blob: 595414599b988c9ce6aefd16ac1fe98fadda0481 [file] [log] [blame]
Johannes Weiner3df0e592018-10-26 15:06:27 -07001/*
2 * Pressure stall information for CPU, memory and IO
3 *
4 * Copyright (c) 2018 Facebook, Inc.
5 * Author: Johannes Weiner <hannes@cmpxchg.org>
6 *
7 * When CPU, memory and IO are contended, tasks experience delays that
8 * reduce throughput and introduce latencies into the workload. Memory
9 * and IO contention, in addition, can cause a full loss of forward
10 * progress in which the CPU goes idle.
11 *
12 * This code aggregates individual task delays into resource pressure
13 * metrics that indicate problems with both workload health and
14 * resource utilization.
15 *
16 * Model
17 *
18 * The time in which a task can execute on a CPU is our baseline for
19 * productivity. Pressure expresses the amount of time in which this
20 * potential cannot be realized due to resource contention.
21 *
22 * This concept of productivity has two components: the workload and
23 * the CPU. To measure the impact of pressure on both, we define two
24 * contention states for a resource: SOME and FULL.
25 *
26 * In the SOME state of a given resource, one or more tasks are
27 * delayed on that resource. This affects the workload's ability to
28 * perform work, but the CPU may still be executing other tasks.
29 *
30 * In the FULL state of a given resource, all non-idle tasks are
31 * delayed on that resource such that nobody is advancing and the CPU
32 * goes idle. This leaves both workload and CPU unproductive.
33 *
34 * (Naturally, the FULL state doesn't exist for the CPU resource.)
35 *
36 * SOME = nr_delayed_tasks != 0
37 * FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0
38 *
39 * The percentage of wallclock time spent in those compound stall
40 * states gives pressure numbers between 0 and 100 for each resource,
41 * where the SOME percentage indicates workload slowdowns and the FULL
42 * percentage indicates reduced CPU utilization:
43 *
44 * %SOME = time(SOME) / period
45 * %FULL = time(FULL) / period
46 *
47 * Multiple CPUs
48 *
49 * The more tasks and available CPUs there are, the more work can be
50 * performed concurrently. This means that the potential that can go
51 * unrealized due to resource contention *also* scales with non-idle
52 * tasks and CPUs.
53 *
54 * Consider a scenario where 257 number crunching tasks are trying to
55 * run concurrently on 256 CPUs. If we simply aggregated the task
56 * states, we would have to conclude a CPU SOME pressure number of
57 * 100%, since *somebody* is waiting on a runqueue at all
58 * times. However, that is clearly not the amount of contention the
59 * workload is experiencing: only one out of 256 possible exceution
60 * threads will be contended at any given time, or about 0.4%.
61 *
62 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
63 * given time *one* of the tasks is delayed due to a lack of memory.
64 * Again, looking purely at the task state would yield a memory FULL
65 * pressure number of 0%, since *somebody* is always making forward
66 * progress. But again this wouldn't capture the amount of execution
67 * potential lost, which is 1 out of 4 CPUs, or 25%.
68 *
69 * To calculate wasted potential (pressure) with multiple processors,
70 * we have to base our calculation on the number of non-idle tasks in
71 * conjunction with the number of available CPUs, which is the number
72 * of potential execution threads. SOME becomes then the proportion of
73 * delayed tasks to possibe threads, and FULL is the share of possible
74 * threads that are unproductive due to delays:
75 *
76 * threads = min(nr_nonidle_tasks, nr_cpus)
77 * SOME = min(nr_delayed_tasks / threads, 1)
78 * FULL = (threads - min(nr_running_tasks, threads)) / threads
79 *
80 * For the 257 number crunchers on 256 CPUs, this yields:
81 *
82 * threads = min(257, 256)
83 * SOME = min(1 / 256, 1) = 0.4%
84 * FULL = (256 - min(257, 256)) / 256 = 0%
85 *
86 * For the 1 out of 4 memory-delayed tasks, this yields:
87 *
88 * threads = min(4, 4)
89 * SOME = min(1 / 4, 1) = 25%
90 * FULL = (4 - min(3, 4)) / 4 = 25%
91 *
92 * [ Substitute nr_cpus with 1, and you can see that it's a natural
93 * extension of the single-CPU model. ]
94 *
95 * Implementation
96 *
97 * To assess the precise time spent in each such state, we would have
98 * to freeze the system on task changes and start/stop the state
99 * clocks accordingly. Obviously that doesn't scale in practice.
100 *
101 * Because the scheduler aims to distribute the compute load evenly
102 * among the available CPUs, we can track task state locally to each
103 * CPU and, at much lower frequency, extrapolate the global state for
104 * the cumulative stall times and the running averages.
105 *
106 * For each runqueue, we track:
107 *
108 * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
109 * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu])
110 * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
111 *
112 * and then periodically aggregate:
113 *
114 * tNONIDLE = sum(tNONIDLE[i])
115 *
116 * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
117 * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
118 *
119 * %SOME = tSOME / period
120 * %FULL = tFULL / period
121 *
122 * This gives us an approximation of pressure that is practical
123 * cost-wise, yet way more sensitive and accurate than periodic
124 * sampling of the aggregate task states would be.
125 */
126
127#include <linux/sched/loadavg.h>
128#include <linux/seq_file.h>
129#include <linux/proc_fs.h>
130#include <linux/seqlock.h>
131#include <linux/cgroup.h>
132#include <linux/module.h>
133#include <linux/sched.h>
134#include <linux/psi.h>
135#include "sched.h"
136
137static int psi_bug __read_mostly;
138
139bool psi_disabled __read_mostly;
140core_param(psi_disabled, psi_disabled, bool, 0644);
141
142/* Running averages - we need to be higher-res than loadavg */
143#define PSI_FREQ (2*HZ+1) /* 2 sec intervals */
144#define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */
145#define EXP_60s 1981 /* 1/exp(2s/60s) */
146#define EXP_300s 2034 /* 1/exp(2s/300s) */
147
148/* Sampling frequency in nanoseconds */
149static u64 psi_period __read_mostly;
150
151/* System-level pressure and stall tracking */
152static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
153static struct psi_group psi_system = {
154 .pcpu = &system_group_pcpu,
155};
156
157static void psi_update_work(struct work_struct *work);
158
159static void group_init(struct psi_group *group)
160{
161 int cpu;
162
163 for_each_possible_cpu(cpu)
164 seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
165 group->next_update = sched_clock() + psi_period;
166 INIT_DELAYED_WORK(&group->clock_work, psi_update_work);
167 mutex_init(&group->stat_lock);
168}
169
170void __init psi_init(void)
171{
172 if (psi_disabled)
173 return;
174
175 psi_period = jiffies_to_nsecs(PSI_FREQ);
176 group_init(&psi_system);
177}
178
179static bool test_state(unsigned int *tasks, enum psi_states state)
180{
181 switch (state) {
182 case PSI_IO_SOME:
183 return tasks[NR_IOWAIT];
184 case PSI_IO_FULL:
185 return tasks[NR_IOWAIT] && !tasks[NR_RUNNING];
186 case PSI_MEM_SOME:
187 return tasks[NR_MEMSTALL];
188 case PSI_MEM_FULL:
189 return tasks[NR_MEMSTALL] && !tasks[NR_RUNNING];
190 case PSI_CPU_SOME:
191 return tasks[NR_RUNNING] > 1;
192 case PSI_NONIDLE:
193 return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
194 tasks[NR_RUNNING];
195 default:
196 return false;
197 }
198}
199
200static void get_recent_times(struct psi_group *group, int cpu, u32 *times)
201{
202 struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
203 unsigned int tasks[NR_PSI_TASK_COUNTS];
204 u64 now, state_start;
205 unsigned int seq;
206 int s;
207
208 /* Snapshot a coherent view of the CPU state */
209 do {
210 seq = read_seqcount_begin(&groupc->seq);
211 now = cpu_clock(cpu);
212 memcpy(times, groupc->times, sizeof(groupc->times));
213 memcpy(tasks, groupc->tasks, sizeof(groupc->tasks));
214 state_start = groupc->state_start;
215 } while (read_seqcount_retry(&groupc->seq, seq));
216
217 /* Calculate state time deltas against the previous snapshot */
218 for (s = 0; s < NR_PSI_STATES; s++) {
219 u32 delta;
220 /*
221 * In addition to already concluded states, we also
222 * incorporate currently active states on the CPU,
223 * since states may last for many sampling periods.
224 *
225 * This way we keep our delta sampling buckets small
226 * (u32) and our reported pressure close to what's
227 * actually happening.
228 */
229 if (test_state(tasks, s))
230 times[s] += now - state_start;
231
232 delta = times[s] - groupc->times_prev[s];
233 groupc->times_prev[s] = times[s];
234
235 times[s] = delta;
236 }
237}
238
239static void calc_avgs(unsigned long avg[3], int missed_periods,
240 u64 time, u64 period)
241{
242 unsigned long pct;
243
244 /* Fill in zeroes for periods of no activity */
245 if (missed_periods) {
246 avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
247 avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
248 avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
249 }
250
251 /* Sample the most recent active period */
252 pct = div_u64(time * 100, period);
253 pct *= FIXED_1;
254 avg[0] = calc_load(avg[0], EXP_10s, pct);
255 avg[1] = calc_load(avg[1], EXP_60s, pct);
256 avg[2] = calc_load(avg[2], EXP_300s, pct);
257}
258
259static bool update_stats(struct psi_group *group)
260{
261 u64 deltas[NR_PSI_STATES - 1] = { 0, };
262 unsigned long missed_periods = 0;
263 unsigned long nonidle_total = 0;
264 u64 now, expires, period;
265 int cpu;
266 int s;
267
268 mutex_lock(&group->stat_lock);
269
270 /*
271 * Collect the per-cpu time buckets and average them into a
272 * single time sample that is normalized to wallclock time.
273 *
274 * For averaging, each CPU is weighted by its non-idle time in
275 * the sampling period. This eliminates artifacts from uneven
276 * loading, or even entirely idle CPUs.
277 */
278 for_each_possible_cpu(cpu) {
279 u32 times[NR_PSI_STATES];
280 u32 nonidle;
281
282 get_recent_times(group, cpu, times);
283
284 nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
285 nonidle_total += nonidle;
286
287 for (s = 0; s < PSI_NONIDLE; s++)
288 deltas[s] += (u64)times[s] * nonidle;
289 }
290
291 /*
292 * Integrate the sample into the running statistics that are
293 * reported to userspace: the cumulative stall times and the
294 * decaying averages.
295 *
296 * Pressure percentages are sampled at PSI_FREQ. We might be
297 * called more often when the user polls more frequently than
298 * that; we might be called less often when there is no task
299 * activity, thus no data, and clock ticks are sporadic. The
300 * below handles both.
301 */
302
303 /* total= */
304 for (s = 0; s < NR_PSI_STATES - 1; s++)
305 group->total[s] += div_u64(deltas[s], max(nonidle_total, 1UL));
306
307 /* avgX= */
308 now = sched_clock();
309 expires = group->next_update;
310 if (now < expires)
311 goto out;
312 if (now - expires > psi_period)
313 missed_periods = div_u64(now - expires, psi_period);
314
315 /*
316 * The periodic clock tick can get delayed for various
317 * reasons, especially on loaded systems. To avoid clock
318 * drift, we schedule the clock in fixed psi_period intervals.
319 * But the deltas we sample out of the per-cpu buckets above
320 * are based on the actual time elapsing between clock ticks.
321 */
322 group->next_update = expires + ((1 + missed_periods) * psi_period);
323 period = now - (group->last_update + (missed_periods * psi_period));
324 group->last_update = now;
325
326 for (s = 0; s < NR_PSI_STATES - 1; s++) {
327 u32 sample;
328
329 sample = group->total[s] - group->total_prev[s];
330 /*
331 * Due to the lockless sampling of the time buckets,
332 * recorded time deltas can slip into the next period,
333 * which under full pressure can result in samples in
334 * excess of the period length.
335 *
336 * We don't want to report non-sensical pressures in
337 * excess of 100%, nor do we want to drop such events
338 * on the floor. Instead we punt any overage into the
339 * future until pressure subsides. By doing this we
340 * don't underreport the occurring pressure curve, we
341 * just report it delayed by one period length.
342 *
343 * The error isn't cumulative. As soon as another
344 * delta slips from a period P to P+1, by definition
345 * it frees up its time T in P.
346 */
347 if (sample > period)
348 sample = period;
349 group->total_prev[s] += sample;
350 calc_avgs(group->avg[s], missed_periods, sample, period);
351 }
352out:
353 mutex_unlock(&group->stat_lock);
354 return nonidle_total;
355}
356
357static void psi_update_work(struct work_struct *work)
358{
359 struct delayed_work *dwork;
360 struct psi_group *group;
361 bool nonidle;
362
363 dwork = to_delayed_work(work);
364 group = container_of(dwork, struct psi_group, clock_work);
365
366 /*
367 * If there is task activity, periodically fold the per-cpu
368 * times and feed samples into the running averages. If things
369 * are idle and there is no data to process, stop the clock.
370 * Once restarted, we'll catch up the running averages in one
371 * go - see calc_avgs() and missed_periods.
372 */
373
374 nonidle = update_stats(group);
375
376 if (nonidle) {
377 unsigned long delay = 0;
378 u64 now;
379
380 now = sched_clock();
381 if (group->next_update > now)
382 delay = nsecs_to_jiffies(group->next_update - now) + 1;
383 schedule_delayed_work(dwork, delay);
384 }
385}
386
387static void record_times(struct psi_group_cpu *groupc, int cpu,
388 bool memstall_tick)
389{
390 u32 delta;
391 u64 now;
392
393 now = cpu_clock(cpu);
394 delta = now - groupc->state_start;
395 groupc->state_start = now;
396
397 if (test_state(groupc->tasks, PSI_IO_SOME)) {
398 groupc->times[PSI_IO_SOME] += delta;
399 if (test_state(groupc->tasks, PSI_IO_FULL))
400 groupc->times[PSI_IO_FULL] += delta;
401 }
402
403 if (test_state(groupc->tasks, PSI_MEM_SOME)) {
404 groupc->times[PSI_MEM_SOME] += delta;
405 if (test_state(groupc->tasks, PSI_MEM_FULL))
406 groupc->times[PSI_MEM_FULL] += delta;
407 else if (memstall_tick) {
408 u32 sample;
409 /*
410 * Since we care about lost potential, a
411 * memstall is FULL when there are no other
412 * working tasks, but also when the CPU is
413 * actively reclaiming and nothing productive
414 * could run even if it were runnable.
415 *
416 * When the timer tick sees a reclaiming CPU,
417 * regardless of runnable tasks, sample a FULL
418 * tick (or less if it hasn't been a full tick
419 * since the last state change).
420 */
421 sample = min(delta, (u32)jiffies_to_nsecs(1));
422 groupc->times[PSI_MEM_FULL] += sample;
423 }
424 }
425
426 if (test_state(groupc->tasks, PSI_CPU_SOME))
427 groupc->times[PSI_CPU_SOME] += delta;
428
429 if (test_state(groupc->tasks, PSI_NONIDLE))
430 groupc->times[PSI_NONIDLE] += delta;
431}
432
433static void psi_group_change(struct psi_group *group, int cpu,
434 unsigned int clear, unsigned int set)
435{
436 struct psi_group_cpu *groupc;
437 unsigned int t, m;
438
439 groupc = per_cpu_ptr(group->pcpu, cpu);
440
441 /*
442 * First we assess the aggregate resource states this CPU's
443 * tasks have been in since the last change, and account any
444 * SOME and FULL time these may have resulted in.
445 *
446 * Then we update the task counts according to the state
447 * change requested through the @clear and @set bits.
448 */
449 write_seqcount_begin(&groupc->seq);
450
451 record_times(groupc, cpu, false);
452
453 for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
454 if (!(m & (1 << t)))
455 continue;
456 if (groupc->tasks[t] == 0 && !psi_bug) {
457 printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u] clear=%x set=%x\n",
458 cpu, t, groupc->tasks[0],
459 groupc->tasks[1], groupc->tasks[2],
460 clear, set);
461 psi_bug = 1;
462 }
463 groupc->tasks[t]--;
464 }
465
466 for (t = 0; set; set &= ~(1 << t), t++)
467 if (set & (1 << t))
468 groupc->tasks[t]++;
469
470 write_seqcount_end(&groupc->seq);
471
472 if (!delayed_work_pending(&group->clock_work))
473 schedule_delayed_work(&group->clock_work, PSI_FREQ);
474}
475
476void psi_task_change(struct task_struct *task, int clear, int set)
477{
478 int cpu = task_cpu(task);
479
480 if (!task->pid)
481 return;
482
483 if (((task->psi_flags & set) ||
484 (task->psi_flags & clear) != clear) &&
485 !psi_bug) {
486 printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
487 task->pid, task->comm, cpu,
488 task->psi_flags, clear, set);
489 psi_bug = 1;
490 }
491
492 task->psi_flags &= ~clear;
493 task->psi_flags |= set;
494
495 psi_group_change(&psi_system, cpu, clear, set);
496}
497
498void psi_memstall_tick(struct task_struct *task, int cpu)
499{
500 struct psi_group_cpu *groupc;
501
502 groupc = per_cpu_ptr(psi_system.pcpu, cpu);
503 write_seqcount_begin(&groupc->seq);
504 record_times(groupc, cpu, true);
505 write_seqcount_end(&groupc->seq);
506}
507
508/**
509 * psi_memstall_enter - mark the beginning of a memory stall section
510 * @flags: flags to handle nested sections
511 *
512 * Marks the calling task as being stalled due to a lack of memory,
513 * such as waiting for a refault or performing reclaim.
514 */
515void psi_memstall_enter(unsigned long *flags)
516{
517 struct rq_flags rf;
518 struct rq *rq;
519
520 if (psi_disabled)
521 return;
522
523 *flags = current->flags & PF_MEMSTALL;
524 if (*flags)
525 return;
526 /*
527 * PF_MEMSTALL setting & accounting needs to be atomic wrt
528 * changes to the task's scheduling state, otherwise we can
529 * race with CPU migration.
530 */
531 rq = this_rq_lock_irq(&rf);
532
533 current->flags |= PF_MEMSTALL;
534 psi_task_change(current, 0, TSK_MEMSTALL);
535
536 rq_unlock_irq(rq, &rf);
537}
538
539/**
540 * psi_memstall_leave - mark the end of an memory stall section
541 * @flags: flags to handle nested memdelay sections
542 *
543 * Marks the calling task as no longer stalled due to lack of memory.
544 */
545void psi_memstall_leave(unsigned long *flags)
546{
547 struct rq_flags rf;
548 struct rq *rq;
549
550 if (psi_disabled)
551 return;
552
553 if (*flags)
554 return;
555 /*
556 * PF_MEMSTALL clearing & accounting needs to be atomic wrt
557 * changes to the task's scheduling state, otherwise we could
558 * race with CPU migration.
559 */
560 rq = this_rq_lock_irq(&rf);
561
562 current->flags &= ~PF_MEMSTALL;
563 psi_task_change(current, TSK_MEMSTALL, 0);
564
565 rq_unlock_irq(rq, &rf);
566}
567
568static int psi_show(struct seq_file *m, struct psi_group *group,
569 enum psi_res res)
570{
571 int full;
572
573 if (psi_disabled)
574 return -EOPNOTSUPP;
575
576 update_stats(group);
577
578 for (full = 0; full < 2 - (res == PSI_CPU); full++) {
579 unsigned long avg[3];
580 u64 total;
581 int w;
582
583 for (w = 0; w < 3; w++)
584 avg[w] = group->avg[res * 2 + full][w];
585 total = div_u64(group->total[res * 2 + full], NSEC_PER_USEC);
586
587 seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
588 full ? "full" : "some",
589 LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
590 LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
591 LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
592 total);
593 }
594
595 return 0;
596}
597
598static int psi_io_show(struct seq_file *m, void *v)
599{
600 return psi_show(m, &psi_system, PSI_IO);
601}
602
603static int psi_memory_show(struct seq_file *m, void *v)
604{
605 return psi_show(m, &psi_system, PSI_MEM);
606}
607
608static int psi_cpu_show(struct seq_file *m, void *v)
609{
610 return psi_show(m, &psi_system, PSI_CPU);
611}
612
613static int psi_io_open(struct inode *inode, struct file *file)
614{
615 return single_open(file, psi_io_show, NULL);
616}
617
618static int psi_memory_open(struct inode *inode, struct file *file)
619{
620 return single_open(file, psi_memory_show, NULL);
621}
622
623static int psi_cpu_open(struct inode *inode, struct file *file)
624{
625 return single_open(file, psi_cpu_show, NULL);
626}
627
628static const struct file_operations psi_io_fops = {
629 .open = psi_io_open,
630 .read = seq_read,
631 .llseek = seq_lseek,
632 .release = single_release,
633};
634
635static const struct file_operations psi_memory_fops = {
636 .open = psi_memory_open,
637 .read = seq_read,
638 .llseek = seq_lseek,
639 .release = single_release,
640};
641
642static const struct file_operations psi_cpu_fops = {
643 .open = psi_cpu_open,
644 .read = seq_read,
645 .llseek = seq_lseek,
646 .release = single_release,
647};
648
649static int __init psi_proc_init(void)
650{
651 proc_mkdir("pressure", NULL);
652 proc_create("pressure/io", 0, NULL, &psi_io_fops);
653 proc_create("pressure/memory", 0, NULL, &psi_memory_fops);
654 proc_create("pressure/cpu", 0, NULL, &psi_cpu_fops);
655 return 0;
656}
657module_init(psi_proc_init);