, &arg32->error_info, |
| 2223 | sizeof(arg64.error_info)); |
| 2224 | err |= get_user(arg64.buf_size, &arg32->buf_size); |
| 2225 | err |= get_user(arg64.malloc_size, &arg32->malloc_size); |
| 2226 | err |= get_user(cp, &arg32->buf); |
| 2227 | arg64.buf = compat_ptr(cp); |
| 2228 | err |= copy_to_user(p, &arg64, sizeof(arg64)); |
| 2229 | |
| 2230 | if (err) |
| 2231 | return -EFAULT; |
| 2232 | |
| 2233 | err = do_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p); |
| 2234 | if (err) |
| 2235 | return err; |
| 2236 | err |= copy_in_user(&arg32->error_info, &p->error_info, |
| 2237 | sizeof(arg32->error_info)); |
| 2238 | if (err) |
| 2239 | return -EFAULT; |
| 2240 | return err; |
| 2241 | } |
| 2242 | #endif |
| 2243 | |
| 2244 | static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp) |
| 2245 | { |
| 2246 | struct hpsa_pci_info pciinfo; |
| 2247 | |
| 2248 | if (!argp) |
| 2249 | return -EINVAL; |
| 2250 | pciinfo.domain = pci_domain_nr(h->pdev->bus); |
| 2251 | pciinfo.bus = h->pdev->bus->number; |
| 2252 | pciinfo.dev_fn = h->pdev->devfn; |
| 2253 | pciinfo.board_id = h->board_id; |
| 2254 | if (copy_to_user(argp, &pciinfo, sizeof(pciinfo))) |
| 2255 | return -EFAULT; |
| 2256 | return 0; |
| 2257 | } |
| 2258 | |
| 2259 | static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp) |
| 2260 | { |
| 2261 | DriverVer_type DriverVer; |
| 2262 | unsigned char vmaj, vmin, vsubmin; |
| 2263 | int rc; |
| 2264 | |
| 2265 | rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu", |
| 2266 | &vmaj, &vmin, &vsubmin); |
| 2267 | if (rc != 3) { |
| 2268 | dev_info(&h->pdev->dev, "driver version string '%s' " |
| 2269 | "unrecognized.", HPSA_DRIVER_VERSION); |
| 2270 | vmaj = 0; |
| 2271 | vmin = 0; |
| 2272 | vsubmin = 0; |
| 2273 | } |
| 2274 | DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin; |
| 2275 | if (!argp) |
| 2276 | return -EINVAL; |
| 2277 | if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type))) |
| 2278 | return -EFAULT; |
| 2279 | return 0; |
| 2280 | } |
| 2281 | |
| 2282 | static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp) |
| 2283 | { |
| 2284 | IOCTL_Command_struct iocommand; |
| 2285 | struct CommandList *c; |
| 2286 | char *buff = NULL; |
| 2287 | union u64bit temp64; |
| 2288 | |
| 2289 | if (!argp) |
| 2290 | return -EINVAL; |
| 2291 | if (!capable(CAP_SYS_RAWIO)) |
| 2292 | return -EPERM; |
| 2293 | if (copy_from_user(&iocommand, argp, sizeof(iocommand))) |
| 2294 | return -EFAULT; |
| 2295 | if ((iocommand.buf_size < 1) && |
| 2296 | (iocommand.Request.Type.Direction != XFER_NONE)) { |
| 2297 | return -EINVAL; |
| 2298 | } |
| 2299 | if (iocommand.buf_size > 0) { |
| 2300 | buff = kmalloc(iocommand.buf_size, GFP_KERNEL); |
| 2301 | if (buff == NULL) |
| 2302 | return -EFAULT; |
| 2303 | } |
| 2304 | if (iocommand.Request.Type.Direction == XFER_WRITE) { |
| 2305 | /* Copy the data into the buffer we created */ |
| 2306 | if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) { |
| 2307 | kfree(buff); |
| 2308 | return -EFAULT; |
| 2309 | } |
| 2310 | } else |
| 2311 | memset(buff, 0, iocommand.buf_size); |
| 2312 | c = cmd_special_alloc(h); |
| 2313 | if (c == NULL) { |
| 2314 | kfree(buff); |
| 2315 | return -ENOMEM; |
| 2316 | } |
| 2317 | /* Fill in the command type */ |
| 2318 | c->cmd_type = CMD_IOCTL_PEND; |
| 2319 | /* Fill in Command Header */ |
| 2320 | c->Header.ReplyQueue = 0; /* unused in simple mode */ |
| 2321 | if (iocommand.buf_size > 0) { /* buffer to fill */ |
| 2322 | c->Header.SGList = 1; |
| 2323 | c->Header.SGTotal = 1; |
| 2324 | } else { /* no buffers to fill */ |
| 2325 | c->Header.SGList = 0; |
| 2326 | c->Header.SGTotal = 0; |
| 2327 | } |
| 2328 | memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN)); |
| 2329 | /* use the kernel address the cmd block for tag */ |
| 2330 | c->Header.Tag.lower = c->busaddr; |
| 2331 | |
| 2332 | /* Fill in Request block */ |
| 2333 | memcpy(&c->Request, &iocommand.Request, |
| 2334 | sizeof(c->Request)); |
| 2335 | |
| 2336 | /* Fill in the scatter gather information */ |
| 2337 | if (iocommand.buf_size > 0) { |
| 2338 | temp64.val = pci_map_single(h->pdev, buff, |
| 2339 | iocommand.buf_size, PCI_DMA_BIDIRECTIONAL); |
| 2340 | c->SG[0].Addr.lower = temp64.val32.lower; |
| 2341 | c->SG[0].Addr.upper = temp64.val32.upper; |
| 2342 | c->SG[0].Len = iocommand.buf_size; |
| 2343 | c->SG[0].Ext = 0; /* we are not chaining*/ |
| 2344 | } |
| 2345 | hpsa_scsi_do_simple_cmd_core(h, c); |
| 2346 | hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL); |
| 2347 | check_ioctl_unit_attention(h, c); |
| 2348 | |
| 2349 | /* Copy the error information out */ |
| 2350 | memcpy(&iocommand.error_info, c->err_info, |
| 2351 | sizeof(iocommand.error_info)); |
| 2352 | if (copy_to_user(argp, &iocommand, sizeof(iocommand))) { |
| 2353 | kfree(buff); |
| 2354 | cmd_special_free(h, c); |
| 2355 | return -EFAULT; |
| 2356 | } |
| 2357 | |
| 2358 | if (iocommand.Request.Type.Direction == XFER_READ) { |
| 2359 | /* Copy the data out of the buffer we created */ |
| 2360 | if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) { |
| 2361 | kfree(buff); |
| 2362 | cmd_special_free(h, c); |
| 2363 | return -EFAULT; |
| 2364 | } |
| 2365 | } |
| 2366 | kfree(buff); |
| 2367 | cmd_special_free(h, c); |
| 2368 | return 0; |
| 2369 | } |
| 2370 | |
| 2371 | static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp) |
| 2372 | { |
| 2373 | BIG_IOCTL_Command_struct *ioc; |
| 2374 | struct CommandList *c; |
| 2375 | unsigned char **buff = NULL; |
| 2376 | int *buff_size = NULL; |
| 2377 | union u64bit temp64; |
| 2378 | BYTE sg_used = 0; |
| 2379 | int status = 0; |
| 2380 | int i; |
| 2381 | __u32 left; |
| 2382 | __u32 sz; |
| 2383 | BYTE __user *data_ptr; |
| 2384 | |
| 2385 | if (!argp) |
| 2386 | return -EINVAL; |
| 2387 | if (!capable(CAP_SYS_RAWIO)) |
| 2388 | return -EPERM; |
| 2389 | ioc = (BIG_IOCTL_Command_struct *) |
| 2390 | kmalloc(sizeof(*ioc), GFP_KERNEL); |
| 2391 | if (!ioc) { |
| 2392 | status = -ENOMEM; |
| 2393 | goto cleanup1; |
| 2394 | } |
| 2395 | if (copy_from_user(ioc, argp, sizeof(*ioc))) { |
| 2396 | status = -EFAULT; |
| 2397 | goto cleanup1; |
| 2398 | } |
| 2399 | if ((ioc->buf_size < 1) && |
| 2400 | (ioc->Request.Type.Direction != XFER_NONE)) { |
| 2401 | status = -EINVAL; |
| 2402 | goto cleanup1; |
| 2403 | } |
| 2404 | /* Check kmalloc limits using all SGs */ |
| 2405 | if (ioc->malloc_size > MAX_KMALLOC_SIZE) { |
| 2406 | status = -EINVAL; |
| 2407 | goto cleanup1; |
| 2408 | } |
| 2409 | if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) { |
| 2410 | status = -EINVAL; |
| 2411 | goto cleanup1; |
| 2412 | } |
| 2413 | buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL); |
| 2414 | if (!buff) { |
| 2415 | status = -ENOMEM; |
| 2416 | goto cleanup1; |
| 2417 | } |
| 2418 | buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL); |
| 2419 | if (!buff_size) { |
| 2420 | status = -ENOMEM; |
| 2421 | goto cleanup1; |
| 2422 | } |
| 2423 | left = ioc->buf_size; |
| 2424 | data_ptr = ioc->buf; |
| 2425 | while (left) { |
| 2426 | sz = (left > ioc->malloc_size) ? ioc->malloc_size : left; |
| 2427 | buff_size[sg_used] = sz; |
| 2428 | buff[sg_used] = kmalloc(sz, GFP_KERNEL); |
| 2429 | if (buff[sg_used] == NULL) { |
| 2430 | status = -ENOMEM; |
| 2431 | goto cleanup1; |
| 2432 | } |
| 2433 | if (ioc->Request.Type.Direction == XFER_WRITE) { |
| 2434 | if (copy_from_user(buff[sg_used], data_ptr, sz)) { |
| 2435 | status = -ENOMEM; |
| 2436 | goto cleanup1; |
| 2437 | } |
| 2438 | } else |
| 2439 | memset(buff[sg_used], 0, sz); |
| 2440 | left -= sz; |
| 2441 | data_ptr += sz; |
| 2442 | sg_used++; |
| 2443 | } |
| 2444 | c = cmd_special_alloc(h); |
| 2445 | if (c == NULL) { |
| 2446 | status = -ENOMEM; |
| 2447 | goto cleanup1; |
| 2448 | } |
| 2449 | c->cmd_type = CMD_IOCTL_PEND; |
| 2450 | c->Header.ReplyQueue = 0; |
| 2451 | |
| 2452 | if (ioc->buf_size > 0) { |
| 2453 | c->Header.SGList = sg_used; |
| 2454 | c->Header.SGTotal = sg_used; |
| 2455 | } else { |
| 2456 | c->Header.SGList = 0; |
| 2457 | c->Header.SGTotal = 0; |
| 2458 | } |
| 2459 | memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN)); |
| 2460 | c->Header.Tag.lower = c->busaddr; |
| 2461 | memcpy(&c->Request, &ioc->Request, sizeof(c->Request)); |
| 2462 | if (ioc->buf_size > 0) { |
| 2463 | int i; |
| 2464 | for (i = 0; i < sg_used; i++) { |
| 2465 | temp64.val = pci_map_single(h->pdev, buff[i], |
| 2466 | buff_size[i], PCI_DMA_BIDIRECTIONAL); |
| 2467 | c->SG[i].Addr.lower = temp64.val32.lower; |
| 2468 | c->SG[i].Addr.upper = temp64.val32.upper; |
| 2469 | c->SG[i].Len = buff_size[i]; |
| 2470 | /* we are not chaining */ |
| 2471 | c->SG[i].Ext = 0; |
| 2472 | } |
| 2473 | } |
| 2474 | hpsa_scsi_do_simple_cmd_core(h, c); |
| 2475 | hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL); |
| 2476 | check_ioctl_unit_attention(h, c); |
| 2477 | /* Copy the error information out */ |
| 2478 | memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info)); |
| 2479 | if (copy_to_user(argp, ioc, sizeof(*ioc))) { |
| 2480 | cmd_special_free(h, c); |
| 2481 | status = -EFAULT; |
| 2482 | goto cleanup1; |
| 2483 | } |
| 2484 | if (ioc->Request.Type.Direction == XFER_READ) { |
| 2485 | /* Copy the data out of the buffer we created */ |
| 2486 | BYTE __user *ptr = ioc->buf; |
| 2487 | for (i = 0; i < sg_used; i++) { |
| 2488 | if (copy_to_user(ptr, buff[i], buff_size[i])) { |
| 2489 | cmd_special_free(h, c); |
| 2490 | status = -EFAULT; |
| 2491 | goto cleanup1; |
| 2492 | } |
| 2493 | ptr += buff_size[i]; |
| 2494 | } |
| 2495 | } |
| 2496 | cmd_special_free(h, c); |
| 2497 | status = 0; |
| 2498 | cleanup1: |
| 2499 | if (buff) { |
| 2500 | for (i = 0; i < sg_used; i++) |
| 2501 | kfree(buff[i]); |
| 2502 | kfree(buff); |
| 2503 | } |
| 2504 | kfree(buff_size); |
| 2505 | kfree(ioc); |
| 2506 | return status; |
| 2507 | } |
| 2508 | |
| 2509 | static void check_ioctl_unit_attention(struct ctlr_info *h, |
| 2510 | struct CommandList *c) |
| 2511 | { |
| 2512 | if (c->err_info->CommandStatus == CMD_TARGET_STATUS && |
| 2513 | c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) |
| 2514 | (void) check_for_unit_attention(h, c); |
| 2515 | } |
| 2516 | /* |
| 2517 | * ioctl |
| 2518 | */ |
| 2519 | static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg) |
| 2520 | { |
| 2521 | struct ctlr_info *h; |
| 2522 | void __user *argp = (void __user *)arg; |
| 2523 | |
| 2524 | h = sdev_to_hba(dev); |
| 2525 | |
| 2526 | switch (cmd) { |
| 2527 | case CCISS_DEREGDISK: |
| 2528 | case CCISS_REGNEWDISK: |
| 2529 | case CCISS_REGNEWD: |
| 2530 | hpsa_update_scsi_devices(h, dev->host->host_no); |
| 2531 | return 0; |
| 2532 | case CCISS_GETPCIINFO: |
| 2533 | return hpsa_getpciinfo_ioctl(h, argp); |
| 2534 | case CCISS_GETDRIVVER: |
| 2535 | return hpsa_getdrivver_ioctl(h, argp); |
| 2536 | case CCISS_PASSTHRU: |
| 2537 | return hpsa_passthru_ioctl(h, argp); |
| 2538 | case CCISS_BIG_PASSTHRU: |
| 2539 | return hpsa_big_passthru_ioctl(h, argp); |
| 2540 | default: |
| 2541 | return -ENOTTY; |
| 2542 | } |
| 2543 | } |
| 2544 | |
| 2545 | static void fill_cmd(struct CommandList *c, __u8 cmd, struct ctlr_info *h, |
| 2546 | void *buff, size_t size, __u8 page_code, unsigned char *scsi3addr, |
| 2547 | int cmd_type) |
| 2548 | { |
| 2549 | int pci_dir = XFER_NONE; |
| 2550 | |
| 2551 | c->cmd_type = CMD_IOCTL_PEND; |
| 2552 | c->Header.ReplyQueue = 0; |
| 2553 | if (buff != NULL && size > 0) { |
| 2554 | c->Header.SGList = 1; |
| 2555 | c->Header.SGTotal = 1; |
| 2556 | } else { |
| 2557 | c->Header.SGList = 0; |
| 2558 | c->Header.SGTotal = 0; |
| 2559 | } |
| 2560 | c->Header.Tag.lower = c->busaddr; |
| 2561 | memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8); |
| 2562 | |
| 2563 | c->Request.Type.Type = cmd_type; |
| 2564 | if (cmd_type == TYPE_CMD) { |
| 2565 | switch (cmd) { |
| 2566 | case HPSA_INQUIRY: |
| 2567 | /* are we trying to read a vital product page */ |
| 2568 | if (page_code != 0) { |
| 2569 | c->Request.CDB[1] = 0x01; |
| 2570 | c->Request.CDB[2] = page_code; |
| 2571 | } |
| 2572 | c->Request.CDBLen = 6; |
| 2573 | c->Request.Type.Attribute = ATTR_SIMPLE; |
| 2574 | c->Request.Type.Direction = XFER_READ; |
| 2575 | c->Request.Timeout = 0; |
| 2576 | c->Request.CDB[0] = HPSA_INQUIRY; |
| 2577 | c->Request.CDB[4] = size & 0xFF; |
| 2578 | break; |
| 2579 | case HPSA_REPORT_LOG: |
| 2580 | case HPSA_REPORT_PHYS: |
| 2581 | /* Talking to controller so It's a physical command |
| 2582 | mode = 00 target = 0. Nothing to write. |
| 2583 | */ |
| 2584 | c->Request.CDBLen = 12; |
| 2585 | c->Request.Type.Attribute = ATTR_SIMPLE; |
| 2586 | c->Request.Type.Direction = XFER_READ; |
| 2587 | c->Request.Timeout = 0; |
| 2588 | c->Request.CDB[0] = cmd; |
| 2589 | c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */ |
| 2590 | c->Request.CDB[7] = (size >> 16) & 0xFF; |
| 2591 | c->Request.CDB[8] = (size >> 8) & 0xFF; |
| 2592 | c->Request.CDB[9] = size & 0xFF; |
| 2593 | break; |
| 2594 | |
| 2595 | case HPSA_READ_CAPACITY: |
| 2596 | c->Request.CDBLen = 10; |
| 2597 | c->Request.Type.Attribute = ATTR_SIMPLE; |
| 2598 | c->Request.Type.Direction = XFER_READ; |
| 2599 | c->Request.Timeout = 0; |
| 2600 | c->Request.CDB[0] = cmd; |
| 2601 | break; |
| 2602 | case HPSA_CACHE_FLUSH: |
| 2603 | c->Request.CDBLen = 12; |
| 2604 | c->Request.Type.Attribute = ATTR_SIMPLE; |
| 2605 | c->Request.Type.Direction = XFER_WRITE; |
| 2606 | c->Request.Timeout = 0; |
| 2607 | c->Request.CDB[0] = BMIC_WRITE; |
| 2608 | c->Request.CDB[6] = BMIC_CACHE_FLUSH; |
| 2609 | break; |
| 2610 | case TEST_UNIT_READY: |
| 2611 | c->Request.CDBLen = 6; |
| 2612 | c->Request.Type.Attribute = ATTR_SIMPLE; |
| 2613 | c->Request.Type.Direction = XFER_NONE; |
| 2614 | c->Request.Timeout = 0; |
| 2615 | break; |
| 2616 | default: |
| 2617 | dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd); |
| 2618 | BUG(); |
| 2619 | return; |
| 2620 | } |
| 2621 | } else if (cmd_type == TYPE_MSG) { |
| 2622 | switch (cmd) { |
| 2623 | |
| 2624 | case HPSA_DEVICE_RESET_MSG: |
| 2625 | c->Request.CDBLen = 16; |
| 2626 | c->Request.Type.Type = 1; /* It is a MSG not a CMD */ |
| 2627 | c->Request.Type.Attribute = ATTR_SIMPLE; |
| 2628 | c->Request.Type.Direction = XFER_NONE; |
| 2629 | c->Request.Timeout = 0; /* Don't time out */ |
| 2630 | c->Request.CDB[0] = 0x01; /* RESET_MSG is 0x01 */ |
| 2631 | c->Request.CDB[1] = 0x03; /* Reset target above */ |
| 2632 | /* If bytes 4-7 are zero, it means reset the */ |
| 2633 | /* LunID device */ |
| 2634 | c->Request.CDB[4] = 0x00; |
| 2635 | c->Request.CDB[5] = 0x00; |
| 2636 | c->Request.CDB[6] = 0x00; |
| 2637 | c->Request.CDB[7] = 0x00; |
| 2638 | break; |
| 2639 | |
| 2640 | default: |
| 2641 | dev_warn(&h->pdev->dev, "unknown message type %d\n", |
| 2642 | cmd); |
| 2643 | BUG(); |
| 2644 | } |
| 2645 | } else { |
| 2646 | dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type); |
| 2647 | BUG(); |
| 2648 | } |
| 2649 | |
| 2650 | switch (c->Request.Type.Direction) { |
| 2651 | case XFER_READ: |
| 2652 | pci_dir = PCI_DMA_FROMDEVICE; |
| 2653 | break; |
| 2654 | case XFER_WRITE: |
| 2655 | pci_dir = PCI_DMA_TODEVICE; |
| 2656 | break; |
| 2657 | case XFER_NONE: |
| 2658 | pci_dir = PCI_DMA_NONE; |
| 2659 | break; |
| 2660 | default: |
| 2661 | pci_dir = PCI_DMA_BIDIRECTIONAL; |
| 2662 | } |
| 2663 | |
| 2664 | hpsa_map_one(h->pdev, c, buff, size, pci_dir); |
| 2665 | |
| 2666 | return; |
| 2667 | } |
| 2668 | |
| 2669 | /* |
| 2670 | * Map (physical) PCI mem into (virtual) kernel space |
| 2671 | */ |
| 2672 | static void __iomem *remap_pci_mem(ulong base, ulong size) |
| 2673 | { |
| 2674 | ulong page_base = ((ulong) base) & PAGE_MASK; |
| 2675 | ulong page_offs = ((ulong) base) - page_base; |
| 2676 | void __iomem *page_remapped = ioremap(page_base, page_offs + size); |
| 2677 | |
| 2678 | return page_remapped ? (page_remapped + page_offs) : NULL; |
| 2679 | } |
| 2680 | |
| 2681 | /* Takes cmds off the submission queue and sends them to the hardware, |
| 2682 | * then puts them on the queue of cmds waiting for completion. |
| 2683 | */ |
| 2684 | static void start_io(struct ctlr_info *h) |
| 2685 | { |
| 2686 | struct CommandList *c; |
| 2687 | |
| 2688 | while (!hlist_empty(&h->reqQ)) { |
| 2689 | c = hlist_entry(h->reqQ.first, struct CommandList, list); |
| 2690 | /* can't do anything if fifo is full */ |
| 2691 | if ((h->access.fifo_full(h))) { |
| 2692 | dev_warn(&h->pdev->dev, "fifo full\n"); |
| 2693 | break; |
| 2694 | } |
| 2695 | |
| 2696 | /* Get the first entry from the Request Q */ |
| 2697 | removeQ(c); |
| 2698 | h->Qdepth--; |
| 2699 | |
| 2700 | /* Tell the controller execute command */ |
| 2701 | h->access.submit_command(h, c); |
| 2702 | |
| 2703 | /* Put job onto the completed Q */ |
| 2704 | addQ(&h->cmpQ, c); |
| 2705 | } |
| 2706 | } |
| 2707 | |
| 2708 | static inline unsigned long get_next_completion(struct ctlr_info *h) |
| 2709 | { |
| 2710 | return h->access.command_completed(h); |
| 2711 | } |
| 2712 | |
| 2713 | static inline int interrupt_pending(struct ctlr_info *h) |
| 2714 | { |
| 2715 | return h->access.intr_pending(h); |
| 2716 | } |
| 2717 | |
| 2718 | static inline long interrupt_not_for_us(struct ctlr_info *h) |
| 2719 | { |
| 2720 | return ((h->access.intr_pending(h) == 0) || |
| 2721 | (h->interrupts_enabled == 0)); |
| 2722 | } |
| 2723 | |
| 2724 | static inline int bad_tag(struct ctlr_info *h, __u32 tag_index, |
| 2725 | __u32 raw_tag) |
| 2726 | { |
| 2727 | if (unlikely(tag_index >= h->nr_cmds)) { |
| 2728 | dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag); |
| 2729 | return 1; |
| 2730 | } |
| 2731 | return 0; |
| 2732 | } |
| 2733 | |
| 2734 | static inline void finish_cmd(struct CommandList *c, __u32 raw_tag) |
| 2735 | { |
| 2736 | removeQ(c); |
| 2737 | if (likely(c->cmd_type == CMD_SCSI)) |
| 2738 | complete_scsi_command(c, 0, raw_tag); |
| 2739 | else if (c->cmd_type == CMD_IOCTL_PEND) |
| 2740 | complete(c->waiting); |
| 2741 | } |
| 2742 | |
| 2743 | static irqreturn_t do_hpsa_intr(int irq, void *dev_id) |
| 2744 | { |
| 2745 | struct ctlr_info *h = dev_id; |
| 2746 | struct CommandList *c; |
| 2747 | unsigned long flags; |
| 2748 | __u32 raw_tag, tag, tag_index; |
| 2749 | struct hlist_node *tmp; |
| 2750 | |
| 2751 | if (interrupt_not_for_us(h)) |
| 2752 | return IRQ_NONE; |
| 2753 | spin_lock_irqsave(&h->lock, flags); |
| 2754 | while (interrupt_pending(h)) { |
| 2755 | while ((raw_tag = get_next_completion(h)) != FIFO_EMPTY) { |
| 2756 | if (likely(HPSA_TAG_CONTAINS_INDEX(raw_tag))) { |
| 2757 | tag_index = HPSA_TAG_TO_INDEX(raw_tag); |
| 2758 | if (bad_tag(h, tag_index, raw_tag)) |
| 2759 | return IRQ_HANDLED; |
| 2760 | c = h->cmd_pool + tag_index; |
| 2761 | finish_cmd(c, raw_tag); |
| 2762 | continue; |
| 2763 | } |
| 2764 | tag = HPSA_TAG_DISCARD_ERROR_BITS(raw_tag); |
| 2765 | c = NULL; |
| 2766 | hlist_for_each_entry(c, tmp, &h->cmpQ, list) { |
| 2767 | if (c->busaddr == tag) { |
| 2768 | finish_cmd(c, raw_tag); |
| 2769 | break; |
| 2770 | } |
| 2771 | } |
| 2772 | } |
| 2773 | } |
| 2774 | spin_unlock_irqrestore(&h->lock, flags); |
| 2775 | return IRQ_HANDLED; |
| 2776 | } |
| 2777 | |
| 2778 | /* Send a message CDB to the firmware. */ |
| 2779 | static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode, |
| 2780 | unsigned char type) |
| 2781 | { |
| 2782 | struct Command { |
| 2783 | struct CommandListHeader CommandHeader; |
| 2784 | struct RequestBlock Request; |
| 2785 | struct ErrDescriptor ErrorDescriptor; |
| 2786 | }; |
| 2787 | struct Command *cmd; |
| 2788 | static const size_t cmd_sz = sizeof(*cmd) + |
| 2789 | sizeof(cmd->ErrorDescriptor); |
| 2790 | dma_addr_t paddr64; |
| 2791 | uint32_t paddr32, tag; |
| 2792 | void __iomem *vaddr; |
| 2793 | int i, err; |
| 2794 | |
| 2795 | vaddr = pci_ioremap_bar(pdev, 0); |
| 2796 | if (vaddr == NULL) |
| 2797 | return -ENOMEM; |
| 2798 | |
| 2799 | /* The Inbound Post Queue only accepts 32-bit physical addresses for the |
| 2800 | * CCISS commands, so they must be allocated from the lower 4GiB of |
| 2801 | * memory. |
| 2802 | */ |
| 2803 | err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); |
| 2804 | if (err) { |
| 2805 | iounmap(vaddr); |
| 2806 | return -ENOMEM; |
| 2807 | } |
| 2808 | |
| 2809 | cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64); |
| 2810 | if (cmd == NULL) { |
| 2811 | iounmap(vaddr); |
| 2812 | return -ENOMEM; |
| 2813 | } |
| 2814 | |
| 2815 | /* This must fit, because of the 32-bit consistent DMA mask. Also, |
| 2816 | * although there's no guarantee, we assume that the address is at |
| 2817 | * least 4-byte aligned (most likely, it's page-aligned). |
| 2818 | */ |
| 2819 | paddr32 = paddr64; |
| 2820 | |
| 2821 | cmd->CommandHeader.ReplyQueue = 0; |
| 2822 | cmd->CommandHeader.SGList = 0; |
| 2823 | cmd->CommandHeader.SGTotal = 0; |
| 2824 | cmd->CommandHeader.Tag.lower = paddr32; |
| 2825 | cmd->CommandHeader.Tag.upper = 0; |
| 2826 | memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8); |
| 2827 | |
| 2828 | cmd->Request.CDBLen = 16; |
| 2829 | cmd->Request.Type.Type = TYPE_MSG; |
| 2830 | cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE; |
| 2831 | cmd->Request.Type.Direction = XFER_NONE; |
| 2832 | cmd->Request.Timeout = 0; /* Don't time out */ |
| 2833 | cmd->Request.CDB[0] = opcode; |
| 2834 | cmd->Request.CDB[1] = type; |
| 2835 | memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */ |
| 2836 | cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd); |
| 2837 | cmd->ErrorDescriptor.Addr.upper = 0; |
| 2838 | cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo); |
| 2839 | |
| 2840 | writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET); |
| 2841 | |
| 2842 | for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) { |
| 2843 | tag = readl(vaddr + SA5_REPLY_PORT_OFFSET); |
| 2844 | if (HPSA_TAG_DISCARD_ERROR_BITS(tag) == paddr32) |
| 2845 | break; |
| 2846 | msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS); |
| 2847 | } |
| 2848 | |
| 2849 | iounmap(vaddr); |
| 2850 | |
| 2851 | /* we leak the DMA buffer here ... no choice since the controller could |
| 2852 | * still complete the command. |
| 2853 | */ |
| 2854 | if (i == HPSA_MSG_SEND_RETRY_LIMIT) { |
| 2855 | dev_err(&pdev->dev, "controller message %02x:%02x timed out\n", |
| 2856 | opcode, type); |
| 2857 | return -ETIMEDOUT; |
| 2858 | } |
| 2859 | |
| 2860 | pci_free_consistent(pdev, cmd_sz, cmd, paddr64); |
| 2861 | |
| 2862 | if (tag & HPSA_ERROR_BIT) { |
| 2863 | dev_err(&pdev->dev, "controller message %02x:%02x failed\n", |
| 2864 | opcode, type); |
| 2865 | return -EIO; |
| 2866 | } |
| 2867 | |
| 2868 | dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n", |
| 2869 | opcode, type); |
| 2870 | return 0; |
| 2871 | } |
| 2872 | |
| 2873 | #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0) |
| 2874 | #define hpsa_noop(p) hpsa_message(p, 3, 0) |
| 2875 | |
| 2876 | static __devinit int hpsa_reset_msi(struct pci_dev *pdev) |
| 2877 | { |
| 2878 | /* the #defines are stolen from drivers/pci/msi.h. */ |
| 2879 | #define msi_control_reg(base) (base + PCI_MSI_FLAGS) |
| 2880 | #define PCI_MSIX_FLAGS_ENABLE (1 << 15) |
| 2881 | |
| 2882 | int pos; |
| 2883 | u16 control = 0; |
| 2884 | |
| 2885 | pos = pci_find_capability(pdev, PCI_CAP_ID_MSI); |
| 2886 | if (pos) { |
| 2887 | pci_read_config_word(pdev, msi_control_reg(pos), &control); |
| 2888 | if (control & PCI_MSI_FLAGS_ENABLE) { |
| 2889 | dev_info(&pdev->dev, "resetting MSI\n"); |
| 2890 | pci_write_config_word(pdev, msi_control_reg(pos), |
| 2891 | control & ~PCI_MSI_FLAGS_ENABLE); |
| 2892 | } |
| 2893 | } |
| 2894 | |
| 2895 | pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX); |
| 2896 | if (pos) { |
| 2897 | pci_read_config_word(pdev, msi_control_reg(pos), &control); |
| 2898 | if (control & PCI_MSIX_FLAGS_ENABLE) { |
| 2899 | dev_info(&pdev->dev, "resetting MSI-X\n"); |
| 2900 | pci_write_config_word(pdev, msi_control_reg(pos), |
| 2901 | control & ~PCI_MSIX_FLAGS_ENABLE); |
| 2902 | } |
| 2903 | } |
| 2904 | |
| 2905 | return 0; |
| 2906 | } |
| 2907 | |
| 2908 | /* This does a hard reset of the controller using PCI power management |
| 2909 | * states. |
| 2910 | */ |
| 2911 | static __devinit int hpsa_hard_reset_controller(struct pci_dev *pdev) |
| 2912 | { |
| 2913 | u16 pmcsr, saved_config_space[32]; |
| 2914 | int i, pos; |
| 2915 | |
| 2916 | dev_info(&pdev->dev, "using PCI PM to reset controller\n"); |
| 2917 | |
| 2918 | /* This is very nearly the same thing as |
| 2919 | * |
| 2920 | * pci_save_state(pci_dev); |
| 2921 | * pci_set_power_state(pci_dev, PCI_D3hot); |
| 2922 | * pci_set_power_state(pci_dev, PCI_D0); |
| 2923 | * pci_restore_state(pci_dev); |
| 2924 | * |
| 2925 | * but we can't use these nice canned kernel routines on |
| 2926 | * kexec, because they also check the MSI/MSI-X state in PCI |
| 2927 | * configuration space and do the wrong thing when it is |
| 2928 | * set/cleared. Also, the pci_save/restore_state functions |
| 2929 | * violate the ordering requirements for restoring the |
| 2930 | * configuration space from the CCISS document (see the |
| 2931 | * comment below). So we roll our own .... |
| 2932 | */ |
| 2933 | |
| 2934 | for (i = 0; i < 32; i++) |
| 2935 | pci_read_config_word(pdev, 2*i, &saved_config_space[i]); |
| 2936 | |
| 2937 | pos = pci_find_capability(pdev, PCI_CAP_ID_PM); |
| 2938 | if (pos == 0) { |
| 2939 | dev_err(&pdev->dev, |
| 2940 | "hpsa_reset_controller: PCI PM not supported\n"); |
| 2941 | return -ENODEV; |
| 2942 | } |
| 2943 | |
| 2944 | /* Quoting from the Open CISS Specification: "The Power |
| 2945 | * Management Control/Status Register (CSR) controls the power |
| 2946 | * state of the device. The normal operating state is D0, |
| 2947 | * CSR=00h. The software off state is D3, CSR=03h. To reset |
| 2948 | * the controller, place the interface device in D3 then to |
| 2949 | * D0, this causes a secondary PCI reset which will reset the |
| 2950 | * controller." |
| 2951 | */ |
| 2952 | |
| 2953 | /* enter the D3hot power management state */ |
| 2954 | pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr); |
| 2955 | pmcsr &= ~PCI_PM_CTRL_STATE_MASK; |
| 2956 | pmcsr |= PCI_D3hot; |
| 2957 | pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); |
| 2958 | |
| 2959 | msleep(500); |
| 2960 | |
| 2961 | /* enter the D0 power management state */ |
| 2962 | pmcsr &= ~PCI_PM_CTRL_STATE_MASK; |
| 2963 | pmcsr |= PCI_D0; |
| 2964 | pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr); |
| 2965 | |
| 2966 | msleep(500); |
| 2967 | |
| 2968 | /* Restore the PCI configuration space. The Open CISS |
| 2969 | * Specification says, "Restore the PCI Configuration |
| 2970 | * Registers, offsets 00h through 60h. It is important to |
| 2971 | * restore the command register, 16-bits at offset 04h, |
| 2972 | * last. Do not restore the configuration status register, |
| 2973 | * 16-bits at offset 06h." Note that the offset is 2*i. |
| 2974 | */ |
| 2975 | for (i = 0; i < 32; i++) { |
| 2976 | if (i == 2 || i == 3) |
| 2977 | continue; |
| 2978 | pci_write_config_word(pdev, 2*i, saved_config_space[i]); |
| 2979 | } |
| 2980 | wmb(); |
| 2981 | pci_write_config_word(pdev, 4, saved_config_space[2]); |
| 2982 | |
| 2983 | return 0; |
| 2984 | } |
| 2985 | |
| 2986 | /* |
| 2987 | * We cannot read the structure directly, for portability we must use |
| 2988 | * the io functions. |
| 2989 | * This is for debug only. |
| 2990 | */ |
| 2991 | #ifdef HPSA_DEBUG |
| 2992 | static void print_cfg_table(struct device *dev, struct CfgTable *tb) |
| 2993 | { |
| 2994 | int i; |
| 2995 | char temp_name[17]; |
| 2996 | |
| 2997 | dev_info(dev, "Controller Configuration information\n"); |
| 2998 | dev_info(dev, "------------------------------------\n"); |
| 2999 | for (i = 0; i < 4; i++) |
| 3000 | temp_name[i] = readb(&(tb->Signature[i])); |
| 3001 | temp_name[4] = '\0'; |
| 3002 | dev_info(dev, " Signature = %s\n", temp_name); |
| 3003 | dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence))); |
| 3004 | dev_info(dev, " Transport methods supported = 0x%x\n", |
| 3005 | readl(&(tb->TransportSupport))); |
| 3006 | dev_info(dev, " Transport methods active = 0x%x\n", |
| 3007 | readl(&(tb->TransportActive))); |
| 3008 | dev_info(dev, " Requested transport Method = 0x%x\n", |
| 3009 | readl(&(tb->HostWrite.TransportRequest))); |
| 3010 | dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n", |
| 3011 | readl(&(tb->HostWrite.CoalIntDelay))); |
| 3012 | dev_info(dev, " Coalesce Interrupt Count = 0x%x\n", |
| 3013 | readl(&(tb->HostWrite.CoalIntCount))); |
| 3014 | dev_info(dev, " Max outstanding commands = 0x%d\n", |
| 3015 | readl(&(tb->CmdsOutMax))); |
| 3016 | dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes))); |
| 3017 | for (i = 0; i < 16; i++) |
| 3018 | temp_name[i] = readb(&(tb->ServerName[i])); |
| 3019 | temp_name[16] = '\0'; |
| 3020 | dev_info(dev, " Server Name = %s\n", temp_name); |
| 3021 | dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n", |
| 3022 | readl(&(tb->HeartBeat))); |
| 3023 | } |
| 3024 | #endif /* HPSA_DEBUG */ |
| 3025 | |
| 3026 | static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr) |
| 3027 | { |
| 3028 | int i, offset, mem_type, bar_type; |
| 3029 | |
| 3030 | if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */ |
| 3031 | return 0; |
| 3032 | offset = 0; |
| 3033 | for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { |
| 3034 | bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE; |
| 3035 | if (bar_type == PCI_BASE_ADDRESS_SPACE_IO) |
| 3036 | offset += 4; |
| 3037 | else { |
| 3038 | mem_type = pci_resource_flags(pdev, i) & |
| 3039 | PCI_BASE_ADDRESS_MEM_TYPE_MASK; |
| 3040 | switch (mem_type) { |
| 3041 | case PCI_BASE_ADDRESS_MEM_TYPE_32: |
| 3042 | case PCI_BASE_ADDRESS_MEM_TYPE_1M: |
| 3043 | offset += 4; /* 32 bit */ |
| 3044 | break; |
| 3045 | case PCI_BASE_ADDRESS_MEM_TYPE_64: |
| 3046 | offset += 8; |
| 3047 | break; |
| 3048 | default: /* reserved in PCI 2.2 */ |
| 3049 | dev_warn(&pdev->dev, |
| 3050 | "base address is invalid\n"); |
| 3051 | return -1; |
| 3052 | break; |
| 3053 | } |
| 3054 | } |
| 3055 | if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0) |
| 3056 | return i + 1; |
| 3057 | } |
| 3058 | return -1; |
| 3059 | } |
| 3060 | |
| 3061 | /* If MSI/MSI-X is supported by the kernel we will try to enable it on |
| 3062 | * controllers that are capable. If not, we use IO-APIC mode. |
| 3063 | */ |
| 3064 | |
| 3065 | static void __devinit hpsa_interrupt_mode(struct ctlr_info *h, |
| 3066 | struct pci_dev *pdev, __u32 board_id) |
| 3067 | { |
| 3068 | #ifdef CONFIG_PCI_MSI |
| 3069 | int err; |
| 3070 | struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1}, |
| 3071 | {0, 2}, {0, 3} |
| 3072 | }; |
| 3073 | |
| 3074 | /* Some boards advertise MSI but don't really support it */ |
| 3075 | if ((board_id == 0x40700E11) || |
| 3076 | (board_id == 0x40800E11) || |
| 3077 | (board_id == 0x40820E11) || (board_id == 0x40830E11)) |
| 3078 | goto default_int_mode; |
| 3079 | if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) { |
| 3080 | dev_info(&pdev->dev, "MSIX\n"); |
| 3081 | err = pci_enable_msix(pdev, hpsa_msix_entries, 4); |
| 3082 | if (!err) { |
| 3083 | h->intr[0] = hpsa_msix_entries[0].vector; |
| 3084 | h->intr[1] = hpsa_msix_entries[1].vector; |
| 3085 | h->intr[2] = hpsa_msix_entries[2].vector; |
| 3086 | h->intr[3] = hpsa_msix_entries[3].vector; |
| 3087 | h->msix_vector = 1; |
| 3088 | return; |
| 3089 | } |
| 3090 | if (err > 0) { |
| 3091 | dev_warn(&pdev->dev, "only %d MSI-X vectors " |
| 3092 | "available\n", err); |
| 3093 | goto default_int_mode; |
| 3094 | } else { |
| 3095 | dev_warn(&pdev->dev, "MSI-X init failed %d\n", |
| 3096 | err); |
| 3097 | goto default_int_mode; |
| 3098 | } |
| 3099 | } |
| 3100 | if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) { |
| 3101 | dev_info(&pdev->dev, "MSI\n"); |
| 3102 | if (!pci_enable_msi(pdev)) |
| 3103 | h->msi_vector = 1; |
| 3104 | else |
| 3105 | dev_warn(&pdev->dev, "MSI init failed\n"); |
| 3106 | } |
| 3107 | default_int_mode: |
| 3108 | #endif /* CONFIG_PCI_MSI */ |
| 3109 | /* if we get here we're going to use the default interrupt mode */ |
| 3110 | h->intr[SIMPLE_MODE_INT] = pdev->irq; |
| 3111 | return; |
| 3112 | } |
| 3113 | |
| 3114 | static int hpsa_pci_init(struct ctlr_info *h, struct pci_dev *pdev) |
| 3115 | { |
| 3116 | ushort subsystem_vendor_id, subsystem_device_id, command; |
| 3117 | __u32 board_id, scratchpad = 0; |
| 3118 | __u64 cfg_offset; |
| 3119 | __u32 cfg_base_addr; |
| 3120 | __u64 cfg_base_addr_index; |
| 3121 | int i, prod_index, err; |
| 3122 | |
| 3123 | subsystem_vendor_id = pdev->subsystem_vendor; |
| 3124 | subsystem_device_id = pdev->subsystem_device; |
| 3125 | board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) | |
| 3126 | subsystem_vendor_id); |
| 3127 | |
| 3128 | for (i = 0; i < ARRAY_SIZE(products); i++) |
| 3129 | if (board_id == products[i].board_id) |
| 3130 | break; |
| 3131 | |
| 3132 | prod_index = i; |
| 3133 | |
| 3134 | if (prod_index == ARRAY_SIZE(products)) { |
| 3135 | prod_index--; |
| 3136 | if (subsystem_vendor_id != PCI_VENDOR_ID_HP || |
| 3137 | !hpsa_allow_any) { |
| 3138 | dev_warn(&pdev->dev, "unrecognized board ID:" |
| 3139 | " 0x%08lx, ignoring.\n", |
| 3140 | (unsigned long) board_id); |
| 3141 | return -ENODEV; |
| 3142 | } |
| 3143 | } |
| 3144 | /* check to see if controller has been disabled |
| 3145 | * BEFORE trying to enable it |
| 3146 | */ |
| 3147 | (void)pci_read_config_word(pdev, PCI_COMMAND, &command); |
| 3148 | if (!(command & 0x02)) { |
| 3149 | dev_warn(&pdev->dev, "controller appears to be disabled\n"); |
| 3150 | return -ENODEV; |
| 3151 | } |
| 3152 | |
| 3153 | err = pci_enable_device(pdev); |
| 3154 | if (err) { |
| 3155 | dev_warn(&pdev->dev, "unable to enable PCI device\n"); |
| 3156 | return err; |
| 3157 | } |
| 3158 | |
| 3159 | err = pci_request_regions(pdev, "hpsa"); |
| 3160 | if (err) { |
| 3161 | dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n"); |
| 3162 | return err; |
| 3163 | } |
| 3164 | |
| 3165 | /* If the kernel supports MSI/MSI-X we will try to enable that, |
| 3166 | * else we use the IO-APIC interrupt assigned to us by system ROM. |
| 3167 | */ |
| 3168 | hpsa_interrupt_mode(h, pdev, board_id); |
| 3169 | |
| 3170 | /* find the memory BAR */ |
| 3171 | for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { |
| 3172 | if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) |
| 3173 | break; |
| 3174 | } |
| 3175 | if (i == DEVICE_COUNT_RESOURCE) { |
| 3176 | dev_warn(&pdev->dev, "no memory BAR found\n"); |
| 3177 | err = -ENODEV; |
| 3178 | goto err_out_free_res; |
| 3179 | } |
| 3180 | |
| 3181 | h->paddr = pci_resource_start(pdev, i); /* addressing mode bits |
| 3182 | * already removed |
| 3183 | */ |
| 3184 | |
| 3185 | h->vaddr = remap_pci_mem(h->paddr, 0x250); |
| 3186 | |
| 3187 | /* Wait for the board to become ready. */ |
| 3188 | for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) { |
| 3189 | scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET); |
| 3190 | if (scratchpad == HPSA_FIRMWARE_READY) |
| 3191 | break; |
| 3192 | msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS); |
| 3193 | } |
| 3194 | if (scratchpad != HPSA_FIRMWARE_READY) { |
| 3195 | dev_warn(&pdev->dev, "board not ready, timed out.\n"); |
| 3196 | err = -ENODEV; |
| 3197 | goto err_out_free_res; |
| 3198 | } |
| 3199 | |
| 3200 | /* get the address index number */ |
| 3201 | cfg_base_addr = readl(h->vaddr + SA5_CTCFG_OFFSET); |
| 3202 | cfg_base_addr &= (__u32) 0x0000ffff; |
| 3203 | cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr); |
| 3204 | if (cfg_base_addr_index == -1) { |
| 3205 | dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n"); |
| 3206 | err = -ENODEV; |
| 3207 | goto err_out_free_res; |
| 3208 | } |
| 3209 | |
| 3210 | cfg_offset = readl(h->vaddr + SA5_CTMEM_OFFSET); |
| 3211 | h->cfgtable = remap_pci_mem(pci_resource_start(pdev, |
| 3212 | cfg_base_addr_index) + cfg_offset, |
| 3213 | sizeof(h->cfgtable)); |
| 3214 | h->board_id = board_id; |
| 3215 | |
| 3216 | /* Query controller for max supported commands: */ |
| 3217 | h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); |
| 3218 | |
| 3219 | h->product_name = products[prod_index].product_name; |
| 3220 | h->access = *(products[prod_index].access); |
| 3221 | /* Allow room for some ioctls */ |
| 3222 | h->nr_cmds = h->max_commands - 4; |
| 3223 | |
| 3224 | if ((readb(&h->cfgtable->Signature[0]) != 'C') || |
| 3225 | (readb(&h->cfgtable->Signature[1]) != 'I') || |
| 3226 | (readb(&h->cfgtable->Signature[2]) != 'S') || |
| 3227 | (readb(&h->cfgtable->Signature[3]) != 'S')) { |
| 3228 | dev_warn(&pdev->dev, "not a valid CISS config table\n"); |
| 3229 | err = -ENODEV; |
| 3230 | goto err_out_free_res; |
| 3231 | } |
| 3232 | #ifdef CONFIG_X86 |
| 3233 | { |
| 3234 | /* Need to enable prefetch in the SCSI core for 6400 in x86 */ |
| 3235 | __u32 prefetch; |
| 3236 | prefetch = readl(&(h->cfgtable->SCSI_Prefetch)); |
| 3237 | prefetch |= 0x100; |
| 3238 | writel(prefetch, &(h->cfgtable->SCSI_Prefetch)); |
| 3239 | } |
| 3240 | #endif |
| 3241 | |
| 3242 | /* Disabling DMA prefetch for the P600 |
| 3243 | * An ASIC bug may result in a prefetch beyond |
| 3244 | * physical memory. |
| 3245 | */ |
| 3246 | if (board_id == 0x3225103C) { |
| 3247 | __u32 dma_prefetch; |
| 3248 | dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG); |
| 3249 | dma_prefetch |= 0x8000; |
| 3250 | writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG); |
| 3251 | } |
| 3252 | |
| 3253 | h->max_commands = readl(&(h->cfgtable->CmdsOutMax)); |
| 3254 | /* Update the field, and then ring the doorbell */ |
| 3255 | writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest)); |
| 3256 | writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL); |
| 3257 | |
| 3258 | /* under certain very rare conditions, this can take awhile. |
| 3259 | * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right |
| 3260 | * as we enter this code.) |
| 3261 | */ |
| 3262 | for (i = 0; i < MAX_CONFIG_WAIT; i++) { |
| 3263 | if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq)) |
| 3264 | break; |
| 3265 | /* delay and try again */ |
| 3266 | msleep(10); |
| 3267 | } |
| 3268 | |
| 3269 | #ifdef HPSA_DEBUG |
| 3270 | print_cfg_table(&pdev->dev, h->cfgtable); |
| 3271 | #endif /* HPSA_DEBUG */ |
| 3272 | |
| 3273 | if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) { |
| 3274 | dev_warn(&pdev->dev, "unable to get board into simple mode\n"); |
| 3275 | err = -ENODEV; |
| 3276 | goto err_out_free_res; |
| 3277 | } |
| 3278 | return 0; |
| 3279 | |
| 3280 | err_out_free_res: |
| 3281 | /* |
| 3282 | * Deliberately omit pci_disable_device(): it does something nasty to |
| 3283 | * Smart Array controllers that pci_enable_device does not undo |
| 3284 | */ |
| 3285 | pci_release_regions(pdev); |
| 3286 | return err; |
| 3287 | } |
| 3288 | |
| 3289 | static int __devinit hpsa_init_one(struct pci_dev *pdev, |
| 3290 | const struct pci_device_id *ent) |
| 3291 | { |
| 3292 | int i; |
| 3293 | int dac; |
| 3294 | struct ctlr_info *h; |
| 3295 | |
| 3296 | if (number_of_controllers == 0) |
| 3297 | printk(KERN_INFO DRIVER_NAME "\n"); |
| 3298 | if (reset_devices) { |
| 3299 | /* Reset the controller with a PCI power-cycle */ |
| 3300 | if (hpsa_hard_reset_controller(pdev) || hpsa_reset_msi(pdev)) |
| 3301 | return -ENODEV; |
| 3302 | |
| 3303 | /* Some devices (notably the HP Smart Array 5i Controller) |
| 3304 | need a little pause here */ |
| 3305 | msleep(HPSA_POST_RESET_PAUSE_MSECS); |
| 3306 | |
| 3307 | /* Now try to get the controller to respond to a no-op */ |
| 3308 | for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) { |
| 3309 | if (hpsa_noop(pdev) == 0) |
| 3310 | break; |
| 3311 | else |
| 3312 | dev_warn(&pdev->dev, "no-op failed%s\n", |
| 3313 | (i < 11 ? "; re-trying" : "")); |
| 3314 | } |
| 3315 | } |
| 3316 | |
| 3317 | BUILD_BUG_ON(sizeof(struct CommandList) % 8); |
| 3318 | h = kzalloc(sizeof(*h), GFP_KERNEL); |
| 3319 | if (!h) |
| 3320 | return -1; |
| 3321 | |
| 3322 | h->busy_initializing = 1; |
| 3323 | INIT_HLIST_HEAD(&h->cmpQ); |
| 3324 | INIT_HLIST_HEAD(&h->reqQ); |
| 3325 | mutex_init(&h->busy_shutting_down); |
| 3326 | init_completion(&h->scan_wait); |
| 3327 | if (hpsa_pci_init(h, pdev) != 0) |
| 3328 | goto clean1; |
| 3329 | |
| 3330 | sprintf(h->devname, "hpsa%d", number_of_controllers); |
| 3331 | h->ctlr = number_of_controllers; |
| 3332 | number_of_controllers++; |
| 3333 | h->pdev = pdev; |
| 3334 | |
| 3335 | /* configure PCI DMA stuff */ |
| 3336 | if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) |
| 3337 | dac = 1; |
| 3338 | else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) |
| 3339 | dac = 0; |
| 3340 | else { |
| 3341 | dev_err(&pdev->dev, "no suitable DMA available\n"); |
| 3342 | goto clean1; |
| 3343 | } |
| 3344 | |
| 3345 | /* make sure the board interrupts are off */ |
| 3346 | h->access.set_intr_mask(h, HPSA_INTR_OFF); |
| 3347 | if (request_irq(h->intr[SIMPLE_MODE_INT], do_hpsa_intr, |
| 3348 | IRQF_DISABLED | IRQF_SHARED, h->devname, h)) { |
| 3349 | dev_err(&pdev->dev, "unable to get irq %d for %s\n", |
| 3350 | h->intr[SIMPLE_MODE_INT], h->devname); |
| 3351 | goto clean2; |
| 3352 | } |
| 3353 | |
| 3354 | dev_info(&pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n", |
| 3355 | h->devname, pdev->device, pci_name(pdev), |
| 3356 | h->intr[SIMPLE_MODE_INT], dac ? "" : " not"); |
| 3357 | |
| 3358 | h->cmd_pool_bits = |
| 3359 | kmalloc(((h->nr_cmds + BITS_PER_LONG - |
| 3360 | 1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL); |
| 3361 | h->cmd_pool = pci_alloc_consistent(h->pdev, |
| 3362 | h->nr_cmds * sizeof(*h->cmd_pool), |
| 3363 | &(h->cmd_pool_dhandle)); |
| 3364 | h->errinfo_pool = pci_alloc_consistent(h->pdev, |
| 3365 | h->nr_cmds * sizeof(*h->errinfo_pool), |
| 3366 | &(h->errinfo_pool_dhandle)); |
| 3367 | if ((h->cmd_pool_bits == NULL) |
| 3368 | || (h->cmd_pool == NULL) |
| 3369 | || (h->errinfo_pool == NULL)) { |
| 3370 | dev_err(&pdev->dev, "out of memory"); |
| 3371 | goto clean4; |
| 3372 | } |
| 3373 | spin_lock_init(&h->lock); |
| 3374 | |
| 3375 | pci_set_drvdata(pdev, h); |
| 3376 | memset(h->cmd_pool_bits, 0, |
| 3377 | ((h->nr_cmds + BITS_PER_LONG - |
| 3378 | 1) / BITS_PER_LONG) * sizeof(unsigned long)); |
| 3379 | |
| 3380 | hpsa_scsi_setup(h); |
| 3381 | |
| 3382 | /* Turn the interrupts on so we can service requests */ |
| 3383 | h->access.set_intr_mask(h, HPSA_INTR_ON); |
| 3384 | |
| 3385 | hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */ |
| 3386 | h->busy_initializing = 0; |
| 3387 | return 1; |
| 3388 | |
| 3389 | clean4: |
| 3390 | kfree(h->cmd_pool_bits); |
| 3391 | if (h->cmd_pool) |
| 3392 | pci_free_consistent(h->pdev, |
| 3393 | h->nr_cmds * sizeof(struct CommandList), |
| 3394 | h->cmd_pool, h->cmd_pool_dhandle); |
| 3395 | if (h->errinfo_pool) |
| 3396 | pci_free_consistent(h->pdev, |
| 3397 | h->nr_cmds * sizeof(struct ErrorInfo), |
| 3398 | h->errinfo_pool, |
| 3399 | h->errinfo_pool_dhandle); |
| 3400 | free_irq(h->intr[SIMPLE_MODE_INT], h); |
| 3401 | clean2: |
| 3402 | clean1: |
| 3403 | h->busy_initializing = 0; |
| 3404 | kfree(h); |
| 3405 | return -1; |
| 3406 | } |
| 3407 | |
| 3408 | static void hpsa_flush_cache(struct ctlr_info *h) |
| 3409 | { |
| 3410 | char *flush_buf; |
| 3411 | struct CommandList *c; |
| 3412 | |
| 3413 | flush_buf = kzalloc(4, GFP_KERNEL); |
| 3414 | if (!flush_buf) |
| 3415 | return; |
| 3416 | |
| 3417 | c = cmd_special_alloc(h); |
| 3418 | if (!c) { |
| 3419 | dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n"); |
| 3420 | goto out_of_memory; |
| 3421 | } |
| 3422 | fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0, |
| 3423 | RAID_CTLR_LUNID, TYPE_CMD); |
| 3424 | hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE); |
| 3425 | if (c->err_info->CommandStatus != 0) |
| 3426 | dev_warn(&h->pdev->dev, |
| 3427 | "error flushing cache on controller\n"); |
| 3428 | cmd_special_free(h, c); |
| 3429 | out_of_memory: |
| 3430 | kfree(flush_buf); |
| 3431 | } |
| 3432 | |
| 3433 | static void hpsa_shutdown(struct pci_dev *pdev) |
| 3434 | { |
| 3435 | struct ctlr_info *h; |
| 3436 | |
| 3437 | h = pci_get_drvdata(pdev); |
| 3438 | /* Turn board interrupts off and send the flush cache command |
| 3439 | * sendcmd will turn off interrupt, and send the flush... |
| 3440 | * To write all data in the battery backed cache to disks |
| 3441 | */ |
| 3442 | hpsa_flush_cache(h); |
| 3443 | h->access.set_intr_mask(h, HPSA_INTR_OFF); |
| 3444 | free_irq(h->intr[2], h); |
| 3445 | #ifdef CONFIG_PCI_MSI |
| 3446 | if (h->msix_vector) |
| 3447 | pci_disable_msix(h->pdev); |
| 3448 | else if (h->msi_vector) |
| 3449 | pci_disable_msi(h->pdev); |
| 3450 | #endif /* CONFIG_PCI_MSI */ |
| 3451 | } |
| 3452 | |
| 3453 | static void __devexit hpsa_remove_one(struct pci_dev *pdev) |
| 3454 | { |
| 3455 | struct ctlr_info *h; |
| 3456 | |
| 3457 | if (pci_get_drvdata(pdev) == NULL) { |
| 3458 | dev_err(&pdev->dev, "unable to remove device \n"); |
| 3459 | return; |
| 3460 | } |
| 3461 | h = pci_get_drvdata(pdev); |
| 3462 | mutex_lock(&h->busy_shutting_down); |
| 3463 | remove_from_scan_list(h); |
| 3464 | hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */ |
| 3465 | hpsa_shutdown(pdev); |
| 3466 | iounmap(h->vaddr); |
| 3467 | pci_free_consistent(h->pdev, |
| 3468 | h->nr_cmds * sizeof(struct CommandList), |
| 3469 | h->cmd_pool, h->cmd_pool_dhandle); |
| 3470 | pci_free_consistent(h->pdev, |
| 3471 | h->nr_cmds * sizeof(struct ErrorInfo), |
| 3472 | h->errinfo_pool, h->errinfo_pool_dhandle); |
| 3473 | kfree(h->cmd_pool_bits); |
| 3474 | /* |
| 3475 | * Deliberately omit pci_disable_device(): it does something nasty to |
| 3476 | * Smart Array controllers that pci_enable_device does not undo |
| 3477 | */ |
| 3478 | pci_release_regions(pdev); |
| 3479 | pci_set_drvdata(pdev, NULL); |
| 3480 | mutex_unlock(&h->busy_shutting_down); |
| 3481 | kfree(h); |
| 3482 | } |
| 3483 | |
| 3484 | static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev, |
| 3485 | __attribute__((unused)) pm_message_t state) |
| 3486 | { |
| 3487 | return -ENOSYS; |
| 3488 | } |
| 3489 | |
| 3490 | static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev) |
| 3491 | { |
| 3492 | return -ENOSYS; |
| 3493 | } |
| 3494 | |
| 3495 | static struct pci_driver hpsa_pci_driver = { |
| 3496 | .name = "hpsa", |
| 3497 | .probe = hpsa_init_one, |
| 3498 | .remove = __devexit_p(hpsa_remove_one), |
| 3499 | .id_table = hpsa_pci_device_id, /* id_table */ |
| 3500 | .shutdown = hpsa_shutdown, |
| 3501 | .suspend = hpsa_suspend, |
| 3502 | .resume = hpsa_resume, |
| 3503 | }; |
| 3504 | |
| 3505 | /* |
| 3506 | * This is it. Register the PCI driver information for the cards we control |
| 3507 | * the OS will call our registered routines when it finds one of our cards. |
| 3508 | */ |
| 3509 | static int __init hpsa_init(void) |
| 3510 | { |
| 3511 | int err; |
| 3512 | /* Start the scan thread */ |
| 3513 | hpsa_scan_thread = kthread_run(hpsa_scan_func, NULL, "hpsa_scan"); |
| 3514 | if (IS_ERR(hpsa_scan_thread)) { |
| 3515 | err = PTR_ERR(hpsa_scan_thread); |
| 3516 | return -ENODEV; |
| 3517 | } |
| 3518 | err = pci_register_driver(&hpsa_pci_driver); |
| 3519 | if (err) |
| 3520 | kthread_stop(hpsa_scan_thread); |
| 3521 | return err; |
| 3522 | } |
| 3523 | |
| 3524 | static void __exit hpsa_cleanup(void) |
| 3525 | { |
| 3526 | pci_unregister_driver(&hpsa_pci_driver); |
| 3527 | kthread_stop(hpsa_scan_thread); |
| 3528 | } |
| 3529 | |
| 3530 | module_init(hpsa_init); |
| 3531 | module_exit(hpsa_cleanup); |