blob: 79d15c65bfe458a1f236a5960fdbba7ebcfce352 [file] [log] [blame]
David Rowe10602db2008-10-06 21:41:46 -07001/*
2 * SpanDSP - a series of DSP components for telephony
3 *
4 * echo.c - A line echo canceller. This code is being developed
5 * against and partially complies with G168.
6 *
7 * Written by Steve Underwood <steveu@coppice.org>
8 * and David Rowe <david_at_rowetel_dot_com>
9 *
10 * Copyright (C) 2001, 2003 Steve Underwood, 2007 David Rowe
11 *
12 * Based on a bit from here, a bit from there, eye of toad, ear of
13 * bat, 15 years of failed attempts by David and a few fried brain
14 * cells.
15 *
16 * All rights reserved.
17 *
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License version 2, as
20 * published by the Free Software Foundation.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 *
27 * You should have received a copy of the GNU General Public License
28 * along with this program; if not, write to the Free Software
29 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
David Rowe10602db2008-10-06 21:41:46 -070030 */
31
32/*! \file */
33
34/* Implementation Notes
35 David Rowe
36 April 2007
37
38 This code started life as Steve's NLMS algorithm with a tap
39 rotation algorithm to handle divergence during double talk. I
40 added a Geigel Double Talk Detector (DTD) [2] and performed some
41 G168 tests. However I had trouble meeting the G168 requirements,
42 especially for double talk - there were always cases where my DTD
43 failed, for example where near end speech was under the 6dB
44 threshold required for declaring double talk.
45
46 So I tried a two path algorithm [1], which has so far given better
47 results. The original tap rotation/Geigel algorithm is available
48 in SVN http://svn.rowetel.com/software/oslec/tags/before_16bit.
49 It's probably possible to make it work if some one wants to put some
50 serious work into it.
51
52 At present no special treatment is provided for tones, which
53 generally cause NLMS algorithms to diverge. Initial runs of a
54 subset of the G168 tests for tones (e.g ./echo_test 6) show the
55 current algorithm is passing OK, which is kind of surprising. The
56 full set of tests needs to be performed to confirm this result.
57
58 One other interesting change is that I have managed to get the NLMS
59 code to work with 16 bit coefficients, rather than the original 32
60 bit coefficents. This reduces the MIPs and storage required.
61 I evaulated the 16 bit port using g168_tests.sh and listening tests
62 on 4 real-world samples.
63
64 I also attempted the implementation of a block based NLMS update
65 [2] but although this passes g168_tests.sh it didn't converge well
66 on the real-world samples. I have no idea why, perhaps a scaling
67 problem. The block based code is also available in SVN
68 http://svn.rowetel.com/software/oslec/tags/before_16bit. If this
69 code can be debugged, it will lead to further reduction in MIPS, as
70 the block update code maps nicely onto DSP instruction sets (it's a
71 dot product) compared to the current sample-by-sample update.
72
73 Steve also has some nice notes on echo cancellers in echo.h
74
David Rowe10602db2008-10-06 21:41:46 -070075 References:
76
77 [1] Ochiai, Areseki, and Ogihara, "Echo Canceller with Two Echo
78 Path Models", IEEE Transactions on communications, COM-25,
79 No. 6, June
80 1977.
81 http://www.rowetel.com/images/echo/dual_path_paper.pdf
82
83 [2] The classic, very useful paper that tells you how to
84 actually build a real world echo canceller:
85 Messerschmitt, Hedberg, Cole, Haoui, Winship, "Digital Voice
86 Echo Canceller with a TMS320020,
87 http://www.rowetel.com/images/echo/spra129.pdf
88
89 [3] I have written a series of blog posts on this work, here is
90 Part 1: http://www.rowetel.com/blog/?p=18
91
92 [4] The source code http://svn.rowetel.com/software/oslec/
93
94 [5] A nice reference on LMS filters:
95 http://en.wikipedia.org/wiki/Least_mean_squares_filter
96
97 Credits:
98
99 Thanks to Steve Underwood, Jean-Marc Valin, and Ramakrishnan
100 Muthukrishnan for their suggestions and email discussions. Thanks
101 also to those people who collected echo samples for me such as
102 Mark, Pawel, and Pavel.
103*/
104
J.R. Mauro4460a862008-10-20 19:01:31 -0400105#include <linux/kernel.h> /* We're doing kernel work */
David Rowe10602db2008-10-06 21:41:46 -0700106#include <linux/module.h>
David Rowe10602db2008-10-06 21:41:46 -0700107#include <linux/slab.h>
David Rowe10602db2008-10-06 21:41:46 -0700108
109#include "bit_operations.h"
110#include "echo.h"
111
112#define MIN_TX_POWER_FOR_ADAPTION 64
113#define MIN_RX_POWER_FOR_ADAPTION 64
Alexander Beregalovdc57a3e2009-03-12 03:32:45 +0300114#define DTD_HANGOVER 600 /* 600 samples, or 75ms */
115#define DC_LOG2BETA 3 /* log2() of DC filter Beta */
David Rowe10602db2008-10-06 21:41:46 -0700116
117/*-----------------------------------------------------------------------*\
Alexander Beregalovdc57a3e2009-03-12 03:32:45 +0300118 FUNCTIONS
David Rowe10602db2008-10-06 21:41:46 -0700119\*-----------------------------------------------------------------------*/
120
121/* adapting coeffs using the traditional stochastic descent (N)LMS algorithm */
122
Tzafrir Cohenf55ccbf2008-10-12 08:13:21 +0200123#ifdef __bfin__
Alexander Beregalovdc57a3e2009-03-12 03:32:45 +0300124static inline void lms_adapt_bg(struct oslec_state *ec, int clean,
J.R. Mauro4460a862008-10-20 19:01:31 -0400125 int shift)
David Rowe10602db2008-10-06 21:41:46 -0700126{
J.R. Mauro4460a862008-10-20 19:01:31 -0400127 int i, j;
128 int offset1;
129 int offset2;
130 int factor;
131 int exp;
132 int16_t *phist;
133 int n;
David Rowe10602db2008-10-06 21:41:46 -0700134
J.R. Mauro4460a862008-10-20 19:01:31 -0400135 if (shift > 0)
136 factor = clean << shift;
137 else
138 factor = clean >> -shift;
David Rowe10602db2008-10-06 21:41:46 -0700139
J.R. Mauro4460a862008-10-20 19:01:31 -0400140 /* Update the FIR taps */
David Rowe10602db2008-10-06 21:41:46 -0700141
J.R. Mauro4460a862008-10-20 19:01:31 -0400142 offset2 = ec->curr_pos;
143 offset1 = ec->taps - offset2;
144 phist = &ec->fir_state_bg.history[offset2];
David Rowe10602db2008-10-06 21:41:46 -0700145
J.R. Mauro4460a862008-10-20 19:01:31 -0400146 /* st: and en: help us locate the assembler in echo.s */
David Rowe10602db2008-10-06 21:41:46 -0700147
Alexander Beregalovdc57a3e2009-03-12 03:32:45 +0300148 /* asm("st:"); */
J.R. Mauro4460a862008-10-20 19:01:31 -0400149 n = ec->taps;
150 for (i = 0, j = offset2; i < n; i++, j++) {
151 exp = *phist++ * factor;
152 ec->fir_taps16[1][i] += (int16_t) ((exp + (1 << 14)) >> 15);
153 }
Alexander Beregalovdc57a3e2009-03-12 03:32:45 +0300154 /* asm("en:"); */
David Rowe10602db2008-10-06 21:41:46 -0700155
J.R. Mauro4460a862008-10-20 19:01:31 -0400156 /* Note the asm for the inner loop above generated by Blackfin gcc
157 4.1.1 is pretty good (note even parallel instructions used):
David Rowe10602db2008-10-06 21:41:46 -0700158
J.R. Mauro4460a862008-10-20 19:01:31 -0400159 R0 = W [P0++] (X);
160 R0 *= R2;
161 R0 = R0 + R3 (NS) ||
162 R1 = W [P1] (X) ||
163 nop;
164 R0 >>>= 15;
165 R0 = R0 + R1;
166 W [P1++] = R0;
David Rowe10602db2008-10-06 21:41:46 -0700167
J.R. Mauro4460a862008-10-20 19:01:31 -0400168 A block based update algorithm would be much faster but the
169 above can't be improved on much. Every instruction saved in
170 the loop above is 2 MIPs/ch! The for loop above is where the
171 Blackfin spends most of it's time - about 17 MIPs/ch measured
172 with speedtest.c with 256 taps (32ms). Write-back and
173 Write-through cache gave about the same performance.
174 */
David Rowe10602db2008-10-06 21:41:46 -0700175}
176
177/*
178 IDEAS for further optimisation of lms_adapt_bg():
179
180 1/ The rounding is quite costly. Could we keep as 32 bit coeffs
181 then make filter pluck the MS 16-bits of the coeffs when filtering?
182 However this would lower potential optimisation of filter, as I
183 think the dual-MAC architecture requires packed 16 bit coeffs.
184
185 2/ Block based update would be more efficient, as per comments above,
186 could use dual MAC architecture.
187
188 3/ Look for same sample Blackfin LMS code, see if we can get dual-MAC
189 packing.
190
191 4/ Execute the whole e/c in a block of say 20ms rather than sample
192 by sample. Processing a few samples every ms is inefficient.
193*/
194
195#else
Alexander Beregalovdc57a3e2009-03-12 03:32:45 +0300196static inline void lms_adapt_bg(struct oslec_state *ec, int clean,
J.R. Mauro4460a862008-10-20 19:01:31 -0400197 int shift)
David Rowe10602db2008-10-06 21:41:46 -0700198{
J.R. Mauro4460a862008-10-20 19:01:31 -0400199 int i;
David Rowe10602db2008-10-06 21:41:46 -0700200
J.R. Mauro4460a862008-10-20 19:01:31 -0400201 int offset1;
202 int offset2;
203 int factor;
204 int exp;
David Rowe10602db2008-10-06 21:41:46 -0700205
J.R. Mauro4460a862008-10-20 19:01:31 -0400206 if (shift > 0)
207 factor = clean << shift;
208 else
209 factor = clean >> -shift;
David Rowe10602db2008-10-06 21:41:46 -0700210
J.R. Mauro4460a862008-10-20 19:01:31 -0400211 /* Update the FIR taps */
David Rowe10602db2008-10-06 21:41:46 -0700212
J.R. Mauro4460a862008-10-20 19:01:31 -0400213 offset2 = ec->curr_pos;
214 offset1 = ec->taps - offset2;
David Rowe10602db2008-10-06 21:41:46 -0700215
J.R. Mauro4460a862008-10-20 19:01:31 -0400216 for (i = ec->taps - 1; i >= offset1; i--) {
217 exp = (ec->fir_state_bg.history[i - offset1] * factor);
218 ec->fir_taps16[1][i] += (int16_t) ((exp + (1 << 14)) >> 15);
219 }
220 for (; i >= 0; i--) {
221 exp = (ec->fir_state_bg.history[i + offset2] * factor);
222 ec->fir_taps16[1][i] += (int16_t) ((exp + (1 << 14)) >> 15);
223 }
David Rowe10602db2008-10-06 21:41:46 -0700224}
225#endif
226
Tzafrir Cohen9d8f2d52008-10-12 07:17:26 +0200227struct oslec_state *oslec_create(int len, int adaption_mode)
David Rowe10602db2008-10-06 21:41:46 -0700228{
J.R. Mauro4460a862008-10-20 19:01:31 -0400229 struct oslec_state *ec;
230 int i;
David Rowe10602db2008-10-06 21:41:46 -0700231
J.R. Mauro4460a862008-10-20 19:01:31 -0400232 ec = kzalloc(sizeof(*ec), GFP_KERNEL);
233 if (!ec)
234 return NULL;
David Rowe10602db2008-10-06 21:41:46 -0700235
J.R. Mauro4460a862008-10-20 19:01:31 -0400236 ec->taps = len;
237 ec->log2taps = top_bit(len);
238 ec->curr_pos = ec->taps - 1;
David Rowe10602db2008-10-06 21:41:46 -0700239
J.R. Mauro4460a862008-10-20 19:01:31 -0400240 for (i = 0; i < 2; i++) {
241 ec->fir_taps16[i] =
242 kcalloc(ec->taps, sizeof(int16_t), GFP_KERNEL);
243 if (!ec->fir_taps16[i])
244 goto error_oom;
245 }
David Rowe10602db2008-10-06 21:41:46 -0700246
J.R. Mauro4460a862008-10-20 19:01:31 -0400247 fir16_create(&ec->fir_state, ec->fir_taps16[0], ec->taps);
248 fir16_create(&ec->fir_state_bg, ec->fir_taps16[1], ec->taps);
David Rowe10602db2008-10-06 21:41:46 -0700249
Alexander Beregalovdc57a3e2009-03-12 03:32:45 +0300250 for (i = 0; i < 5; i++)
J.R. Mauro4460a862008-10-20 19:01:31 -0400251 ec->xvtx[i] = ec->yvtx[i] = ec->xvrx[i] = ec->yvrx[i] = 0;
David Rowe10602db2008-10-06 21:41:46 -0700252
J.R. Mauro4460a862008-10-20 19:01:31 -0400253 ec->cng_level = 1000;
254 oslec_adaption_mode(ec, adaption_mode);
David Rowe10602db2008-10-06 21:41:46 -0700255
J.R. Mauro4460a862008-10-20 19:01:31 -0400256 ec->snapshot = kcalloc(ec->taps, sizeof(int16_t), GFP_KERNEL);
257 if (!ec->snapshot)
258 goto error_oom;
David Rowe10602db2008-10-06 21:41:46 -0700259
J.R. Mauro4460a862008-10-20 19:01:31 -0400260 ec->cond_met = 0;
261 ec->Pstates = 0;
262 ec->Ltxacc = ec->Lrxacc = ec->Lcleanacc = ec->Lclean_bgacc = 0;
263 ec->Ltx = ec->Lrx = ec->Lclean = ec->Lclean_bg = 0;
264 ec->tx_1 = ec->tx_2 = ec->rx_1 = ec->rx_2 = 0;
265 ec->Lbgn = ec->Lbgn_acc = 0;
266 ec->Lbgn_upper = 200;
267 ec->Lbgn_upper_acc = ec->Lbgn_upper << 13;
David Rowe10602db2008-10-06 21:41:46 -0700268
J.R. Mauro4460a862008-10-20 19:01:31 -0400269 return ec;
Pekka Enbergdb2af142008-10-17 20:55:03 +0300270
Alexander Beregalovdc57a3e2009-03-12 03:32:45 +0300271error_oom:
J.R. Mauro4460a862008-10-20 19:01:31 -0400272 for (i = 0; i < 2; i++)
273 kfree(ec->fir_taps16[i]);
Pekka Enbergdb2af142008-10-17 20:55:03 +0300274
J.R. Mauro4460a862008-10-20 19:01:31 -0400275 kfree(ec);
276 return NULL;
David Rowe10602db2008-10-06 21:41:46 -0700277}
Tzafrir Cohen9d8f2d52008-10-12 07:17:26 +0200278EXPORT_SYMBOL_GPL(oslec_create);
David Rowe10602db2008-10-06 21:41:46 -0700279
Tzafrir Cohen9d8f2d52008-10-12 07:17:26 +0200280void oslec_free(struct oslec_state *ec)
David Rowe10602db2008-10-06 21:41:46 -0700281{
282 int i;
283
284 fir16_free(&ec->fir_state);
285 fir16_free(&ec->fir_state_bg);
J.R. Mauro4460a862008-10-20 19:01:31 -0400286 for (i = 0; i < 2; i++)
David Rowe10602db2008-10-06 21:41:46 -0700287 kfree(ec->fir_taps16[i]);
288 kfree(ec->snapshot);
289 kfree(ec);
290}
Tzafrir Cohen9d8f2d52008-10-12 07:17:26 +0200291EXPORT_SYMBOL_GPL(oslec_free);
David Rowe10602db2008-10-06 21:41:46 -0700292
Tzafrir Cohen9d8f2d52008-10-12 07:17:26 +0200293void oslec_adaption_mode(struct oslec_state *ec, int adaption_mode)
David Rowe10602db2008-10-06 21:41:46 -0700294{
J.R. Mauro4460a862008-10-20 19:01:31 -0400295 ec->adaption_mode = adaption_mode;
David Rowe10602db2008-10-06 21:41:46 -0700296}
Tzafrir Cohen9d8f2d52008-10-12 07:17:26 +0200297EXPORT_SYMBOL_GPL(oslec_adaption_mode);
David Rowe10602db2008-10-06 21:41:46 -0700298
Tzafrir Cohen9d8f2d52008-10-12 07:17:26 +0200299void oslec_flush(struct oslec_state *ec)
David Rowe10602db2008-10-06 21:41:46 -0700300{
J.R. Mauro4460a862008-10-20 19:01:31 -0400301 int i;
David Rowe10602db2008-10-06 21:41:46 -0700302
J.R. Mauro4460a862008-10-20 19:01:31 -0400303 ec->Ltxacc = ec->Lrxacc = ec->Lcleanacc = ec->Lclean_bgacc = 0;
304 ec->Ltx = ec->Lrx = ec->Lclean = ec->Lclean_bg = 0;
305 ec->tx_1 = ec->tx_2 = ec->rx_1 = ec->rx_2 = 0;
David Rowe10602db2008-10-06 21:41:46 -0700306
J.R. Mauro4460a862008-10-20 19:01:31 -0400307 ec->Lbgn = ec->Lbgn_acc = 0;
308 ec->Lbgn_upper = 200;
309 ec->Lbgn_upper_acc = ec->Lbgn_upper << 13;
David Rowe10602db2008-10-06 21:41:46 -0700310
J.R. Mauro4460a862008-10-20 19:01:31 -0400311 ec->nonupdate_dwell = 0;
David Rowe10602db2008-10-06 21:41:46 -0700312
J.R. Mauro4460a862008-10-20 19:01:31 -0400313 fir16_flush(&ec->fir_state);
314 fir16_flush(&ec->fir_state_bg);
315 ec->fir_state.curr_pos = ec->taps - 1;
316 ec->fir_state_bg.curr_pos = ec->taps - 1;
317 for (i = 0; i < 2; i++)
318 memset(ec->fir_taps16[i], 0, ec->taps * sizeof(int16_t));
David Rowe10602db2008-10-06 21:41:46 -0700319
J.R. Mauro4460a862008-10-20 19:01:31 -0400320 ec->curr_pos = ec->taps - 1;
321 ec->Pstates = 0;
David Rowe10602db2008-10-06 21:41:46 -0700322}
Tzafrir Cohen9d8f2d52008-10-12 07:17:26 +0200323EXPORT_SYMBOL_GPL(oslec_flush);
David Rowe10602db2008-10-06 21:41:46 -0700324
J.R. Mauro4460a862008-10-20 19:01:31 -0400325void oslec_snapshot(struct oslec_state *ec)
326{
327 memcpy(ec->snapshot, ec->fir_taps16[0], ec->taps * sizeof(int16_t));
David Rowe10602db2008-10-06 21:41:46 -0700328}
Tzafrir Cohen9d8f2d52008-10-12 07:17:26 +0200329EXPORT_SYMBOL_GPL(oslec_snapshot);
David Rowe10602db2008-10-06 21:41:46 -0700330
331/* Dual Path Echo Canceller ------------------------------------------------*/
332
Tzafrir Cohen9d8f2d52008-10-12 07:17:26 +0200333int16_t oslec_update(struct oslec_state *ec, int16_t tx, int16_t rx)
David Rowe10602db2008-10-06 21:41:46 -0700334{
J.R. Mauro4460a862008-10-20 19:01:31 -0400335 int32_t echo_value;
336 int clean_bg;
337 int tmp, tmp1;
David Rowe10602db2008-10-06 21:41:46 -0700338
J.R. Mauro4460a862008-10-20 19:01:31 -0400339 /* Input scaling was found be required to prevent problems when tx
340 starts clipping. Another possible way to handle this would be the
341 filter coefficent scaling. */
David Rowe10602db2008-10-06 21:41:46 -0700342
J.R. Mauro4460a862008-10-20 19:01:31 -0400343 ec->tx = tx;
344 ec->rx = rx;
345 tx >>= 1;
346 rx >>= 1;
David Rowe10602db2008-10-06 21:41:46 -0700347
J.R. Mauro4460a862008-10-20 19:01:31 -0400348 /*
349 Filter DC, 3dB point is 160Hz (I think), note 32 bit precision required
350 otherwise values do not track down to 0. Zero at DC, Pole at (1-Beta)
351 only real axis. Some chip sets (like Si labs) don't need
352 this, but something like a $10 X100P card does. Any DC really slows
353 down convergence.
David Rowe10602db2008-10-06 21:41:46 -0700354
J.R. Mauro4460a862008-10-20 19:01:31 -0400355 Note: removes some low frequency from the signal, this reduces
356 the speech quality when listening to samples through headphones
357 but may not be obvious through a telephone handset.
David Rowe10602db2008-10-06 21:41:46 -0700358
J.R. Mauro4460a862008-10-20 19:01:31 -0400359 Note that the 3dB frequency in radians is approx Beta, e.g. for
360 Beta = 2^(-3) = 0.125, 3dB freq is 0.125 rads = 159Hz.
361 */
David Rowe10602db2008-10-06 21:41:46 -0700362
J.R. Mauro4460a862008-10-20 19:01:31 -0400363 if (ec->adaption_mode & ECHO_CAN_USE_RX_HPF) {
364 tmp = rx << 15;
David Rowe10602db2008-10-06 21:41:46 -0700365#if 1
J.R. Mauro4460a862008-10-20 19:01:31 -0400366 /* Make sure the gain of the HPF is 1.0. This can still saturate a little under
367 impulse conditions, and it might roll to 32768 and need clipping on sustained peak
368 level signals. However, the scale of such clipping is small, and the error due to
369 any saturation should not markedly affect the downstream processing. */
370 tmp -= (tmp >> 4);
David Rowe10602db2008-10-06 21:41:46 -0700371#endif
J.R. Mauro4460a862008-10-20 19:01:31 -0400372 ec->rx_1 += -(ec->rx_1 >> DC_LOG2BETA) + tmp - ec->rx_2;
David Rowe10602db2008-10-06 21:41:46 -0700373
J.R. Mauro4460a862008-10-20 19:01:31 -0400374 /* hard limit filter to prevent clipping. Note that at this stage
375 rx should be limited to +/- 16383 due to right shift above */
376 tmp1 = ec->rx_1 >> 15;
377 if (tmp1 > 16383)
378 tmp1 = 16383;
379 if (tmp1 < -16383)
380 tmp1 = -16383;
381 rx = tmp1;
382 ec->rx_2 = tmp;
David Rowe10602db2008-10-06 21:41:46 -0700383 }
David Rowe10602db2008-10-06 21:41:46 -0700384
J.R. Mauro4460a862008-10-20 19:01:31 -0400385 /* Block average of power in the filter states. Used for
386 adaption power calculation. */
David Rowe10602db2008-10-06 21:41:46 -0700387
David Rowe10602db2008-10-06 21:41:46 -0700388 {
J.R. Mauro4460a862008-10-20 19:01:31 -0400389 int new, old;
David Rowe10602db2008-10-06 21:41:46 -0700390
J.R. Mauro4460a862008-10-20 19:01:31 -0400391 /* efficient "out with the old and in with the new" algorithm so
392 we don't have to recalculate over the whole block of
393 samples. */
Alexander Beregalovdc57a3e2009-03-12 03:32:45 +0300394 new = (int)tx * (int)tx;
J.R. Mauro4460a862008-10-20 19:01:31 -0400395 old = (int)ec->fir_state.history[ec->fir_state.curr_pos] *
396 (int)ec->fir_state.history[ec->fir_state.curr_pos];
397 ec->Pstates +=
David Rowe0f510102009-05-20 11:18:27 +0930398 ((new - old) + (1 << (ec->log2taps-1))) >> ec->log2taps;
J.R. Mauro4460a862008-10-20 19:01:31 -0400399 if (ec->Pstates < 0)
400 ec->Pstates = 0;
David Rowe10602db2008-10-06 21:41:46 -0700401 }
David Rowe10602db2008-10-06 21:41:46 -0700402
J.R. Mauro4460a862008-10-20 19:01:31 -0400403 /* Calculate short term average levels using simple single pole IIRs */
David Rowe10602db2008-10-06 21:41:46 -0700404
J.R. Mauro4460a862008-10-20 19:01:31 -0400405 ec->Ltxacc += abs(tx) - ec->Ltx;
406 ec->Ltx = (ec->Ltxacc + (1 << 4)) >> 5;
407 ec->Lrxacc += abs(rx) - ec->Lrx;
408 ec->Lrx = (ec->Lrxacc + (1 << 4)) >> 5;
David Rowe10602db2008-10-06 21:41:46 -0700409
J.R. Mauro4460a862008-10-20 19:01:31 -0400410 /* Foreground filter --------------------------------------------------- */
David Rowe10602db2008-10-06 21:41:46 -0700411
J.R. Mauro4460a862008-10-20 19:01:31 -0400412 ec->fir_state.coeffs = ec->fir_taps16[0];
413 echo_value = fir16(&ec->fir_state, tx);
414 ec->clean = rx - echo_value;
415 ec->Lcleanacc += abs(ec->clean) - ec->Lclean;
416 ec->Lclean = (ec->Lcleanacc + (1 << 4)) >> 5;
417
418 /* Background filter --------------------------------------------------- */
419
420 echo_value = fir16(&ec->fir_state_bg, tx);
421 clean_bg = rx - echo_value;
422 ec->Lclean_bgacc += abs(clean_bg) - ec->Lclean_bg;
423 ec->Lclean_bg = (ec->Lclean_bgacc + (1 << 4)) >> 5;
424
425 /* Background Filter adaption ----------------------------------------- */
426
427 /* Almost always adap bg filter, just simple DT and energy
428 detection to minimise adaption in cases of strong double talk.
429 However this is not critical for the dual path algorithm.
430 */
431 ec->factor = 0;
432 ec->shift = 0;
433 if ((ec->nonupdate_dwell == 0)) {
434 int P, logP, shift;
435
436 /* Determine:
437
438 f = Beta * clean_bg_rx/P ------ (1)
439
440 where P is the total power in the filter states.
441
442 The Boffins have shown that if we obey (1) we converge
443 quickly and avoid instability.
444
445 The correct factor f must be in Q30, as this is the fixed
446 point format required by the lms_adapt_bg() function,
447 therefore the scaled version of (1) is:
448
449 (2^30) * f = (2^30) * Beta * clean_bg_rx/P
450 factor = (2^30) * Beta * clean_bg_rx/P ----- (2)
451
452 We have chosen Beta = 0.25 by experiment, so:
453
454 factor = (2^30) * (2^-2) * clean_bg_rx/P
455
456 (30 - 2 - log2(P))
457 factor = clean_bg_rx 2 ----- (3)
458
459 To avoid a divide we approximate log2(P) as top_bit(P),
460 which returns the position of the highest non-zero bit in
461 P. This approximation introduces an error as large as a
462 factor of 2, but the algorithm seems to handle it OK.
463
464 Come to think of it a divide may not be a big deal on a
465 modern DSP, so its probably worth checking out the cycles
466 for a divide versus a top_bit() implementation.
467 */
468
469 P = MIN_TX_POWER_FOR_ADAPTION + ec->Pstates;
470 logP = top_bit(P) + ec->log2taps;
471 shift = 30 - 2 - logP;
472 ec->shift = shift;
473
474 lms_adapt_bg(ec, clean_bg, shift);
475 }
476
477 /* very simple DTD to make sure we dont try and adapt with strong
478 near end speech */
479
480 ec->adapt = 0;
481 if ((ec->Lrx > MIN_RX_POWER_FOR_ADAPTION) && (ec->Lrx > ec->Ltx))
482 ec->nonupdate_dwell = DTD_HANGOVER;
483 if (ec->nonupdate_dwell)
484 ec->nonupdate_dwell--;
485
486 /* Transfer logic ------------------------------------------------------ */
487
488 /* These conditions are from the dual path paper [1], I messed with
489 them a bit to improve performance. */
490
491 if ((ec->adaption_mode & ECHO_CAN_USE_ADAPTION) &&
492 (ec->nonupdate_dwell == 0) &&
Alexander Beregalovdc57a3e2009-03-12 03:32:45 +0300493 /* (ec->Lclean_bg < 0.875*ec->Lclean) */
494 (8 * ec->Lclean_bg < 7 * ec->Lclean) &&
495 /* (ec->Lclean_bg < 0.125*ec->Ltx) */
496 (8 * ec->Lclean_bg < ec->Ltx)) {
J.R. Mauro4460a862008-10-20 19:01:31 -0400497 if (ec->cond_met == 6) {
498 /* BG filter has had better results for 6 consecutive samples */
499 ec->adapt = 1;
500 memcpy(ec->fir_taps16[0], ec->fir_taps16[1],
Alexander Beregalovdc57a3e2009-03-12 03:32:45 +0300501 ec->taps * sizeof(int16_t));
J.R. Mauro4460a862008-10-20 19:01:31 -0400502 } else
503 ec->cond_met++;
504 } else
505 ec->cond_met = 0;
506
507 /* Non-Linear Processing --------------------------------------------------- */
508
509 ec->clean_nlp = ec->clean;
510 if (ec->adaption_mode & ECHO_CAN_USE_NLP) {
511 /* Non-linear processor - a fancy way to say "zap small signals, to avoid
512 residual echo due to (uLaw/ALaw) non-linearity in the channel.". */
513
514 if ((16 * ec->Lclean < ec->Ltx)) {
515 /* Our e/c has improved echo by at least 24 dB (each factor of 2 is 6dB,
516 so 2*2*2*2=16 is the same as 6+6+6+6=24dB) */
517 if (ec->adaption_mode & ECHO_CAN_USE_CNG) {
518 ec->cng_level = ec->Lbgn;
519
520 /* Very elementary comfort noise generation. Just random
521 numbers rolled off very vaguely Hoth-like. DR: This
522 noise doesn't sound quite right to me - I suspect there
523 are some overlfow issues in the filtering as it's too
524 "crackly". TODO: debug this, maybe just play noise at
525 high level or look at spectrum.
526 */
527
528 ec->cng_rndnum =
529 1664525U * ec->cng_rndnum + 1013904223U;
530 ec->cng_filter =
531 ((ec->cng_rndnum & 0xFFFF) - 32768 +
532 5 * ec->cng_filter) >> 3;
533 ec->clean_nlp =
534 (ec->cng_filter * ec->cng_level * 8) >> 14;
535
536 } else if (ec->adaption_mode & ECHO_CAN_USE_CLIP) {
537 /* This sounds much better than CNG */
538 if (ec->clean_nlp > ec->Lbgn)
539 ec->clean_nlp = ec->Lbgn;
540 if (ec->clean_nlp < -ec->Lbgn)
541 ec->clean_nlp = -ec->Lbgn;
542 } else {
543 /* just mute the residual, doesn't sound very good, used mainly
544 in G168 tests */
545 ec->clean_nlp = 0;
546 }
547 } else {
548 /* Background noise estimator. I tried a few algorithms
549 here without much luck. This very simple one seems to
550 work best, we just average the level using a slow (1 sec
551 time const) filter if the current level is less than a
552 (experimentally derived) constant. This means we dont
553 include high level signals like near end speech. When
554 combined with CNG or especially CLIP seems to work OK.
555 */
556 if (ec->Lclean < 40) {
557 ec->Lbgn_acc += abs(ec->clean) - ec->Lbgn;
558 ec->Lbgn = (ec->Lbgn_acc + (1 << 11)) >> 12;
559 }
560 }
561 }
562
563 /* Roll around the taps buffer */
564 if (ec->curr_pos <= 0)
565 ec->curr_pos = ec->taps;
566 ec->curr_pos--;
567
568 if (ec->adaption_mode & ECHO_CAN_DISABLE)
569 ec->clean_nlp = rx;
570
571 /* Output scaled back up again to match input scaling */
572
573 return (int16_t) ec->clean_nlp << 1;
David Rowe10602db2008-10-06 21:41:46 -0700574}
Tzafrir Cohen9d8f2d52008-10-12 07:17:26 +0200575EXPORT_SYMBOL_GPL(oslec_update);
David Rowe10602db2008-10-06 21:41:46 -0700576
577/* This function is seperated from the echo canceller is it is usually called
578 as part of the tx process. See rx HP (DC blocking) filter above, it's
579 the same design.
580
581 Some soft phones send speech signals with a lot of low frequency
582 energy, e.g. down to 20Hz. This can make the hybrid non-linear
583 which causes the echo canceller to fall over. This filter can help
584 by removing any low frequency before it gets to the tx port of the
585 hybrid.
586
587 It can also help by removing and DC in the tx signal. DC is bad
588 for LMS algorithms.
589
590 This is one of the classic DC removal filters, adjusted to provide sufficient
591 bass rolloff to meet the above requirement to protect hybrids from things that
592 upset them. The difference between successive samples produces a lousy HPF, and
593 then a suitably placed pole flattens things out. The final result is a nicely
594 rolled off bass end. The filtering is implemented with extended fractional
595 precision, which noise shapes things, giving very clean DC removal.
596*/
597
Alexander Beregalovdc57a3e2009-03-12 03:32:45 +0300598int16_t oslec_hpf_tx(struct oslec_state *ec, int16_t tx)
J.R. Mauro4460a862008-10-20 19:01:31 -0400599{
600 int tmp, tmp1;
David Rowe10602db2008-10-06 21:41:46 -0700601
J.R. Mauro4460a862008-10-20 19:01:31 -0400602 if (ec->adaption_mode & ECHO_CAN_USE_TX_HPF) {
603 tmp = tx << 15;
David Rowe10602db2008-10-06 21:41:46 -0700604#if 1
J.R. Mauro4460a862008-10-20 19:01:31 -0400605 /* Make sure the gain of the HPF is 1.0. The first can still saturate a little under
606 impulse conditions, and it might roll to 32768 and need clipping on sustained peak
607 level signals. However, the scale of such clipping is small, and the error due to
608 any saturation should not markedly affect the downstream processing. */
609 tmp -= (tmp >> 4);
David Rowe10602db2008-10-06 21:41:46 -0700610#endif
J.R. Mauro4460a862008-10-20 19:01:31 -0400611 ec->tx_1 += -(ec->tx_1 >> DC_LOG2BETA) + tmp - ec->tx_2;
612 tmp1 = ec->tx_1 >> 15;
613 if (tmp1 > 32767)
614 tmp1 = 32767;
615 if (tmp1 < -32767)
616 tmp1 = -32767;
617 tx = tmp1;
618 ec->tx_2 = tmp;
619 }
David Rowe10602db2008-10-06 21:41:46 -0700620
J.R. Mauro4460a862008-10-20 19:01:31 -0400621 return tx;
David Rowe10602db2008-10-06 21:41:46 -0700622}
Tzafrir Cohen9d8f2d52008-10-12 07:17:26 +0200623EXPORT_SYMBOL_GPL(oslec_hpf_tx);
Tzafrir Cohen68b8d9f2008-10-12 06:55:40 +0200624
625MODULE_LICENSE("GPL");
626MODULE_AUTHOR("David Rowe");
627MODULE_DESCRIPTION("Open Source Line Echo Canceller");
628MODULE_VERSION("0.3.0");