blob: 66ec4fb115bb203a3c566cead227e650386b8d4d [file] [log] [blame]
Étienne Bersac80ff9742008-04-29 15:39:55 +10001/*
2 * Windfarm PowerMac thermal control. iMac G5 iSight
3 *
4 * (c) Copyright 2007 Étienne Bersac <bersace@gmail.com>
5 *
6 * Bits & pieces from windfarm_pm81.c by (c) Copyright 2005 Benjamin
7 * Herrenschmidt, IBM Corp. <benh@kernel.crashing.org>
8 *
9 * Released under the term of the GNU GPL v2.
10 *
11 *
12 *
13 * PowerMac12,1
14 * ============
15 *
16 *
17 * The algorithm used is the PID control algorithm, used the same way
18 * the published Darwin code does, using the same values that are
19 * present in the Darwin 8.10 snapshot property lists (note however
20 * that none of the code has been re-used, it's a complete
21 * re-implementation
22 *
23 * There is two models using PowerMac12,1. Model 2 is iMac G5 iSight
24 * 17" while Model 3 is iMac G5 20". They do have both the same
25 * controls with a tiny difference. The control-ids of hard-drive-fan
26 * and cpu-fan is swapped.
27 *
28 *
29 * Target Correction :
30 *
31 * controls have a target correction calculated as :
32 *
33 * new_min = ((((average_power * slope) >> 16) + offset) >> 16) + min_value
34 * new_value = max(new_value, max(new_min, 0))
35 *
36 * OD Fan control correction.
37 *
38 * # model_id: 2
39 * offset : -19563152
40 * slope : 1956315
41 *
42 * # model_id: 3
43 * offset : -15650652
44 * slope : 1565065
45 *
46 * HD Fan control correction.
47 *
48 * # model_id: 2
49 * offset : -15650652
50 * slope : 1565065
51 *
52 * # model_id: 3
53 * offset : -19563152
54 * slope : 1956315
55 *
56 * CPU Fan control correction.
57 *
58 * # model_id: 2
59 * offset : -25431900
60 * slope : 2543190
61 *
62 * # model_id: 3
63 * offset : -15650652
64 * slope : 1565065
65 *
66 *
67 * Target rubber-banding :
68 *
69 * Some controls have a target correction which depends on another
70 * control value. The correction is computed in the following way :
71 *
72 * new_min = ref_value * slope + offset
73 *
74 * ref_value is the value of the reference control. If new_min is
75 * greater than 0, then we correct the target value using :
76 *
77 * new_target = max (new_target, new_min >> 16)
78 *
79 *
80 * # model_id : 2
81 * control : cpu-fan
82 * ref : optical-drive-fan
83 * offset : -15650652
84 * slope : 1565065
85 *
86 * # model_id : 3
87 * control : optical-drive-fan
88 * ref : hard-drive-fan
89 * offset : -32768000
90 * slope : 65536
91 *
92 *
93 * In order to have the moste efficient correction with those
94 * dependencies, we must trigger HD loop before OD loop before CPU
95 * loop.
96 *
97 *
98 * The various control loops found in Darwin config file are:
99 *
100 * HD Fan control loop.
101 *
102 * # model_id: 2
103 * control : hard-drive-fan
104 * sensor : hard-drive-temp
105 * PID params : G_d = 0x00000000
106 * G_p = 0x002D70A3
107 * G_r = 0x00019999
108 * History = 2 entries
109 * Input target = 0x370000
110 * Interval = 5s
111 *
112 * # model_id: 3
113 * control : hard-drive-fan
114 * sensor : hard-drive-temp
115 * PID params : G_d = 0x00000000
116 * G_p = 0x002170A3
117 * G_r = 0x00019999
118 * History = 2 entries
119 * Input target = 0x370000
120 * Interval = 5s
121 *
122 * OD Fan control loop.
123 *
124 * # model_id: 2
125 * control : optical-drive-fan
126 * sensor : optical-drive-temp
127 * PID params : G_d = 0x00000000
128 * G_p = 0x001FAE14
129 * G_r = 0x00019999
130 * History = 2 entries
131 * Input target = 0x320000
132 * Interval = 5s
133 *
134 * # model_id: 3
135 * control : optical-drive-fan
136 * sensor : optical-drive-temp
137 * PID params : G_d = 0x00000000
138 * G_p = 0x001FAE14
139 * G_r = 0x00019999
140 * History = 2 entries
141 * Input target = 0x320000
142 * Interval = 5s
143 *
144 * GPU Fan control loop.
145 *
146 * # model_id: 2
147 * control : hard-drive-fan
148 * sensor : gpu-temp
149 * PID params : G_d = 0x00000000
150 * G_p = 0x002A6666
151 * G_r = 0x00019999
152 * History = 2 entries
153 * Input target = 0x5A0000
154 * Interval = 5s
155 *
156 * # model_id: 3
157 * control : cpu-fan
158 * sensor : gpu-temp
159 * PID params : G_d = 0x00000000
160 * G_p = 0x0010CCCC
161 * G_r = 0x00019999
162 * History = 2 entries
163 * Input target = 0x500000
164 * Interval = 5s
165 *
166 * KODIAK (aka northbridge) Fan control loop.
167 *
168 * # model_id: 2
169 * control : optical-drive-fan
170 * sensor : north-bridge-temp
171 * PID params : G_d = 0x00000000
172 * G_p = 0x003BD70A
173 * G_r = 0x00019999
174 * History = 2 entries
175 * Input target = 0x550000
176 * Interval = 5s
177 *
178 * # model_id: 3
179 * control : hard-drive-fan
180 * sensor : north-bridge-temp
181 * PID params : G_d = 0x00000000
182 * G_p = 0x0030F5C2
183 * G_r = 0x00019999
184 * History = 2 entries
185 * Input target = 0x550000
186 * Interval = 5s
187 *
188 * CPU Fan control loop.
189 *
190 * control : cpu-fan
191 * sensors : cpu-temp, cpu-power
192 * PID params : from SDB partition
193 *
194 *
195 * CPU Slew control loop.
196 *
197 * control : cpufreq-clamp
198 * sensor : cpu-temp
199 *
200 */
201
202#undef DEBUG
203
204#include <linux/types.h>
205#include <linux/errno.h>
206#include <linux/kernel.h>
207#include <linux/delay.h>
208#include <linux/slab.h>
209#include <linux/init.h>
210#include <linux/spinlock.h>
211#include <linux/wait.h>
212#include <linux/kmod.h>
213#include <linux/device.h>
214#include <linux/platform_device.h>
215#include <asm/prom.h>
216#include <asm/machdep.h>
217#include <asm/io.h>
218#include <asm/system.h>
219#include <asm/sections.h>
220#include <asm/smu.h>
221
222#include "windfarm.h"
223#include "windfarm_pid.h"
224
225#define VERSION "0.3"
226
227static int pm121_mach_model; /* machine model id */
228
229/* Controls & sensors */
230static struct wf_sensor *sensor_cpu_power;
231static struct wf_sensor *sensor_cpu_temp;
232static struct wf_sensor *sensor_cpu_voltage;
233static struct wf_sensor *sensor_cpu_current;
234static struct wf_sensor *sensor_gpu_temp;
235static struct wf_sensor *sensor_north_bridge_temp;
236static struct wf_sensor *sensor_hard_drive_temp;
237static struct wf_sensor *sensor_optical_drive_temp;
238static struct wf_sensor *sensor_incoming_air_temp; /* unused ! */
239
240enum {
241 FAN_CPU,
242 FAN_HD,
243 FAN_OD,
244 CPUFREQ,
245 N_CONTROLS
246};
247static struct wf_control *controls[N_CONTROLS] = {};
248
249/* Set to kick the control loop into life */
250static int pm121_all_controls_ok, pm121_all_sensors_ok, pm121_started;
251
252enum {
253 FAILURE_FAN = 1 << 0,
254 FAILURE_SENSOR = 1 << 1,
255 FAILURE_OVERTEMP = 1 << 2
256};
257
258/* All sys loops. Note the HD before the OD loop in order to have it
259 run before. */
260enum {
261 LOOP_GPU, /* control = hd or cpu, but luckily,
262 it doesn't matter */
263 LOOP_HD, /* control = hd */
264 LOOP_KODIAK, /* control = hd or od */
265 LOOP_OD, /* control = od */
266 N_LOOPS
267};
268
269static const char *loop_names[N_LOOPS] = {
270 "GPU",
271 "HD",
272 "KODIAK",
273 "OD",
274};
275
276#define PM121_NUM_CONFIGS 2
277
278static unsigned int pm121_failure_state;
279static int pm121_readjust, pm121_skipping;
280static s32 average_power;
281
282struct pm121_correction {
283 int offset;
284 int slope;
285};
286
287static struct pm121_correction corrections[N_CONTROLS][PM121_NUM_CONFIGS] = {
288 /* FAN_OD */
289 {
290 /* MODEL 2 */
291 { .offset = -19563152,
292 .slope = 1956315
293 },
294 /* MODEL 3 */
295 { .offset = -15650652,
296 .slope = 1565065
297 },
298 },
299 /* FAN_HD */
300 {
301 /* MODEL 2 */
302 { .offset = -15650652,
303 .slope = 1565065
304 },
305 /* MODEL 3 */
306 { .offset = -19563152,
307 .slope = 1956315
308 },
309 },
310 /* FAN_CPU */
311 {
312 /* MODEL 2 */
313 { .offset = -25431900,
314 .slope = 2543190
315 },
316 /* MODEL 3 */
317 { .offset = -15650652,
318 .slope = 1565065
319 },
320 },
321 /* CPUFREQ has no correction (and is not implemented at all) */
322};
323
324struct pm121_connection {
325 unsigned int control_id;
326 unsigned int ref_id;
327 struct pm121_correction correction;
328};
329
330static struct pm121_connection pm121_connections[] = {
331 /* MODEL 2 */
332 { .control_id = FAN_CPU,
333 .ref_id = FAN_OD,
334 { .offset = -32768000,
335 .slope = 65536
336 }
337 },
338 /* MODEL 3 */
339 { .control_id = FAN_OD,
340 .ref_id = FAN_HD,
341 { .offset = -32768000,
342 .slope = 65536
343 }
344 },
345};
346
347/* pointer to the current model connection */
348static struct pm121_connection *pm121_connection;
349
350/*
351 * ****** System Fans Control Loop ******
352 *
353 */
354
355/* Since each loop handles only one control and we want to avoid
356 * writing virtual control, we store the control correction with the
357 * loop params. Some data are not set, there are common to all loop
358 * and thus, hardcoded.
359 */
360struct pm121_sys_param {
361 /* purely informative since we use mach_model-2 as index */
362 int model_id;
363 struct wf_sensor **sensor; /* use sensor_id instead ? */
364 s32 gp, itarget;
365 unsigned int control_id;
366};
367
368static struct pm121_sys_param
369pm121_sys_all_params[N_LOOPS][PM121_NUM_CONFIGS] = {
370 /* GPU Fan control loop */
371 {
372 { .model_id = 2,
373 .sensor = &sensor_gpu_temp,
374 .gp = 0x002A6666,
375 .itarget = 0x5A0000,
376 .control_id = FAN_HD,
377 },
378 { .model_id = 3,
379 .sensor = &sensor_gpu_temp,
380 .gp = 0x0010CCCC,
381 .itarget = 0x500000,
382 .control_id = FAN_CPU,
383 },
384 },
385 /* HD Fan control loop */
386 {
387 { .model_id = 2,
388 .sensor = &sensor_hard_drive_temp,
389 .gp = 0x002D70A3,
390 .itarget = 0x370000,
391 .control_id = FAN_HD,
392 },
393 { .model_id = 3,
394 .sensor = &sensor_hard_drive_temp,
395 .gp = 0x002170A3,
396 .itarget = 0x370000,
397 .control_id = FAN_HD,
398 },
399 },
400 /* KODIAK Fan control loop */
401 {
402 { .model_id = 2,
403 .sensor = &sensor_north_bridge_temp,
404 .gp = 0x003BD70A,
405 .itarget = 0x550000,
406 .control_id = FAN_OD,
407 },
408 { .model_id = 3,
409 .sensor = &sensor_north_bridge_temp,
410 .gp = 0x0030F5C2,
411 .itarget = 0x550000,
412 .control_id = FAN_HD,
413 },
414 },
415 /* OD Fan control loop */
416 {
417 { .model_id = 2,
418 .sensor = &sensor_optical_drive_temp,
419 .gp = 0x001FAE14,
420 .itarget = 0x320000,
421 .control_id = FAN_OD,
422 },
423 { .model_id = 3,
424 .sensor = &sensor_optical_drive_temp,
425 .gp = 0x001FAE14,
426 .itarget = 0x320000,
427 .control_id = FAN_OD,
428 },
429 },
430};
431
432/* the hardcoded values */
433#define PM121_SYS_GD 0x00000000
434#define PM121_SYS_GR 0x00019999
435#define PM121_SYS_HISTORY_SIZE 2
436#define PM121_SYS_INTERVAL 5
437
438/* State data used by the system fans control loop
439 */
440struct pm121_sys_state {
441 int ticks;
442 s32 setpoint;
443 struct wf_pid_state pid;
444};
445
446struct pm121_sys_state *pm121_sys_state[N_LOOPS] = {};
447
448/*
449 * ****** CPU Fans Control Loop ******
450 *
451 */
452
453#define PM121_CPU_INTERVAL 1
454
455/* State data used by the cpu fans control loop
456 */
457struct pm121_cpu_state {
458 int ticks;
459 s32 setpoint;
460 struct wf_cpu_pid_state pid;
461};
462
463static struct pm121_cpu_state *pm121_cpu_state;
464
465
466
467/*
468 * ***** Implementation *****
469 *
470 */
471
472/* correction the value using the output-low-bound correction algo */
473static s32 pm121_correct(s32 new_setpoint,
474 unsigned int control_id,
475 s32 min)
476{
477 s32 new_min;
478 struct pm121_correction *correction;
479 correction = &corrections[control_id][pm121_mach_model - 2];
480
481 new_min = (average_power * correction->slope) >> 16;
482 new_min += correction->offset;
483 new_min = (new_min >> 16) + min;
484
485 return max(new_setpoint, max(new_min, 0));
486}
487
488static s32 pm121_connect(unsigned int control_id, s32 setpoint)
489{
490 s32 new_min, value, new_setpoint;
491
492 if (pm121_connection->control_id == control_id) {
493 controls[control_id]->ops->get_value(controls[control_id],
494 &value);
495 new_min = value * pm121_connection->correction.slope;
496 new_min += pm121_connection->correction.offset;
497 if (new_min > 0) {
498 new_setpoint = max(setpoint, (new_min >> 16));
499 if (new_setpoint != setpoint) {
500 pr_debug("pm121: %s depending on %s, "
501 "corrected from %d to %d RPM\n",
502 controls[control_id]->name,
503 controls[pm121_connection->ref_id]->name,
504 (int) setpoint, (int) new_setpoint);
505 }
506 } else
507 new_setpoint = setpoint;
508 }
509 /* no connection */
510 else
511 new_setpoint = setpoint;
512
513 return new_setpoint;
514}
515
516/* FAN LOOPS */
517static void pm121_create_sys_fans(int loop_id)
518{
519 struct pm121_sys_param *param = NULL;
520 struct wf_pid_param pid_param;
521 struct wf_control *control = NULL;
522 int i;
523
524 /* First, locate the params for this model */
525 for (i = 0; i < PM121_NUM_CONFIGS; i++) {
526 if (pm121_sys_all_params[loop_id][i].model_id == pm121_mach_model) {
527 param = &(pm121_sys_all_params[loop_id][i]);
528 break;
529 }
530 }
531
532 /* No params found, put fans to max */
533 if (param == NULL) {
534 printk(KERN_WARNING "pm121: %s fan config not found "
535 " for this machine model\n",
536 loop_names[loop_id]);
537 goto fail;
538 }
539
540 control = controls[param->control_id];
541
542 /* Alloc & initialize state */
543 pm121_sys_state[loop_id] = kmalloc(sizeof(struct pm121_sys_state),
544 GFP_KERNEL);
545 if (pm121_sys_state[loop_id] == NULL) {
546 printk(KERN_WARNING "pm121: Memory allocation error\n");
547 goto fail;
548 }
549 pm121_sys_state[loop_id]->ticks = 1;
550
551 /* Fill PID params */
552 pid_param.gd = PM121_SYS_GD;
553 pid_param.gp = param->gp;
554 pid_param.gr = PM121_SYS_GR;
555 pid_param.interval = PM121_SYS_INTERVAL;
556 pid_param.history_len = PM121_SYS_HISTORY_SIZE;
557 pid_param.itarget = param->itarget;
558 pid_param.min = control->ops->get_min(control);
559 pid_param.max = control->ops->get_max(control);
560
561 wf_pid_init(&pm121_sys_state[loop_id]->pid, &pid_param);
562
563 pr_debug("pm121: %s Fan control loop initialized.\n"
564 " itarged=%d.%03d, min=%d RPM, max=%d RPM\n",
565 loop_names[loop_id], FIX32TOPRINT(pid_param.itarget),
566 pid_param.min, pid_param.max);
567 return;
568
569 fail:
570 /* note that this is not optimal since another loop may still
571 control the same control */
572 printk(KERN_WARNING "pm121: failed to set up %s loop "
573 "setting \"%s\" to max speed.\n",
574 loop_names[loop_id], control->name);
575
576 if (control)
577 wf_control_set_max(control);
578}
579
580static void pm121_sys_fans_tick(int loop_id)
581{
582 struct pm121_sys_param *param;
583 struct pm121_sys_state *st;
584 struct wf_sensor *sensor;
585 struct wf_control *control;
586 s32 temp, new_setpoint;
587 int rc;
588
589 param = &(pm121_sys_all_params[loop_id][pm121_mach_model-2]);
590 st = pm121_sys_state[loop_id];
591 sensor = *(param->sensor);
592 control = controls[param->control_id];
593
594 if (--st->ticks != 0) {
595 if (pm121_readjust)
596 goto readjust;
597 return;
598 }
599 st->ticks = PM121_SYS_INTERVAL;
600
601 rc = sensor->ops->get_value(sensor, &temp);
602 if (rc) {
603 printk(KERN_WARNING "windfarm: %s sensor error %d\n",
604 sensor->name, rc);
605 pm121_failure_state |= FAILURE_SENSOR;
606 return;
607 }
608
609 pr_debug("pm121: %s Fan tick ! %s: %d.%03d\n",
610 loop_names[loop_id], sensor->name,
611 FIX32TOPRINT(temp));
612
613 new_setpoint = wf_pid_run(&st->pid, temp);
614
615 /* correction */
616 new_setpoint = pm121_correct(new_setpoint,
617 param->control_id,
618 st->pid.param.min);
619 /* linked corretion */
620 new_setpoint = pm121_connect(param->control_id, new_setpoint);
621
622 if (new_setpoint == st->setpoint)
623 return;
624 st->setpoint = new_setpoint;
625 pr_debug("pm121: %s corrected setpoint: %d RPM\n",
626 control->name, (int)new_setpoint);
627 readjust:
628 if (control && pm121_failure_state == 0) {
629 rc = control->ops->set_value(control, st->setpoint);
630 if (rc) {
631 printk(KERN_WARNING "windfarm: %s fan error %d\n",
632 control->name, rc);
633 pm121_failure_state |= FAILURE_FAN;
634 }
635 }
636}
637
638
639/* CPU LOOP */
640static void pm121_create_cpu_fans(void)
641{
642 struct wf_cpu_pid_param pid_param;
643 const struct smu_sdbp_header *hdr;
644 struct smu_sdbp_cpupiddata *piddata;
645 struct smu_sdbp_fvt *fvt;
646 struct wf_control *fan_cpu;
647 s32 tmax, tdelta, maxpow, powadj;
648
649 fan_cpu = controls[FAN_CPU];
650
651 /* First, locate the PID params in SMU SBD */
652 hdr = smu_get_sdb_partition(SMU_SDB_CPUPIDDATA_ID, NULL);
653 if (hdr == 0) {
654 printk(KERN_WARNING "pm121: CPU PID fan config not found.\n");
655 goto fail;
656 }
657 piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
658
659 /* Get the FVT params for operating point 0 (the only supported one
660 * for now) in order to get tmax
661 */
662 hdr = smu_get_sdb_partition(SMU_SDB_FVT_ID, NULL);
663 if (hdr) {
664 fvt = (struct smu_sdbp_fvt *)&hdr[1];
665 tmax = ((s32)fvt->maxtemp) << 16;
666 } else
667 tmax = 0x5e0000; /* 94 degree default */
668
669 /* Alloc & initialize state */
670 pm121_cpu_state = kmalloc(sizeof(struct pm121_cpu_state),
671 GFP_KERNEL);
672 if (pm121_cpu_state == NULL)
673 goto fail;
674 pm121_cpu_state->ticks = 1;
675
676 /* Fill PID params */
677 pid_param.interval = PM121_CPU_INTERVAL;
678 pid_param.history_len = piddata->history_len;
679 if (pid_param.history_len > WF_CPU_PID_MAX_HISTORY) {
680 printk(KERN_WARNING "pm121: History size overflow on "
681 "CPU control loop (%d)\n", piddata->history_len);
682 pid_param.history_len = WF_CPU_PID_MAX_HISTORY;
683 }
684 pid_param.gd = piddata->gd;
685 pid_param.gp = piddata->gp;
686 pid_param.gr = piddata->gr / pid_param.history_len;
687
688 tdelta = ((s32)piddata->target_temp_delta) << 16;
689 maxpow = ((s32)piddata->max_power) << 16;
690 powadj = ((s32)piddata->power_adj) << 16;
691
692 pid_param.tmax = tmax;
693 pid_param.ttarget = tmax - tdelta;
694 pid_param.pmaxadj = maxpow - powadj;
695
696 pid_param.min = fan_cpu->ops->get_min(fan_cpu);
697 pid_param.max = fan_cpu->ops->get_max(fan_cpu);
698
699 wf_cpu_pid_init(&pm121_cpu_state->pid, &pid_param);
700
701 pr_debug("pm121: CPU Fan control initialized.\n");
702 pr_debug(" ttarged=%d.%03d, tmax=%d.%03d, min=%d RPM, max=%d RPM,\n",
703 FIX32TOPRINT(pid_param.ttarget), FIX32TOPRINT(pid_param.tmax),
704 pid_param.min, pid_param.max);
705
706 return;
707
708 fail:
709 printk(KERN_WARNING "pm121: CPU fan config not found, max fan speed\n");
710
711 if (controls[CPUFREQ])
712 wf_control_set_max(controls[CPUFREQ]);
713 if (fan_cpu)
714 wf_control_set_max(fan_cpu);
715}
716
717
718static void pm121_cpu_fans_tick(struct pm121_cpu_state *st)
719{
720 s32 new_setpoint, temp, power;
721 struct wf_control *fan_cpu = NULL;
722 int rc;
723
724 if (--st->ticks != 0) {
725 if (pm121_readjust)
726 goto readjust;
727 return;
728 }
729 st->ticks = PM121_CPU_INTERVAL;
730
731 fan_cpu = controls[FAN_CPU];
732
733 rc = sensor_cpu_temp->ops->get_value(sensor_cpu_temp, &temp);
734 if (rc) {
735 printk(KERN_WARNING "pm121: CPU temp sensor error %d\n",
736 rc);
737 pm121_failure_state |= FAILURE_SENSOR;
738 return;
739 }
740
741 rc = sensor_cpu_power->ops->get_value(sensor_cpu_power, &power);
742 if (rc) {
743 printk(KERN_WARNING "pm121: CPU power sensor error %d\n",
744 rc);
745 pm121_failure_state |= FAILURE_SENSOR;
746 return;
747 }
748
749 pr_debug("pm121: CPU Fans tick ! CPU temp: %d.%03d°C, power: %d.%03d\n",
750 FIX32TOPRINT(temp), FIX32TOPRINT(power));
751
752 if (temp > st->pid.param.tmax)
753 pm121_failure_state |= FAILURE_OVERTEMP;
754
755 new_setpoint = wf_cpu_pid_run(&st->pid, power, temp);
756
757 /* correction */
758 new_setpoint = pm121_correct(new_setpoint,
759 FAN_CPU,
760 st->pid.param.min);
761
762 /* connected correction */
763 new_setpoint = pm121_connect(FAN_CPU, new_setpoint);
764
765 if (st->setpoint == new_setpoint)
766 return;
767 st->setpoint = new_setpoint;
768 pr_debug("pm121: CPU corrected setpoint: %d RPM\n", (int)new_setpoint);
769
770 readjust:
771 if (fan_cpu && pm121_failure_state == 0) {
772 rc = fan_cpu->ops->set_value(fan_cpu, st->setpoint);
773 if (rc) {
774 printk(KERN_WARNING "pm121: %s fan error %d\n",
775 fan_cpu->name, rc);
776 pm121_failure_state |= FAILURE_FAN;
777 }
778 }
779}
780
781/*
782 * ****** Common ******
783 *
784 */
785
786static void pm121_tick(void)
787{
788 unsigned int last_failure = pm121_failure_state;
789 unsigned int new_failure;
790 s32 total_power;
791 int i;
792
793 if (!pm121_started) {
794 pr_debug("pm121: creating control loops !\n");
795 for (i = 0; i < N_LOOPS; i++)
796 pm121_create_sys_fans(i);
797
798 pm121_create_cpu_fans();
799 pm121_started = 1;
800 }
801
802 /* skipping ticks */
803 if (pm121_skipping && --pm121_skipping)
804 return;
805
806 /* compute average power */
807 total_power = 0;
808 for (i = 0; i < pm121_cpu_state->pid.param.history_len; i++)
809 total_power += pm121_cpu_state->pid.powers[i];
810
811 average_power = total_power / pm121_cpu_state->pid.param.history_len;
812
813
814 pm121_failure_state = 0;
815 for (i = 0 ; i < N_LOOPS; i++) {
816 if (pm121_sys_state[i])
817 pm121_sys_fans_tick(i);
818 }
819
820 if (pm121_cpu_state)
821 pm121_cpu_fans_tick(pm121_cpu_state);
822
823 pm121_readjust = 0;
824 new_failure = pm121_failure_state & ~last_failure;
825
826 /* If entering failure mode, clamp cpufreq and ramp all
827 * fans to full speed.
828 */
829 if (pm121_failure_state && !last_failure) {
830 for (i = 0; i < N_CONTROLS; i++) {
831 if (controls[i])
832 wf_control_set_max(controls[i]);
833 }
834 }
835
836 /* If leaving failure mode, unclamp cpufreq and readjust
837 * all fans on next iteration
838 */
839 if (!pm121_failure_state && last_failure) {
840 if (controls[CPUFREQ])
841 wf_control_set_min(controls[CPUFREQ]);
842 pm121_readjust = 1;
843 }
844
845 /* Overtemp condition detected, notify and start skipping a couple
846 * ticks to let the temperature go down
847 */
848 if (new_failure & FAILURE_OVERTEMP) {
849 wf_set_overtemp();
850 pm121_skipping = 2;
851 }
852
853 /* We only clear the overtemp condition if overtemp is cleared
854 * _and_ no other failure is present. Since a sensor error will
855 * clear the overtemp condition (can't measure temperature) at
856 * the control loop levels, but we don't want to keep it clear
857 * here in this case
858 */
859 if (new_failure == 0 && last_failure & FAILURE_OVERTEMP)
860 wf_clear_overtemp();
861}
862
863
864static struct wf_control* pm121_register_control(struct wf_control *ct,
865 const char *match,
866 unsigned int id)
867{
868 if (controls[id] == NULL && !strcmp(ct->name, match)) {
869 if (wf_get_control(ct) == 0)
870 controls[id] = ct;
871 }
872 return controls[id];
873}
874
875static void pm121_new_control(struct wf_control *ct)
876{
877 int all = 1;
878
879 if (pm121_all_controls_ok)
880 return;
881
882 all = pm121_register_control(ct, "optical-drive-fan", FAN_OD) && all;
883 all = pm121_register_control(ct, "hard-drive-fan", FAN_HD) && all;
884 all = pm121_register_control(ct, "cpu-fan", FAN_CPU) && all;
885 all = pm121_register_control(ct, "cpufreq-clamp", CPUFREQ) && all;
886
887 if (all)
888 pm121_all_controls_ok = 1;
889}
890
891
892
893
894static struct wf_sensor* pm121_register_sensor(struct wf_sensor *sensor,
895 const char *match,
896 struct wf_sensor **var)
897{
898 if (*var == NULL && !strcmp(sensor->name, match)) {
899 if (wf_get_sensor(sensor) == 0)
900 *var = sensor;
901 }
902 return *var;
903}
904
905static void pm121_new_sensor(struct wf_sensor *sr)
906{
907 int all = 1;
908
909 if (pm121_all_sensors_ok)
910 return;
911
912 all = pm121_register_sensor(sr, "cpu-temp",
913 &sensor_cpu_temp) && all;
914 all = pm121_register_sensor(sr, "cpu-current",
915 &sensor_cpu_current) && all;
916 all = pm121_register_sensor(sr, "cpu-voltage",
917 &sensor_cpu_voltage) && all;
918 all = pm121_register_sensor(sr, "cpu-power",
919 &sensor_cpu_power) && all;
920 all = pm121_register_sensor(sr, "hard-drive-temp",
921 &sensor_hard_drive_temp) && all;
922 all = pm121_register_sensor(sr, "optical-drive-temp",
923 &sensor_optical_drive_temp) && all;
924 all = pm121_register_sensor(sr, "incoming-air-temp",
925 &sensor_incoming_air_temp) && all;
926 all = pm121_register_sensor(sr, "north-bridge-temp",
927 &sensor_north_bridge_temp) && all;
928 all = pm121_register_sensor(sr, "gpu-temp",
929 &sensor_gpu_temp) && all;
930
931 if (all)
932 pm121_all_sensors_ok = 1;
933}
934
935
936
937static int pm121_notify(struct notifier_block *self,
938 unsigned long event, void *data)
939{
940 switch (event) {
941 case WF_EVENT_NEW_CONTROL:
942 pr_debug("pm121: new control %s detected\n",
943 ((struct wf_control *)data)->name);
944 pm121_new_control(data);
945 break;
946 case WF_EVENT_NEW_SENSOR:
947 pr_debug("pm121: new sensor %s detected\n",
948 ((struct wf_sensor *)data)->name);
949 pm121_new_sensor(data);
950 break;
951 case WF_EVENT_TICK:
952 if (pm121_all_controls_ok && pm121_all_sensors_ok)
953 pm121_tick();
954 break;
955 }
956
957 return 0;
958}
959
960static struct notifier_block pm121_events = {
961 .notifier_call = pm121_notify,
962};
963
964static int pm121_init_pm(void)
965{
966 const struct smu_sdbp_header *hdr;
967
968 hdr = smu_get_sdb_partition(SMU_SDB_SENSORTREE_ID, NULL);
969 if (hdr != 0) {
970 struct smu_sdbp_sensortree *st =
971 (struct smu_sdbp_sensortree *)&hdr[1];
972 pm121_mach_model = st->model_id;
973 }
974
975 pm121_connection = &pm121_connections[pm121_mach_model - 2];
976
977 printk(KERN_INFO "pm121: Initializing for iMac G5 iSight model ID %d\n",
978 pm121_mach_model);
979
980 return 0;
981}
982
983
984static int pm121_probe(struct platform_device *ddev)
985{
986 wf_register_client(&pm121_events);
987
988 return 0;
989}
990
991static int __devexit pm121_remove(struct platform_device *ddev)
992{
993 wf_unregister_client(&pm121_events);
994 return 0;
995}
996
997static struct platform_driver pm121_driver = {
998 .probe = pm121_probe,
999 .remove = __devexit_p(pm121_remove),
1000 .driver = {
1001 .name = "windfarm",
1002 .bus = &platform_bus_type,
1003 },
1004};
1005
1006
1007static int __init pm121_init(void)
1008{
1009 int rc = -ENODEV;
1010
1011 if (machine_is_compatible("PowerMac12,1"))
1012 rc = pm121_init_pm();
1013
1014 if (rc == 0) {
1015 request_module("windfarm_smu_controls");
1016 request_module("windfarm_smu_sensors");
1017 request_module("windfarm_smu_sat");
1018 request_module("windfarm_lm75_sensor");
1019 request_module("windfarm_max6690_sensor");
1020 request_module("windfarm_cpufreq_clamp");
1021 platform_driver_register(&pm121_driver);
1022 }
1023
1024 return rc;
1025}
1026
1027static void __exit pm121_exit(void)
1028{
1029
1030 platform_driver_unregister(&pm121_driver);
1031}
1032
1033
1034module_init(pm121_init);
1035module_exit(pm121_exit);
1036
1037MODULE_AUTHOR("Étienne Bersac <bersace@gmail.com>");
1038MODULE_DESCRIPTION("Thermal control logic for iMac G5 (iSight)");
1039MODULE_LICENSE("GPL");
1040