blob: afa2fa45fed97c41fbee4b1ce96fed01d7099016 [file] [log] [blame]
Christian Pellegrine0000162009-11-02 23:07:00 +00001/*
2 * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
3 *
4 * MCP2510 support and bug fixes by Christian Pellegrin
5 * <chripell@evolware.org>
6 *
7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
8 *
9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
10 * Written under contract by:
11 * Chris Elston, Katalix Systems, Ltd.
12 *
13 * Based on Microchip MCP251x CAN controller driver written by
14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
15 *
16 * Based on CAN bus driver for the CCAN controller written by
17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
18 * - Simon Kallweit, intefo AG
19 * Copyright 2007
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the version 2 of the GNU General Public License
23 * as published by the Free Software Foundation
24 *
25 * This program is distributed in the hope that it will be useful,
26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28 * GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with this program; if not, write to the Free Software
32 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
33 *
34 *
35 *
36 * Your platform definition file should specify something like:
37 *
38 * static struct mcp251x_platform_data mcp251x_info = {
39 * .oscillator_frequency = 8000000,
40 * .board_specific_setup = &mcp251x_setup,
41 * .model = CAN_MCP251X_MCP2510,
42 * .power_enable = mcp251x_power_enable,
43 * .transceiver_enable = NULL,
44 * };
45 *
46 * static struct spi_board_info spi_board_info[] = {
47 * {
48 * .modalias = "mcp251x",
49 * .platform_data = &mcp251x_info,
50 * .irq = IRQ_EINT13,
51 * .max_speed_hz = 2*1000*1000,
52 * .chip_select = 2,
53 * },
54 * };
55 *
56 * Please see mcp251x.h for a description of the fields in
57 * struct mcp251x_platform_data.
58 *
59 */
60
61#include <linux/can.h>
62#include <linux/can/core.h>
63#include <linux/can/dev.h>
64#include <linux/can/platform/mcp251x.h>
65#include <linux/completion.h>
66#include <linux/delay.h>
67#include <linux/device.h>
68#include <linux/dma-mapping.h>
69#include <linux/freezer.h>
70#include <linux/interrupt.h>
71#include <linux/io.h>
72#include <linux/kernel.h>
73#include <linux/module.h>
74#include <linux/netdevice.h>
75#include <linux/platform_device.h>
76#include <linux/spi/spi.h>
77#include <linux/uaccess.h>
78
79/* SPI interface instruction set */
80#define INSTRUCTION_WRITE 0x02
81#define INSTRUCTION_READ 0x03
82#define INSTRUCTION_BIT_MODIFY 0x05
83#define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
84#define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
85#define INSTRUCTION_RESET 0xC0
86
87/* MPC251x registers */
88#define CANSTAT 0x0e
89#define CANCTRL 0x0f
90# define CANCTRL_REQOP_MASK 0xe0
91# define CANCTRL_REQOP_CONF 0x80
92# define CANCTRL_REQOP_LISTEN_ONLY 0x60
93# define CANCTRL_REQOP_LOOPBACK 0x40
94# define CANCTRL_REQOP_SLEEP 0x20
95# define CANCTRL_REQOP_NORMAL 0x00
96# define CANCTRL_OSM 0x08
97# define CANCTRL_ABAT 0x10
98#define TEC 0x1c
99#define REC 0x1d
100#define CNF1 0x2a
101# define CNF1_SJW_SHIFT 6
102#define CNF2 0x29
103# define CNF2_BTLMODE 0x80
104# define CNF2_SAM 0x40
105# define CNF2_PS1_SHIFT 3
106#define CNF3 0x28
107# define CNF3_SOF 0x08
108# define CNF3_WAKFIL 0x04
109# define CNF3_PHSEG2_MASK 0x07
110#define CANINTE 0x2b
111# define CANINTE_MERRE 0x80
112# define CANINTE_WAKIE 0x40
113# define CANINTE_ERRIE 0x20
114# define CANINTE_TX2IE 0x10
115# define CANINTE_TX1IE 0x08
116# define CANINTE_TX0IE 0x04
117# define CANINTE_RX1IE 0x02
118# define CANINTE_RX0IE 0x01
119#define CANINTF 0x2c
120# define CANINTF_MERRF 0x80
121# define CANINTF_WAKIF 0x40
122# define CANINTF_ERRIF 0x20
123# define CANINTF_TX2IF 0x10
124# define CANINTF_TX1IF 0x08
125# define CANINTF_TX0IF 0x04
126# define CANINTF_RX1IF 0x02
127# define CANINTF_RX0IF 0x01
128#define EFLG 0x2d
129# define EFLG_EWARN 0x01
130# define EFLG_RXWAR 0x02
131# define EFLG_TXWAR 0x04
132# define EFLG_RXEP 0x08
133# define EFLG_TXEP 0x10
134# define EFLG_TXBO 0x20
135# define EFLG_RX0OVR 0x40
136# define EFLG_RX1OVR 0x80
137#define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
138# define TXBCTRL_ABTF 0x40
139# define TXBCTRL_MLOA 0x20
140# define TXBCTRL_TXERR 0x10
141# define TXBCTRL_TXREQ 0x08
142#define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
143# define SIDH_SHIFT 3
144#define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
145# define SIDL_SID_MASK 7
146# define SIDL_SID_SHIFT 5
147# define SIDL_EXIDE_SHIFT 3
148# define SIDL_EID_SHIFT 16
149# define SIDL_EID_MASK 3
150#define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF)
151#define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF)
152#define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF)
153# define DLC_RTR_SHIFT 6
154#define TXBCTRL_OFF 0
155#define TXBSIDH_OFF 1
156#define TXBSIDL_OFF 2
157#define TXBEID8_OFF 3
158#define TXBEID0_OFF 4
159#define TXBDLC_OFF 5
160#define TXBDAT_OFF 6
161#define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
162# define RXBCTRL_BUKT 0x04
163# define RXBCTRL_RXM0 0x20
164# define RXBCTRL_RXM1 0x40
165#define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
166# define RXBSIDH_SHIFT 3
167#define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
168# define RXBSIDL_IDE 0x08
169# define RXBSIDL_EID 3
170# define RXBSIDL_SHIFT 5
171#define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF)
172#define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF)
173#define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF)
174# define RXBDLC_LEN_MASK 0x0f
175# define RXBDLC_RTR 0x40
176#define RXBCTRL_OFF 0
177#define RXBSIDH_OFF 1
178#define RXBSIDL_OFF 2
179#define RXBEID8_OFF 3
180#define RXBEID0_OFF 4
181#define RXBDLC_OFF 5
182#define RXBDAT_OFF 6
183
184#define GET_BYTE(val, byte) \
185 (((val) >> ((byte) * 8)) & 0xff)
186#define SET_BYTE(val, byte) \
187 (((val) & 0xff) << ((byte) * 8))
188
189/*
190 * Buffer size required for the largest SPI transfer (i.e., reading a
191 * frame)
192 */
193#define CAN_FRAME_MAX_DATA_LEN 8
194#define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN)
195#define CAN_FRAME_MAX_BITS 128
196
197#define TX_ECHO_SKB_MAX 1
198
199#define DEVICE_NAME "mcp251x"
200
201static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
202module_param(mcp251x_enable_dma, int, S_IRUGO);
203MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
204
205static struct can_bittiming_const mcp251x_bittiming_const = {
206 .name = DEVICE_NAME,
207 .tseg1_min = 3,
208 .tseg1_max = 16,
209 .tseg2_min = 2,
210 .tseg2_max = 8,
211 .sjw_max = 4,
212 .brp_min = 1,
213 .brp_max = 64,
214 .brp_inc = 1,
215};
216
217struct mcp251x_priv {
218 struct can_priv can;
219 struct net_device *net;
220 struct spi_device *spi;
221
222 struct mutex spi_lock; /* SPI buffer lock */
223 u8 *spi_tx_buf;
224 u8 *spi_rx_buf;
225 dma_addr_t spi_tx_dma;
226 dma_addr_t spi_rx_dma;
227
228 struct sk_buff *tx_skb;
229 int tx_len;
230 struct workqueue_struct *wq;
231 struct work_struct tx_work;
232 struct work_struct irq_work;
233 struct completion awake;
234 int wake;
235 int force_quit;
236 int after_suspend;
237#define AFTER_SUSPEND_UP 1
238#define AFTER_SUSPEND_DOWN 2
239#define AFTER_SUSPEND_POWER 4
240#define AFTER_SUSPEND_RESTART 8
241 int restart_tx;
242};
243
244static void mcp251x_clean(struct net_device *net)
245{
246 struct mcp251x_priv *priv = netdev_priv(net);
247
248 net->stats.tx_errors++;
249 if (priv->tx_skb)
250 dev_kfree_skb(priv->tx_skb);
251 if (priv->tx_len)
252 can_free_echo_skb(priv->net, 0);
253 priv->tx_skb = NULL;
254 priv->tx_len = 0;
255}
256
257/*
258 * Note about handling of error return of mcp251x_spi_trans: accessing
259 * registers via SPI is not really different conceptually than using
260 * normal I/O assembler instructions, although it's much more
261 * complicated from a practical POV. So it's not advisable to always
262 * check the return value of this function. Imagine that every
263 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
264 * error();", it would be a great mess (well there are some situation
265 * when exception handling C++ like could be useful after all). So we
266 * just check that transfers are OK at the beginning of our
267 * conversation with the chip and to avoid doing really nasty things
268 * (like injecting bogus packets in the network stack).
269 */
270static int mcp251x_spi_trans(struct spi_device *spi, int len)
271{
272 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
273 struct spi_transfer t = {
274 .tx_buf = priv->spi_tx_buf,
275 .rx_buf = priv->spi_rx_buf,
276 .len = len,
277 .cs_change = 0,
278 };
279 struct spi_message m;
280 int ret;
281
282 spi_message_init(&m);
283
284 if (mcp251x_enable_dma) {
285 t.tx_dma = priv->spi_tx_dma;
286 t.rx_dma = priv->spi_rx_dma;
287 m.is_dma_mapped = 1;
288 }
289
290 spi_message_add_tail(&t, &m);
291
292 ret = spi_sync(spi, &m);
293 if (ret)
294 dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
295 return ret;
296}
297
298static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
299{
300 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
301 u8 val = 0;
302
303 mutex_lock(&priv->spi_lock);
304
305 priv->spi_tx_buf[0] = INSTRUCTION_READ;
306 priv->spi_tx_buf[1] = reg;
307
308 mcp251x_spi_trans(spi, 3);
309 val = priv->spi_rx_buf[2];
310
311 mutex_unlock(&priv->spi_lock);
312
313 return val;
314}
315
316static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
317{
318 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
319
320 mutex_lock(&priv->spi_lock);
321
322 priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
323 priv->spi_tx_buf[1] = reg;
324 priv->spi_tx_buf[2] = val;
325
326 mcp251x_spi_trans(spi, 3);
327
328 mutex_unlock(&priv->spi_lock);
329}
330
331static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
332 u8 mask, uint8_t val)
333{
334 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
335
336 mutex_lock(&priv->spi_lock);
337
338 priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
339 priv->spi_tx_buf[1] = reg;
340 priv->spi_tx_buf[2] = mask;
341 priv->spi_tx_buf[3] = val;
342
343 mcp251x_spi_trans(spi, 4);
344
345 mutex_unlock(&priv->spi_lock);
346}
347
348static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
349 int len, int tx_buf_idx)
350{
351 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
352 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
353
354 if (pdata->model == CAN_MCP251X_MCP2510) {
355 int i;
356
357 for (i = 1; i < TXBDAT_OFF + len; i++)
358 mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
359 buf[i]);
360 } else {
361 mutex_lock(&priv->spi_lock);
362 memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
363 mcp251x_spi_trans(spi, TXBDAT_OFF + len);
364 mutex_unlock(&priv->spi_lock);
365 }
366}
367
368static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
369 int tx_buf_idx)
370{
371 u32 sid, eid, exide, rtr;
372 u8 buf[SPI_TRANSFER_BUF_LEN];
373
374 exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
375 if (exide)
376 sid = (frame->can_id & CAN_EFF_MASK) >> 18;
377 else
378 sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
379 eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
380 rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
381
382 buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
383 buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
384 buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
385 (exide << SIDL_EXIDE_SHIFT) |
386 ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
387 buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
388 buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
389 buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
390 memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
391 mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
392 mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx), TXBCTRL_TXREQ);
393}
394
395static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
396 int buf_idx)
397{
398 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
399 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
400
401 if (pdata->model == CAN_MCP251X_MCP2510) {
402 int i, len;
403
404 for (i = 1; i < RXBDAT_OFF; i++)
405 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
Oliver Hartkoppc7cd6062009-12-12 04:13:21 +0000406
407 len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
Christian Pellegrine0000162009-11-02 23:07:00 +0000408 for (; i < (RXBDAT_OFF + len); i++)
409 buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
410 } else {
411 mutex_lock(&priv->spi_lock);
412
413 priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
414 mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
415 memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
416
417 mutex_unlock(&priv->spi_lock);
418 }
419}
420
421static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
422{
423 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
424 struct sk_buff *skb;
425 struct can_frame *frame;
426 u8 buf[SPI_TRANSFER_BUF_LEN];
427
428 skb = alloc_can_skb(priv->net, &frame);
429 if (!skb) {
430 dev_err(&spi->dev, "cannot allocate RX skb\n");
431 priv->net->stats.rx_dropped++;
432 return;
433 }
434
435 mcp251x_hw_rx_frame(spi, buf, buf_idx);
436 if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
437 /* Extended ID format */
438 frame->can_id = CAN_EFF_FLAG;
439 frame->can_id |=
440 /* Extended ID part */
441 SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
442 SET_BYTE(buf[RXBEID8_OFF], 1) |
443 SET_BYTE(buf[RXBEID0_OFF], 0) |
444 /* Standard ID part */
445 (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
446 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
447 /* Remote transmission request */
448 if (buf[RXBDLC_OFF] & RXBDLC_RTR)
449 frame->can_id |= CAN_RTR_FLAG;
450 } else {
451 /* Standard ID format */
452 frame->can_id =
453 (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
454 (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
455 }
456 /* Data length */
Oliver Hartkoppc7cd6062009-12-12 04:13:21 +0000457 frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
Christian Pellegrine0000162009-11-02 23:07:00 +0000458 memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
459
460 priv->net->stats.rx_packets++;
461 priv->net->stats.rx_bytes += frame->can_dlc;
462 netif_rx(skb);
463}
464
465static void mcp251x_hw_sleep(struct spi_device *spi)
466{
467 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
468}
469
470static void mcp251x_hw_wakeup(struct spi_device *spi)
471{
472 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
473
474 priv->wake = 1;
475
476 /* Can only wake up by generating a wake-up interrupt. */
477 mcp251x_write_bits(spi, CANINTE, CANINTE_WAKIE, CANINTE_WAKIE);
478 mcp251x_write_bits(spi, CANINTF, CANINTF_WAKIF, CANINTF_WAKIF);
479
480 /* Wait until the device is awake */
481 if (!wait_for_completion_timeout(&priv->awake, HZ))
482 dev_err(&spi->dev, "MCP251x didn't wake-up\n");
483}
484
485static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
486 struct net_device *net)
487{
488 struct mcp251x_priv *priv = netdev_priv(net);
489 struct spi_device *spi = priv->spi;
490
491 if (priv->tx_skb || priv->tx_len) {
492 dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
493 netif_stop_queue(net);
494 return NETDEV_TX_BUSY;
495 }
496
Oliver Hartkopp3ccd4c62010-01-12 02:00:46 -0800497 if (can_dropped_invalid_skb(net, skb))
Christian Pellegrine0000162009-11-02 23:07:00 +0000498 return NETDEV_TX_OK;
Christian Pellegrine0000162009-11-02 23:07:00 +0000499
500 netif_stop_queue(net);
501 priv->tx_skb = skb;
502 net->trans_start = jiffies;
503 queue_work(priv->wq, &priv->tx_work);
504
505 return NETDEV_TX_OK;
506}
507
508static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
509{
510 struct mcp251x_priv *priv = netdev_priv(net);
511
512 switch (mode) {
513 case CAN_MODE_START:
514 /* We have to delay work since SPI I/O may sleep */
515 priv->can.state = CAN_STATE_ERROR_ACTIVE;
516 priv->restart_tx = 1;
517 if (priv->can.restart_ms == 0)
518 priv->after_suspend = AFTER_SUSPEND_RESTART;
519 queue_work(priv->wq, &priv->irq_work);
520 break;
521 default:
522 return -EOPNOTSUPP;
523 }
524
525 return 0;
526}
527
528static void mcp251x_set_normal_mode(struct spi_device *spi)
529{
530 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
531 unsigned long timeout;
532
533 /* Enable interrupts */
534 mcp251x_write_reg(spi, CANINTE,
535 CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
536 CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE |
537 CANINTF_MERRF);
538
539 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
540 /* Put device into loopback mode */
541 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
542 } else {
543 /* Put device into normal mode */
544 mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
545
546 /* Wait for the device to enter normal mode */
547 timeout = jiffies + HZ;
548 while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
549 schedule();
550 if (time_after(jiffies, timeout)) {
551 dev_err(&spi->dev, "MCP251x didn't"
552 " enter in normal mode\n");
553 return;
554 }
555 }
556 }
557 priv->can.state = CAN_STATE_ERROR_ACTIVE;
558}
559
560static int mcp251x_do_set_bittiming(struct net_device *net)
561{
562 struct mcp251x_priv *priv = netdev_priv(net);
563 struct can_bittiming *bt = &priv->can.bittiming;
564 struct spi_device *spi = priv->spi;
565
566 mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
567 (bt->brp - 1));
568 mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
569 (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
570 CNF2_SAM : 0) |
571 ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
572 (bt->prop_seg - 1));
573 mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
574 (bt->phase_seg2 - 1));
575 dev_info(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
576 mcp251x_read_reg(spi, CNF1),
577 mcp251x_read_reg(spi, CNF2),
578 mcp251x_read_reg(spi, CNF3));
579
580 return 0;
581}
582
583static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
584 struct spi_device *spi)
585{
Christian Pellegrin615534b2009-11-17 06:20:44 +0000586 mcp251x_do_set_bittiming(net);
Christian Pellegrine0000162009-11-02 23:07:00 +0000587
588 /* Enable RX0->RX1 buffer roll over and disable filters */
589 mcp251x_write_bits(spi, RXBCTRL(0),
590 RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1,
591 RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
592 mcp251x_write_bits(spi, RXBCTRL(1),
593 RXBCTRL_RXM0 | RXBCTRL_RXM1,
594 RXBCTRL_RXM0 | RXBCTRL_RXM1);
595 return 0;
596}
597
598static void mcp251x_hw_reset(struct spi_device *spi)
599{
600 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
601 int ret;
602
603 mutex_lock(&priv->spi_lock);
604
605 priv->spi_tx_buf[0] = INSTRUCTION_RESET;
606
607 ret = spi_write(spi, priv->spi_tx_buf, 1);
608
609 mutex_unlock(&priv->spi_lock);
610
611 if (ret)
612 dev_err(&spi->dev, "reset failed: ret = %d\n", ret);
613 /* Wait for reset to finish */
614 mdelay(10);
615}
616
617static int mcp251x_hw_probe(struct spi_device *spi)
618{
619 int st1, st2;
620
621 mcp251x_hw_reset(spi);
622
623 /*
624 * Please note that these are "magic values" based on after
625 * reset defaults taken from data sheet which allows us to see
626 * if we really have a chip on the bus (we avoid common all
627 * zeroes or all ones situations)
628 */
629 st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
630 st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;
631
632 dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);
633
634 /* Check for power up default values */
635 return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
636}
637
638static irqreturn_t mcp251x_can_isr(int irq, void *dev_id)
639{
640 struct net_device *net = (struct net_device *)dev_id;
641 struct mcp251x_priv *priv = netdev_priv(net);
642
643 /* Schedule bottom half */
644 if (!work_pending(&priv->irq_work))
645 queue_work(priv->wq, &priv->irq_work);
646
647 return IRQ_HANDLED;
648}
649
650static int mcp251x_open(struct net_device *net)
651{
652 struct mcp251x_priv *priv = netdev_priv(net);
653 struct spi_device *spi = priv->spi;
654 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
655 int ret;
656
Christian Pellegrin615534b2009-11-17 06:20:44 +0000657 ret = open_candev(net);
658 if (ret) {
659 dev_err(&spi->dev, "unable to set initial baudrate!\n");
660 return ret;
661 }
662
Christian Pellegrine0000162009-11-02 23:07:00 +0000663 if (pdata->transceiver_enable)
664 pdata->transceiver_enable(1);
665
666 priv->force_quit = 0;
667 priv->tx_skb = NULL;
668 priv->tx_len = 0;
669
670 ret = request_irq(spi->irq, mcp251x_can_isr,
671 IRQF_TRIGGER_FALLING, DEVICE_NAME, net);
672 if (ret) {
673 dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
674 if (pdata->transceiver_enable)
675 pdata->transceiver_enable(0);
Christian Pellegrin615534b2009-11-17 06:20:44 +0000676 close_candev(net);
Christian Pellegrine0000162009-11-02 23:07:00 +0000677 return ret;
678 }
679
680 mcp251x_hw_wakeup(spi);
681 mcp251x_hw_reset(spi);
682 ret = mcp251x_setup(net, priv, spi);
683 if (ret) {
684 free_irq(spi->irq, net);
Christian Pellegrin615534b2009-11-17 06:20:44 +0000685 mcp251x_hw_sleep(spi);
Christian Pellegrine0000162009-11-02 23:07:00 +0000686 if (pdata->transceiver_enable)
687 pdata->transceiver_enable(0);
Christian Pellegrin615534b2009-11-17 06:20:44 +0000688 close_candev(net);
Christian Pellegrine0000162009-11-02 23:07:00 +0000689 return ret;
690 }
691 mcp251x_set_normal_mode(spi);
692 netif_wake_queue(net);
693
694 return 0;
695}
696
697static int mcp251x_stop(struct net_device *net)
698{
699 struct mcp251x_priv *priv = netdev_priv(net);
700 struct spi_device *spi = priv->spi;
701 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
702
703 close_candev(net);
704
705 /* Disable and clear pending interrupts */
706 mcp251x_write_reg(spi, CANINTE, 0x00);
707 mcp251x_write_reg(spi, CANINTF, 0x00);
708
709 priv->force_quit = 1;
710 free_irq(spi->irq, net);
711 flush_workqueue(priv->wq);
712
713 mcp251x_write_reg(spi, TXBCTRL(0), 0);
714 if (priv->tx_skb || priv->tx_len)
715 mcp251x_clean(net);
716
717 mcp251x_hw_sleep(spi);
718
719 if (pdata->transceiver_enable)
720 pdata->transceiver_enable(0);
721
722 priv->can.state = CAN_STATE_STOPPED;
723
724 return 0;
725}
726
727static void mcp251x_tx_work_handler(struct work_struct *ws)
728{
729 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
730 tx_work);
731 struct spi_device *spi = priv->spi;
732 struct net_device *net = priv->net;
733 struct can_frame *frame;
734
735 if (priv->tx_skb) {
736 frame = (struct can_frame *)priv->tx_skb->data;
737
738 if (priv->can.state == CAN_STATE_BUS_OFF) {
739 mcp251x_clean(net);
740 netif_wake_queue(net);
741 return;
742 }
743 if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
744 frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
745 mcp251x_hw_tx(spi, frame, 0);
746 priv->tx_len = 1 + frame->can_dlc;
747 can_put_echo_skb(priv->tx_skb, net, 0);
748 priv->tx_skb = NULL;
749 }
750}
751
752static void mcp251x_irq_work_handler(struct work_struct *ws)
753{
754 struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
755 irq_work);
756 struct spi_device *spi = priv->spi;
757 struct net_device *net = priv->net;
758 u8 txbnctrl;
759 u8 intf;
760 enum can_state new_state;
761
762 if (priv->after_suspend) {
763 mdelay(10);
764 mcp251x_hw_reset(spi);
765 mcp251x_setup(net, priv, spi);
766 if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
767 mcp251x_set_normal_mode(spi);
768 } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
769 netif_device_attach(net);
770 /* Clean since we lost tx buffer */
771 if (priv->tx_skb || priv->tx_len) {
772 mcp251x_clean(net);
773 netif_wake_queue(net);
774 }
775 mcp251x_set_normal_mode(spi);
776 } else {
777 mcp251x_hw_sleep(spi);
778 }
779 priv->after_suspend = 0;
780 }
781
782 if (priv->can.restart_ms == 0 && priv->can.state == CAN_STATE_BUS_OFF)
783 return;
784
785 while (!priv->force_quit && !freezing(current)) {
786 u8 eflag = mcp251x_read_reg(spi, EFLG);
787 int can_id = 0, data1 = 0;
788
789 mcp251x_write_reg(spi, EFLG, 0x00);
790
791 if (priv->restart_tx) {
792 priv->restart_tx = 0;
793 mcp251x_write_reg(spi, TXBCTRL(0), 0);
794 if (priv->tx_skb || priv->tx_len)
795 mcp251x_clean(net);
796 netif_wake_queue(net);
797 can_id |= CAN_ERR_RESTARTED;
798 }
799
800 if (priv->wake) {
801 /* Wait whilst the device wakes up */
802 mdelay(10);
803 priv->wake = 0;
804 }
805
806 intf = mcp251x_read_reg(spi, CANINTF);
807 mcp251x_write_bits(spi, CANINTF, intf, 0x00);
808
809 /* Update can state */
810 if (eflag & EFLG_TXBO) {
811 new_state = CAN_STATE_BUS_OFF;
812 can_id |= CAN_ERR_BUSOFF;
813 } else if (eflag & EFLG_TXEP) {
814 new_state = CAN_STATE_ERROR_PASSIVE;
815 can_id |= CAN_ERR_CRTL;
816 data1 |= CAN_ERR_CRTL_TX_PASSIVE;
817 } else if (eflag & EFLG_RXEP) {
818 new_state = CAN_STATE_ERROR_PASSIVE;
819 can_id |= CAN_ERR_CRTL;
820 data1 |= CAN_ERR_CRTL_RX_PASSIVE;
821 } else if (eflag & EFLG_TXWAR) {
822 new_state = CAN_STATE_ERROR_WARNING;
823 can_id |= CAN_ERR_CRTL;
824 data1 |= CAN_ERR_CRTL_TX_WARNING;
825 } else if (eflag & EFLG_RXWAR) {
826 new_state = CAN_STATE_ERROR_WARNING;
827 can_id |= CAN_ERR_CRTL;
828 data1 |= CAN_ERR_CRTL_RX_WARNING;
829 } else {
830 new_state = CAN_STATE_ERROR_ACTIVE;
831 }
832
833 /* Update can state statistics */
834 switch (priv->can.state) {
835 case CAN_STATE_ERROR_ACTIVE:
836 if (new_state >= CAN_STATE_ERROR_WARNING &&
837 new_state <= CAN_STATE_BUS_OFF)
838 priv->can.can_stats.error_warning++;
839 case CAN_STATE_ERROR_WARNING: /* fallthrough */
840 if (new_state >= CAN_STATE_ERROR_PASSIVE &&
841 new_state <= CAN_STATE_BUS_OFF)
842 priv->can.can_stats.error_passive++;
843 break;
844 default:
845 break;
846 }
847 priv->can.state = new_state;
848
849 if ((intf & CANINTF_ERRIF) || (can_id & CAN_ERR_RESTARTED)) {
850 struct sk_buff *skb;
851 struct can_frame *frame;
852
853 /* Create error frame */
854 skb = alloc_can_err_skb(net, &frame);
855 if (skb) {
856 /* Set error frame flags based on bus state */
857 frame->can_id = can_id;
858 frame->data[1] = data1;
859
860 /* Update net stats for overflows */
861 if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
862 if (eflag & EFLG_RX0OVR)
863 net->stats.rx_over_errors++;
864 if (eflag & EFLG_RX1OVR)
865 net->stats.rx_over_errors++;
866 frame->can_id |= CAN_ERR_CRTL;
867 frame->data[1] |=
868 CAN_ERR_CRTL_RX_OVERFLOW;
869 }
870
871 netif_rx(skb);
872 } else {
873 dev_info(&spi->dev,
874 "cannot allocate error skb\n");
875 }
876 }
877
878 if (priv->can.state == CAN_STATE_BUS_OFF) {
879 if (priv->can.restart_ms == 0) {
880 can_bus_off(net);
881 mcp251x_hw_sleep(spi);
882 return;
883 }
884 }
885
886 if (intf == 0)
887 break;
888
889 if (intf & CANINTF_WAKIF)
890 complete(&priv->awake);
891
892 if (intf & CANINTF_MERRF) {
893 /* If there are pending Tx buffers, restart queue */
894 txbnctrl = mcp251x_read_reg(spi, TXBCTRL(0));
895 if (!(txbnctrl & TXBCTRL_TXREQ)) {
896 if (priv->tx_skb || priv->tx_len)
897 mcp251x_clean(net);
898 netif_wake_queue(net);
899 }
900 }
901
902 if (intf & (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)) {
903 net->stats.tx_packets++;
904 net->stats.tx_bytes += priv->tx_len - 1;
905 if (priv->tx_len) {
906 can_get_echo_skb(net, 0);
907 priv->tx_len = 0;
908 }
909 netif_wake_queue(net);
910 }
911
912 if (intf & CANINTF_RX0IF)
913 mcp251x_hw_rx(spi, 0);
914
915 if (intf & CANINTF_RX1IF)
916 mcp251x_hw_rx(spi, 1);
917 }
918}
919
920static const struct net_device_ops mcp251x_netdev_ops = {
921 .ndo_open = mcp251x_open,
922 .ndo_stop = mcp251x_stop,
923 .ndo_start_xmit = mcp251x_hard_start_xmit,
924};
925
926static int __devinit mcp251x_can_probe(struct spi_device *spi)
927{
928 struct net_device *net;
929 struct mcp251x_priv *priv;
930 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
931 int ret = -ENODEV;
932
933 if (!pdata)
934 /* Platform data is required for osc freq */
935 goto error_out;
936
937 /* Allocate can/net device */
938 net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
939 if (!net) {
940 ret = -ENOMEM;
941 goto error_alloc;
942 }
943
944 net->netdev_ops = &mcp251x_netdev_ops;
945 net->flags |= IFF_ECHO;
946
947 priv = netdev_priv(net);
948 priv->can.bittiming_const = &mcp251x_bittiming_const;
949 priv->can.do_set_mode = mcp251x_do_set_mode;
950 priv->can.clock.freq = pdata->oscillator_frequency / 2;
Christian Pellegrine0000162009-11-02 23:07:00 +0000951 priv->net = net;
952 dev_set_drvdata(&spi->dev, priv);
953
954 priv->spi = spi;
955 mutex_init(&priv->spi_lock);
956
957 /* If requested, allocate DMA buffers */
958 if (mcp251x_enable_dma) {
959 spi->dev.coherent_dma_mask = ~0;
960
961 /*
962 * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
963 * that much and share it between Tx and Rx DMA buffers.
964 */
965 priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
966 PAGE_SIZE,
967 &priv->spi_tx_dma,
968 GFP_DMA);
969
970 if (priv->spi_tx_buf) {
971 priv->spi_rx_buf = (u8 *)(priv->spi_tx_buf +
972 (PAGE_SIZE / 2));
973 priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
974 (PAGE_SIZE / 2));
975 } else {
976 /* Fall back to non-DMA */
977 mcp251x_enable_dma = 0;
978 }
979 }
980
981 /* Allocate non-DMA buffers */
982 if (!mcp251x_enable_dma) {
983 priv->spi_tx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
984 if (!priv->spi_tx_buf) {
985 ret = -ENOMEM;
986 goto error_tx_buf;
987 }
988 priv->spi_rx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
Julia Lawallce739b42009-12-27 11:27:44 +0000989 if (!priv->spi_rx_buf) {
Christian Pellegrine0000162009-11-02 23:07:00 +0000990 ret = -ENOMEM;
991 goto error_rx_buf;
992 }
993 }
994
995 if (pdata->power_enable)
996 pdata->power_enable(1);
997
998 /* Call out to platform specific setup */
999 if (pdata->board_specific_setup)
1000 pdata->board_specific_setup(spi);
1001
1002 SET_NETDEV_DEV(net, &spi->dev);
1003
1004 priv->wq = create_freezeable_workqueue("mcp251x_wq");
1005
1006 INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
1007 INIT_WORK(&priv->irq_work, mcp251x_irq_work_handler);
1008
1009 init_completion(&priv->awake);
1010
1011 /* Configure the SPI bus */
1012 spi->mode = SPI_MODE_0;
1013 spi->bits_per_word = 8;
1014 spi_setup(spi);
1015
1016 if (!mcp251x_hw_probe(spi)) {
1017 dev_info(&spi->dev, "Probe failed\n");
1018 goto error_probe;
1019 }
1020 mcp251x_hw_sleep(spi);
1021
1022 if (pdata->transceiver_enable)
1023 pdata->transceiver_enable(0);
1024
1025 ret = register_candev(net);
1026 if (!ret) {
1027 dev_info(&spi->dev, "probed\n");
1028 return ret;
1029 }
1030error_probe:
1031 if (!mcp251x_enable_dma)
1032 kfree(priv->spi_rx_buf);
1033error_rx_buf:
1034 if (!mcp251x_enable_dma)
1035 kfree(priv->spi_tx_buf);
1036error_tx_buf:
1037 free_candev(net);
1038 if (mcp251x_enable_dma)
1039 dma_free_coherent(&spi->dev, PAGE_SIZE,
1040 priv->spi_tx_buf, priv->spi_tx_dma);
1041error_alloc:
1042 if (pdata->power_enable)
1043 pdata->power_enable(0);
1044 dev_err(&spi->dev, "probe failed\n");
1045error_out:
1046 return ret;
1047}
1048
1049static int __devexit mcp251x_can_remove(struct spi_device *spi)
1050{
1051 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1052 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1053 struct net_device *net = priv->net;
1054
1055 unregister_candev(net);
1056 free_candev(net);
1057
1058 priv->force_quit = 1;
1059 flush_workqueue(priv->wq);
1060 destroy_workqueue(priv->wq);
1061
1062 if (mcp251x_enable_dma) {
1063 dma_free_coherent(&spi->dev, PAGE_SIZE,
1064 priv->spi_tx_buf, priv->spi_tx_dma);
1065 } else {
1066 kfree(priv->spi_tx_buf);
1067 kfree(priv->spi_rx_buf);
1068 }
1069
1070 if (pdata->power_enable)
1071 pdata->power_enable(0);
1072
1073 return 0;
1074}
1075
1076#ifdef CONFIG_PM
1077static int mcp251x_can_suspend(struct spi_device *spi, pm_message_t state)
1078{
1079 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1080 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1081 struct net_device *net = priv->net;
1082
1083 if (netif_running(net)) {
1084 netif_device_detach(net);
1085
1086 mcp251x_hw_sleep(spi);
1087 if (pdata->transceiver_enable)
1088 pdata->transceiver_enable(0);
1089 priv->after_suspend = AFTER_SUSPEND_UP;
1090 } else {
1091 priv->after_suspend = AFTER_SUSPEND_DOWN;
1092 }
1093
1094 if (pdata->power_enable) {
1095 pdata->power_enable(0);
1096 priv->after_suspend |= AFTER_SUSPEND_POWER;
1097 }
1098
1099 return 0;
1100}
1101
1102static int mcp251x_can_resume(struct spi_device *spi)
1103{
1104 struct mcp251x_platform_data *pdata = spi->dev.platform_data;
1105 struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
1106
1107 if (priv->after_suspend & AFTER_SUSPEND_POWER) {
1108 pdata->power_enable(1);
1109 queue_work(priv->wq, &priv->irq_work);
1110 } else {
1111 if (priv->after_suspend & AFTER_SUSPEND_UP) {
1112 if (pdata->transceiver_enable)
1113 pdata->transceiver_enable(1);
1114 queue_work(priv->wq, &priv->irq_work);
1115 } else {
1116 priv->after_suspend = 0;
1117 }
1118 }
1119 return 0;
1120}
1121#else
1122#define mcp251x_can_suspend NULL
1123#define mcp251x_can_resume NULL
1124#endif
1125
1126static struct spi_driver mcp251x_can_driver = {
1127 .driver = {
1128 .name = DEVICE_NAME,
1129 .bus = &spi_bus_type,
1130 .owner = THIS_MODULE,
1131 },
1132
1133 .probe = mcp251x_can_probe,
1134 .remove = __devexit_p(mcp251x_can_remove),
1135 .suspend = mcp251x_can_suspend,
1136 .resume = mcp251x_can_resume,
1137};
1138
1139static int __init mcp251x_can_init(void)
1140{
1141 return spi_register_driver(&mcp251x_can_driver);
1142}
1143
1144static void __exit mcp251x_can_exit(void)
1145{
1146 spi_unregister_driver(&mcp251x_can_driver);
1147}
1148
1149module_init(mcp251x_can_init);
1150module_exit(mcp251x_can_exit);
1151
1152MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1153 "Christian Pellegrin <chripell@evolware.org>");
1154MODULE_DESCRIPTION("Microchip 251x CAN driver");
1155MODULE_LICENSE("GPL v2");