blob: b68e04310bd8e5b14327ff142788180ba8680754 [file] [log] [blame]
Huang Shijie10a2bca2011-09-08 10:47:09 +08001/*
2 * Freescale GPMI NAND Flash Driver
3 *
4 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
5 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20 */
21#include <linux/clk.h>
22#include <linux/slab.h>
23#include <linux/interrupt.h>
Wolfram Sangdf16c862011-11-23 15:57:06 +010024#include <linux/module.h>
Huang Shijie10a2bca2011-09-08 10:47:09 +080025#include <linux/mtd/gpmi-nand.h>
26#include <linux/mtd/partitions.h>
Shawn Guo39febc02012-05-06 22:57:41 +080027#include <linux/pinctrl/consumer.h>
Huang Shijie10a2bca2011-09-08 10:47:09 +080028#include "gpmi-nand.h"
29
30/* add our owner bbt descriptor */
31static uint8_t scan_ff_pattern[] = { 0xff };
32static struct nand_bbt_descr gpmi_bbt_descr = {
33 .options = 0,
34 .offs = 0,
35 .len = 1,
36 .pattern = scan_ff_pattern
37};
38
39/* We will use all the (page + OOB). */
40static struct nand_ecclayout gpmi_hw_ecclayout = {
41 .eccbytes = 0,
42 .eccpos = { 0, },
43 .oobfree = { {.offset = 0, .length = 0} }
44};
45
46static irqreturn_t bch_irq(int irq, void *cookie)
47{
48 struct gpmi_nand_data *this = cookie;
49
50 gpmi_clear_bch(this);
51 complete(&this->bch_done);
52 return IRQ_HANDLED;
53}
54
55/*
56 * Calculate the ECC strength by hand:
57 * E : The ECC strength.
58 * G : the length of Galois Field.
59 * N : The chunk count of per page.
60 * O : the oobsize of the NAND chip.
61 * M : the metasize of per page.
62 *
63 * The formula is :
64 * E * G * N
65 * ------------ <= (O - M)
66 * 8
67 *
68 * So, we get E by:
69 * (O - M) * 8
70 * E <= -------------
71 * G * N
72 */
73static inline int get_ecc_strength(struct gpmi_nand_data *this)
74{
75 struct bch_geometry *geo = &this->bch_geometry;
76 struct mtd_info *mtd = &this->mtd;
77 int ecc_strength;
78
79 ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
80 / (geo->gf_len * geo->ecc_chunk_count);
81
82 /* We need the minor even number. */
83 return round_down(ecc_strength, 2);
84}
85
86int common_nfc_set_geometry(struct gpmi_nand_data *this)
87{
88 struct bch_geometry *geo = &this->bch_geometry;
89 struct mtd_info *mtd = &this->mtd;
90 unsigned int metadata_size;
91 unsigned int status_size;
92 unsigned int block_mark_bit_offset;
93
94 /*
95 * The size of the metadata can be changed, though we set it to 10
96 * bytes now. But it can't be too large, because we have to save
97 * enough space for BCH.
98 */
99 geo->metadata_size = 10;
100
101 /* The default for the length of Galois Field. */
102 geo->gf_len = 13;
103
104 /* The default for chunk size. There is no oobsize greater then 512. */
105 geo->ecc_chunk_size = 512;
106 while (geo->ecc_chunk_size < mtd->oobsize)
107 geo->ecc_chunk_size *= 2; /* keep C >= O */
108
109 geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
110
111 /* We use the same ECC strength for all chunks. */
112 geo->ecc_strength = get_ecc_strength(this);
113 if (!geo->ecc_strength) {
114 pr_err("We get a wrong ECC strength.\n");
115 return -EINVAL;
116 }
117
118 geo->page_size = mtd->writesize + mtd->oobsize;
119 geo->payload_size = mtd->writesize;
120
121 /*
122 * The auxiliary buffer contains the metadata and the ECC status. The
123 * metadata is padded to the nearest 32-bit boundary. The ECC status
124 * contains one byte for every ECC chunk, and is also padded to the
125 * nearest 32-bit boundary.
126 */
127 metadata_size = ALIGN(geo->metadata_size, 4);
128 status_size = ALIGN(geo->ecc_chunk_count, 4);
129
130 geo->auxiliary_size = metadata_size + status_size;
131 geo->auxiliary_status_offset = metadata_size;
132
133 if (!this->swap_block_mark)
134 return 0;
135
136 /*
137 * We need to compute the byte and bit offsets of
138 * the physical block mark within the ECC-based view of the page.
139 *
140 * NAND chip with 2K page shows below:
141 * (Block Mark)
142 * | |
143 * | D |
144 * |<---->|
145 * V V
146 * +---+----------+-+----------+-+----------+-+----------+-+
147 * | M | data |E| data |E| data |E| data |E|
148 * +---+----------+-+----------+-+----------+-+----------+-+
149 *
150 * The position of block mark moves forward in the ECC-based view
151 * of page, and the delta is:
152 *
153 * E * G * (N - 1)
154 * D = (---------------- + M)
155 * 8
156 *
157 * With the formula to compute the ECC strength, and the condition
158 * : C >= O (C is the ecc chunk size)
159 *
160 * It's easy to deduce to the following result:
161 *
162 * E * G (O - M) C - M C - M
163 * ----------- <= ------- <= -------- < ---------
164 * 8 N N (N - 1)
165 *
166 * So, we get:
167 *
168 * E * G * (N - 1)
169 * D = (---------------- + M) < C
170 * 8
171 *
172 * The above inequality means the position of block mark
173 * within the ECC-based view of the page is still in the data chunk,
174 * and it's NOT in the ECC bits of the chunk.
175 *
176 * Use the following to compute the bit position of the
177 * physical block mark within the ECC-based view of the page:
178 * (page_size - D) * 8
179 *
180 * --Huang Shijie
181 */
182 block_mark_bit_offset = mtd->writesize * 8 -
183 (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
184 + geo->metadata_size * 8);
185
186 geo->block_mark_byte_offset = block_mark_bit_offset / 8;
187 geo->block_mark_bit_offset = block_mark_bit_offset % 8;
188 return 0;
189}
190
191struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
192{
193 int chipnr = this->current_chip;
194
195 return this->dma_chans[chipnr];
196}
197
198/* Can we use the upper's buffer directly for DMA? */
199void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr)
200{
201 struct scatterlist *sgl = &this->data_sgl;
202 int ret;
203
204 this->direct_dma_map_ok = true;
205
206 /* first try to map the upper buffer directly */
207 sg_init_one(sgl, this->upper_buf, this->upper_len);
208 ret = dma_map_sg(this->dev, sgl, 1, dr);
209 if (ret == 0) {
210 /* We have to use our own DMA buffer. */
211 sg_init_one(sgl, this->data_buffer_dma, PAGE_SIZE);
212
213 if (dr == DMA_TO_DEVICE)
214 memcpy(this->data_buffer_dma, this->upper_buf,
215 this->upper_len);
216
217 ret = dma_map_sg(this->dev, sgl, 1, dr);
218 if (ret == 0)
219 pr_err("map failed.\n");
220
221 this->direct_dma_map_ok = false;
222 }
223}
224
225/* This will be called after the DMA operation is finished. */
226static void dma_irq_callback(void *param)
227{
228 struct gpmi_nand_data *this = param;
229 struct completion *dma_c = &this->dma_done;
230
231 complete(dma_c);
232
233 switch (this->dma_type) {
234 case DMA_FOR_COMMAND:
235 dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE);
236 break;
237
238 case DMA_FOR_READ_DATA:
239 dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
240 if (this->direct_dma_map_ok == false)
241 memcpy(this->upper_buf, this->data_buffer_dma,
242 this->upper_len);
243 break;
244
245 case DMA_FOR_WRITE_DATA:
246 dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
247 break;
248
249 case DMA_FOR_READ_ECC_PAGE:
250 case DMA_FOR_WRITE_ECC_PAGE:
251 /* We have to wait the BCH interrupt to finish. */
252 break;
253
254 default:
255 pr_err("in wrong DMA operation.\n");
256 }
257}
258
259int start_dma_without_bch_irq(struct gpmi_nand_data *this,
260 struct dma_async_tx_descriptor *desc)
261{
262 struct completion *dma_c = &this->dma_done;
263 int err;
264
265 init_completion(dma_c);
266
267 desc->callback = dma_irq_callback;
268 desc->callback_param = this;
269 dmaengine_submit(desc);
Shawn Guod04525e2012-04-11 13:29:31 +0800270 dma_async_issue_pending(get_dma_chan(this));
Huang Shijie10a2bca2011-09-08 10:47:09 +0800271
272 /* Wait for the interrupt from the DMA block. */
273 err = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
274 if (!err) {
275 pr_err("DMA timeout, last DMA :%d\n", this->last_dma_type);
276 gpmi_dump_info(this);
277 return -ETIMEDOUT;
278 }
279 return 0;
280}
281
282/*
283 * This function is used in BCH reading or BCH writing pages.
284 * It will wait for the BCH interrupt as long as ONE second.
285 * Actually, we must wait for two interrupts :
286 * [1] firstly the DMA interrupt and
287 * [2] secondly the BCH interrupt.
288 */
289int start_dma_with_bch_irq(struct gpmi_nand_data *this,
290 struct dma_async_tx_descriptor *desc)
291{
292 struct completion *bch_c = &this->bch_done;
293 int err;
294
295 /* Prepare to receive an interrupt from the BCH block. */
296 init_completion(bch_c);
297
298 /* start the DMA */
299 start_dma_without_bch_irq(this, desc);
300
301 /* Wait for the interrupt from the BCH block. */
302 err = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
303 if (!err) {
304 pr_err("BCH timeout, last DMA :%d\n", this->last_dma_type);
305 gpmi_dump_info(this);
306 return -ETIMEDOUT;
307 }
308 return 0;
309}
310
311static int __devinit
312acquire_register_block(struct gpmi_nand_data *this, const char *res_name)
313{
314 struct platform_device *pdev = this->pdev;
315 struct resources *res = &this->resources;
316 struct resource *r;
317 void *p;
318
319 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
320 if (!r) {
321 pr_err("Can't get resource for %s\n", res_name);
322 return -ENXIO;
323 }
324
325 p = ioremap(r->start, resource_size(r));
326 if (!p) {
327 pr_err("Can't remap %s\n", res_name);
328 return -ENOMEM;
329 }
330
331 if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
332 res->gpmi_regs = p;
333 else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
334 res->bch_regs = p;
335 else
336 pr_err("unknown resource name : %s\n", res_name);
337
338 return 0;
339}
340
341static void release_register_block(struct gpmi_nand_data *this)
342{
343 struct resources *res = &this->resources;
344 if (res->gpmi_regs)
345 iounmap(res->gpmi_regs);
346 if (res->bch_regs)
347 iounmap(res->bch_regs);
348 res->gpmi_regs = NULL;
349 res->bch_regs = NULL;
350}
351
352static int __devinit
353acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
354{
355 struct platform_device *pdev = this->pdev;
356 struct resources *res = &this->resources;
357 const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
358 struct resource *r;
359 int err;
360
361 r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
362 if (!r) {
363 pr_err("Can't get resource for %s\n", res_name);
364 return -ENXIO;
365 }
366
367 err = request_irq(r->start, irq_h, 0, res_name, this);
368 if (err) {
369 pr_err("Can't own %s\n", res_name);
370 return err;
371 }
372
373 res->bch_low_interrupt = r->start;
374 res->bch_high_interrupt = r->end;
375 return 0;
376}
377
378static void release_bch_irq(struct gpmi_nand_data *this)
379{
380 struct resources *res = &this->resources;
381 int i = res->bch_low_interrupt;
382
383 for (; i <= res->bch_high_interrupt; i++)
384 free_irq(i, this);
385}
386
387static bool gpmi_dma_filter(struct dma_chan *chan, void *param)
388{
389 struct gpmi_nand_data *this = param;
390 struct resource *r = this->private;
391
392 if (!mxs_dma_is_apbh(chan))
393 return false;
394 /*
395 * only catch the GPMI dma channels :
396 * for mx23 : MX23_DMA_GPMI0 ~ MX23_DMA_GPMI3
397 * (These four channels share the same IRQ!)
398 *
399 * for mx28 : MX28_DMA_GPMI0 ~ MX28_DMA_GPMI7
400 * (These eight channels share the same IRQ!)
401 */
402 if (r->start <= chan->chan_id && chan->chan_id <= r->end) {
403 chan->private = &this->dma_data;
404 return true;
405 }
406 return false;
407}
408
409static void release_dma_channels(struct gpmi_nand_data *this)
410{
411 unsigned int i;
412 for (i = 0; i < DMA_CHANS; i++)
413 if (this->dma_chans[i]) {
414 dma_release_channel(this->dma_chans[i]);
415 this->dma_chans[i] = NULL;
416 }
417}
418
419static int __devinit acquire_dma_channels(struct gpmi_nand_data *this)
420{
421 struct platform_device *pdev = this->pdev;
422 struct gpmi_nand_platform_data *pdata = this->pdata;
423 struct resources *res = &this->resources;
424 struct resource *r, *r_dma;
425 unsigned int i;
426
427 r = platform_get_resource_byname(pdev, IORESOURCE_DMA,
428 GPMI_NAND_DMA_CHANNELS_RES_NAME);
429 r_dma = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
430 GPMI_NAND_DMA_INTERRUPT_RES_NAME);
431 if (!r || !r_dma) {
432 pr_err("Can't get resource for DMA\n");
433 return -ENXIO;
434 }
435
436 /* used in gpmi_dma_filter() */
437 this->private = r;
438
439 for (i = r->start; i <= r->end; i++) {
440 struct dma_chan *dma_chan;
441 dma_cap_mask_t mask;
442
443 if (i - r->start >= pdata->max_chip_count)
444 break;
445
446 dma_cap_zero(mask);
447 dma_cap_set(DMA_SLAVE, mask);
448
449 /* get the DMA interrupt */
450 if (r_dma->start == r_dma->end) {
451 /* only register the first. */
452 if (i == r->start)
453 this->dma_data.chan_irq = r_dma->start;
454 else
455 this->dma_data.chan_irq = NO_IRQ;
456 } else
457 this->dma_data.chan_irq = r_dma->start + (i - r->start);
458
459 dma_chan = dma_request_channel(mask, gpmi_dma_filter, this);
460 if (!dma_chan)
461 goto acquire_err;
462
463 /* fill the first empty item */
464 this->dma_chans[i - r->start] = dma_chan;
465 }
466
467 res->dma_low_channel = r->start;
468 res->dma_high_channel = i;
469 return 0;
470
471acquire_err:
472 pr_err("Can't acquire DMA channel %u\n", i);
473 release_dma_channels(this);
474 return -EINVAL;
475}
476
477static int __devinit acquire_resources(struct gpmi_nand_data *this)
478{
479 struct resources *res = &this->resources;
Shawn Guo39febc02012-05-06 22:57:41 +0800480 struct pinctrl *pinctrl;
Huang Shijie10a2bca2011-09-08 10:47:09 +0800481 int ret;
482
483 ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
484 if (ret)
485 goto exit_regs;
486
487 ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
488 if (ret)
489 goto exit_regs;
490
491 ret = acquire_bch_irq(this, bch_irq);
492 if (ret)
493 goto exit_regs;
494
495 ret = acquire_dma_channels(this);
496 if (ret)
497 goto exit_dma_channels;
498
Shawn Guo3e48b1b2012-05-19 21:06:13 +0800499 pinctrl = devm_pinctrl_get_select_default(&this->pdev->dev);
Shawn Guo39febc02012-05-06 22:57:41 +0800500 if (IS_ERR(pinctrl)) {
501 ret = PTR_ERR(pinctrl);
502 goto exit_pin;
503 }
504
Huang Shijie10a2bca2011-09-08 10:47:09 +0800505 res->clock = clk_get(&this->pdev->dev, NULL);
506 if (IS_ERR(res->clock)) {
507 pr_err("can not get the clock\n");
508 ret = -ENOENT;
509 goto exit_clock;
510 }
511 return 0;
512
513exit_clock:
Shawn Guo39febc02012-05-06 22:57:41 +0800514exit_pin:
Huang Shijie10a2bca2011-09-08 10:47:09 +0800515 release_dma_channels(this);
516exit_dma_channels:
517 release_bch_irq(this);
518exit_regs:
519 release_register_block(this);
520 return ret;
521}
522
523static void release_resources(struct gpmi_nand_data *this)
524{
525 struct resources *r = &this->resources;
526
527 clk_put(r->clock);
528 release_register_block(this);
529 release_bch_irq(this);
530 release_dma_channels(this);
531}
532
533static int __devinit init_hardware(struct gpmi_nand_data *this)
534{
535 int ret;
536
537 /*
538 * This structure contains the "safe" GPMI timing that should succeed
539 * with any NAND Flash device
540 * (although, with less-than-optimal performance).
541 */
542 struct nand_timing safe_timing = {
543 .data_setup_in_ns = 80,
544 .data_hold_in_ns = 60,
545 .address_setup_in_ns = 25,
546 .gpmi_sample_delay_in_ns = 6,
547 .tREA_in_ns = -1,
548 .tRLOH_in_ns = -1,
549 .tRHOH_in_ns = -1,
550 };
551
552 /* Initialize the hardwares. */
553 ret = gpmi_init(this);
554 if (ret)
555 return ret;
556
557 this->timing = safe_timing;
558 return 0;
559}
560
561static int read_page_prepare(struct gpmi_nand_data *this,
562 void *destination, unsigned length,
563 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
564 void **use_virt, dma_addr_t *use_phys)
565{
566 struct device *dev = this->dev;
567
568 if (virt_addr_valid(destination)) {
569 dma_addr_t dest_phys;
570
571 dest_phys = dma_map_single(dev, destination,
572 length, DMA_FROM_DEVICE);
573 if (dma_mapping_error(dev, dest_phys)) {
574 if (alt_size < length) {
575 pr_err("Alternate buffer is too small\n");
576 return -ENOMEM;
577 }
578 goto map_failed;
579 }
580 *use_virt = destination;
581 *use_phys = dest_phys;
582 this->direct_dma_map_ok = true;
583 return 0;
584 }
585
586map_failed:
587 *use_virt = alt_virt;
588 *use_phys = alt_phys;
589 this->direct_dma_map_ok = false;
590 return 0;
591}
592
593static inline void read_page_end(struct gpmi_nand_data *this,
594 void *destination, unsigned length,
595 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
596 void *used_virt, dma_addr_t used_phys)
597{
598 if (this->direct_dma_map_ok)
599 dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE);
600}
601
602static inline void read_page_swap_end(struct gpmi_nand_data *this,
603 void *destination, unsigned length,
604 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
605 void *used_virt, dma_addr_t used_phys)
606{
607 if (!this->direct_dma_map_ok)
608 memcpy(destination, alt_virt, length);
609}
610
611static int send_page_prepare(struct gpmi_nand_data *this,
612 const void *source, unsigned length,
613 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
614 const void **use_virt, dma_addr_t *use_phys)
615{
616 struct device *dev = this->dev;
617
618 if (virt_addr_valid(source)) {
619 dma_addr_t source_phys;
620
621 source_phys = dma_map_single(dev, (void *)source, length,
622 DMA_TO_DEVICE);
623 if (dma_mapping_error(dev, source_phys)) {
624 if (alt_size < length) {
625 pr_err("Alternate buffer is too small\n");
626 return -ENOMEM;
627 }
628 goto map_failed;
629 }
630 *use_virt = source;
631 *use_phys = source_phys;
632 return 0;
633 }
634map_failed:
635 /*
636 * Copy the content of the source buffer into the alternate
637 * buffer and set up the return values accordingly.
638 */
639 memcpy(alt_virt, source, length);
640
641 *use_virt = alt_virt;
642 *use_phys = alt_phys;
643 return 0;
644}
645
646static void send_page_end(struct gpmi_nand_data *this,
647 const void *source, unsigned length,
648 void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
649 const void *used_virt, dma_addr_t used_phys)
650{
651 struct device *dev = this->dev;
652 if (used_virt == source)
653 dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
654}
655
656static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
657{
658 struct device *dev = this->dev;
659
660 if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
661 dma_free_coherent(dev, this->page_buffer_size,
662 this->page_buffer_virt,
663 this->page_buffer_phys);
664 kfree(this->cmd_buffer);
665 kfree(this->data_buffer_dma);
666
667 this->cmd_buffer = NULL;
668 this->data_buffer_dma = NULL;
669 this->page_buffer_virt = NULL;
670 this->page_buffer_size = 0;
671}
672
673/* Allocate the DMA buffers */
674static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
675{
676 struct bch_geometry *geo = &this->bch_geometry;
677 struct device *dev = this->dev;
678
679 /* [1] Allocate a command buffer. PAGE_SIZE is enough. */
680 this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA);
681 if (this->cmd_buffer == NULL)
682 goto error_alloc;
683
684 /* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */
685 this->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA);
686 if (this->data_buffer_dma == NULL)
687 goto error_alloc;
688
689 /*
690 * [3] Allocate the page buffer.
691 *
692 * Both the payload buffer and the auxiliary buffer must appear on
693 * 32-bit boundaries. We presume the size of the payload buffer is a
694 * power of two and is much larger than four, which guarantees the
695 * auxiliary buffer will appear on a 32-bit boundary.
696 */
697 this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
698 this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
699 &this->page_buffer_phys, GFP_DMA);
700 if (!this->page_buffer_virt)
701 goto error_alloc;
702
703
704 /* Slice up the page buffer. */
705 this->payload_virt = this->page_buffer_virt;
706 this->payload_phys = this->page_buffer_phys;
707 this->auxiliary_virt = this->payload_virt + geo->payload_size;
708 this->auxiliary_phys = this->payload_phys + geo->payload_size;
709 return 0;
710
711error_alloc:
712 gpmi_free_dma_buffer(this);
713 pr_err("allocate DMA buffer ret!!\n");
714 return -ENOMEM;
715}
716
717static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
718{
719 struct nand_chip *chip = mtd->priv;
720 struct gpmi_nand_data *this = chip->priv;
721 int ret;
722
723 /*
724 * Every operation begins with a command byte and a series of zero or
725 * more address bytes. These are distinguished by either the Address
726 * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
727 * asserted. When MTD is ready to execute the command, it will deassert
728 * both latch enables.
729 *
730 * Rather than run a separate DMA operation for every single byte, we
731 * queue them up and run a single DMA operation for the entire series
732 * of command and data bytes. NAND_CMD_NONE means the END of the queue.
733 */
734 if ((ctrl & (NAND_ALE | NAND_CLE))) {
735 if (data != NAND_CMD_NONE)
736 this->cmd_buffer[this->command_length++] = data;
737 return;
738 }
739
740 if (!this->command_length)
741 return;
742
743 ret = gpmi_send_command(this);
744 if (ret)
745 pr_err("Chip: %u, Error %d\n", this->current_chip, ret);
746
747 this->command_length = 0;
748}
749
750static int gpmi_dev_ready(struct mtd_info *mtd)
751{
752 struct nand_chip *chip = mtd->priv;
753 struct gpmi_nand_data *this = chip->priv;
754
755 return gpmi_is_ready(this, this->current_chip);
756}
757
758static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
759{
760 struct nand_chip *chip = mtd->priv;
761 struct gpmi_nand_data *this = chip->priv;
762
763 if ((this->current_chip < 0) && (chipnr >= 0))
764 gpmi_begin(this);
765 else if ((this->current_chip >= 0) && (chipnr < 0))
766 gpmi_end(this);
767
768 this->current_chip = chipnr;
769}
770
771static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
772{
773 struct nand_chip *chip = mtd->priv;
774 struct gpmi_nand_data *this = chip->priv;
775
776 pr_debug("len is %d\n", len);
777 this->upper_buf = buf;
778 this->upper_len = len;
779
780 gpmi_read_data(this);
781}
782
783static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
784{
785 struct nand_chip *chip = mtd->priv;
786 struct gpmi_nand_data *this = chip->priv;
787
788 pr_debug("len is %d\n", len);
789 this->upper_buf = (uint8_t *)buf;
790 this->upper_len = len;
791
792 gpmi_send_data(this);
793}
794
795static uint8_t gpmi_read_byte(struct mtd_info *mtd)
796{
797 struct nand_chip *chip = mtd->priv;
798 struct gpmi_nand_data *this = chip->priv;
799 uint8_t *buf = this->data_buffer_dma;
800
801 gpmi_read_buf(mtd, buf, 1);
802 return buf[0];
803}
804
805/*
806 * Handles block mark swapping.
807 * It can be called in swapping the block mark, or swapping it back,
808 * because the the operations are the same.
809 */
810static void block_mark_swapping(struct gpmi_nand_data *this,
811 void *payload, void *auxiliary)
812{
813 struct bch_geometry *nfc_geo = &this->bch_geometry;
814 unsigned char *p;
815 unsigned char *a;
816 unsigned int bit;
817 unsigned char mask;
818 unsigned char from_data;
819 unsigned char from_oob;
820
821 if (!this->swap_block_mark)
822 return;
823
824 /*
825 * If control arrives here, we're swapping. Make some convenience
826 * variables.
827 */
828 bit = nfc_geo->block_mark_bit_offset;
829 p = payload + nfc_geo->block_mark_byte_offset;
830 a = auxiliary;
831
832 /*
833 * Get the byte from the data area that overlays the block mark. Since
834 * the ECC engine applies its own view to the bits in the page, the
835 * physical block mark won't (in general) appear on a byte boundary in
836 * the data.
837 */
838 from_data = (p[0] >> bit) | (p[1] << (8 - bit));
839
840 /* Get the byte from the OOB. */
841 from_oob = a[0];
842
843 /* Swap them. */
844 a[0] = from_data;
845
846 mask = (0x1 << bit) - 1;
847 p[0] = (p[0] & mask) | (from_oob << bit);
848
849 mask = ~0 << bit;
850 p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
851}
852
853static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
854 uint8_t *buf, int page)
855{
856 struct gpmi_nand_data *this = chip->priv;
857 struct bch_geometry *nfc_geo = &this->bch_geometry;
858 void *payload_virt;
859 dma_addr_t payload_phys;
860 void *auxiliary_virt;
861 dma_addr_t auxiliary_phys;
862 unsigned int i;
863 unsigned char *status;
864 unsigned int failed;
865 unsigned int corrected;
866 int ret;
867
868 pr_debug("page number is : %d\n", page);
869 ret = read_page_prepare(this, buf, mtd->writesize,
870 this->payload_virt, this->payload_phys,
871 nfc_geo->payload_size,
872 &payload_virt, &payload_phys);
873 if (ret) {
874 pr_err("Inadequate DMA buffer\n");
875 ret = -ENOMEM;
876 return ret;
877 }
878 auxiliary_virt = this->auxiliary_virt;
879 auxiliary_phys = this->auxiliary_phys;
880
881 /* go! */
882 ret = gpmi_read_page(this, payload_phys, auxiliary_phys);
883 read_page_end(this, buf, mtd->writesize,
884 this->payload_virt, this->payload_phys,
885 nfc_geo->payload_size,
886 payload_virt, payload_phys);
887 if (ret) {
888 pr_err("Error in ECC-based read: %d\n", ret);
889 goto exit_nfc;
890 }
891
892 /* handle the block mark swapping */
893 block_mark_swapping(this, payload_virt, auxiliary_virt);
894
895 /* Loop over status bytes, accumulating ECC status. */
896 failed = 0;
897 corrected = 0;
898 status = auxiliary_virt + nfc_geo->auxiliary_status_offset;
899
900 for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
901 if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
902 continue;
903
904 if (*status == STATUS_UNCORRECTABLE) {
905 failed++;
906 continue;
907 }
908 corrected += *status;
909 }
910
911 /*
912 * Propagate ECC status to the owning MTD only when failed or
913 * corrected times nearly reaches our ECC correction threshold.
914 */
915 if (failed || corrected >= (nfc_geo->ecc_strength - 1)) {
916 mtd->ecc_stats.failed += failed;
917 mtd->ecc_stats.corrected += corrected;
918 }
919
920 /*
921 * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() for
922 * details about our policy for delivering the OOB.
923 *
924 * We fill the caller's buffer with set bits, and then copy the block
925 * mark to th caller's buffer. Note that, if block mark swapping was
926 * necessary, it has already been done, so we can rely on the first
927 * byte of the auxiliary buffer to contain the block mark.
928 */
929 memset(chip->oob_poi, ~0, mtd->oobsize);
930 chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0];
931
932 read_page_swap_end(this, buf, mtd->writesize,
933 this->payload_virt, this->payload_phys,
934 nfc_geo->payload_size,
935 payload_virt, payload_phys);
936exit_nfc:
937 return ret;
938}
939
940static void gpmi_ecc_write_page(struct mtd_info *mtd,
941 struct nand_chip *chip, const uint8_t *buf)
942{
943 struct gpmi_nand_data *this = chip->priv;
944 struct bch_geometry *nfc_geo = &this->bch_geometry;
945 const void *payload_virt;
946 dma_addr_t payload_phys;
947 const void *auxiliary_virt;
948 dma_addr_t auxiliary_phys;
949 int ret;
950
951 pr_debug("ecc write page.\n");
952 if (this->swap_block_mark) {
953 /*
954 * If control arrives here, we're doing block mark swapping.
955 * Since we can't modify the caller's buffers, we must copy them
956 * into our own.
957 */
958 memcpy(this->payload_virt, buf, mtd->writesize);
959 payload_virt = this->payload_virt;
960 payload_phys = this->payload_phys;
961
962 memcpy(this->auxiliary_virt, chip->oob_poi,
963 nfc_geo->auxiliary_size);
964 auxiliary_virt = this->auxiliary_virt;
965 auxiliary_phys = this->auxiliary_phys;
966
967 /* Handle block mark swapping. */
968 block_mark_swapping(this,
969 (void *) payload_virt, (void *) auxiliary_virt);
970 } else {
971 /*
972 * If control arrives here, we're not doing block mark swapping,
973 * so we can to try and use the caller's buffers.
974 */
975 ret = send_page_prepare(this,
976 buf, mtd->writesize,
977 this->payload_virt, this->payload_phys,
978 nfc_geo->payload_size,
979 &payload_virt, &payload_phys);
980 if (ret) {
981 pr_err("Inadequate payload DMA buffer\n");
982 return;
983 }
984
985 ret = send_page_prepare(this,
986 chip->oob_poi, mtd->oobsize,
987 this->auxiliary_virt, this->auxiliary_phys,
988 nfc_geo->auxiliary_size,
989 &auxiliary_virt, &auxiliary_phys);
990 if (ret) {
991 pr_err("Inadequate auxiliary DMA buffer\n");
992 goto exit_auxiliary;
993 }
994 }
995
996 /* Ask the NFC. */
997 ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
998 if (ret)
999 pr_err("Error in ECC-based write: %d\n", ret);
1000
1001 if (!this->swap_block_mark) {
1002 send_page_end(this, chip->oob_poi, mtd->oobsize,
1003 this->auxiliary_virt, this->auxiliary_phys,
1004 nfc_geo->auxiliary_size,
1005 auxiliary_virt, auxiliary_phys);
1006exit_auxiliary:
1007 send_page_end(this, buf, mtd->writesize,
1008 this->payload_virt, this->payload_phys,
1009 nfc_geo->payload_size,
1010 payload_virt, payload_phys);
1011 }
1012}
1013
1014/*
1015 * There are several places in this driver where we have to handle the OOB and
1016 * block marks. This is the function where things are the most complicated, so
1017 * this is where we try to explain it all. All the other places refer back to
1018 * here.
1019 *
1020 * These are the rules, in order of decreasing importance:
1021 *
1022 * 1) Nothing the caller does can be allowed to imperil the block mark.
1023 *
1024 * 2) In read operations, the first byte of the OOB we return must reflect the
1025 * true state of the block mark, no matter where that block mark appears in
1026 * the physical page.
1027 *
1028 * 3) ECC-based read operations return an OOB full of set bits (since we never
1029 * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1030 * return).
1031 *
1032 * 4) "Raw" read operations return a direct view of the physical bytes in the
1033 * page, using the conventional definition of which bytes are data and which
1034 * are OOB. This gives the caller a way to see the actual, physical bytes
1035 * in the page, without the distortions applied by our ECC engine.
1036 *
1037 *
1038 * What we do for this specific read operation depends on two questions:
1039 *
1040 * 1) Are we doing a "raw" read, or an ECC-based read?
1041 *
1042 * 2) Are we using block mark swapping or transcription?
1043 *
1044 * There are four cases, illustrated by the following Karnaugh map:
1045 *
1046 * | Raw | ECC-based |
1047 * -------------+-------------------------+-------------------------+
1048 * | Read the conventional | |
1049 * | OOB at the end of the | |
1050 * Swapping | page and return it. It | |
1051 * | contains exactly what | |
1052 * | we want. | Read the block mark and |
1053 * -------------+-------------------------+ return it in a buffer |
1054 * | Read the conventional | full of set bits. |
1055 * | OOB at the end of the | |
1056 * | page and also the block | |
1057 * Transcribing | mark in the metadata. | |
1058 * | Copy the block mark | |
1059 * | into the first byte of | |
1060 * | the OOB. | |
1061 * -------------+-------------------------+-------------------------+
1062 *
1063 * Note that we break rule #4 in the Transcribing/Raw case because we're not
1064 * giving an accurate view of the actual, physical bytes in the page (we're
1065 * overwriting the block mark). That's OK because it's more important to follow
1066 * rule #2.
1067 *
1068 * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1069 * easy. When reading a page, for example, the NAND Flash MTD code calls our
1070 * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1071 * ECC-based or raw view of the page is implicit in which function it calls
1072 * (there is a similar pair of ECC-based/raw functions for writing).
1073 *
1074 * Since MTD assumes the OOB is not covered by ECC, there is no pair of
1075 * ECC-based/raw functions for reading or or writing the OOB. The fact that the
1076 * caller wants an ECC-based or raw view of the page is not propagated down to
1077 * this driver.
1078 */
1079static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1080 int page, int sndcmd)
1081{
1082 struct gpmi_nand_data *this = chip->priv;
1083
1084 pr_debug("page number is %d\n", page);
1085 /* clear the OOB buffer */
1086 memset(chip->oob_poi, ~0, mtd->oobsize);
1087
1088 /* Read out the conventional OOB. */
1089 chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
1090 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1091
1092 /*
1093 * Now, we want to make sure the block mark is correct. In the
1094 * Swapping/Raw case, we already have it. Otherwise, we need to
1095 * explicitly read it.
1096 */
1097 if (!this->swap_block_mark) {
1098 /* Read the block mark into the first byte of the OOB buffer. */
1099 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1100 chip->oob_poi[0] = chip->read_byte(mtd);
1101 }
1102
1103 /*
1104 * Return true, indicating that the next call to this function must send
1105 * a command.
1106 */
1107 return true;
1108}
1109
1110static int
1111gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page)
1112{
1113 /*
1114 * The BCH will use all the (page + oob).
1115 * Our gpmi_hw_ecclayout can only prohibit the JFFS2 to write the oob.
1116 * But it can not stop some ioctls such MEMWRITEOOB which uses
Brian Norris0612b9d2011-08-30 18:45:40 -07001117 * MTD_OPS_PLACE_OOB. So We have to implement this function to prohibit
Huang Shijie10a2bca2011-09-08 10:47:09 +08001118 * these ioctls too.
1119 */
1120 return -EPERM;
1121}
1122
1123static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
1124{
1125 struct nand_chip *chip = mtd->priv;
1126 struct gpmi_nand_data *this = chip->priv;
1127 int block, ret = 0;
1128 uint8_t *block_mark;
1129 int column, page, status, chipnr;
1130
1131 /* Get block number */
1132 block = (int)(ofs >> chip->bbt_erase_shift);
1133 if (chip->bbt)
1134 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1135
1136 /* Do we have a flash based bad block table ? */
Wolfram Sang52899662012-01-31 13:10:43 +01001137 if (chip->bbt_options & NAND_BBT_USE_FLASH)
Huang Shijie10a2bca2011-09-08 10:47:09 +08001138 ret = nand_update_bbt(mtd, ofs);
1139 else {
1140 chipnr = (int)(ofs >> chip->chip_shift);
1141 chip->select_chip(mtd, chipnr);
1142
1143 column = this->swap_block_mark ? mtd->writesize : 0;
1144
1145 /* Write the block mark. */
1146 block_mark = this->data_buffer_dma;
1147 block_mark[0] = 0; /* bad block marker */
1148
1149 /* Shift to get page */
1150 page = (int)(ofs >> chip->page_shift);
1151
1152 chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page);
1153 chip->write_buf(mtd, block_mark, 1);
1154 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1155
1156 status = chip->waitfunc(mtd, chip);
1157 if (status & NAND_STATUS_FAIL)
1158 ret = -EIO;
1159
1160 chip->select_chip(mtd, -1);
1161 }
1162 if (!ret)
1163 mtd->ecc_stats.badblocks++;
1164
1165 return ret;
1166}
1167
Wolfram Sanga78da282012-03-21 19:29:17 +01001168static int nand_boot_set_geometry(struct gpmi_nand_data *this)
Huang Shijie10a2bca2011-09-08 10:47:09 +08001169{
1170 struct boot_rom_geometry *geometry = &this->rom_geometry;
1171
1172 /*
1173 * Set the boot block stride size.
1174 *
1175 * In principle, we should be reading this from the OTP bits, since
1176 * that's where the ROM is going to get it. In fact, we don't have any
1177 * way to read the OTP bits, so we go with the default and hope for the
1178 * best.
1179 */
1180 geometry->stride_size_in_pages = 64;
1181
1182 /*
1183 * Set the search area stride exponent.
1184 *
1185 * In principle, we should be reading this from the OTP bits, since
1186 * that's where the ROM is going to get it. In fact, we don't have any
1187 * way to read the OTP bits, so we go with the default and hope for the
1188 * best.
1189 */
1190 geometry->search_area_stride_exponent = 2;
1191 return 0;
1192}
1193
1194static const char *fingerprint = "STMP";
Wolfram Sanga78da282012-03-21 19:29:17 +01001195static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
Huang Shijie10a2bca2011-09-08 10:47:09 +08001196{
1197 struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1198 struct device *dev = this->dev;
1199 struct mtd_info *mtd = &this->mtd;
1200 struct nand_chip *chip = &this->nand;
1201 unsigned int search_area_size_in_strides;
1202 unsigned int stride;
1203 unsigned int page;
1204 loff_t byte;
1205 uint8_t *buffer = chip->buffers->databuf;
1206 int saved_chip_number;
1207 int found_an_ncb_fingerprint = false;
1208
1209 /* Compute the number of strides in a search area. */
1210 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1211
1212 saved_chip_number = this->current_chip;
1213 chip->select_chip(mtd, 0);
1214
1215 /*
1216 * Loop through the first search area, looking for the NCB fingerprint.
1217 */
1218 dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
1219
1220 for (stride = 0; stride < search_area_size_in_strides; stride++) {
1221 /* Compute the page and byte addresses. */
1222 page = stride * rom_geo->stride_size_in_pages;
1223 byte = page * mtd->writesize;
1224
1225 dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
1226
1227 /*
1228 * Read the NCB fingerprint. The fingerprint is four bytes long
1229 * and starts in the 12th byte of the page.
1230 */
1231 chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page);
1232 chip->read_buf(mtd, buffer, strlen(fingerprint));
1233
1234 /* Look for the fingerprint. */
1235 if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
1236 found_an_ncb_fingerprint = true;
1237 break;
1238 }
1239
1240 }
1241
1242 chip->select_chip(mtd, saved_chip_number);
1243
1244 if (found_an_ncb_fingerprint)
1245 dev_dbg(dev, "\tFound a fingerprint\n");
1246 else
1247 dev_dbg(dev, "\tNo fingerprint found\n");
1248 return found_an_ncb_fingerprint;
1249}
1250
1251/* Writes a transcription stamp. */
Wolfram Sanga78da282012-03-21 19:29:17 +01001252static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
Huang Shijie10a2bca2011-09-08 10:47:09 +08001253{
1254 struct device *dev = this->dev;
1255 struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1256 struct mtd_info *mtd = &this->mtd;
1257 struct nand_chip *chip = &this->nand;
1258 unsigned int block_size_in_pages;
1259 unsigned int search_area_size_in_strides;
1260 unsigned int search_area_size_in_pages;
1261 unsigned int search_area_size_in_blocks;
1262 unsigned int block;
1263 unsigned int stride;
1264 unsigned int page;
1265 loff_t byte;
1266 uint8_t *buffer = chip->buffers->databuf;
1267 int saved_chip_number;
1268 int status;
1269
1270 /* Compute the search area geometry. */
1271 block_size_in_pages = mtd->erasesize / mtd->writesize;
1272 search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1273 search_area_size_in_pages = search_area_size_in_strides *
1274 rom_geo->stride_size_in_pages;
1275 search_area_size_in_blocks =
1276 (search_area_size_in_pages + (block_size_in_pages - 1)) /
1277 block_size_in_pages;
1278
1279 dev_dbg(dev, "Search Area Geometry :\n");
1280 dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
1281 dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
1282 dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages);
1283
1284 /* Select chip 0. */
1285 saved_chip_number = this->current_chip;
1286 chip->select_chip(mtd, 0);
1287
1288 /* Loop over blocks in the first search area, erasing them. */
1289 dev_dbg(dev, "Erasing the search area...\n");
1290
1291 for (block = 0; block < search_area_size_in_blocks; block++) {
1292 /* Compute the page address. */
1293 page = block * block_size_in_pages;
1294
1295 /* Erase this block. */
1296 dev_dbg(dev, "\tErasing block 0x%x\n", block);
1297 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1298 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1299
1300 /* Wait for the erase to finish. */
1301 status = chip->waitfunc(mtd, chip);
1302 if (status & NAND_STATUS_FAIL)
1303 dev_err(dev, "[%s] Erase failed.\n", __func__);
1304 }
1305
1306 /* Write the NCB fingerprint into the page buffer. */
1307 memset(buffer, ~0, mtd->writesize);
1308 memset(chip->oob_poi, ~0, mtd->oobsize);
1309 memcpy(buffer + 12, fingerprint, strlen(fingerprint));
1310
1311 /* Loop through the first search area, writing NCB fingerprints. */
1312 dev_dbg(dev, "Writing NCB fingerprints...\n");
1313 for (stride = 0; stride < search_area_size_in_strides; stride++) {
1314 /* Compute the page and byte addresses. */
1315 page = stride * rom_geo->stride_size_in_pages;
1316 byte = page * mtd->writesize;
1317
1318 /* Write the first page of the current stride. */
1319 dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
1320 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1321 chip->ecc.write_page_raw(mtd, chip, buffer);
1322 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1323
1324 /* Wait for the write to finish. */
1325 status = chip->waitfunc(mtd, chip);
1326 if (status & NAND_STATUS_FAIL)
1327 dev_err(dev, "[%s] Write failed.\n", __func__);
1328 }
1329
1330 /* Deselect chip 0. */
1331 chip->select_chip(mtd, saved_chip_number);
1332 return 0;
1333}
1334
Wolfram Sanga78da282012-03-21 19:29:17 +01001335static int mx23_boot_init(struct gpmi_nand_data *this)
Huang Shijie10a2bca2011-09-08 10:47:09 +08001336{
1337 struct device *dev = this->dev;
1338 struct nand_chip *chip = &this->nand;
1339 struct mtd_info *mtd = &this->mtd;
1340 unsigned int block_count;
1341 unsigned int block;
1342 int chipnr;
1343 int page;
1344 loff_t byte;
1345 uint8_t block_mark;
1346 int ret = 0;
1347
1348 /*
1349 * If control arrives here, we can't use block mark swapping, which
1350 * means we're forced to use transcription. First, scan for the
1351 * transcription stamp. If we find it, then we don't have to do
1352 * anything -- the block marks are already transcribed.
1353 */
1354 if (mx23_check_transcription_stamp(this))
1355 return 0;
1356
1357 /*
1358 * If control arrives here, we couldn't find a transcription stamp, so
1359 * so we presume the block marks are in the conventional location.
1360 */
1361 dev_dbg(dev, "Transcribing bad block marks...\n");
1362
1363 /* Compute the number of blocks in the entire medium. */
1364 block_count = chip->chipsize >> chip->phys_erase_shift;
1365
1366 /*
1367 * Loop over all the blocks in the medium, transcribing block marks as
1368 * we go.
1369 */
1370 for (block = 0; block < block_count; block++) {
1371 /*
1372 * Compute the chip, page and byte addresses for this block's
1373 * conventional mark.
1374 */
1375 chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
1376 page = block << (chip->phys_erase_shift - chip->page_shift);
1377 byte = block << chip->phys_erase_shift;
1378
1379 /* Send the command to read the conventional block mark. */
1380 chip->select_chip(mtd, chipnr);
1381 chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
1382 block_mark = chip->read_byte(mtd);
1383 chip->select_chip(mtd, -1);
1384
1385 /*
1386 * Check if the block is marked bad. If so, we need to mark it
1387 * again, but this time the result will be a mark in the
1388 * location where we transcribe block marks.
1389 */
1390 if (block_mark != 0xff) {
1391 dev_dbg(dev, "Transcribing mark in block %u\n", block);
1392 ret = chip->block_markbad(mtd, byte);
1393 if (ret)
1394 dev_err(dev, "Failed to mark block bad with "
1395 "ret %d\n", ret);
1396 }
1397 }
1398
1399 /* Write the stamp that indicates we've transcribed the block marks. */
1400 mx23_write_transcription_stamp(this);
1401 return 0;
1402}
1403
Wolfram Sanga78da282012-03-21 19:29:17 +01001404static int nand_boot_init(struct gpmi_nand_data *this)
Huang Shijie10a2bca2011-09-08 10:47:09 +08001405{
1406 nand_boot_set_geometry(this);
1407
1408 /* This is ROM arch-specific initilization before the BBT scanning. */
1409 if (GPMI_IS_MX23(this))
1410 return mx23_boot_init(this);
1411 return 0;
1412}
1413
Wolfram Sanga78da282012-03-21 19:29:17 +01001414static int gpmi_set_geometry(struct gpmi_nand_data *this)
Huang Shijie10a2bca2011-09-08 10:47:09 +08001415{
1416 int ret;
1417
1418 /* Free the temporary DMA memory for reading ID. */
1419 gpmi_free_dma_buffer(this);
1420
1421 /* Set up the NFC geometry which is used by BCH. */
1422 ret = bch_set_geometry(this);
1423 if (ret) {
1424 pr_err("set geometry ret : %d\n", ret);
1425 return ret;
1426 }
1427
1428 /* Alloc the new DMA buffers according to the pagesize and oobsize */
1429 return gpmi_alloc_dma_buffer(this);
1430}
1431
1432static int gpmi_pre_bbt_scan(struct gpmi_nand_data *this)
1433{
1434 int ret;
1435
1436 /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
1437 if (GPMI_IS_MX23(this))
1438 this->swap_block_mark = false;
1439 else
1440 this->swap_block_mark = true;
1441
1442 /* Set up the medium geometry */
1443 ret = gpmi_set_geometry(this);
1444 if (ret)
1445 return ret;
1446
1447 /* NAND boot init, depends on the gpmi_set_geometry(). */
1448 return nand_boot_init(this);
1449}
1450
1451static int gpmi_scan_bbt(struct mtd_info *mtd)
1452{
1453 struct nand_chip *chip = mtd->priv;
1454 struct gpmi_nand_data *this = chip->priv;
1455 int ret;
1456
1457 /* Prepare for the BBT scan. */
1458 ret = gpmi_pre_bbt_scan(this);
1459 if (ret)
1460 return ret;
1461
1462 /* use the default BBT implementation */
1463 return nand_default_bbt(mtd);
1464}
1465
1466void gpmi_nfc_exit(struct gpmi_nand_data *this)
1467{
1468 nand_release(&this->mtd);
1469 gpmi_free_dma_buffer(this);
1470}
1471
1472static int __devinit gpmi_nfc_init(struct gpmi_nand_data *this)
1473{
1474 struct gpmi_nand_platform_data *pdata = this->pdata;
1475 struct mtd_info *mtd = &this->mtd;
1476 struct nand_chip *chip = &this->nand;
1477 int ret;
1478
1479 /* init current chip */
1480 this->current_chip = -1;
1481
1482 /* init the MTD data structures */
1483 mtd->priv = chip;
1484 mtd->name = "gpmi-nand";
1485 mtd->owner = THIS_MODULE;
1486
1487 /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
1488 chip->priv = this;
1489 chip->select_chip = gpmi_select_chip;
1490 chip->cmd_ctrl = gpmi_cmd_ctrl;
1491 chip->dev_ready = gpmi_dev_ready;
1492 chip->read_byte = gpmi_read_byte;
1493 chip->read_buf = gpmi_read_buf;
1494 chip->write_buf = gpmi_write_buf;
1495 chip->ecc.read_page = gpmi_ecc_read_page;
1496 chip->ecc.write_page = gpmi_ecc_write_page;
1497 chip->ecc.read_oob = gpmi_ecc_read_oob;
1498 chip->ecc.write_oob = gpmi_ecc_write_oob;
1499 chip->scan_bbt = gpmi_scan_bbt;
1500 chip->badblock_pattern = &gpmi_bbt_descr;
1501 chip->block_markbad = gpmi_block_markbad;
1502 chip->options |= NAND_NO_SUBPAGE_WRITE;
1503 chip->ecc.mode = NAND_ECC_HW;
1504 chip->ecc.size = 1;
1505 chip->ecc.layout = &gpmi_hw_ecclayout;
1506
1507 /* Allocate a temporary DMA buffer for reading ID in the nand_scan() */
1508 this->bch_geometry.payload_size = 1024;
1509 this->bch_geometry.auxiliary_size = 128;
1510 ret = gpmi_alloc_dma_buffer(this);
1511 if (ret)
1512 goto err_out;
1513
1514 ret = nand_scan(mtd, pdata->max_chip_count);
1515 if (ret) {
1516 pr_err("Chip scan failed\n");
1517 goto err_out;
1518 }
1519
1520 ret = mtd_device_parse_register(mtd, NULL, NULL,
1521 pdata->partitions, pdata->partition_count);
1522 if (ret)
1523 goto err_out;
1524 return 0;
1525
1526err_out:
1527 gpmi_nfc_exit(this);
1528 return ret;
1529}
1530
1531static int __devinit gpmi_nand_probe(struct platform_device *pdev)
1532{
1533 struct gpmi_nand_platform_data *pdata = pdev->dev.platform_data;
1534 struct gpmi_nand_data *this;
1535 int ret;
1536
1537 this = kzalloc(sizeof(*this), GFP_KERNEL);
1538 if (!this) {
1539 pr_err("Failed to allocate per-device memory\n");
1540 return -ENOMEM;
1541 }
1542
1543 platform_set_drvdata(pdev, this);
1544 this->pdev = pdev;
1545 this->dev = &pdev->dev;
1546 this->pdata = pdata;
1547
1548 if (pdata->platform_init) {
1549 ret = pdata->platform_init();
1550 if (ret)
1551 goto platform_init_error;
1552 }
1553
1554 ret = acquire_resources(this);
1555 if (ret)
1556 goto exit_acquire_resources;
1557
1558 ret = init_hardware(this);
1559 if (ret)
1560 goto exit_nfc_init;
1561
1562 ret = gpmi_nfc_init(this);
1563 if (ret)
1564 goto exit_nfc_init;
1565
1566 return 0;
1567
1568exit_nfc_init:
1569 release_resources(this);
1570platform_init_error:
1571exit_acquire_resources:
1572 platform_set_drvdata(pdev, NULL);
1573 kfree(this);
1574 return ret;
1575}
1576
1577static int __exit gpmi_nand_remove(struct platform_device *pdev)
1578{
1579 struct gpmi_nand_data *this = platform_get_drvdata(pdev);
1580
1581 gpmi_nfc_exit(this);
1582 release_resources(this);
1583 platform_set_drvdata(pdev, NULL);
1584 kfree(this);
1585 return 0;
1586}
1587
1588static const struct platform_device_id gpmi_ids[] = {
1589 {
1590 .name = "imx23-gpmi-nand",
1591 .driver_data = IS_MX23,
1592 }, {
1593 .name = "imx28-gpmi-nand",
1594 .driver_data = IS_MX28,
1595 }, {},
1596};
1597
1598static struct platform_driver gpmi_nand_driver = {
1599 .driver = {
1600 .name = "gpmi-nand",
1601 },
1602 .probe = gpmi_nand_probe,
1603 .remove = __exit_p(gpmi_nand_remove),
1604 .id_table = gpmi_ids,
1605};
1606
1607static int __init gpmi_nand_init(void)
1608{
1609 int err;
1610
1611 err = platform_driver_register(&gpmi_nand_driver);
1612 if (err == 0)
1613 printk(KERN_INFO "GPMI NAND driver registered. (IMX)\n");
1614 else
1615 pr_err("i.MX GPMI NAND driver registration failed\n");
1616 return err;
1617}
1618
1619static void __exit gpmi_nand_exit(void)
1620{
1621 platform_driver_unregister(&gpmi_nand_driver);
1622}
1623
1624module_init(gpmi_nand_init);
1625module_exit(gpmi_nand_exit);
1626
1627MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1628MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
1629MODULE_LICENSE("GPL");