blob: 77123eb83c44418dbb4144c015520a37bfa6879a [file] [log] [blame]
Adrian Bunk88278ca2008-05-19 16:53:02 -07001/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002 * urem.S: This routine was taken from glibc-1.09 and is covered
3 * by the GNU Library General Public License Version 2.
4 */
5
6/* This file is generated from divrem.m4; DO NOT EDIT! */
7/*
8 * Division and remainder, from Appendix E of the Sparc Version 8
9 * Architecture Manual, with fixes from Gordon Irlam.
10 */
11
12/*
13 * Input: dividend and divisor in %o0 and %o1 respectively.
14 *
15 * m4 parameters:
16 * .urem name of function to generate
17 * rem rem=div => %o0 / %o1; rem=rem => %o0 % %o1
18 * false false=true => signed; false=false => unsigned
19 *
20 * Algorithm parameters:
21 * N how many bits per iteration we try to get (4)
22 * WORDSIZE total number of bits (32)
23 *
24 * Derived constants:
25 * TOPBITS number of bits in the top decade of a number
26 *
27 * Important variables:
28 * Q the partial quotient under development (initially 0)
29 * R the remainder so far, initially the dividend
30 * ITER number of main division loop iterations required;
31 * equal to ceil(log2(quotient) / N). Note that this
32 * is the log base (2^N) of the quotient.
33 * V the current comparand, initially divisor*2^(ITER*N-1)
34 *
35 * Cost:
36 * Current estimate for non-large dividend is
37 * ceil(log2(quotient) / N) * (10 + 7N/2) + C
38 * A large dividend is one greater than 2^(31-TOPBITS) and takes a
39 * different path, as the upper bits of the quotient must be developed
40 * one bit at a time.
41 */
42
43 .globl .urem
Al Viro7caaeab2005-09-11 20:14:07 -070044 .globl _Urem
Linus Torvalds1da177e2005-04-16 15:20:36 -070045.urem:
Al Viro7caaeab2005-09-11 20:14:07 -070046_Urem: /* needed for export */
Linus Torvalds1da177e2005-04-16 15:20:36 -070047
48 ! Ready to divide. Compute size of quotient; scale comparand.
49 orcc %o1, %g0, %o5
50 bne 1f
51 mov %o0, %o3
52
53 ! Divide by zero trap. If it returns, return 0 (about as
54 ! wrong as possible, but that is what SunOS does...).
55 ta ST_DIV0
56 retl
57 clr %o0
58
591:
60 cmp %o3, %o5 ! if %o1 exceeds %o0, done
61 blu Lgot_result ! (and algorithm fails otherwise)
62 clr %o2
63
64 sethi %hi(1 << (32 - 4 - 1)), %g1
65
66 cmp %o3, %g1
67 blu Lnot_really_big
68 clr %o4
69
70 ! Here the dividend is >= 2**(31-N) or so. We must be careful here,
71 ! as our usual N-at-a-shot divide step will cause overflow and havoc.
72 ! The number of bits in the result here is N*ITER+SC, where SC <= N.
73 ! Compute ITER in an unorthodox manner: know we need to shift V into
74 ! the top decade: so do not even bother to compare to R.
75 1:
76 cmp %o5, %g1
77 bgeu 3f
78 mov 1, %g7
79
80 sll %o5, 4, %o5
81
82 b 1b
83 add %o4, 1, %o4
84
85 ! Now compute %g7.
86 2:
87 addcc %o5, %o5, %o5
88 bcc Lnot_too_big
89 add %g7, 1, %g7
90
91 ! We get here if the %o1 overflowed while shifting.
92 ! This means that %o3 has the high-order bit set.
93 ! Restore %o5 and subtract from %o3.
94 sll %g1, 4, %g1 ! high order bit
95 srl %o5, 1, %o5 ! rest of %o5
96 add %o5, %g1, %o5
97
98 b Ldo_single_div
99 sub %g7, 1, %g7
100
101 Lnot_too_big:
102 3:
103 cmp %o5, %o3
104 blu 2b
105 nop
106
107 be Ldo_single_div
108 nop
109 /* NB: these are commented out in the V8-Sparc manual as well */
110 /* (I do not understand this) */
111 ! %o5 > %o3: went too far: back up 1 step
112 ! srl %o5, 1, %o5
113 ! dec %g7
114 ! do single-bit divide steps
115 !
116 ! We have to be careful here. We know that %o3 >= %o5, so we can do the
117 ! first divide step without thinking. BUT, the others are conditional,
118 ! and are only done if %o3 >= 0. Because both %o3 and %o5 may have the high-
119 ! order bit set in the first step, just falling into the regular
120 ! division loop will mess up the first time around.
121 ! So we unroll slightly...
122 Ldo_single_div:
123 subcc %g7, 1, %g7
124 bl Lend_regular_divide
125 nop
126
127 sub %o3, %o5, %o3
128 mov 1, %o2
129
130 b Lend_single_divloop
131 nop
132 Lsingle_divloop:
133 sll %o2, 1, %o2
134 bl 1f
135 srl %o5, 1, %o5
136 ! %o3 >= 0
137 sub %o3, %o5, %o3
138 b 2f
139 add %o2, 1, %o2
140 1: ! %o3 < 0
141 add %o3, %o5, %o3
142 sub %o2, 1, %o2
143 2:
144 Lend_single_divloop:
145 subcc %g7, 1, %g7
146 bge Lsingle_divloop
147 tst %o3
148
149 b,a Lend_regular_divide
150
151Lnot_really_big:
1521:
153 sll %o5, 4, %o5
154
155 cmp %o5, %o3
156 bleu 1b
157 addcc %o4, 1, %o4
158
159 be Lgot_result
160 sub %o4, 1, %o4
161
162 tst %o3 ! set up for initial iteration
163Ldivloop:
164 sll %o2, 4, %o2
165 ! depth 1, accumulated bits 0
166 bl L.1.16
167 srl %o5,1,%o5
168 ! remainder is positive
169 subcc %o3,%o5,%o3
170 ! depth 2, accumulated bits 1
171 bl L.2.17
172 srl %o5,1,%o5
173 ! remainder is positive
174 subcc %o3,%o5,%o3
175 ! depth 3, accumulated bits 3
176 bl L.3.19
177 srl %o5,1,%o5
178 ! remainder is positive
179 subcc %o3,%o5,%o3
180 ! depth 4, accumulated bits 7
181 bl L.4.23
182 srl %o5,1,%o5
183 ! remainder is positive
184 subcc %o3,%o5,%o3
185 b 9f
186 add %o2, (7*2+1), %o2
187
188L.4.23:
189 ! remainder is negative
190 addcc %o3,%o5,%o3
191 b 9f
192 add %o2, (7*2-1), %o2
193
194L.3.19:
195 ! remainder is negative
196 addcc %o3,%o5,%o3
197 ! depth 4, accumulated bits 5
198 bl L.4.21
199 srl %o5,1,%o5
200 ! remainder is positive
201 subcc %o3,%o5,%o3
202 b 9f
203 add %o2, (5*2+1), %o2
204
205L.4.21:
206 ! remainder is negative
207 addcc %o3,%o5,%o3
208 b 9f
209 add %o2, (5*2-1), %o2
210
211L.2.17:
212 ! remainder is negative
213 addcc %o3,%o5,%o3
214 ! depth 3, accumulated bits 1
215 bl L.3.17
216 srl %o5,1,%o5
217 ! remainder is positive
218 subcc %o3,%o5,%o3
219 ! depth 4, accumulated bits 3
220 bl L.4.19
221 srl %o5,1,%o5
222 ! remainder is positive
223 subcc %o3,%o5,%o3
224 b 9f
225 add %o2, (3*2+1), %o2
226
227L.4.19:
228 ! remainder is negative
229 addcc %o3,%o5,%o3
230 b 9f
231 add %o2, (3*2-1), %o2
232
233L.3.17:
234 ! remainder is negative
235 addcc %o3,%o5,%o3
236 ! depth 4, accumulated bits 1
237 bl L.4.17
238 srl %o5,1,%o5
239 ! remainder is positive
240 subcc %o3,%o5,%o3
241 b 9f
242 add %o2, (1*2+1), %o2
243
244L.4.17:
245 ! remainder is negative
246 addcc %o3,%o5,%o3
247 b 9f
248 add %o2, (1*2-1), %o2
249
250L.1.16:
251 ! remainder is negative
252 addcc %o3,%o5,%o3
253 ! depth 2, accumulated bits -1
254 bl L.2.15
255 srl %o5,1,%o5
256 ! remainder is positive
257 subcc %o3,%o5,%o3
258 ! depth 3, accumulated bits -1
259 bl L.3.15
260 srl %o5,1,%o5
261 ! remainder is positive
262 subcc %o3,%o5,%o3
263 ! depth 4, accumulated bits -1
264 bl L.4.15
265 srl %o5,1,%o5
266 ! remainder is positive
267 subcc %o3,%o5,%o3
268 b 9f
269 add %o2, (-1*2+1), %o2
270
271L.4.15:
272 ! remainder is negative
273 addcc %o3,%o5,%o3
274 b 9f
275 add %o2, (-1*2-1), %o2
276
277L.3.15:
278 ! remainder is negative
279 addcc %o3,%o5,%o3
280 ! depth 4, accumulated bits -3
281 bl L.4.13
282 srl %o5,1,%o5
283 ! remainder is positive
284 subcc %o3,%o5,%o3
285 b 9f
286 add %o2, (-3*2+1), %o2
287
288L.4.13:
289 ! remainder is negative
290 addcc %o3,%o5,%o3
291 b 9f
292 add %o2, (-3*2-1), %o2
293
294L.2.15:
295 ! remainder is negative
296 addcc %o3,%o5,%o3
297 ! depth 3, accumulated bits -3
298 bl L.3.13
299 srl %o5,1,%o5
300 ! remainder is positive
301 subcc %o3,%o5,%o3
302 ! depth 4, accumulated bits -5
303 bl L.4.11
304 srl %o5,1,%o5
305 ! remainder is positive
306 subcc %o3,%o5,%o3
307 b 9f
308 add %o2, (-5*2+1), %o2
309
310L.4.11:
311 ! remainder is negative
312 addcc %o3,%o5,%o3
313 b 9f
314 add %o2, (-5*2-1), %o2
315
316L.3.13:
317 ! remainder is negative
318 addcc %o3,%o5,%o3
319 ! depth 4, accumulated bits -7
320 bl L.4.9
321 srl %o5,1,%o5
322 ! remainder is positive
323 subcc %o3,%o5,%o3
324 b 9f
325 add %o2, (-7*2+1), %o2
326
327L.4.9:
328 ! remainder is negative
329 addcc %o3,%o5,%o3
330 b 9f
331 add %o2, (-7*2-1), %o2
332
333 9:
334Lend_regular_divide:
335 subcc %o4, 1, %o4
336 bge Ldivloop
337 tst %o3
338
339 bl,a Lgot_result
340 ! non-restoring fixup here (one instruction only!)
341 add %o3, %o1, %o3
342
343Lgot_result:
344
345 retl
346 mov %o3, %o0
347
348 .globl .urem_patch
349.urem_patch:
350 wr %g0, 0x0, %y
351 nop
352 nop
353 nop
354 udiv %o0, %o1, %o2
355 umul %o2, %o1, %o2
356 retl
357 sub %o0, %o2, %o0