blob: df0cba239dd589b2ac7b9fbb90aa0909190a5ac3 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Copyright (c) 2000-2004 Silicon Graphics, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it would be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
11 *
12 * Further, this software is distributed without any warranty that it is
13 * free of the rightful claim of any third person regarding infringement
14 * or the like. Any license provided herein, whether implied or
15 * otherwise, applies only to this software file. Patent licenses, if
16 * any, provided herein do not apply to combinations of this program with
17 * other software, or any other product whatsoever.
18 *
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston MA 02111-1307, USA.
22 *
23 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24 * Mountain View, CA 94043, or:
25 *
26 * http://www.sgi.com
27 *
28 * For further information regarding this notice, see:
29 *
30 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
31 */
32
33/*
34 * The xfs_buf.c code provides an abstract buffer cache model on top
35 * of the Linux page cache. Cached metadata blocks for a file system
36 * are hashed to the inode for the block device. xfs_buf.c assembles
37 * buffers (xfs_buf_t) on demand to aggregate such cached pages for I/O.
38 *
39 * Written by Steve Lord, Jim Mostek, Russell Cattelan
40 * and Rajagopal Ananthanarayanan ("ananth") at SGI.
41 *
42 */
43
44#include <linux/stddef.h>
45#include <linux/errno.h>
46#include <linux/slab.h>
47#include <linux/pagemap.h>
48#include <linux/init.h>
49#include <linux/vmalloc.h>
50#include <linux/bio.h>
51#include <linux/sysctl.h>
52#include <linux/proc_fs.h>
53#include <linux/workqueue.h>
54#include <linux/percpu.h>
55#include <linux/blkdev.h>
56#include <linux/hash.h>
57
58#include "xfs_linux.h"
59
60/*
61 * File wide globals
62 */
63
Christoph Hellwig23ea4032005-06-21 15:14:01 +100064STATIC kmem_cache_t *pagebuf_zone;
Linus Torvalds1da177e2005-04-16 15:20:36 -070065STATIC kmem_shaker_t pagebuf_shake;
Christoph Hellwig23ea4032005-06-21 15:14:01 +100066STATIC int xfsbufd_wakeup(int, unsigned int);
Linus Torvalds1da177e2005-04-16 15:20:36 -070067STATIC void pagebuf_delwri_queue(xfs_buf_t *, int);
Christoph Hellwig23ea4032005-06-21 15:14:01 +100068
69STATIC struct workqueue_struct *xfslogd_workqueue;
70STATIC struct workqueue_struct *xfsdatad_workqueue;
Linus Torvalds1da177e2005-04-16 15:20:36 -070071
72/*
73 * Pagebuf debugging
74 */
75
76#ifdef PAGEBUF_TRACE
77void
78pagebuf_trace(
79 xfs_buf_t *pb,
80 char *id,
81 void *data,
82 void *ra)
83{
84 ktrace_enter(pagebuf_trace_buf,
85 pb, id,
86 (void *)(unsigned long)pb->pb_flags,
87 (void *)(unsigned long)pb->pb_hold.counter,
88 (void *)(unsigned long)pb->pb_sema.count.counter,
89 (void *)current,
90 data, ra,
91 (void *)(unsigned long)((pb->pb_file_offset>>32) & 0xffffffff),
92 (void *)(unsigned long)(pb->pb_file_offset & 0xffffffff),
93 (void *)(unsigned long)pb->pb_buffer_length,
94 NULL, NULL, NULL, NULL, NULL);
95}
96ktrace_t *pagebuf_trace_buf;
97#define PAGEBUF_TRACE_SIZE 4096
98#define PB_TRACE(pb, id, data) \
99 pagebuf_trace(pb, id, (void *)data, (void *)__builtin_return_address(0))
100#else
101#define PB_TRACE(pb, id, data) do { } while (0)
102#endif
103
104#ifdef PAGEBUF_LOCK_TRACKING
105# define PB_SET_OWNER(pb) ((pb)->pb_last_holder = current->pid)
106# define PB_CLEAR_OWNER(pb) ((pb)->pb_last_holder = -1)
107# define PB_GET_OWNER(pb) ((pb)->pb_last_holder)
108#else
109# define PB_SET_OWNER(pb) do { } while (0)
110# define PB_CLEAR_OWNER(pb) do { } while (0)
111# define PB_GET_OWNER(pb) do { } while (0)
112#endif
113
114/*
115 * Pagebuf allocation / freeing.
116 */
117
118#define pb_to_gfp(flags) \
119 ((((flags) & PBF_READ_AHEAD) ? __GFP_NORETRY : \
120 ((flags) & PBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
121
122#define pb_to_km(flags) \
123 (((flags) & PBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
124
125
126#define pagebuf_allocate(flags) \
Christoph Hellwig23ea4032005-06-21 15:14:01 +1000127 kmem_zone_alloc(pagebuf_zone, pb_to_km(flags))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700128#define pagebuf_deallocate(pb) \
Christoph Hellwig23ea4032005-06-21 15:14:01 +1000129 kmem_zone_free(pagebuf_zone, (pb));
Linus Torvalds1da177e2005-04-16 15:20:36 -0700130
131/*
132 * Page Region interfaces.
133 *
134 * For pages in filesystems where the blocksize is smaller than the
135 * pagesize, we use the page->private field (long) to hold a bitmap
136 * of uptodate regions within the page.
137 *
138 * Each such region is "bytes per page / bits per long" bytes long.
139 *
140 * NBPPR == number-of-bytes-per-page-region
141 * BTOPR == bytes-to-page-region (rounded up)
142 * BTOPRT == bytes-to-page-region-truncated (rounded down)
143 */
144#if (BITS_PER_LONG == 32)
145#define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
146#elif (BITS_PER_LONG == 64)
147#define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
148#else
149#error BITS_PER_LONG must be 32 or 64
150#endif
151#define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
152#define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
153#define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
154
155STATIC unsigned long
156page_region_mask(
157 size_t offset,
158 size_t length)
159{
160 unsigned long mask;
161 int first, final;
162
163 first = BTOPR(offset);
164 final = BTOPRT(offset + length - 1);
165 first = min(first, final);
166
167 mask = ~0UL;
168 mask <<= BITS_PER_LONG - (final - first);
169 mask >>= BITS_PER_LONG - (final);
170
171 ASSERT(offset + length <= PAGE_CACHE_SIZE);
172 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
173
174 return mask;
175}
176
177STATIC inline void
178set_page_region(
179 struct page *page,
180 size_t offset,
181 size_t length)
182{
183 page->private |= page_region_mask(offset, length);
184 if (page->private == ~0UL)
185 SetPageUptodate(page);
186}
187
188STATIC inline int
189test_page_region(
190 struct page *page,
191 size_t offset,
192 size_t length)
193{
194 unsigned long mask = page_region_mask(offset, length);
195
196 return (mask && (page->private & mask) == mask);
197}
198
199/*
200 * Mapping of multi-page buffers into contiguous virtual space
201 */
202
203typedef struct a_list {
204 void *vm_addr;
205 struct a_list *next;
206} a_list_t;
207
208STATIC a_list_t *as_free_head;
209STATIC int as_list_len;
210STATIC DEFINE_SPINLOCK(as_lock);
211
212/*
213 * Try to batch vunmaps because they are costly.
214 */
215STATIC void
216free_address(
217 void *addr)
218{
219 a_list_t *aentry;
220
221 aentry = kmalloc(sizeof(a_list_t), GFP_ATOMIC & ~__GFP_HIGH);
222 if (likely(aentry)) {
223 spin_lock(&as_lock);
224 aentry->next = as_free_head;
225 aentry->vm_addr = addr;
226 as_free_head = aentry;
227 as_list_len++;
228 spin_unlock(&as_lock);
229 } else {
230 vunmap(addr);
231 }
232}
233
234STATIC void
235purge_addresses(void)
236{
237 a_list_t *aentry, *old;
238
239 if (as_free_head == NULL)
240 return;
241
242 spin_lock(&as_lock);
243 aentry = as_free_head;
244 as_free_head = NULL;
245 as_list_len = 0;
246 spin_unlock(&as_lock);
247
248 while ((old = aentry) != NULL) {
249 vunmap(aentry->vm_addr);
250 aentry = aentry->next;
251 kfree(old);
252 }
253}
254
255/*
256 * Internal pagebuf object manipulation
257 */
258
259STATIC void
260_pagebuf_initialize(
261 xfs_buf_t *pb,
262 xfs_buftarg_t *target,
263 loff_t range_base,
264 size_t range_length,
265 page_buf_flags_t flags)
266{
267 /*
268 * We don't want certain flags to appear in pb->pb_flags.
269 */
270 flags &= ~(PBF_LOCK|PBF_MAPPED|PBF_DONT_BLOCK|PBF_READ_AHEAD);
271
272 memset(pb, 0, sizeof(xfs_buf_t));
273 atomic_set(&pb->pb_hold, 1);
274 init_MUTEX_LOCKED(&pb->pb_iodonesema);
275 INIT_LIST_HEAD(&pb->pb_list);
276 INIT_LIST_HEAD(&pb->pb_hash_list);
277 init_MUTEX_LOCKED(&pb->pb_sema); /* held, no waiters */
278 PB_SET_OWNER(pb);
279 pb->pb_target = target;
280 pb->pb_file_offset = range_base;
281 /*
282 * Set buffer_length and count_desired to the same value initially.
283 * I/O routines should use count_desired, which will be the same in
284 * most cases but may be reset (e.g. XFS recovery).
285 */
286 pb->pb_buffer_length = pb->pb_count_desired = range_length;
287 pb->pb_flags = flags | PBF_NONE;
288 pb->pb_bn = XFS_BUF_DADDR_NULL;
289 atomic_set(&pb->pb_pin_count, 0);
290 init_waitqueue_head(&pb->pb_waiters);
291
292 XFS_STATS_INC(pb_create);
293 PB_TRACE(pb, "initialize", target);
294}
295
296/*
297 * Allocate a page array capable of holding a specified number
298 * of pages, and point the page buf at it.
299 */
300STATIC int
301_pagebuf_get_pages(
302 xfs_buf_t *pb,
303 int page_count,
304 page_buf_flags_t flags)
305{
306 /* Make sure that we have a page list */
307 if (pb->pb_pages == NULL) {
308 pb->pb_offset = page_buf_poff(pb->pb_file_offset);
309 pb->pb_page_count = page_count;
310 if (page_count <= PB_PAGES) {
311 pb->pb_pages = pb->pb_page_array;
312 } else {
313 pb->pb_pages = kmem_alloc(sizeof(struct page *) *
314 page_count, pb_to_km(flags));
315 if (pb->pb_pages == NULL)
316 return -ENOMEM;
317 }
318 memset(pb->pb_pages, 0, sizeof(struct page *) * page_count);
319 }
320 return 0;
321}
322
323/*
324 * Frees pb_pages if it was malloced.
325 */
326STATIC void
327_pagebuf_free_pages(
328 xfs_buf_t *bp)
329{
330 if (bp->pb_pages != bp->pb_page_array) {
331 kmem_free(bp->pb_pages,
332 bp->pb_page_count * sizeof(struct page *));
333 }
334}
335
336/*
337 * Releases the specified buffer.
338 *
339 * The modification state of any associated pages is left unchanged.
340 * The buffer most not be on any hash - use pagebuf_rele instead for
341 * hashed and refcounted buffers
342 */
343void
344pagebuf_free(
345 xfs_buf_t *bp)
346{
347 PB_TRACE(bp, "free", 0);
348
349 ASSERT(list_empty(&bp->pb_hash_list));
350
351 if (bp->pb_flags & _PBF_PAGE_CACHE) {
352 uint i;
353
354 if ((bp->pb_flags & PBF_MAPPED) && (bp->pb_page_count > 1))
355 free_address(bp->pb_addr - bp->pb_offset);
356
357 for (i = 0; i < bp->pb_page_count; i++)
358 page_cache_release(bp->pb_pages[i]);
359 _pagebuf_free_pages(bp);
360 } else if (bp->pb_flags & _PBF_KMEM_ALLOC) {
361 /*
362 * XXX(hch): bp->pb_count_desired might be incorrect (see
363 * pagebuf_associate_memory for details), but fortunately
364 * the Linux version of kmem_free ignores the len argument..
365 */
366 kmem_free(bp->pb_addr, bp->pb_count_desired);
367 _pagebuf_free_pages(bp);
368 }
369
370 pagebuf_deallocate(bp);
371}
372
373/*
374 * Finds all pages for buffer in question and builds it's page list.
375 */
376STATIC int
377_pagebuf_lookup_pages(
378 xfs_buf_t *bp,
379 uint flags)
380{
381 struct address_space *mapping = bp->pb_target->pbr_mapping;
382 size_t blocksize = bp->pb_target->pbr_bsize;
383 size_t size = bp->pb_count_desired;
384 size_t nbytes, offset;
385 int gfp_mask = pb_to_gfp(flags);
386 unsigned short page_count, i;
387 pgoff_t first;
388 loff_t end;
389 int error;
390
391 end = bp->pb_file_offset + bp->pb_buffer_length;
392 page_count = page_buf_btoc(end) - page_buf_btoct(bp->pb_file_offset);
393
394 error = _pagebuf_get_pages(bp, page_count, flags);
395 if (unlikely(error))
396 return error;
397 bp->pb_flags |= _PBF_PAGE_CACHE;
398
399 offset = bp->pb_offset;
400 first = bp->pb_file_offset >> PAGE_CACHE_SHIFT;
401
402 for (i = 0; i < bp->pb_page_count; i++) {
403 struct page *page;
404 uint retries = 0;
405
406 retry:
407 page = find_or_create_page(mapping, first + i, gfp_mask);
408 if (unlikely(page == NULL)) {
409 if (flags & PBF_READ_AHEAD) {
410 bp->pb_page_count = i;
411 for (i = 0; i < bp->pb_page_count; i++)
412 unlock_page(bp->pb_pages[i]);
413 return -ENOMEM;
414 }
415
416 /*
417 * This could deadlock.
418 *
419 * But until all the XFS lowlevel code is revamped to
420 * handle buffer allocation failures we can't do much.
421 */
422 if (!(++retries % 100))
423 printk(KERN_ERR
424 "XFS: possible memory allocation "
425 "deadlock in %s (mode:0x%x)\n",
426 __FUNCTION__, gfp_mask);
427
428 XFS_STATS_INC(pb_page_retries);
Christoph Hellwig23ea4032005-06-21 15:14:01 +1000429 xfsbufd_wakeup(0, gfp_mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700430 blk_congestion_wait(WRITE, HZ/50);
431 goto retry;
432 }
433
434 XFS_STATS_INC(pb_page_found);
435
436 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
437 size -= nbytes;
438
439 if (!PageUptodate(page)) {
440 page_count--;
441 if (blocksize >= PAGE_CACHE_SIZE) {
442 if (flags & PBF_READ)
443 bp->pb_locked = 1;
444 } else if (!PagePrivate(page)) {
445 if (test_page_region(page, offset, nbytes))
446 page_count++;
447 }
448 }
449
450 bp->pb_pages[i] = page;
451 offset = 0;
452 }
453
454 if (!bp->pb_locked) {
455 for (i = 0; i < bp->pb_page_count; i++)
456 unlock_page(bp->pb_pages[i]);
457 }
458
459 if (page_count) {
460 /* if we have any uptodate pages, mark that in the buffer */
461 bp->pb_flags &= ~PBF_NONE;
462
463 /* if some pages aren't uptodate, mark that in the buffer */
464 if (page_count != bp->pb_page_count)
465 bp->pb_flags |= PBF_PARTIAL;
466 }
467
468 PB_TRACE(bp, "lookup_pages", (long)page_count);
469 return error;
470}
471
472/*
473 * Map buffer into kernel address-space if nessecary.
474 */
475STATIC int
476_pagebuf_map_pages(
477 xfs_buf_t *bp,
478 uint flags)
479{
480 /* A single page buffer is always mappable */
481 if (bp->pb_page_count == 1) {
482 bp->pb_addr = page_address(bp->pb_pages[0]) + bp->pb_offset;
483 bp->pb_flags |= PBF_MAPPED;
484 } else if (flags & PBF_MAPPED) {
485 if (as_list_len > 64)
486 purge_addresses();
487 bp->pb_addr = vmap(bp->pb_pages, bp->pb_page_count,
488 VM_MAP, PAGE_KERNEL);
489 if (unlikely(bp->pb_addr == NULL))
490 return -ENOMEM;
491 bp->pb_addr += bp->pb_offset;
492 bp->pb_flags |= PBF_MAPPED;
493 }
494
495 return 0;
496}
497
498/*
499 * Finding and Reading Buffers
500 */
501
502/*
503 * _pagebuf_find
504 *
505 * Looks up, and creates if absent, a lockable buffer for
506 * a given range of an inode. The buffer is returned
507 * locked. If other overlapping buffers exist, they are
508 * released before the new buffer is created and locked,
509 * which may imply that this call will block until those buffers
510 * are unlocked. No I/O is implied by this call.
511 */
512xfs_buf_t *
513_pagebuf_find(
514 xfs_buftarg_t *btp, /* block device target */
515 loff_t ioff, /* starting offset of range */
516 size_t isize, /* length of range */
517 page_buf_flags_t flags, /* PBF_TRYLOCK */
518 xfs_buf_t *new_pb)/* newly allocated buffer */
519{
520 loff_t range_base;
521 size_t range_length;
522 xfs_bufhash_t *hash;
523 xfs_buf_t *pb, *n;
524
525 range_base = (ioff << BBSHIFT);
526 range_length = (isize << BBSHIFT);
527
528 /* Check for IOs smaller than the sector size / not sector aligned */
529 ASSERT(!(range_length < (1 << btp->pbr_sshift)));
530 ASSERT(!(range_base & (loff_t)btp->pbr_smask));
531
532 hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
533
534 spin_lock(&hash->bh_lock);
535
536 list_for_each_entry_safe(pb, n, &hash->bh_list, pb_hash_list) {
537 ASSERT(btp == pb->pb_target);
538 if (pb->pb_file_offset == range_base &&
539 pb->pb_buffer_length == range_length) {
540 /*
541 * If we look at something bring it to the
542 * front of the list for next time.
543 */
544 atomic_inc(&pb->pb_hold);
545 list_move(&pb->pb_hash_list, &hash->bh_list);
546 goto found;
547 }
548 }
549
550 /* No match found */
551 if (new_pb) {
552 _pagebuf_initialize(new_pb, btp, range_base,
553 range_length, flags);
554 new_pb->pb_hash = hash;
555 list_add(&new_pb->pb_hash_list, &hash->bh_list);
556 } else {
557 XFS_STATS_INC(pb_miss_locked);
558 }
559
560 spin_unlock(&hash->bh_lock);
561 return new_pb;
562
563found:
564 spin_unlock(&hash->bh_lock);
565
566 /* Attempt to get the semaphore without sleeping,
567 * if this does not work then we need to drop the
568 * spinlock and do a hard attempt on the semaphore.
569 */
570 if (down_trylock(&pb->pb_sema)) {
571 if (!(flags & PBF_TRYLOCK)) {
572 /* wait for buffer ownership */
573 PB_TRACE(pb, "get_lock", 0);
574 pagebuf_lock(pb);
575 XFS_STATS_INC(pb_get_locked_waited);
576 } else {
577 /* We asked for a trylock and failed, no need
578 * to look at file offset and length here, we
579 * know that this pagebuf at least overlaps our
580 * pagebuf and is locked, therefore our buffer
581 * either does not exist, or is this buffer
582 */
583
584 pagebuf_rele(pb);
585 XFS_STATS_INC(pb_busy_locked);
586 return (NULL);
587 }
588 } else {
589 /* trylock worked */
590 PB_SET_OWNER(pb);
591 }
592
593 if (pb->pb_flags & PBF_STALE)
594 pb->pb_flags &= PBF_MAPPED;
595 PB_TRACE(pb, "got_lock", 0);
596 XFS_STATS_INC(pb_get_locked);
597 return (pb);
598}
599
600/*
601 * xfs_buf_get_flags assembles a buffer covering the specified range.
602 *
603 * Storage in memory for all portions of the buffer will be allocated,
604 * although backing storage may not be.
605 */
606xfs_buf_t *
607xfs_buf_get_flags( /* allocate a buffer */
608 xfs_buftarg_t *target,/* target for buffer */
609 loff_t ioff, /* starting offset of range */
610 size_t isize, /* length of range */
611 page_buf_flags_t flags) /* PBF_TRYLOCK */
612{
613 xfs_buf_t *pb, *new_pb;
614 int error = 0, i;
615
616 new_pb = pagebuf_allocate(flags);
617 if (unlikely(!new_pb))
618 return NULL;
619
620 pb = _pagebuf_find(target, ioff, isize, flags, new_pb);
621 if (pb == new_pb) {
622 error = _pagebuf_lookup_pages(pb, flags);
623 if (error)
624 goto no_buffer;
625 } else {
626 pagebuf_deallocate(new_pb);
627 if (unlikely(pb == NULL))
628 return NULL;
629 }
630
631 for (i = 0; i < pb->pb_page_count; i++)
632 mark_page_accessed(pb->pb_pages[i]);
633
634 if (!(pb->pb_flags & PBF_MAPPED)) {
635 error = _pagebuf_map_pages(pb, flags);
636 if (unlikely(error)) {
637 printk(KERN_WARNING "%s: failed to map pages\n",
638 __FUNCTION__);
639 goto no_buffer;
640 }
641 }
642
643 XFS_STATS_INC(pb_get);
644
645 /*
646 * Always fill in the block number now, the mapped cases can do
647 * their own overlay of this later.
648 */
649 pb->pb_bn = ioff;
650 pb->pb_count_desired = pb->pb_buffer_length;
651
652 PB_TRACE(pb, "get", (unsigned long)flags);
653 return pb;
654
655 no_buffer:
656 if (flags & (PBF_LOCK | PBF_TRYLOCK))
657 pagebuf_unlock(pb);
658 pagebuf_rele(pb);
659 return NULL;
660}
661
662xfs_buf_t *
663xfs_buf_read_flags(
664 xfs_buftarg_t *target,
665 loff_t ioff,
666 size_t isize,
667 page_buf_flags_t flags)
668{
669 xfs_buf_t *pb;
670
671 flags |= PBF_READ;
672
673 pb = xfs_buf_get_flags(target, ioff, isize, flags);
674 if (pb) {
675 if (PBF_NOT_DONE(pb)) {
676 PB_TRACE(pb, "read", (unsigned long)flags);
677 XFS_STATS_INC(pb_get_read);
678 pagebuf_iostart(pb, flags);
679 } else if (flags & PBF_ASYNC) {
680 PB_TRACE(pb, "read_async", (unsigned long)flags);
681 /*
682 * Read ahead call which is already satisfied,
683 * drop the buffer
684 */
685 goto no_buffer;
686 } else {
687 PB_TRACE(pb, "read_done", (unsigned long)flags);
688 /* We do not want read in the flags */
689 pb->pb_flags &= ~PBF_READ;
690 }
691 }
692
693 return pb;
694
695 no_buffer:
696 if (flags & (PBF_LOCK | PBF_TRYLOCK))
697 pagebuf_unlock(pb);
698 pagebuf_rele(pb);
699 return NULL;
700}
701
702/*
703 * Create a skeletal pagebuf (no pages associated with it).
704 */
705xfs_buf_t *
706pagebuf_lookup(
707 xfs_buftarg_t *target,
708 loff_t ioff,
709 size_t isize,
710 page_buf_flags_t flags)
711{
712 xfs_buf_t *pb;
713
714 pb = pagebuf_allocate(flags);
715 if (pb) {
716 _pagebuf_initialize(pb, target, ioff, isize, flags);
717 }
718 return pb;
719}
720
721/*
722 * If we are not low on memory then do the readahead in a deadlock
723 * safe manner.
724 */
725void
726pagebuf_readahead(
727 xfs_buftarg_t *target,
728 loff_t ioff,
729 size_t isize,
730 page_buf_flags_t flags)
731{
732 struct backing_dev_info *bdi;
733
734 bdi = target->pbr_mapping->backing_dev_info;
735 if (bdi_read_congested(bdi))
736 return;
737
738 flags |= (PBF_TRYLOCK|PBF_ASYNC|PBF_READ_AHEAD);
739 xfs_buf_read_flags(target, ioff, isize, flags);
740}
741
742xfs_buf_t *
743pagebuf_get_empty(
744 size_t len,
745 xfs_buftarg_t *target)
746{
747 xfs_buf_t *pb;
748
749 pb = pagebuf_allocate(0);
750 if (pb)
751 _pagebuf_initialize(pb, target, 0, len, 0);
752 return pb;
753}
754
755static inline struct page *
756mem_to_page(
757 void *addr)
758{
759 if (((unsigned long)addr < VMALLOC_START) ||
760 ((unsigned long)addr >= VMALLOC_END)) {
761 return virt_to_page(addr);
762 } else {
763 return vmalloc_to_page(addr);
764 }
765}
766
767int
768pagebuf_associate_memory(
769 xfs_buf_t *pb,
770 void *mem,
771 size_t len)
772{
773 int rval;
774 int i = 0;
775 size_t ptr;
776 size_t end, end_cur;
777 off_t offset;
778 int page_count;
779
780 page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
781 offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK);
782 if (offset && (len > PAGE_CACHE_SIZE))
783 page_count++;
784
785 /* Free any previous set of page pointers */
786 if (pb->pb_pages)
787 _pagebuf_free_pages(pb);
788
789 pb->pb_pages = NULL;
790 pb->pb_addr = mem;
791
792 rval = _pagebuf_get_pages(pb, page_count, 0);
793 if (rval)
794 return rval;
795
796 pb->pb_offset = offset;
797 ptr = (size_t) mem & PAGE_CACHE_MASK;
798 end = PAGE_CACHE_ALIGN((size_t) mem + len);
799 end_cur = end;
800 /* set up first page */
801 pb->pb_pages[0] = mem_to_page(mem);
802
803 ptr += PAGE_CACHE_SIZE;
804 pb->pb_page_count = ++i;
805 while (ptr < end) {
806 pb->pb_pages[i] = mem_to_page((void *)ptr);
807 pb->pb_page_count = ++i;
808 ptr += PAGE_CACHE_SIZE;
809 }
810 pb->pb_locked = 0;
811
812 pb->pb_count_desired = pb->pb_buffer_length = len;
813 pb->pb_flags |= PBF_MAPPED;
814
815 return 0;
816}
817
818xfs_buf_t *
819pagebuf_get_no_daddr(
820 size_t len,
821 xfs_buftarg_t *target)
822{
823 size_t malloc_len = len;
824 xfs_buf_t *bp;
825 void *data;
826 int error;
827
828 bp = pagebuf_allocate(0);
829 if (unlikely(bp == NULL))
830 goto fail;
831 _pagebuf_initialize(bp, target, 0, len, PBF_FORCEIO);
832
833 try_again:
834 data = kmem_alloc(malloc_len, KM_SLEEP | KM_MAYFAIL);
835 if (unlikely(data == NULL))
836 goto fail_free_buf;
837
838 /* check whether alignment matches.. */
839 if ((__psunsigned_t)data !=
840 ((__psunsigned_t)data & ~target->pbr_smask)) {
841 /* .. else double the size and try again */
842 kmem_free(data, malloc_len);
843 malloc_len <<= 1;
844 goto try_again;
845 }
846
847 error = pagebuf_associate_memory(bp, data, len);
848 if (error)
849 goto fail_free_mem;
850 bp->pb_flags |= _PBF_KMEM_ALLOC;
851
852 pagebuf_unlock(bp);
853
854 PB_TRACE(bp, "no_daddr", data);
855 return bp;
856 fail_free_mem:
857 kmem_free(data, malloc_len);
858 fail_free_buf:
859 pagebuf_free(bp);
860 fail:
861 return NULL;
862}
863
864/*
865 * pagebuf_hold
866 *
867 * Increment reference count on buffer, to hold the buffer concurrently
868 * with another thread which may release (free) the buffer asynchronously.
869 *
870 * Must hold the buffer already to call this function.
871 */
872void
873pagebuf_hold(
874 xfs_buf_t *pb)
875{
876 atomic_inc(&pb->pb_hold);
877 PB_TRACE(pb, "hold", 0);
878}
879
880/*
881 * pagebuf_rele
882 *
883 * pagebuf_rele releases a hold on the specified buffer. If the
884 * the hold count is 1, pagebuf_rele calls pagebuf_free.
885 */
886void
887pagebuf_rele(
888 xfs_buf_t *pb)
889{
890 xfs_bufhash_t *hash = pb->pb_hash;
891
892 PB_TRACE(pb, "rele", pb->pb_relse);
893
894 /*
895 * pagebuf_lookup buffers are not hashed, not delayed write,
896 * and don't have their own release routines. Special case.
897 */
898 if (unlikely(!hash)) {
899 ASSERT(!pb->pb_relse);
900 if (atomic_dec_and_test(&pb->pb_hold))
901 xfs_buf_free(pb);
902 return;
903 }
904
905 if (atomic_dec_and_lock(&pb->pb_hold, &hash->bh_lock)) {
906 int do_free = 1;
907
908 if (pb->pb_relse) {
909 atomic_inc(&pb->pb_hold);
910 spin_unlock(&hash->bh_lock);
911 (*(pb->pb_relse)) (pb);
912 spin_lock(&hash->bh_lock);
913 do_free = 0;
914 }
915
916 if (pb->pb_flags & PBF_DELWRI) {
917 pb->pb_flags |= PBF_ASYNC;
918 atomic_inc(&pb->pb_hold);
919 pagebuf_delwri_queue(pb, 0);
920 do_free = 0;
921 } else if (pb->pb_flags & PBF_FS_MANAGED) {
922 do_free = 0;
923 }
924
925 if (do_free) {
926 list_del_init(&pb->pb_hash_list);
927 spin_unlock(&hash->bh_lock);
928 pagebuf_free(pb);
929 } else {
930 spin_unlock(&hash->bh_lock);
931 }
932 }
933}
934
935
936/*
937 * Mutual exclusion on buffers. Locking model:
938 *
939 * Buffers associated with inodes for which buffer locking
940 * is not enabled are not protected by semaphores, and are
941 * assumed to be exclusively owned by the caller. There is a
942 * spinlock in the buffer, used by the caller when concurrent
943 * access is possible.
944 */
945
946/*
947 * pagebuf_cond_lock
948 *
949 * pagebuf_cond_lock locks a buffer object, if it is not already locked.
950 * Note that this in no way
951 * locks the underlying pages, so it is only useful for synchronizing
952 * concurrent use of page buffer objects, not for synchronizing independent
953 * access to the underlying pages.
954 */
955int
956pagebuf_cond_lock( /* lock buffer, if not locked */
957 /* returns -EBUSY if locked) */
958 xfs_buf_t *pb)
959{
960 int locked;
961
962 locked = down_trylock(&pb->pb_sema) == 0;
963 if (locked) {
964 PB_SET_OWNER(pb);
965 }
966 PB_TRACE(pb, "cond_lock", (long)locked);
967 return(locked ? 0 : -EBUSY);
968}
969
970#if defined(DEBUG) || defined(XFS_BLI_TRACE)
971/*
972 * pagebuf_lock_value
973 *
974 * Return lock value for a pagebuf
975 */
976int
977pagebuf_lock_value(
978 xfs_buf_t *pb)
979{
980 return(atomic_read(&pb->pb_sema.count));
981}
982#endif
983
984/*
985 * pagebuf_lock
986 *
987 * pagebuf_lock locks a buffer object. Note that this in no way
988 * locks the underlying pages, so it is only useful for synchronizing
989 * concurrent use of page buffer objects, not for synchronizing independent
990 * access to the underlying pages.
991 */
992int
993pagebuf_lock(
994 xfs_buf_t *pb)
995{
996 PB_TRACE(pb, "lock", 0);
997 if (atomic_read(&pb->pb_io_remaining))
998 blk_run_address_space(pb->pb_target->pbr_mapping);
999 down(&pb->pb_sema);
1000 PB_SET_OWNER(pb);
1001 PB_TRACE(pb, "locked", 0);
1002 return 0;
1003}
1004
1005/*
1006 * pagebuf_unlock
1007 *
1008 * pagebuf_unlock releases the lock on the buffer object created by
1009 * pagebuf_lock or pagebuf_cond_lock (not any
1010 * pinning of underlying pages created by pagebuf_pin).
1011 */
1012void
1013pagebuf_unlock( /* unlock buffer */
1014 xfs_buf_t *pb) /* buffer to unlock */
1015{
1016 PB_CLEAR_OWNER(pb);
1017 up(&pb->pb_sema);
1018 PB_TRACE(pb, "unlock", 0);
1019}
1020
1021
1022/*
1023 * Pinning Buffer Storage in Memory
1024 */
1025
1026/*
1027 * pagebuf_pin
1028 *
1029 * pagebuf_pin locks all of the memory represented by a buffer in
1030 * memory. Multiple calls to pagebuf_pin and pagebuf_unpin, for
1031 * the same or different buffers affecting a given page, will
1032 * properly count the number of outstanding "pin" requests. The
1033 * buffer may be released after the pagebuf_pin and a different
1034 * buffer used when calling pagebuf_unpin, if desired.
1035 * pagebuf_pin should be used by the file system when it wants be
1036 * assured that no attempt will be made to force the affected
1037 * memory to disk. It does not assure that a given logical page
1038 * will not be moved to a different physical page.
1039 */
1040void
1041pagebuf_pin(
1042 xfs_buf_t *pb)
1043{
1044 atomic_inc(&pb->pb_pin_count);
1045 PB_TRACE(pb, "pin", (long)pb->pb_pin_count.counter);
1046}
1047
1048/*
1049 * pagebuf_unpin
1050 *
1051 * pagebuf_unpin reverses the locking of memory performed by
1052 * pagebuf_pin. Note that both functions affected the logical
1053 * pages associated with the buffer, not the buffer itself.
1054 */
1055void
1056pagebuf_unpin(
1057 xfs_buf_t *pb)
1058{
1059 if (atomic_dec_and_test(&pb->pb_pin_count)) {
1060 wake_up_all(&pb->pb_waiters);
1061 }
1062 PB_TRACE(pb, "unpin", (long)pb->pb_pin_count.counter);
1063}
1064
1065int
1066pagebuf_ispin(
1067 xfs_buf_t *pb)
1068{
1069 return atomic_read(&pb->pb_pin_count);
1070}
1071
1072/*
1073 * pagebuf_wait_unpin
1074 *
1075 * pagebuf_wait_unpin waits until all of the memory associated
1076 * with the buffer is not longer locked in memory. It returns
1077 * immediately if none of the affected pages are locked.
1078 */
1079static inline void
1080_pagebuf_wait_unpin(
1081 xfs_buf_t *pb)
1082{
1083 DECLARE_WAITQUEUE (wait, current);
1084
1085 if (atomic_read(&pb->pb_pin_count) == 0)
1086 return;
1087
1088 add_wait_queue(&pb->pb_waiters, &wait);
1089 for (;;) {
1090 set_current_state(TASK_UNINTERRUPTIBLE);
1091 if (atomic_read(&pb->pb_pin_count) == 0)
1092 break;
1093 if (atomic_read(&pb->pb_io_remaining))
1094 blk_run_address_space(pb->pb_target->pbr_mapping);
1095 schedule();
1096 }
1097 remove_wait_queue(&pb->pb_waiters, &wait);
1098 set_current_state(TASK_RUNNING);
1099}
1100
1101/*
1102 * Buffer Utility Routines
1103 */
1104
1105/*
1106 * pagebuf_iodone
1107 *
1108 * pagebuf_iodone marks a buffer for which I/O is in progress
1109 * done with respect to that I/O. The pb_iodone routine, if
1110 * present, will be called as a side-effect.
1111 */
1112STATIC void
1113pagebuf_iodone_work(
1114 void *v)
1115{
1116 xfs_buf_t *bp = (xfs_buf_t *)v;
1117
1118 if (bp->pb_iodone)
1119 (*(bp->pb_iodone))(bp);
1120 else if (bp->pb_flags & PBF_ASYNC)
1121 xfs_buf_relse(bp);
1122}
1123
1124void
1125pagebuf_iodone(
1126 xfs_buf_t *pb,
1127 int dataio,
1128 int schedule)
1129{
1130 pb->pb_flags &= ~(PBF_READ | PBF_WRITE);
1131 if (pb->pb_error == 0) {
1132 pb->pb_flags &= ~(PBF_PARTIAL | PBF_NONE);
1133 }
1134
1135 PB_TRACE(pb, "iodone", pb->pb_iodone);
1136
1137 if ((pb->pb_iodone) || (pb->pb_flags & PBF_ASYNC)) {
1138 if (schedule) {
1139 INIT_WORK(&pb->pb_iodone_work, pagebuf_iodone_work, pb);
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001140 queue_work(dataio ? xfsdatad_workqueue :
1141 xfslogd_workqueue, &pb->pb_iodone_work);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001142 } else {
1143 pagebuf_iodone_work(pb);
1144 }
1145 } else {
1146 up(&pb->pb_iodonesema);
1147 }
1148}
1149
1150/*
1151 * pagebuf_ioerror
1152 *
1153 * pagebuf_ioerror sets the error code for a buffer.
1154 */
1155void
1156pagebuf_ioerror( /* mark/clear buffer error flag */
1157 xfs_buf_t *pb, /* buffer to mark */
1158 int error) /* error to store (0 if none) */
1159{
1160 ASSERT(error >= 0 && error <= 0xffff);
1161 pb->pb_error = (unsigned short)error;
1162 PB_TRACE(pb, "ioerror", (unsigned long)error);
1163}
1164
1165/*
1166 * pagebuf_iostart
1167 *
1168 * pagebuf_iostart initiates I/O on a buffer, based on the flags supplied.
1169 * If necessary, it will arrange for any disk space allocation required,
1170 * and it will break up the request if the block mappings require it.
1171 * The pb_iodone routine in the buffer supplied will only be called
1172 * when all of the subsidiary I/O requests, if any, have been completed.
1173 * pagebuf_iostart calls the pagebuf_ioinitiate routine or
1174 * pagebuf_iorequest, if the former routine is not defined, to start
1175 * the I/O on a given low-level request.
1176 */
1177int
1178pagebuf_iostart( /* start I/O on a buffer */
1179 xfs_buf_t *pb, /* buffer to start */
1180 page_buf_flags_t flags) /* PBF_LOCK, PBF_ASYNC, PBF_READ, */
1181 /* PBF_WRITE, PBF_DELWRI, */
1182 /* PBF_DONT_BLOCK */
1183{
1184 int status = 0;
1185
1186 PB_TRACE(pb, "iostart", (unsigned long)flags);
1187
1188 if (flags & PBF_DELWRI) {
1189 pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC);
1190 pb->pb_flags |= flags & (PBF_DELWRI | PBF_ASYNC);
1191 pagebuf_delwri_queue(pb, 1);
1192 return status;
1193 }
1194
1195 pb->pb_flags &= ~(PBF_READ | PBF_WRITE | PBF_ASYNC | PBF_DELWRI | \
1196 PBF_READ_AHEAD | _PBF_RUN_QUEUES);
1197 pb->pb_flags |= flags & (PBF_READ | PBF_WRITE | PBF_ASYNC | \
1198 PBF_READ_AHEAD | _PBF_RUN_QUEUES);
1199
1200 BUG_ON(pb->pb_bn == XFS_BUF_DADDR_NULL);
1201
1202 /* For writes allow an alternate strategy routine to precede
1203 * the actual I/O request (which may not be issued at all in
1204 * a shutdown situation, for example).
1205 */
1206 status = (flags & PBF_WRITE) ?
1207 pagebuf_iostrategy(pb) : pagebuf_iorequest(pb);
1208
1209 /* Wait for I/O if we are not an async request.
1210 * Note: async I/O request completion will release the buffer,
1211 * and that can already be done by this point. So using the
1212 * buffer pointer from here on, after async I/O, is invalid.
1213 */
1214 if (!status && !(flags & PBF_ASYNC))
1215 status = pagebuf_iowait(pb);
1216
1217 return status;
1218}
1219
1220/*
1221 * Helper routine for pagebuf_iorequest
1222 */
1223
1224STATIC __inline__ int
1225_pagebuf_iolocked(
1226 xfs_buf_t *pb)
1227{
1228 ASSERT(pb->pb_flags & (PBF_READ|PBF_WRITE));
1229 if (pb->pb_flags & PBF_READ)
1230 return pb->pb_locked;
1231 return 0;
1232}
1233
1234STATIC __inline__ void
1235_pagebuf_iodone(
1236 xfs_buf_t *pb,
1237 int schedule)
1238{
1239 if (atomic_dec_and_test(&pb->pb_io_remaining) == 1) {
1240 pb->pb_locked = 0;
1241 pagebuf_iodone(pb, (pb->pb_flags & PBF_FS_DATAIOD), schedule);
1242 }
1243}
1244
1245STATIC int
1246bio_end_io_pagebuf(
1247 struct bio *bio,
1248 unsigned int bytes_done,
1249 int error)
1250{
1251 xfs_buf_t *pb = (xfs_buf_t *)bio->bi_private;
1252 unsigned int i, blocksize = pb->pb_target->pbr_bsize;
1253 struct bio_vec *bvec = bio->bi_io_vec;
1254
1255 if (bio->bi_size)
1256 return 1;
1257
1258 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1259 pb->pb_error = EIO;
1260
1261 for (i = 0; i < bio->bi_vcnt; i++, bvec++) {
1262 struct page *page = bvec->bv_page;
1263
1264 if (pb->pb_error) {
1265 SetPageError(page);
1266 } else if (blocksize == PAGE_CACHE_SIZE) {
1267 SetPageUptodate(page);
1268 } else if (!PagePrivate(page) &&
1269 (pb->pb_flags & _PBF_PAGE_CACHE)) {
1270 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1271 }
1272
1273 if (_pagebuf_iolocked(pb)) {
1274 unlock_page(page);
1275 }
1276 }
1277
1278 _pagebuf_iodone(pb, 1);
1279 bio_put(bio);
1280 return 0;
1281}
1282
1283STATIC void
1284_pagebuf_ioapply(
1285 xfs_buf_t *pb)
1286{
1287 int i, rw, map_i, total_nr_pages, nr_pages;
1288 struct bio *bio;
1289 int offset = pb->pb_offset;
1290 int size = pb->pb_count_desired;
1291 sector_t sector = pb->pb_bn;
1292 unsigned int blocksize = pb->pb_target->pbr_bsize;
1293 int locking = _pagebuf_iolocked(pb);
1294
1295 total_nr_pages = pb->pb_page_count;
1296 map_i = 0;
1297
1298 if (pb->pb_flags & _PBF_RUN_QUEUES) {
1299 pb->pb_flags &= ~_PBF_RUN_QUEUES;
1300 rw = (pb->pb_flags & PBF_READ) ? READ_SYNC : WRITE_SYNC;
1301 } else {
1302 rw = (pb->pb_flags & PBF_READ) ? READ : WRITE;
1303 }
1304
1305 /* Special code path for reading a sub page size pagebuf in --
1306 * we populate up the whole page, and hence the other metadata
1307 * in the same page. This optimization is only valid when the
1308 * filesystem block size and the page size are equal.
1309 */
1310 if ((pb->pb_buffer_length < PAGE_CACHE_SIZE) &&
1311 (pb->pb_flags & PBF_READ) && locking &&
1312 (blocksize == PAGE_CACHE_SIZE)) {
1313 bio = bio_alloc(GFP_NOIO, 1);
1314
1315 bio->bi_bdev = pb->pb_target->pbr_bdev;
1316 bio->bi_sector = sector - (offset >> BBSHIFT);
1317 bio->bi_end_io = bio_end_io_pagebuf;
1318 bio->bi_private = pb;
1319
1320 bio_add_page(bio, pb->pb_pages[0], PAGE_CACHE_SIZE, 0);
1321 size = 0;
1322
1323 atomic_inc(&pb->pb_io_remaining);
1324
1325 goto submit_io;
1326 }
1327
1328 /* Lock down the pages which we need to for the request */
1329 if (locking && (pb->pb_flags & PBF_WRITE) && (pb->pb_locked == 0)) {
1330 for (i = 0; size; i++) {
1331 int nbytes = PAGE_CACHE_SIZE - offset;
1332 struct page *page = pb->pb_pages[i];
1333
1334 if (nbytes > size)
1335 nbytes = size;
1336
1337 lock_page(page);
1338
1339 size -= nbytes;
1340 offset = 0;
1341 }
1342 offset = pb->pb_offset;
1343 size = pb->pb_count_desired;
1344 }
1345
1346next_chunk:
1347 atomic_inc(&pb->pb_io_remaining);
1348 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1349 if (nr_pages > total_nr_pages)
1350 nr_pages = total_nr_pages;
1351
1352 bio = bio_alloc(GFP_NOIO, nr_pages);
1353 bio->bi_bdev = pb->pb_target->pbr_bdev;
1354 bio->bi_sector = sector;
1355 bio->bi_end_io = bio_end_io_pagebuf;
1356 bio->bi_private = pb;
1357
1358 for (; size && nr_pages; nr_pages--, map_i++) {
1359 int nbytes = PAGE_CACHE_SIZE - offset;
1360
1361 if (nbytes > size)
1362 nbytes = size;
1363
1364 if (bio_add_page(bio, pb->pb_pages[map_i],
1365 nbytes, offset) < nbytes)
1366 break;
1367
1368 offset = 0;
1369 sector += nbytes >> BBSHIFT;
1370 size -= nbytes;
1371 total_nr_pages--;
1372 }
1373
1374submit_io:
1375 if (likely(bio->bi_size)) {
1376 submit_bio(rw, bio);
1377 if (size)
1378 goto next_chunk;
1379 } else {
1380 bio_put(bio);
1381 pagebuf_ioerror(pb, EIO);
1382 }
1383}
1384
1385/*
1386 * pagebuf_iorequest -- the core I/O request routine.
1387 */
1388int
1389pagebuf_iorequest( /* start real I/O */
1390 xfs_buf_t *pb) /* buffer to convey to device */
1391{
1392 PB_TRACE(pb, "iorequest", 0);
1393
1394 if (pb->pb_flags & PBF_DELWRI) {
1395 pagebuf_delwri_queue(pb, 1);
1396 return 0;
1397 }
1398
1399 if (pb->pb_flags & PBF_WRITE) {
1400 _pagebuf_wait_unpin(pb);
1401 }
1402
1403 pagebuf_hold(pb);
1404
1405 /* Set the count to 1 initially, this will stop an I/O
1406 * completion callout which happens before we have started
1407 * all the I/O from calling pagebuf_iodone too early.
1408 */
1409 atomic_set(&pb->pb_io_remaining, 1);
1410 _pagebuf_ioapply(pb);
1411 _pagebuf_iodone(pb, 0);
1412
1413 pagebuf_rele(pb);
1414 return 0;
1415}
1416
1417/*
1418 * pagebuf_iowait
1419 *
1420 * pagebuf_iowait waits for I/O to complete on the buffer supplied.
1421 * It returns immediately if no I/O is pending. In any case, it returns
1422 * the error code, if any, or 0 if there is no error.
1423 */
1424int
1425pagebuf_iowait(
1426 xfs_buf_t *pb)
1427{
1428 PB_TRACE(pb, "iowait", 0);
1429 if (atomic_read(&pb->pb_io_remaining))
1430 blk_run_address_space(pb->pb_target->pbr_mapping);
1431 down(&pb->pb_iodonesema);
1432 PB_TRACE(pb, "iowaited", (long)pb->pb_error);
1433 return pb->pb_error;
1434}
1435
1436caddr_t
1437pagebuf_offset(
1438 xfs_buf_t *pb,
1439 size_t offset)
1440{
1441 struct page *page;
1442
1443 offset += pb->pb_offset;
1444
1445 page = pb->pb_pages[offset >> PAGE_CACHE_SHIFT];
1446 return (caddr_t) page_address(page) + (offset & (PAGE_CACHE_SIZE - 1));
1447}
1448
1449/*
1450 * pagebuf_iomove
1451 *
1452 * Move data into or out of a buffer.
1453 */
1454void
1455pagebuf_iomove(
1456 xfs_buf_t *pb, /* buffer to process */
1457 size_t boff, /* starting buffer offset */
1458 size_t bsize, /* length to copy */
1459 caddr_t data, /* data address */
1460 page_buf_rw_t mode) /* read/write flag */
1461{
1462 size_t bend, cpoff, csize;
1463 struct page *page;
1464
1465 bend = boff + bsize;
1466 while (boff < bend) {
1467 page = pb->pb_pages[page_buf_btoct(boff + pb->pb_offset)];
1468 cpoff = page_buf_poff(boff + pb->pb_offset);
1469 csize = min_t(size_t,
1470 PAGE_CACHE_SIZE-cpoff, pb->pb_count_desired-boff);
1471
1472 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1473
1474 switch (mode) {
1475 case PBRW_ZERO:
1476 memset(page_address(page) + cpoff, 0, csize);
1477 break;
1478 case PBRW_READ:
1479 memcpy(data, page_address(page) + cpoff, csize);
1480 break;
1481 case PBRW_WRITE:
1482 memcpy(page_address(page) + cpoff, data, csize);
1483 }
1484
1485 boff += csize;
1486 data += csize;
1487 }
1488}
1489
1490/*
1491 * Handling of buftargs.
1492 */
1493
1494/*
1495 * Wait for any bufs with callbacks that have been submitted but
1496 * have not yet returned... walk the hash list for the target.
1497 */
1498void
1499xfs_wait_buftarg(
1500 xfs_buftarg_t *btp)
1501{
1502 xfs_buf_t *bp, *n;
1503 xfs_bufhash_t *hash;
1504 uint i;
1505
1506 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1507 hash = &btp->bt_hash[i];
1508again:
1509 spin_lock(&hash->bh_lock);
1510 list_for_each_entry_safe(bp, n, &hash->bh_list, pb_hash_list) {
1511 ASSERT(btp == bp->pb_target);
1512 if (!(bp->pb_flags & PBF_FS_MANAGED)) {
1513 spin_unlock(&hash->bh_lock);
1514 delay(100);
1515 goto again;
1516 }
1517 }
1518 spin_unlock(&hash->bh_lock);
1519 }
1520}
1521
1522/*
1523 * Allocate buffer hash table for a given target.
1524 * For devices containing metadata (i.e. not the log/realtime devices)
1525 * we need to allocate a much larger hash table.
1526 */
1527STATIC void
1528xfs_alloc_bufhash(
1529 xfs_buftarg_t *btp,
1530 int external)
1531{
1532 unsigned int i;
1533
1534 btp->bt_hashshift = external ? 3 : 8; /* 8 or 256 buckets */
1535 btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1536 btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1537 sizeof(xfs_bufhash_t), KM_SLEEP);
1538 for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1539 spin_lock_init(&btp->bt_hash[i].bh_lock);
1540 INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1541 }
1542}
1543
1544STATIC void
1545xfs_free_bufhash(
1546 xfs_buftarg_t *btp)
1547{
1548 kmem_free(btp->bt_hash,
1549 (1 << btp->bt_hashshift) * sizeof(xfs_bufhash_t));
1550 btp->bt_hash = NULL;
1551}
1552
1553void
1554xfs_free_buftarg(
1555 xfs_buftarg_t *btp,
1556 int external)
1557{
1558 xfs_flush_buftarg(btp, 1);
1559 if (external)
1560 xfs_blkdev_put(btp->pbr_bdev);
1561 xfs_free_bufhash(btp);
1562 iput(btp->pbr_mapping->host);
1563 kmem_free(btp, sizeof(*btp));
1564}
1565
Linus Torvalds1da177e2005-04-16 15:20:36 -07001566STATIC int
1567xfs_setsize_buftarg_flags(
1568 xfs_buftarg_t *btp,
1569 unsigned int blocksize,
1570 unsigned int sectorsize,
1571 int verbose)
1572{
1573 btp->pbr_bsize = blocksize;
1574 btp->pbr_sshift = ffs(sectorsize) - 1;
1575 btp->pbr_smask = sectorsize - 1;
1576
1577 if (set_blocksize(btp->pbr_bdev, sectorsize)) {
1578 printk(KERN_WARNING
1579 "XFS: Cannot set_blocksize to %u on device %s\n",
1580 sectorsize, XFS_BUFTARG_NAME(btp));
1581 return EINVAL;
1582 }
1583
1584 if (verbose &&
1585 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1586 printk(KERN_WARNING
1587 "XFS: %u byte sectors in use on device %s. "
1588 "This is suboptimal; %u or greater is ideal.\n",
1589 sectorsize, XFS_BUFTARG_NAME(btp),
1590 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1591 }
1592
1593 return 0;
1594}
1595
1596/*
1597* When allocating the initial buffer target we have not yet
1598* read in the superblock, so don't know what sized sectors
1599* are being used is at this early stage. Play safe.
1600*/
1601STATIC int
1602xfs_setsize_buftarg_early(
1603 xfs_buftarg_t *btp,
1604 struct block_device *bdev)
1605{
1606 return xfs_setsize_buftarg_flags(btp,
1607 PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1608}
1609
1610int
1611xfs_setsize_buftarg(
1612 xfs_buftarg_t *btp,
1613 unsigned int blocksize,
1614 unsigned int sectorsize)
1615{
1616 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1617}
1618
1619STATIC int
1620xfs_mapping_buftarg(
1621 xfs_buftarg_t *btp,
1622 struct block_device *bdev)
1623{
1624 struct backing_dev_info *bdi;
1625 struct inode *inode;
1626 struct address_space *mapping;
1627 static struct address_space_operations mapping_aops = {
1628 .sync_page = block_sync_page,
1629 };
1630
1631 inode = new_inode(bdev->bd_inode->i_sb);
1632 if (!inode) {
1633 printk(KERN_WARNING
1634 "XFS: Cannot allocate mapping inode for device %s\n",
1635 XFS_BUFTARG_NAME(btp));
1636 return ENOMEM;
1637 }
1638 inode->i_mode = S_IFBLK;
1639 inode->i_bdev = bdev;
1640 inode->i_rdev = bdev->bd_dev;
1641 bdi = blk_get_backing_dev_info(bdev);
1642 if (!bdi)
1643 bdi = &default_backing_dev_info;
1644 mapping = &inode->i_data;
1645 mapping->a_ops = &mapping_aops;
1646 mapping->backing_dev_info = bdi;
1647 mapping_set_gfp_mask(mapping, GFP_NOFS);
1648 btp->pbr_mapping = mapping;
1649 return 0;
1650}
1651
1652xfs_buftarg_t *
1653xfs_alloc_buftarg(
1654 struct block_device *bdev,
1655 int external)
1656{
1657 xfs_buftarg_t *btp;
1658
1659 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1660
1661 btp->pbr_dev = bdev->bd_dev;
1662 btp->pbr_bdev = bdev;
1663 if (xfs_setsize_buftarg_early(btp, bdev))
1664 goto error;
1665 if (xfs_mapping_buftarg(btp, bdev))
1666 goto error;
1667 xfs_alloc_bufhash(btp, external);
1668 return btp;
1669
1670error:
1671 kmem_free(btp, sizeof(*btp));
1672 return NULL;
1673}
1674
1675
1676/*
1677 * Pagebuf delayed write buffer handling
1678 */
1679
1680STATIC LIST_HEAD(pbd_delwrite_queue);
1681STATIC DEFINE_SPINLOCK(pbd_delwrite_lock);
1682
1683STATIC void
1684pagebuf_delwri_queue(
1685 xfs_buf_t *pb,
1686 int unlock)
1687{
1688 PB_TRACE(pb, "delwri_q", (long)unlock);
1689 ASSERT(pb->pb_flags & PBF_DELWRI);
1690
1691 spin_lock(&pbd_delwrite_lock);
1692 /* If already in the queue, dequeue and place at tail */
1693 if (!list_empty(&pb->pb_list)) {
1694 if (unlock) {
1695 atomic_dec(&pb->pb_hold);
1696 }
1697 list_del(&pb->pb_list);
1698 }
1699
1700 list_add_tail(&pb->pb_list, &pbd_delwrite_queue);
1701 pb->pb_queuetime = jiffies;
1702 spin_unlock(&pbd_delwrite_lock);
1703
1704 if (unlock)
1705 pagebuf_unlock(pb);
1706}
1707
1708void
1709pagebuf_delwri_dequeue(
1710 xfs_buf_t *pb)
1711{
1712 int dequeued = 0;
1713
1714 spin_lock(&pbd_delwrite_lock);
1715 if ((pb->pb_flags & PBF_DELWRI) && !list_empty(&pb->pb_list)) {
1716 list_del_init(&pb->pb_list);
1717 dequeued = 1;
1718 }
1719 pb->pb_flags &= ~PBF_DELWRI;
1720 spin_unlock(&pbd_delwrite_lock);
1721
1722 if (dequeued)
1723 pagebuf_rele(pb);
1724
1725 PB_TRACE(pb, "delwri_dq", (long)dequeued);
1726}
1727
1728STATIC void
1729pagebuf_runall_queues(
1730 struct workqueue_struct *queue)
1731{
1732 flush_workqueue(queue);
1733}
1734
1735/* Defines for pagebuf daemon */
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001736STATIC DECLARE_COMPLETION(xfsbufd_done);
1737STATIC struct task_struct *xfsbufd_task;
1738STATIC int xfsbufd_active;
1739STATIC int xfsbufd_force_flush;
1740STATIC int xfsbufd_force_sleep;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001741
1742STATIC int
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001743xfsbufd_wakeup(
Linus Torvalds1da177e2005-04-16 15:20:36 -07001744 int priority,
1745 unsigned int mask)
1746{
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001747 if (xfsbufd_force_sleep)
Nathan Scottabd0cf72005-05-05 13:30:13 -07001748 return 0;
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001749 xfsbufd_force_flush = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001750 barrier();
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001751 wake_up_process(xfsbufd_task);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001752 return 0;
1753}
1754
1755STATIC int
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001756xfsbufd(
Linus Torvalds1da177e2005-04-16 15:20:36 -07001757 void *data)
1758{
1759 struct list_head tmp;
1760 unsigned long age;
1761 xfs_buftarg_t *target;
1762 xfs_buf_t *pb, *n;
1763
1764 /* Set up the thread */
1765 daemonize("xfsbufd");
1766 current->flags |= PF_MEMALLOC;
1767
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001768 xfsbufd_task = current;
1769 xfsbufd_active = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001770 barrier();
1771
1772 INIT_LIST_HEAD(&tmp);
1773 do {
Christoph Lameter3e1d1d22005-06-24 23:13:50 -07001774 if (unlikely(freezing(current))) {
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001775 xfsbufd_force_sleep = 1;
Christoph Lameter3e1d1d22005-06-24 23:13:50 -07001776 refrigerator();
Nathan Scottabd0cf72005-05-05 13:30:13 -07001777 } else {
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001778 xfsbufd_force_sleep = 0;
Nathan Scottabd0cf72005-05-05 13:30:13 -07001779 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001780
1781 set_current_state(TASK_INTERRUPTIBLE);
1782 schedule_timeout((xfs_buf_timer_centisecs * HZ) / 100);
1783
1784 age = (xfs_buf_age_centisecs * HZ) / 100;
1785 spin_lock(&pbd_delwrite_lock);
1786 list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
1787 PB_TRACE(pb, "walkq1", (long)pagebuf_ispin(pb));
1788 ASSERT(pb->pb_flags & PBF_DELWRI);
1789
1790 if (!pagebuf_ispin(pb) && !pagebuf_cond_lock(pb)) {
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001791 if (!xfsbufd_force_flush &&
Linus Torvalds1da177e2005-04-16 15:20:36 -07001792 time_before(jiffies,
1793 pb->pb_queuetime + age)) {
1794 pagebuf_unlock(pb);
1795 break;
1796 }
1797
1798 pb->pb_flags &= ~PBF_DELWRI;
1799 pb->pb_flags |= PBF_WRITE;
1800 list_move(&pb->pb_list, &tmp);
1801 }
1802 }
1803 spin_unlock(&pbd_delwrite_lock);
1804
1805 while (!list_empty(&tmp)) {
1806 pb = list_entry(tmp.next, xfs_buf_t, pb_list);
1807 target = pb->pb_target;
1808
1809 list_del_init(&pb->pb_list);
1810 pagebuf_iostrategy(pb);
1811
1812 blk_run_address_space(target->pbr_mapping);
1813 }
1814
1815 if (as_list_len > 0)
1816 purge_addresses();
1817
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001818 xfsbufd_force_flush = 0;
1819 } while (xfsbufd_active);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001820
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001821 complete_and_exit(&xfsbufd_done, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001822}
1823
1824/*
1825 * Go through all incore buffers, and release buffers if they belong to
1826 * the given device. This is used in filesystem error handling to
1827 * preserve the consistency of its metadata.
1828 */
1829int
1830xfs_flush_buftarg(
1831 xfs_buftarg_t *target,
1832 int wait)
1833{
1834 struct list_head tmp;
1835 xfs_buf_t *pb, *n;
1836 int pincount = 0;
1837
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001838 pagebuf_runall_queues(xfsdatad_workqueue);
1839 pagebuf_runall_queues(xfslogd_workqueue);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001840
1841 INIT_LIST_HEAD(&tmp);
1842 spin_lock(&pbd_delwrite_lock);
1843 list_for_each_entry_safe(pb, n, &pbd_delwrite_queue, pb_list) {
1844
1845 if (pb->pb_target != target)
1846 continue;
1847
1848 ASSERT(pb->pb_flags & PBF_DELWRI);
1849 PB_TRACE(pb, "walkq2", (long)pagebuf_ispin(pb));
1850 if (pagebuf_ispin(pb)) {
1851 pincount++;
1852 continue;
1853 }
1854
1855 pb->pb_flags &= ~PBF_DELWRI;
1856 pb->pb_flags |= PBF_WRITE;
1857 list_move(&pb->pb_list, &tmp);
1858 }
1859 spin_unlock(&pbd_delwrite_lock);
1860
1861 /*
1862 * Dropped the delayed write list lock, now walk the temporary list
1863 */
1864 list_for_each_entry_safe(pb, n, &tmp, pb_list) {
1865 if (wait)
1866 pb->pb_flags &= ~PBF_ASYNC;
1867 else
1868 list_del_init(&pb->pb_list);
1869
1870 pagebuf_lock(pb);
1871 pagebuf_iostrategy(pb);
1872 }
1873
1874 /*
1875 * Remaining list items must be flushed before returning
1876 */
1877 while (!list_empty(&tmp)) {
1878 pb = list_entry(tmp.next, xfs_buf_t, pb_list);
1879
1880 list_del_init(&pb->pb_list);
1881 xfs_iowait(pb);
1882 xfs_buf_relse(pb);
1883 }
1884
1885 if (wait)
1886 blk_run_address_space(target->pbr_mapping);
1887
1888 return pincount;
1889}
1890
1891STATIC int
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001892xfs_buf_daemons_start(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001893{
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001894 int error = -ENOMEM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001895
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001896 xfslogd_workqueue = create_workqueue("xfslogd");
1897 if (!xfslogd_workqueue)
1898 goto out;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001899
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001900 xfsdatad_workqueue = create_workqueue("xfsdatad");
1901 if (!xfsdatad_workqueue)
1902 goto out_destroy_xfslogd_workqueue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001903
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001904 error = kernel_thread(xfsbufd, NULL, CLONE_FS|CLONE_FILES);
1905 if (error < 0)
1906 goto out_destroy_xfsdatad_workqueue;
1907 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001908
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001909 out_destroy_xfsdatad_workqueue:
1910 destroy_workqueue(xfsdatad_workqueue);
1911 out_destroy_xfslogd_workqueue:
1912 destroy_workqueue(xfslogd_workqueue);
1913 out:
1914 return error;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001915}
1916
1917/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001918 * Note: do not mark as __exit, it is called from pagebuf_terminate.
1919 */
1920STATIC void
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001921xfs_buf_daemons_stop(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001922{
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001923 xfsbufd_active = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001924 barrier();
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001925 wait_for_completion(&xfsbufd_done);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001926
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001927 destroy_workqueue(xfslogd_workqueue);
1928 destroy_workqueue(xfsdatad_workqueue);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001929}
1930
1931/*
1932 * Initialization and Termination
1933 */
1934
1935int __init
1936pagebuf_init(void)
1937{
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001938 int error = -ENOMEM;
1939
1940 pagebuf_zone = kmem_zone_init(sizeof(xfs_buf_t), "xfs_buf");
1941 if (!pagebuf_zone)
1942 goto out;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001943
1944#ifdef PAGEBUF_TRACE
1945 pagebuf_trace_buf = ktrace_alloc(PAGEBUF_TRACE_SIZE, KM_SLEEP);
1946#endif
1947
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001948 error = xfs_buf_daemons_start();
Christoph Hellwigcf9937c2005-06-21 15:35:24 +10001949 if (error)
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001950 goto out_free_buf_zone;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001951
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001952 pagebuf_shake = kmem_shake_register(xfsbufd_wakeup);
1953 if (!pagebuf_shake) {
1954 error = -ENOMEM;
1955 goto out_stop_daemons;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001956 }
1957
1958 return 0;
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001959
1960 out_stop_daemons:
1961 xfs_buf_daemons_stop();
1962 out_free_buf_zone:
1963#ifdef PAGEBUF_TRACE
1964 ktrace_free(pagebuf_trace_buf);
1965#endif
1966 kmem_zone_destroy(pagebuf_zone);
1967 out:
1968 return error;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001969}
1970
1971
1972/*
1973 * pagebuf_terminate.
1974 *
1975 * Note: do not mark as __exit, this is also called from the __init code.
1976 */
1977void
1978pagebuf_terminate(void)
1979{
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001980 xfs_buf_daemons_stop();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001981
1982#ifdef PAGEBUF_TRACE
1983 ktrace_free(pagebuf_trace_buf);
1984#endif
1985
Christoph Hellwig23ea4032005-06-21 15:14:01 +10001986 kmem_zone_destroy(pagebuf_zone);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001987 kmem_shake_deregister(pagebuf_shake);
1988}