blob: 020de5637e0688d42c5b6c7e1870a326cf607e31 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
Olaf Weber3e57ecf2006-06-09 14:48:12 +10002 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
Nathan Scott7b718762005-11-02 14:58:39 +11003 * All Rights Reserved.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004 *
Nathan Scott7b718762005-11-02 14:58:39 +11005 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
Linus Torvalds1da177e2005-04-16 15:20:36 -07007 * published by the Free Software Foundation.
8 *
Nathan Scott7b718762005-11-02 14:58:39 +11009 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
Linus Torvalds1da177e2005-04-16 15:20:36 -070013 *
Nathan Scott7b718762005-11-02 14:58:39 +110014 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Linus Torvalds1da177e2005-04-16 15:20:36 -070017 */
Linus Torvalds1da177e2005-04-16 15:20:36 -070018#include "xfs.h"
Nathan Scotta844f452005-11-02 14:38:42 +110019#include "xfs_fs.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070020#include "xfs_types.h"
Nathan Scotta844f452005-11-02 14:38:42 +110021#include "xfs_bit.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070022#include "xfs_log.h"
Nathan Scotta844f452005-11-02 14:38:42 +110023#include "xfs_inum.h"
24#include "xfs_imap.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070025#include "xfs_trans.h"
26#include "xfs_trans_priv.h"
27#include "xfs_sb.h"
28#include "xfs_ag.h"
29#include "xfs_dir.h"
30#include "xfs_dir2.h"
31#include "xfs_dmapi.h"
32#include "xfs_mount.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070033#include "xfs_bmap_btree.h"
Nathan Scotta844f452005-11-02 14:38:42 +110034#include "xfs_alloc_btree.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070035#include "xfs_ialloc_btree.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070036#include "xfs_dir_sf.h"
37#include "xfs_dir2_sf.h"
Nathan Scotta844f452005-11-02 14:38:42 +110038#include "xfs_attr_sf.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070039#include "xfs_dinode.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070040#include "xfs_inode.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070041#include "xfs_buf_item.h"
Nathan Scotta844f452005-11-02 14:38:42 +110042#include "xfs_inode_item.h"
43#include "xfs_btree.h"
44#include "xfs_alloc.h"
45#include "xfs_ialloc.h"
46#include "xfs_bmap.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070047#include "xfs_rw.h"
48#include "xfs_error.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070049#include "xfs_utils.h"
50#include "xfs_dir2_trace.h"
51#include "xfs_quota.h"
52#include "xfs_mac.h"
53#include "xfs_acl.h"
54
55
56kmem_zone_t *xfs_ifork_zone;
57kmem_zone_t *xfs_inode_zone;
58kmem_zone_t *xfs_chashlist_zone;
59
60/*
61 * Used in xfs_itruncate(). This is the maximum number of extents
62 * freed from a file in a single transaction.
63 */
64#define XFS_ITRUNC_MAX_EXTENTS 2
65
66STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
67STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
68STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
69STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
70
71
72#ifdef DEBUG
73/*
74 * Make sure that the extents in the given memory buffer
75 * are valid.
76 */
77STATIC void
78xfs_validate_extents(
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +110079 xfs_ifork_t *ifp,
Linus Torvalds1da177e2005-04-16 15:20:36 -070080 int nrecs,
81 int disk,
82 xfs_exntfmt_t fmt)
83{
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +110084 xfs_bmbt_rec_t *ep;
Linus Torvalds1da177e2005-04-16 15:20:36 -070085 xfs_bmbt_irec_t irec;
86 xfs_bmbt_rec_t rec;
87 int i;
88
89 for (i = 0; i < nrecs; i++) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +110090 ep = xfs_iext_get_ext(ifp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -070091 rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
92 rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
93 if (disk)
94 xfs_bmbt_disk_get_all(&rec, &irec);
95 else
96 xfs_bmbt_get_all(&rec, &irec);
97 if (fmt == XFS_EXTFMT_NOSTATE)
98 ASSERT(irec.br_state == XFS_EXT_NORM);
Linus Torvalds1da177e2005-04-16 15:20:36 -070099 }
100}
101#else /* DEBUG */
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100102#define xfs_validate_extents(ifp, nrecs, disk, fmt)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700103#endif /* DEBUG */
104
105/*
106 * Check that none of the inode's in the buffer have a next
107 * unlinked field of 0.
108 */
109#if defined(DEBUG)
110void
111xfs_inobp_check(
112 xfs_mount_t *mp,
113 xfs_buf_t *bp)
114{
115 int i;
116 int j;
117 xfs_dinode_t *dip;
118
119 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
120
121 for (i = 0; i < j; i++) {
122 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
123 i * mp->m_sb.sb_inodesize);
124 if (!dip->di_next_unlinked) {
125 xfs_fs_cmn_err(CE_ALERT, mp,
126 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
127 bp);
128 ASSERT(dip->di_next_unlinked);
129 }
130 }
131}
132#endif
133
134/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700135 * This routine is called to map an inode number within a file
136 * system to the buffer containing the on-disk version of the
137 * inode. It returns a pointer to the buffer containing the
138 * on-disk inode in the bpp parameter, and in the dip parameter
139 * it returns a pointer to the on-disk inode within that buffer.
140 *
141 * If a non-zero error is returned, then the contents of bpp and
142 * dipp are undefined.
143 *
144 * Use xfs_imap() to determine the size and location of the
145 * buffer to read from disk.
146 */
Christoph Hellwigba0f32d2005-06-21 15:36:52 +1000147STATIC int
Linus Torvalds1da177e2005-04-16 15:20:36 -0700148xfs_inotobp(
149 xfs_mount_t *mp,
150 xfs_trans_t *tp,
151 xfs_ino_t ino,
152 xfs_dinode_t **dipp,
153 xfs_buf_t **bpp,
154 int *offset)
155{
156 int di_ok;
157 xfs_imap_t imap;
158 xfs_buf_t *bp;
159 int error;
160 xfs_dinode_t *dip;
161
162 /*
Nathan Scottc41564b2006-03-29 08:55:14 +1000163 * Call the space management code to find the location of the
Linus Torvalds1da177e2005-04-16 15:20:36 -0700164 * inode on disk.
165 */
166 imap.im_blkno = 0;
167 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
168 if (error != 0) {
169 cmn_err(CE_WARN,
170 "xfs_inotobp: xfs_imap() returned an "
171 "error %d on %s. Returning error.", error, mp->m_fsname);
172 return error;
173 }
174
175 /*
176 * If the inode number maps to a block outside the bounds of the
177 * file system then return NULL rather than calling read_buf
178 * and panicing when we get an error from the driver.
179 */
180 if ((imap.im_blkno + imap.im_len) >
181 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
182 cmn_err(CE_WARN,
Christoph Hellwigda1650a2005-11-02 10:21:35 +1100183 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
Linus Torvalds1da177e2005-04-16 15:20:36 -0700184 "of the file system %s. Returning EINVAL.",
Christoph Hellwigda1650a2005-11-02 10:21:35 +1100185 (unsigned long long)imap.im_blkno,
186 imap.im_len, mp->m_fsname);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700187 return XFS_ERROR(EINVAL);
188 }
189
190 /*
191 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
192 * default to just a read_buf() call.
193 */
194 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
195 (int)imap.im_len, XFS_BUF_LOCK, &bp);
196
197 if (error) {
198 cmn_err(CE_WARN,
199 "xfs_inotobp: xfs_trans_read_buf() returned an "
200 "error %d on %s. Returning error.", error, mp->m_fsname);
201 return error;
202 }
203 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
204 di_ok =
205 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
206 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
207 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
208 XFS_RANDOM_ITOBP_INOTOBP))) {
209 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
210 xfs_trans_brelse(tp, bp);
211 cmn_err(CE_WARN,
212 "xfs_inotobp: XFS_TEST_ERROR() returned an "
213 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
214 return XFS_ERROR(EFSCORRUPTED);
215 }
216
217 xfs_inobp_check(mp, bp);
218
219 /*
220 * Set *dipp to point to the on-disk inode in the buffer.
221 */
222 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
223 *bpp = bp;
224 *offset = imap.im_boffset;
225 return 0;
226}
227
228
229/*
230 * This routine is called to map an inode to the buffer containing
231 * the on-disk version of the inode. It returns a pointer to the
232 * buffer containing the on-disk inode in the bpp parameter, and in
233 * the dip parameter it returns a pointer to the on-disk inode within
234 * that buffer.
235 *
236 * If a non-zero error is returned, then the contents of bpp and
237 * dipp are undefined.
238 *
239 * If the inode is new and has not yet been initialized, use xfs_imap()
240 * to determine the size and location of the buffer to read from disk.
241 * If the inode has already been mapped to its buffer and read in once,
242 * then use the mapping information stored in the inode rather than
243 * calling xfs_imap(). This allows us to avoid the overhead of looking
244 * at the inode btree for small block file systems (see xfs_dilocate()).
245 * We can tell whether the inode has been mapped in before by comparing
246 * its disk block address to 0. Only uninitialized inodes will have
247 * 0 for the disk block address.
248 */
249int
250xfs_itobp(
251 xfs_mount_t *mp,
252 xfs_trans_t *tp,
253 xfs_inode_t *ip,
254 xfs_dinode_t **dipp,
255 xfs_buf_t **bpp,
Nathan Scottb12dd342006-03-17 17:26:04 +1100256 xfs_daddr_t bno,
257 uint imap_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700258{
259 xfs_buf_t *bp;
260 int error;
261 xfs_imap_t imap;
262#ifdef __KERNEL__
263 int i;
264 int ni;
265#endif
266
267 if (ip->i_blkno == (xfs_daddr_t)0) {
268 /*
269 * Call the space management code to find the location of the
270 * inode on disk.
271 */
272 imap.im_blkno = bno;
Nathan Scottb12dd342006-03-17 17:26:04 +1100273 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
274 XFS_IMAP_LOOKUP | imap_flags)))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700275 return error;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700276
277 /*
278 * If the inode number maps to a block outside the bounds
279 * of the file system then return NULL rather than calling
280 * read_buf and panicing when we get an error from the
281 * driver.
282 */
283 if ((imap.im_blkno + imap.im_len) >
284 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
285#ifdef DEBUG
286 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
287 "(imap.im_blkno (0x%llx) "
288 "+ imap.im_len (0x%llx)) > "
289 " XFS_FSB_TO_BB(mp, "
290 "mp->m_sb.sb_dblocks) (0x%llx)",
291 (unsigned long long) imap.im_blkno,
292 (unsigned long long) imap.im_len,
293 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
294#endif /* DEBUG */
295 return XFS_ERROR(EINVAL);
296 }
297
298 /*
299 * Fill in the fields in the inode that will be used to
300 * map the inode to its buffer from now on.
301 */
302 ip->i_blkno = imap.im_blkno;
303 ip->i_len = imap.im_len;
304 ip->i_boffset = imap.im_boffset;
305 } else {
306 /*
307 * We've already mapped the inode once, so just use the
308 * mapping that we saved the first time.
309 */
310 imap.im_blkno = ip->i_blkno;
311 imap.im_len = ip->i_len;
312 imap.im_boffset = ip->i_boffset;
313 }
314 ASSERT(bno == 0 || bno == imap.im_blkno);
315
316 /*
317 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
318 * default to just a read_buf() call.
319 */
320 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
321 (int)imap.im_len, XFS_BUF_LOCK, &bp);
322
323 if (error) {
324#ifdef DEBUG
325 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
326 "xfs_trans_read_buf() returned error %d, "
327 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
328 error, (unsigned long long) imap.im_blkno,
329 (unsigned long long) imap.im_len);
330#endif /* DEBUG */
331 return error;
332 }
333#ifdef __KERNEL__
334 /*
335 * Validate the magic number and version of every inode in the buffer
336 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
337 */
338#ifdef DEBUG
Nathan Scottb12dd342006-03-17 17:26:04 +1100339 ni = (imap_flags & XFS_IMAP_BULKSTAT) ? 0 :
340 (BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700341#else
Nathan Scottb12dd342006-03-17 17:26:04 +1100342 ni = (imap_flags & XFS_IMAP_BULKSTAT) ? 0 : 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700343#endif
344 for (i = 0; i < ni; i++) {
345 int di_ok;
346 xfs_dinode_t *dip;
347
348 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
349 (i << mp->m_sb.sb_inodelog));
350 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
351 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
352 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
353 XFS_RANDOM_ITOBP_INOTOBP))) {
354#ifdef DEBUG
355 prdev("bad inode magic/vsn daddr %lld #%d (magic=%x)",
356 mp->m_ddev_targp,
357 (unsigned long long)imap.im_blkno, i,
358 INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
359#endif
360 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
361 mp, dip);
362 xfs_trans_brelse(tp, bp);
363 return XFS_ERROR(EFSCORRUPTED);
364 }
365 }
366#endif /* __KERNEL__ */
367
368 xfs_inobp_check(mp, bp);
369
370 /*
371 * Mark the buffer as an inode buffer now that it looks good
372 */
373 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
374
375 /*
376 * Set *dipp to point to the on-disk inode in the buffer.
377 */
378 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
379 *bpp = bp;
380 return 0;
381}
382
383/*
384 * Move inode type and inode format specific information from the
385 * on-disk inode to the in-core inode. For fifos, devs, and sockets
386 * this means set if_rdev to the proper value. For files, directories,
387 * and symlinks this means to bring in the in-line data or extent
388 * pointers. For a file in B-tree format, only the root is immediately
389 * brought in-core. The rest will be in-lined in if_extents when it
390 * is first referenced (see xfs_iread_extents()).
391 */
392STATIC int
393xfs_iformat(
394 xfs_inode_t *ip,
395 xfs_dinode_t *dip)
396{
397 xfs_attr_shortform_t *atp;
398 int size;
399 int error;
400 xfs_fsize_t di_size;
401 ip->i_df.if_ext_max =
402 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
403 error = 0;
404
405 if (unlikely(
406 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
407 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
408 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100409 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
410 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700411 (unsigned long long)ip->i_ino,
412 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
413 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
414 (unsigned long long)
415 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
416 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
417 ip->i_mount, dip);
418 return XFS_ERROR(EFSCORRUPTED);
419 }
420
421 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100422 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
423 "corrupt dinode %Lu, forkoff = 0x%x.",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700424 (unsigned long long)ip->i_ino,
425 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
426 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
427 ip->i_mount, dip);
428 return XFS_ERROR(EFSCORRUPTED);
429 }
430
431 switch (ip->i_d.di_mode & S_IFMT) {
432 case S_IFIFO:
433 case S_IFCHR:
434 case S_IFBLK:
435 case S_IFSOCK:
436 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
437 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
438 ip->i_mount, dip);
439 return XFS_ERROR(EFSCORRUPTED);
440 }
441 ip->i_d.di_size = 0;
442 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
443 break;
444
445 case S_IFREG:
446 case S_IFLNK:
447 case S_IFDIR:
448 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
449 case XFS_DINODE_FMT_LOCAL:
450 /*
451 * no local regular files yet
452 */
453 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100454 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
455 "corrupt inode %Lu "
456 "(local format for regular file).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700457 (unsigned long long) ip->i_ino);
458 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
459 XFS_ERRLEVEL_LOW,
460 ip->i_mount, dip);
461 return XFS_ERROR(EFSCORRUPTED);
462 }
463
464 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
465 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100466 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
467 "corrupt inode %Lu "
468 "(bad size %Ld for local inode).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700469 (unsigned long long) ip->i_ino,
470 (long long) di_size);
471 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
472 XFS_ERRLEVEL_LOW,
473 ip->i_mount, dip);
474 return XFS_ERROR(EFSCORRUPTED);
475 }
476
477 size = (int)di_size;
478 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
479 break;
480 case XFS_DINODE_FMT_EXTENTS:
481 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
482 break;
483 case XFS_DINODE_FMT_BTREE:
484 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
485 break;
486 default:
487 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
488 ip->i_mount);
489 return XFS_ERROR(EFSCORRUPTED);
490 }
491 break;
492
493 default:
494 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
495 return XFS_ERROR(EFSCORRUPTED);
496 }
497 if (error) {
498 return error;
499 }
500 if (!XFS_DFORK_Q(dip))
501 return 0;
502 ASSERT(ip->i_afp == NULL);
503 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
504 ip->i_afp->if_ext_max =
505 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
506 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
507 case XFS_DINODE_FMT_LOCAL:
508 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
Nathan Scott3b244aa2006-03-17 17:29:25 +1100509 size = be16_to_cpu(atp->hdr.totsize);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700510 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
511 break;
512 case XFS_DINODE_FMT_EXTENTS:
513 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
514 break;
515 case XFS_DINODE_FMT_BTREE:
516 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
517 break;
518 default:
519 error = XFS_ERROR(EFSCORRUPTED);
520 break;
521 }
522 if (error) {
523 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
524 ip->i_afp = NULL;
525 xfs_idestroy_fork(ip, XFS_DATA_FORK);
526 }
527 return error;
528}
529
530/*
531 * The file is in-lined in the on-disk inode.
532 * If it fits into if_inline_data, then copy
533 * it there, otherwise allocate a buffer for it
534 * and copy the data there. Either way, set
535 * if_data to point at the data.
536 * If we allocate a buffer for the data, make
537 * sure that its size is a multiple of 4 and
538 * record the real size in i_real_bytes.
539 */
540STATIC int
541xfs_iformat_local(
542 xfs_inode_t *ip,
543 xfs_dinode_t *dip,
544 int whichfork,
545 int size)
546{
547 xfs_ifork_t *ifp;
548 int real_size;
549
550 /*
551 * If the size is unreasonable, then something
552 * is wrong and we just bail out rather than crash in
553 * kmem_alloc() or memcpy() below.
554 */
555 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100556 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
557 "corrupt inode %Lu "
558 "(bad size %d for local fork, size = %d).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700559 (unsigned long long) ip->i_ino, size,
560 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
561 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
562 ip->i_mount, dip);
563 return XFS_ERROR(EFSCORRUPTED);
564 }
565 ifp = XFS_IFORK_PTR(ip, whichfork);
566 real_size = 0;
567 if (size == 0)
568 ifp->if_u1.if_data = NULL;
569 else if (size <= sizeof(ifp->if_u2.if_inline_data))
570 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
571 else {
572 real_size = roundup(size, 4);
573 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
574 }
575 ifp->if_bytes = size;
576 ifp->if_real_bytes = real_size;
577 if (size)
578 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
579 ifp->if_flags &= ~XFS_IFEXTENTS;
580 ifp->if_flags |= XFS_IFINLINE;
581 return 0;
582}
583
584/*
585 * The file consists of a set of extents all
586 * of which fit into the on-disk inode.
587 * If there are few enough extents to fit into
588 * the if_inline_ext, then copy them there.
589 * Otherwise allocate a buffer for them and copy
590 * them into it. Either way, set if_extents
591 * to point at the extents.
592 */
593STATIC int
594xfs_iformat_extents(
595 xfs_inode_t *ip,
596 xfs_dinode_t *dip,
597 int whichfork)
598{
599 xfs_bmbt_rec_t *ep, *dp;
600 xfs_ifork_t *ifp;
601 int nex;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700602 int size;
603 int i;
604
605 ifp = XFS_IFORK_PTR(ip, whichfork);
606 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
607 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
608
609 /*
610 * If the number of extents is unreasonable, then something
611 * is wrong and we just bail out rather than crash in
612 * kmem_alloc() or memcpy() below.
613 */
614 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100615 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
616 "corrupt inode %Lu ((a)extents = %d).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700617 (unsigned long long) ip->i_ino, nex);
618 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
619 ip->i_mount, dip);
620 return XFS_ERROR(EFSCORRUPTED);
621 }
622
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100623 ifp->if_real_bytes = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700624 if (nex == 0)
625 ifp->if_u1.if_extents = NULL;
626 else if (nex <= XFS_INLINE_EXTS)
627 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100628 else
629 xfs_iext_add(ifp, 0, nex);
630
Linus Torvalds1da177e2005-04-16 15:20:36 -0700631 ifp->if_bytes = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700632 if (size) {
633 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100634 xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip));
635 for (i = 0; i < nex; i++, dp++) {
636 ep = xfs_iext_get_ext(ifp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700637 ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
638 ARCH_CONVERT);
639 ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
640 ARCH_CONVERT);
641 }
642 xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
643 whichfork);
644 if (whichfork != XFS_DATA_FORK ||
645 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
646 if (unlikely(xfs_check_nostate_extents(
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100647 ifp, 0, nex))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700648 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
649 XFS_ERRLEVEL_LOW,
650 ip->i_mount);
651 return XFS_ERROR(EFSCORRUPTED);
652 }
653 }
654 ifp->if_flags |= XFS_IFEXTENTS;
655 return 0;
656}
657
658/*
659 * The file has too many extents to fit into
660 * the inode, so they are in B-tree format.
661 * Allocate a buffer for the root of the B-tree
662 * and copy the root into it. The i_extents
663 * field will remain NULL until all of the
664 * extents are read in (when they are needed).
665 */
666STATIC int
667xfs_iformat_btree(
668 xfs_inode_t *ip,
669 xfs_dinode_t *dip,
670 int whichfork)
671{
672 xfs_bmdr_block_t *dfp;
673 xfs_ifork_t *ifp;
674 /* REFERENCED */
675 int nrecs;
676 int size;
677
678 ifp = XFS_IFORK_PTR(ip, whichfork);
679 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
680 size = XFS_BMAP_BROOT_SPACE(dfp);
681 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
682
683 /*
684 * blow out if -- fork has less extents than can fit in
685 * fork (fork shouldn't be a btree format), root btree
686 * block has more records than can fit into the fork,
687 * or the number of extents is greater than the number of
688 * blocks.
689 */
690 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
691 || XFS_BMDR_SPACE_CALC(nrecs) >
692 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
693 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100694 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
695 "corrupt inode %Lu (btree).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700696 (unsigned long long) ip->i_ino);
697 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
698 ip->i_mount);
699 return XFS_ERROR(EFSCORRUPTED);
700 }
701
702 ifp->if_broot_bytes = size;
703 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
704 ASSERT(ifp->if_broot != NULL);
705 /*
706 * Copy and convert from the on-disk structure
707 * to the in-memory structure.
708 */
709 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
710 ifp->if_broot, size);
711 ifp->if_flags &= ~XFS_IFEXTENTS;
712 ifp->if_flags |= XFS_IFBROOT;
713
714 return 0;
715}
716
717/*
718 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
719 * and native format
720 *
721 * buf = on-disk representation
722 * dip = native representation
723 * dir = direction - +ve -> disk to native
724 * -ve -> native to disk
725 */
726void
727xfs_xlate_dinode_core(
728 xfs_caddr_t buf,
729 xfs_dinode_core_t *dip,
730 int dir)
731{
732 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
733 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
734 xfs_arch_t arch = ARCH_CONVERT;
735
736 ASSERT(dir);
737
738 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
739 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
740 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
741 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
742 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
743 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
744 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
745 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
746 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
747
748 if (dir > 0) {
749 memcpy(mem_core->di_pad, buf_core->di_pad,
750 sizeof(buf_core->di_pad));
751 } else {
752 memcpy(buf_core->di_pad, mem_core->di_pad,
753 sizeof(buf_core->di_pad));
754 }
755
756 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
757
758 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
759 dir, arch);
760 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
761 dir, arch);
762 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
763 dir, arch);
764 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
765 dir, arch);
766 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
767 dir, arch);
768 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
769 dir, arch);
770 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
771 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
772 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
773 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
774 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
775 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
776 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
777 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
778 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
779 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
780 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
781}
782
783STATIC uint
784_xfs_dic2xflags(
785 xfs_dinode_core_t *dic,
786 __uint16_t di_flags)
787{
788 uint flags = 0;
789
790 if (di_flags & XFS_DIFLAG_ANY) {
791 if (di_flags & XFS_DIFLAG_REALTIME)
792 flags |= XFS_XFLAG_REALTIME;
793 if (di_flags & XFS_DIFLAG_PREALLOC)
794 flags |= XFS_XFLAG_PREALLOC;
795 if (di_flags & XFS_DIFLAG_IMMUTABLE)
796 flags |= XFS_XFLAG_IMMUTABLE;
797 if (di_flags & XFS_DIFLAG_APPEND)
798 flags |= XFS_XFLAG_APPEND;
799 if (di_flags & XFS_DIFLAG_SYNC)
800 flags |= XFS_XFLAG_SYNC;
801 if (di_flags & XFS_DIFLAG_NOATIME)
802 flags |= XFS_XFLAG_NOATIME;
803 if (di_flags & XFS_DIFLAG_NODUMP)
804 flags |= XFS_XFLAG_NODUMP;
805 if (di_flags & XFS_DIFLAG_RTINHERIT)
806 flags |= XFS_XFLAG_RTINHERIT;
807 if (di_flags & XFS_DIFLAG_PROJINHERIT)
808 flags |= XFS_XFLAG_PROJINHERIT;
809 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
810 flags |= XFS_XFLAG_NOSYMLINKS;
Nathan Scottdd9f4382006-01-11 15:28:28 +1100811 if (di_flags & XFS_DIFLAG_EXTSIZE)
812 flags |= XFS_XFLAG_EXTSIZE;
813 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
814 flags |= XFS_XFLAG_EXTSZINHERIT;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700815 }
816
817 return flags;
818}
819
820uint
821xfs_ip2xflags(
822 xfs_inode_t *ip)
823{
824 xfs_dinode_core_t *dic = &ip->i_d;
825
826 return _xfs_dic2xflags(dic, dic->di_flags) |
827 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
828}
829
830uint
831xfs_dic2xflags(
832 xfs_dinode_core_t *dic)
833{
834 return _xfs_dic2xflags(dic, INT_GET(dic->di_flags, ARCH_CONVERT)) |
835 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
836}
837
838/*
839 * Given a mount structure and an inode number, return a pointer
Nathan Scottc41564b2006-03-29 08:55:14 +1000840 * to a newly allocated in-core inode corresponding to the given
Linus Torvalds1da177e2005-04-16 15:20:36 -0700841 * inode number.
842 *
843 * Initialize the inode's attributes and extent pointers if it
844 * already has them (it will not if the inode has no links).
845 */
846int
847xfs_iread(
848 xfs_mount_t *mp,
849 xfs_trans_t *tp,
850 xfs_ino_t ino,
851 xfs_inode_t **ipp,
852 xfs_daddr_t bno)
853{
854 xfs_buf_t *bp;
855 xfs_dinode_t *dip;
856 xfs_inode_t *ip;
857 int error;
858
859 ASSERT(xfs_inode_zone != NULL);
860
861 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
862 ip->i_ino = ino;
863 ip->i_mount = mp;
864
865 /*
866 * Get pointer's to the on-disk inode and the buffer containing it.
867 * If the inode number refers to a block outside the file system
868 * then xfs_itobp() will return NULL. In this case we should
869 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
870 * know that this is a new incore inode.
871 */
Nathan Scottb12dd342006-03-17 17:26:04 +1100872 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, 0);
873 if (error) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700874 kmem_zone_free(xfs_inode_zone, ip);
875 return error;
876 }
877
878 /*
879 * Initialize inode's trace buffers.
880 * Do this before xfs_iformat in case it adds entries.
881 */
882#ifdef XFS_BMAP_TRACE
883 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
884#endif
885#ifdef XFS_BMBT_TRACE
886 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
887#endif
888#ifdef XFS_RW_TRACE
889 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
890#endif
891#ifdef XFS_ILOCK_TRACE
892 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
893#endif
894#ifdef XFS_DIR2_TRACE
895 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
896#endif
897
898 /*
899 * If we got something that isn't an inode it means someone
900 * (nfs or dmi) has a stale handle.
901 */
902 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
903 kmem_zone_free(xfs_inode_zone, ip);
904 xfs_trans_brelse(tp, bp);
905#ifdef DEBUG
906 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
907 "dip->di_core.di_magic (0x%x) != "
908 "XFS_DINODE_MAGIC (0x%x)",
909 INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
910 XFS_DINODE_MAGIC);
911#endif /* DEBUG */
912 return XFS_ERROR(EINVAL);
913 }
914
915 /*
916 * If the on-disk inode is already linked to a directory
917 * entry, copy all of the inode into the in-core inode.
918 * xfs_iformat() handles copying in the inode format
919 * specific information.
920 * Otherwise, just get the truly permanent information.
921 */
922 if (dip->di_core.di_mode) {
923 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
924 &(ip->i_d), 1);
925 error = xfs_iformat(ip, dip);
926 if (error) {
927 kmem_zone_free(xfs_inode_zone, ip);
928 xfs_trans_brelse(tp, bp);
929#ifdef DEBUG
930 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
931 "xfs_iformat() returned error %d",
932 error);
933#endif /* DEBUG */
934 return error;
935 }
936 } else {
937 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
938 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
939 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
940 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
941 /*
942 * Make sure to pull in the mode here as well in
943 * case the inode is released without being used.
944 * This ensures that xfs_inactive() will see that
945 * the inode is already free and not try to mess
946 * with the uninitialized part of it.
947 */
948 ip->i_d.di_mode = 0;
949 /*
950 * Initialize the per-fork minima and maxima for a new
951 * inode here. xfs_iformat will do it for old inodes.
952 */
953 ip->i_df.if_ext_max =
954 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
955 }
956
957 INIT_LIST_HEAD(&ip->i_reclaim);
958
959 /*
960 * The inode format changed when we moved the link count and
961 * made it 32 bits long. If this is an old format inode,
962 * convert it in memory to look like a new one. If it gets
963 * flushed to disk we will convert back before flushing or
964 * logging it. We zero out the new projid field and the old link
965 * count field. We'll handle clearing the pad field (the remains
966 * of the old uuid field) when we actually convert the inode to
967 * the new format. We don't change the version number so that we
968 * can distinguish this from a real new format inode.
969 */
970 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
971 ip->i_d.di_nlink = ip->i_d.di_onlink;
972 ip->i_d.di_onlink = 0;
973 ip->i_d.di_projid = 0;
974 }
975
976 ip->i_delayed_blks = 0;
977
978 /*
979 * Mark the buffer containing the inode as something to keep
980 * around for a while. This helps to keep recently accessed
981 * meta-data in-core longer.
982 */
983 XFS_BUF_SET_REF(bp, XFS_INO_REF);
984
985 /*
986 * Use xfs_trans_brelse() to release the buffer containing the
987 * on-disk inode, because it was acquired with xfs_trans_read_buf()
988 * in xfs_itobp() above. If tp is NULL, this is just a normal
989 * brelse(). If we're within a transaction, then xfs_trans_brelse()
990 * will only release the buffer if it is not dirty within the
991 * transaction. It will be OK to release the buffer in this case,
992 * because inodes on disk are never destroyed and we will be
993 * locking the new in-core inode before putting it in the hash
994 * table where other processes can find it. Thus we don't have
995 * to worry about the inode being changed just because we released
996 * the buffer.
997 */
998 xfs_trans_brelse(tp, bp);
999 *ipp = ip;
1000 return 0;
1001}
1002
1003/*
1004 * Read in extents from a btree-format inode.
1005 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1006 */
1007int
1008xfs_iread_extents(
1009 xfs_trans_t *tp,
1010 xfs_inode_t *ip,
1011 int whichfork)
1012{
1013 int error;
1014 xfs_ifork_t *ifp;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001015 xfs_extnum_t nextents;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001016 size_t size;
1017
1018 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1019 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1020 ip->i_mount);
1021 return XFS_ERROR(EFSCORRUPTED);
1022 }
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001023 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1024 size = nextents * sizeof(xfs_bmbt_rec_t);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001025 ifp = XFS_IFORK_PTR(ip, whichfork);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001026
Linus Torvalds1da177e2005-04-16 15:20:36 -07001027 /*
1028 * We know that the size is valid (it's checked in iformat_btree)
1029 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001030 ifp->if_lastex = NULLEXTNUM;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001031 ifp->if_bytes = ifp->if_real_bytes = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001032 ifp->if_flags |= XFS_IFEXTENTS;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001033 xfs_iext_add(ifp, 0, nextents);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001034 error = xfs_bmap_read_extents(tp, ip, whichfork);
1035 if (error) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001036 xfs_iext_destroy(ifp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001037 ifp->if_flags &= ~XFS_IFEXTENTS;
1038 return error;
1039 }
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001040 xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001041 return 0;
1042}
1043
1044/*
1045 * Allocate an inode on disk and return a copy of its in-core version.
1046 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1047 * appropriately within the inode. The uid and gid for the inode are
1048 * set according to the contents of the given cred structure.
1049 *
1050 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1051 * has a free inode available, call xfs_iget()
1052 * to obtain the in-core version of the allocated inode. Finally,
1053 * fill in the inode and log its initial contents. In this case,
1054 * ialloc_context would be set to NULL and call_again set to false.
1055 *
1056 * If xfs_dialloc() does not have an available inode,
1057 * it will replenish its supply by doing an allocation. Since we can
1058 * only do one allocation within a transaction without deadlocks, we
1059 * must commit the current transaction before returning the inode itself.
1060 * In this case, therefore, we will set call_again to true and return.
1061 * The caller should then commit the current transaction, start a new
1062 * transaction, and call xfs_ialloc() again to actually get the inode.
1063 *
1064 * To ensure that some other process does not grab the inode that
1065 * was allocated during the first call to xfs_ialloc(), this routine
1066 * also returns the [locked] bp pointing to the head of the freelist
1067 * as ialloc_context. The caller should hold this buffer across
1068 * the commit and pass it back into this routine on the second call.
1069 */
1070int
1071xfs_ialloc(
1072 xfs_trans_t *tp,
1073 xfs_inode_t *pip,
1074 mode_t mode,
Nathan Scott31b084a2005-05-05 13:25:00 -07001075 xfs_nlink_t nlink,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001076 xfs_dev_t rdev,
1077 cred_t *cr,
1078 xfs_prid_t prid,
1079 int okalloc,
1080 xfs_buf_t **ialloc_context,
1081 boolean_t *call_again,
1082 xfs_inode_t **ipp)
1083{
1084 xfs_ino_t ino;
1085 xfs_inode_t *ip;
1086 vnode_t *vp;
1087 uint flags;
1088 int error;
1089
1090 /*
1091 * Call the space management code to pick
1092 * the on-disk inode to be allocated.
1093 */
1094 error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
1095 ialloc_context, call_again, &ino);
1096 if (error != 0) {
1097 return error;
1098 }
1099 if (*call_again || ino == NULLFSINO) {
1100 *ipp = NULL;
1101 return 0;
1102 }
1103 ASSERT(*ialloc_context == NULL);
1104
1105 /*
1106 * Get the in-core inode with the lock held exclusively.
1107 * This is because we're setting fields here we need
1108 * to prevent others from looking at until we're done.
1109 */
1110 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1111 IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1112 if (error != 0) {
1113 return error;
1114 }
1115 ASSERT(ip != NULL);
1116
1117 vp = XFS_ITOV(ip);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001118 ip->i_d.di_mode = (__uint16_t)mode;
1119 ip->i_d.di_onlink = 0;
1120 ip->i_d.di_nlink = nlink;
1121 ASSERT(ip->i_d.di_nlink == nlink);
1122 ip->i_d.di_uid = current_fsuid(cr);
1123 ip->i_d.di_gid = current_fsgid(cr);
1124 ip->i_d.di_projid = prid;
1125 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1126
1127 /*
1128 * If the superblock version is up to where we support new format
1129 * inodes and this is currently an old format inode, then change
1130 * the inode version number now. This way we only do the conversion
1131 * here rather than here and in the flush/logging code.
1132 */
1133 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1134 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1135 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1136 /*
1137 * We've already zeroed the old link count, the projid field,
1138 * and the pad field.
1139 */
1140 }
1141
1142 /*
1143 * Project ids won't be stored on disk if we are using a version 1 inode.
1144 */
1145 if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1146 xfs_bump_ino_vers2(tp, ip);
1147
1148 if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1149 ip->i_d.di_gid = pip->i_d.di_gid;
1150 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1151 ip->i_d.di_mode |= S_ISGID;
1152 }
1153 }
1154
1155 /*
1156 * If the group ID of the new file does not match the effective group
1157 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1158 * (and only if the irix_sgid_inherit compatibility variable is set).
1159 */
1160 if ((irix_sgid_inherit) &&
1161 (ip->i_d.di_mode & S_ISGID) &&
1162 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1163 ip->i_d.di_mode &= ~S_ISGID;
1164 }
1165
1166 ip->i_d.di_size = 0;
1167 ip->i_d.di_nextents = 0;
1168 ASSERT(ip->i_d.di_nblocks == 0);
1169 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1170 /*
1171 * di_gen will have been taken care of in xfs_iread.
1172 */
1173 ip->i_d.di_extsize = 0;
1174 ip->i_d.di_dmevmask = 0;
1175 ip->i_d.di_dmstate = 0;
1176 ip->i_d.di_flags = 0;
1177 flags = XFS_ILOG_CORE;
1178 switch (mode & S_IFMT) {
1179 case S_IFIFO:
1180 case S_IFCHR:
1181 case S_IFBLK:
1182 case S_IFSOCK:
1183 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1184 ip->i_df.if_u2.if_rdev = rdev;
1185 ip->i_df.if_flags = 0;
1186 flags |= XFS_ILOG_DEV;
1187 break;
1188 case S_IFREG:
1189 case S_IFDIR:
1190 if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
Nathan Scott365ca832005-06-21 15:39:12 +10001191 uint di_flags = 0;
1192
1193 if ((mode & S_IFMT) == S_IFDIR) {
1194 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1195 di_flags |= XFS_DIFLAG_RTINHERIT;
Nathan Scottdd9f4382006-01-11 15:28:28 +11001196 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1197 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1198 ip->i_d.di_extsize = pip->i_d.di_extsize;
1199 }
1200 } else if ((mode & S_IFMT) == S_IFREG) {
Nathan Scott365ca832005-06-21 15:39:12 +10001201 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1202 di_flags |= XFS_DIFLAG_REALTIME;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001203 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1204 }
Nathan Scottdd9f4382006-01-11 15:28:28 +11001205 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1206 di_flags |= XFS_DIFLAG_EXTSIZE;
1207 ip->i_d.di_extsize = pip->i_d.di_extsize;
1208 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001209 }
1210 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1211 xfs_inherit_noatime)
Nathan Scott365ca832005-06-21 15:39:12 +10001212 di_flags |= XFS_DIFLAG_NOATIME;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001213 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1214 xfs_inherit_nodump)
Nathan Scott365ca832005-06-21 15:39:12 +10001215 di_flags |= XFS_DIFLAG_NODUMP;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001216 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1217 xfs_inherit_sync)
Nathan Scott365ca832005-06-21 15:39:12 +10001218 di_flags |= XFS_DIFLAG_SYNC;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001219 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1220 xfs_inherit_nosymlinks)
Nathan Scott365ca832005-06-21 15:39:12 +10001221 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1222 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1223 di_flags |= XFS_DIFLAG_PROJINHERIT;
1224 ip->i_d.di_flags |= di_flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001225 }
1226 /* FALLTHROUGH */
1227 case S_IFLNK:
1228 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1229 ip->i_df.if_flags = XFS_IFEXTENTS;
1230 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1231 ip->i_df.if_u1.if_extents = NULL;
1232 break;
1233 default:
1234 ASSERT(0);
1235 }
1236 /*
1237 * Attribute fork settings for new inode.
1238 */
1239 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1240 ip->i_d.di_anextents = 0;
1241
1242 /*
1243 * Log the new values stuffed into the inode.
1244 */
1245 xfs_trans_log_inode(tp, ip, flags);
1246
Christoph Hellwig0432dab2005-09-02 16:46:51 +10001247 /* now that we have an i_mode we can set Linux inode ops (& unlock) */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001248 VFS_INIT_VNODE(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1249
1250 *ipp = ip;
1251 return 0;
1252}
1253
1254/*
1255 * Check to make sure that there are no blocks allocated to the
1256 * file beyond the size of the file. We don't check this for
1257 * files with fixed size extents or real time extents, but we
1258 * at least do it for regular files.
1259 */
1260#ifdef DEBUG
1261void
1262xfs_isize_check(
1263 xfs_mount_t *mp,
1264 xfs_inode_t *ip,
1265 xfs_fsize_t isize)
1266{
1267 xfs_fileoff_t map_first;
1268 int nimaps;
1269 xfs_bmbt_irec_t imaps[2];
1270
1271 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1272 return;
1273
Nathan Scottdd9f4382006-01-11 15:28:28 +11001274 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001275 return;
1276
1277 nimaps = 2;
1278 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1279 /*
1280 * The filesystem could be shutting down, so bmapi may return
1281 * an error.
1282 */
1283 if (xfs_bmapi(NULL, ip, map_first,
1284 (XFS_B_TO_FSB(mp,
1285 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1286 map_first),
1287 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
Olaf Weber3e57ecf2006-06-09 14:48:12 +10001288 NULL, NULL))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001289 return;
1290 ASSERT(nimaps == 1);
1291 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1292}
1293#endif /* DEBUG */
1294
1295/*
1296 * Calculate the last possible buffered byte in a file. This must
1297 * include data that was buffered beyond the EOF by the write code.
1298 * This also needs to deal with overflowing the xfs_fsize_t type
1299 * which can happen for sizes near the limit.
1300 *
1301 * We also need to take into account any blocks beyond the EOF. It
1302 * may be the case that they were buffered by a write which failed.
1303 * In that case the pages will still be in memory, but the inode size
1304 * will never have been updated.
1305 */
1306xfs_fsize_t
1307xfs_file_last_byte(
1308 xfs_inode_t *ip)
1309{
1310 xfs_mount_t *mp;
1311 xfs_fsize_t last_byte;
1312 xfs_fileoff_t last_block;
1313 xfs_fileoff_t size_last_block;
1314 int error;
1315
1316 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1317
1318 mp = ip->i_mount;
1319 /*
1320 * Only check for blocks beyond the EOF if the extents have
1321 * been read in. This eliminates the need for the inode lock,
1322 * and it also saves us from looking when it really isn't
1323 * necessary.
1324 */
1325 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1326 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1327 XFS_DATA_FORK);
1328 if (error) {
1329 last_block = 0;
1330 }
1331 } else {
1332 last_block = 0;
1333 }
1334 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
1335 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1336
1337 last_byte = XFS_FSB_TO_B(mp, last_block);
1338 if (last_byte < 0) {
1339 return XFS_MAXIOFFSET(mp);
1340 }
1341 last_byte += (1 << mp->m_writeio_log);
1342 if (last_byte < 0) {
1343 return XFS_MAXIOFFSET(mp);
1344 }
1345 return last_byte;
1346}
1347
1348#if defined(XFS_RW_TRACE)
1349STATIC void
1350xfs_itrunc_trace(
1351 int tag,
1352 xfs_inode_t *ip,
1353 int flag,
1354 xfs_fsize_t new_size,
1355 xfs_off_t toss_start,
1356 xfs_off_t toss_finish)
1357{
1358 if (ip->i_rwtrace == NULL) {
1359 return;
1360 }
1361
1362 ktrace_enter(ip->i_rwtrace,
1363 (void*)((long)tag),
1364 (void*)ip,
1365 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1366 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1367 (void*)((long)flag),
1368 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1369 (void*)(unsigned long)(new_size & 0xffffffff),
1370 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1371 (void*)(unsigned long)(toss_start & 0xffffffff),
1372 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1373 (void*)(unsigned long)(toss_finish & 0xffffffff),
1374 (void*)(unsigned long)current_cpu(),
Yingping Luf1fdc842006-03-22 12:44:15 +11001375 (void*)(unsigned long)current_pid(),
1376 (void*)NULL,
1377 (void*)NULL,
1378 (void*)NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001379}
1380#else
1381#define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1382#endif
1383
1384/*
1385 * Start the truncation of the file to new_size. The new size
1386 * must be smaller than the current size. This routine will
1387 * clear the buffer and page caches of file data in the removed
1388 * range, and xfs_itruncate_finish() will remove the underlying
1389 * disk blocks.
1390 *
1391 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1392 * must NOT have the inode lock held at all. This is because we're
1393 * calling into the buffer/page cache code and we can't hold the
1394 * inode lock when we do so.
1395 *
David Chinner38e22992006-03-22 12:47:15 +11001396 * We need to wait for any direct I/Os in flight to complete before we
1397 * proceed with the truncate. This is needed to prevent the extents
1398 * being read or written by the direct I/Os from being removed while the
1399 * I/O is in flight as there is no other method of synchronising
1400 * direct I/O with the truncate operation. Also, because we hold
1401 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1402 * started until the truncate completes and drops the lock. Essentially,
1403 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1404 * between direct I/Os and the truncate operation.
1405 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001406 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1407 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1408 * in the case that the caller is locking things out of order and
1409 * may not be able to call xfs_itruncate_finish() with the inode lock
1410 * held without dropping the I/O lock. If the caller must drop the
1411 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1412 * must be called again with all the same restrictions as the initial
1413 * call.
1414 */
1415void
1416xfs_itruncate_start(
1417 xfs_inode_t *ip,
1418 uint flags,
1419 xfs_fsize_t new_size)
1420{
1421 xfs_fsize_t last_byte;
1422 xfs_off_t toss_start;
1423 xfs_mount_t *mp;
1424 vnode_t *vp;
1425
1426 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1427 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1428 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1429 (flags == XFS_ITRUNC_MAYBE));
1430
1431 mp = ip->i_mount;
1432 vp = XFS_ITOV(ip);
Yingping Lu9fa80462006-03-22 12:44:35 +11001433
1434 vn_iowait(vp); /* wait for the completion of any pending DIOs */
1435
Linus Torvalds1da177e2005-04-16 15:20:36 -07001436 /*
1437 * Call VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES() to get rid of pages and buffers
1438 * overlapping the region being removed. We have to use
1439 * the less efficient VOP_FLUSHINVAL_PAGES() in the case that the
1440 * caller may not be able to finish the truncate without
1441 * dropping the inode's I/O lock. Make sure
1442 * to catch any pages brought in by buffers overlapping
1443 * the EOF by searching out beyond the isize by our
1444 * block size. We round new_size up to a block boundary
1445 * so that we don't toss things on the same block as
1446 * new_size but before it.
1447 *
1448 * Before calling VOP_TOSS_PAGES() or VOP_FLUSHINVAL_PAGES(), make sure to
1449 * call remapf() over the same region if the file is mapped.
1450 * This frees up mapped file references to the pages in the
1451 * given range and for the VOP_FLUSHINVAL_PAGES() case it ensures
1452 * that we get the latest mapped changes flushed out.
1453 */
1454 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1455 toss_start = XFS_FSB_TO_B(mp, toss_start);
1456 if (toss_start < 0) {
1457 /*
1458 * The place to start tossing is beyond our maximum
1459 * file size, so there is no way that the data extended
1460 * out there.
1461 */
1462 return;
1463 }
1464 last_byte = xfs_file_last_byte(ip);
1465 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1466 last_byte);
1467 if (last_byte > toss_start) {
1468 if (flags & XFS_ITRUNC_DEFINITE) {
1469 VOP_TOSS_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1470 } else {
1471 VOP_FLUSHINVAL_PAGES(vp, toss_start, -1, FI_REMAPF_LOCKED);
1472 }
1473 }
1474
1475#ifdef DEBUG
1476 if (new_size == 0) {
1477 ASSERT(VN_CACHED(vp) == 0);
1478 }
1479#endif
1480}
1481
1482/*
1483 * Shrink the file to the given new_size. The new
1484 * size must be smaller than the current size.
1485 * This will free up the underlying blocks
1486 * in the removed range after a call to xfs_itruncate_start()
1487 * or xfs_atruncate_start().
1488 *
1489 * The transaction passed to this routine must have made
1490 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1491 * This routine may commit the given transaction and
1492 * start new ones, so make sure everything involved in
1493 * the transaction is tidy before calling here.
1494 * Some transaction will be returned to the caller to be
1495 * committed. The incoming transaction must already include
1496 * the inode, and both inode locks must be held exclusively.
1497 * The inode must also be "held" within the transaction. On
1498 * return the inode will be "held" within the returned transaction.
1499 * This routine does NOT require any disk space to be reserved
1500 * for it within the transaction.
1501 *
1502 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1503 * and it indicates the fork which is to be truncated. For the
1504 * attribute fork we only support truncation to size 0.
1505 *
1506 * We use the sync parameter to indicate whether or not the first
1507 * transaction we perform might have to be synchronous. For the attr fork,
1508 * it needs to be so if the unlink of the inode is not yet known to be
1509 * permanent in the log. This keeps us from freeing and reusing the
1510 * blocks of the attribute fork before the unlink of the inode becomes
1511 * permanent.
1512 *
1513 * For the data fork, we normally have to run synchronously if we're
1514 * being called out of the inactive path or we're being called
1515 * out of the create path where we're truncating an existing file.
1516 * Either way, the truncate needs to be sync so blocks don't reappear
1517 * in the file with altered data in case of a crash. wsync filesystems
1518 * can run the first case async because anything that shrinks the inode
1519 * has to run sync so by the time we're called here from inactive, the
1520 * inode size is permanently set to 0.
1521 *
1522 * Calls from the truncate path always need to be sync unless we're
1523 * in a wsync filesystem and the file has already been unlinked.
1524 *
1525 * The caller is responsible for correctly setting the sync parameter.
1526 * It gets too hard for us to guess here which path we're being called
1527 * out of just based on inode state.
1528 */
1529int
1530xfs_itruncate_finish(
1531 xfs_trans_t **tp,
1532 xfs_inode_t *ip,
1533 xfs_fsize_t new_size,
1534 int fork,
1535 int sync)
1536{
1537 xfs_fsblock_t first_block;
1538 xfs_fileoff_t first_unmap_block;
1539 xfs_fileoff_t last_block;
1540 xfs_filblks_t unmap_len=0;
1541 xfs_mount_t *mp;
1542 xfs_trans_t *ntp;
1543 int done;
1544 int committed;
1545 xfs_bmap_free_t free_list;
1546 int error;
1547
1548 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1549 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1550 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1551 ASSERT(*tp != NULL);
1552 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1553 ASSERT(ip->i_transp == *tp);
1554 ASSERT(ip->i_itemp != NULL);
1555 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1556
1557
1558 ntp = *tp;
1559 mp = (ntp)->t_mountp;
1560 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1561
1562 /*
1563 * We only support truncating the entire attribute fork.
1564 */
1565 if (fork == XFS_ATTR_FORK) {
1566 new_size = 0LL;
1567 }
1568 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1569 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1570 /*
1571 * The first thing we do is set the size to new_size permanently
1572 * on disk. This way we don't have to worry about anyone ever
1573 * being able to look at the data being freed even in the face
1574 * of a crash. What we're getting around here is the case where
1575 * we free a block, it is allocated to another file, it is written
1576 * to, and then we crash. If the new data gets written to the
1577 * file but the log buffers containing the free and reallocation
1578 * don't, then we'd end up with garbage in the blocks being freed.
1579 * As long as we make the new_size permanent before actually
1580 * freeing any blocks it doesn't matter if they get writtten to.
1581 *
1582 * The callers must signal into us whether or not the size
1583 * setting here must be synchronous. There are a few cases
1584 * where it doesn't have to be synchronous. Those cases
1585 * occur if the file is unlinked and we know the unlink is
1586 * permanent or if the blocks being truncated are guaranteed
1587 * to be beyond the inode eof (regardless of the link count)
1588 * and the eof value is permanent. Both of these cases occur
1589 * only on wsync-mounted filesystems. In those cases, we're
1590 * guaranteed that no user will ever see the data in the blocks
1591 * that are being truncated so the truncate can run async.
1592 * In the free beyond eof case, the file may wind up with
1593 * more blocks allocated to it than it needs if we crash
1594 * and that won't get fixed until the next time the file
1595 * is re-opened and closed but that's ok as that shouldn't
1596 * be too many blocks.
1597 *
1598 * However, we can't just make all wsync xactions run async
1599 * because there's one call out of the create path that needs
1600 * to run sync where it's truncating an existing file to size
1601 * 0 whose size is > 0.
1602 *
1603 * It's probably possible to come up with a test in this
1604 * routine that would correctly distinguish all the above
1605 * cases from the values of the function parameters and the
1606 * inode state but for sanity's sake, I've decided to let the
1607 * layers above just tell us. It's simpler to correctly figure
1608 * out in the layer above exactly under what conditions we
1609 * can run async and I think it's easier for others read and
1610 * follow the logic in case something has to be changed.
1611 * cscope is your friend -- rcc.
1612 *
1613 * The attribute fork is much simpler.
1614 *
1615 * For the attribute fork we allow the caller to tell us whether
1616 * the unlink of the inode that led to this call is yet permanent
1617 * in the on disk log. If it is not and we will be freeing extents
1618 * in this inode then we make the first transaction synchronous
1619 * to make sure that the unlink is permanent by the time we free
1620 * the blocks.
1621 */
1622 if (fork == XFS_DATA_FORK) {
1623 if (ip->i_d.di_nextents > 0) {
1624 ip->i_d.di_size = new_size;
1625 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1626 }
1627 } else if (sync) {
1628 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1629 if (ip->i_d.di_anextents > 0)
1630 xfs_trans_set_sync(ntp);
1631 }
1632 ASSERT(fork == XFS_DATA_FORK ||
1633 (fork == XFS_ATTR_FORK &&
1634 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1635 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1636
1637 /*
1638 * Since it is possible for space to become allocated beyond
1639 * the end of the file (in a crash where the space is allocated
1640 * but the inode size is not yet updated), simply remove any
1641 * blocks which show up between the new EOF and the maximum
1642 * possible file size. If the first block to be removed is
1643 * beyond the maximum file size (ie it is the same as last_block),
1644 * then there is nothing to do.
1645 */
1646 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1647 ASSERT(first_unmap_block <= last_block);
1648 done = 0;
1649 if (last_block == first_unmap_block) {
1650 done = 1;
1651 } else {
1652 unmap_len = last_block - first_unmap_block + 1;
1653 }
1654 while (!done) {
1655 /*
1656 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1657 * will tell us whether it freed the entire range or
1658 * not. If this is a synchronous mount (wsync),
1659 * then we can tell bunmapi to keep all the
1660 * transactions asynchronous since the unlink
1661 * transaction that made this inode inactive has
1662 * already hit the disk. There's no danger of
1663 * the freed blocks being reused, there being a
1664 * crash, and the reused blocks suddenly reappearing
1665 * in this file with garbage in them once recovery
1666 * runs.
1667 */
1668 XFS_BMAP_INIT(&free_list, &first_block);
Olaf Weber3e57ecf2006-06-09 14:48:12 +10001669 error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
1670 first_unmap_block, unmap_len,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001671 XFS_BMAPI_AFLAG(fork) |
1672 (sync ? 0 : XFS_BMAPI_ASYNC),
1673 XFS_ITRUNC_MAX_EXTENTS,
Olaf Weber3e57ecf2006-06-09 14:48:12 +10001674 &first_block, &free_list,
1675 NULL, &done);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001676 if (error) {
1677 /*
1678 * If the bunmapi call encounters an error,
1679 * return to the caller where the transaction
1680 * can be properly aborted. We just need to
1681 * make sure we're not holding any resources
1682 * that we were not when we came in.
1683 */
1684 xfs_bmap_cancel(&free_list);
1685 return error;
1686 }
1687
1688 /*
1689 * Duplicate the transaction that has the permanent
1690 * reservation and commit the old transaction.
1691 */
1692 error = xfs_bmap_finish(tp, &free_list, first_block,
1693 &committed);
1694 ntp = *tp;
1695 if (error) {
1696 /*
1697 * If the bmap finish call encounters an error,
1698 * return to the caller where the transaction
1699 * can be properly aborted. We just need to
1700 * make sure we're not holding any resources
1701 * that we were not when we came in.
1702 *
1703 * Aborting from this point might lose some
1704 * blocks in the file system, but oh well.
1705 */
1706 xfs_bmap_cancel(&free_list);
1707 if (committed) {
1708 /*
1709 * If the passed in transaction committed
1710 * in xfs_bmap_finish(), then we want to
1711 * add the inode to this one before returning.
1712 * This keeps things simple for the higher
1713 * level code, because it always knows that
1714 * the inode is locked and held in the
1715 * transaction that returns to it whether
1716 * errors occur or not. We don't mark the
1717 * inode dirty so that this transaction can
1718 * be easily aborted if possible.
1719 */
1720 xfs_trans_ijoin(ntp, ip,
1721 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1722 xfs_trans_ihold(ntp, ip);
1723 }
1724 return error;
1725 }
1726
1727 if (committed) {
1728 /*
1729 * The first xact was committed,
1730 * so add the inode to the new one.
1731 * Mark it dirty so it will be logged
1732 * and moved forward in the log as
1733 * part of every commit.
1734 */
1735 xfs_trans_ijoin(ntp, ip,
1736 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1737 xfs_trans_ihold(ntp, ip);
1738 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1739 }
1740 ntp = xfs_trans_dup(ntp);
1741 (void) xfs_trans_commit(*tp, 0, NULL);
1742 *tp = ntp;
1743 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1744 XFS_TRANS_PERM_LOG_RES,
1745 XFS_ITRUNCATE_LOG_COUNT);
1746 /*
1747 * Add the inode being truncated to the next chained
1748 * transaction.
1749 */
1750 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1751 xfs_trans_ihold(ntp, ip);
1752 if (error)
1753 return (error);
1754 }
1755 /*
1756 * Only update the size in the case of the data fork, but
1757 * always re-log the inode so that our permanent transaction
1758 * can keep on rolling it forward in the log.
1759 */
1760 if (fork == XFS_DATA_FORK) {
1761 xfs_isize_check(mp, ip, new_size);
1762 ip->i_d.di_size = new_size;
1763 }
1764 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1765 ASSERT((new_size != 0) ||
1766 (fork == XFS_ATTR_FORK) ||
1767 (ip->i_delayed_blks == 0));
1768 ASSERT((new_size != 0) ||
1769 (fork == XFS_ATTR_FORK) ||
1770 (ip->i_d.di_nextents == 0));
1771 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1772 return 0;
1773}
1774
1775
1776/*
1777 * xfs_igrow_start
1778 *
1779 * Do the first part of growing a file: zero any data in the last
1780 * block that is beyond the old EOF. We need to do this before
1781 * the inode is joined to the transaction to modify the i_size.
1782 * That way we can drop the inode lock and call into the buffer
1783 * cache to get the buffer mapping the EOF.
1784 */
1785int
1786xfs_igrow_start(
1787 xfs_inode_t *ip,
1788 xfs_fsize_t new_size,
1789 cred_t *credp)
1790{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001791 int error;
1792
1793 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1794 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1795 ASSERT(new_size > ip->i_d.di_size);
1796
Linus Torvalds1da177e2005-04-16 15:20:36 -07001797 /*
1798 * Zero any pages that may have been created by
1799 * xfs_write_file() beyond the end of the file
1800 * and any blocks between the old and new file sizes.
1801 */
Eric Sandeen24ee8082006-01-11 15:34:32 +11001802 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
1803 ip->i_d.di_size, new_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001804 return error;
1805}
1806
1807/*
1808 * xfs_igrow_finish
1809 *
1810 * This routine is called to extend the size of a file.
1811 * The inode must have both the iolock and the ilock locked
1812 * for update and it must be a part of the current transaction.
1813 * The xfs_igrow_start() function must have been called previously.
1814 * If the change_flag is not zero, the inode change timestamp will
1815 * be updated.
1816 */
1817void
1818xfs_igrow_finish(
1819 xfs_trans_t *tp,
1820 xfs_inode_t *ip,
1821 xfs_fsize_t new_size,
1822 int change_flag)
1823{
1824 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1825 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1826 ASSERT(ip->i_transp == tp);
1827 ASSERT(new_size > ip->i_d.di_size);
1828
1829 /*
1830 * Update the file size. Update the inode change timestamp
1831 * if change_flag set.
1832 */
1833 ip->i_d.di_size = new_size;
1834 if (change_flag)
1835 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1836 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1837
1838}
1839
1840
1841/*
1842 * This is called when the inode's link count goes to 0.
1843 * We place the on-disk inode on a list in the AGI. It
1844 * will be pulled from this list when the inode is freed.
1845 */
1846int
1847xfs_iunlink(
1848 xfs_trans_t *tp,
1849 xfs_inode_t *ip)
1850{
1851 xfs_mount_t *mp;
1852 xfs_agi_t *agi;
1853 xfs_dinode_t *dip;
1854 xfs_buf_t *agibp;
1855 xfs_buf_t *ibp;
1856 xfs_agnumber_t agno;
1857 xfs_daddr_t agdaddr;
1858 xfs_agino_t agino;
1859 short bucket_index;
1860 int offset;
1861 int error;
1862 int agi_ok;
1863
1864 ASSERT(ip->i_d.di_nlink == 0);
1865 ASSERT(ip->i_d.di_mode != 0);
1866 ASSERT(ip->i_transp == tp);
1867
1868 mp = tp->t_mountp;
1869
1870 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1871 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1872
1873 /*
1874 * Get the agi buffer first. It ensures lock ordering
1875 * on the list.
1876 */
1877 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1878 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1879 if (error) {
1880 return error;
1881 }
1882 /*
1883 * Validate the magic number of the agi block.
1884 */
1885 agi = XFS_BUF_TO_AGI(agibp);
1886 agi_ok =
Christoph Hellwig16259e72005-11-02 15:11:25 +11001887 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1888 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001889 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1890 XFS_RANDOM_IUNLINK))) {
1891 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1892 xfs_trans_brelse(tp, agibp);
1893 return XFS_ERROR(EFSCORRUPTED);
1894 }
1895 /*
1896 * Get the index into the agi hash table for the
1897 * list this inode will go on.
1898 */
1899 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1900 ASSERT(agino != 0);
1901 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1902 ASSERT(agi->agi_unlinked[bucket_index]);
Christoph Hellwig16259e72005-11-02 15:11:25 +11001903 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001904
Christoph Hellwig16259e72005-11-02 15:11:25 +11001905 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001906 /*
1907 * There is already another inode in the bucket we need
1908 * to add ourselves to. Add us at the front of the list.
1909 * Here we put the head pointer into our next pointer,
1910 * and then we fall through to point the head at us.
1911 */
Nathan Scottb12dd342006-03-17 17:26:04 +11001912 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001913 if (error) {
1914 return error;
1915 }
1916 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1917 ASSERT(dip->di_next_unlinked);
1918 /* both on-disk, don't endian flip twice */
1919 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1920 offset = ip->i_boffset +
1921 offsetof(xfs_dinode_t, di_next_unlinked);
1922 xfs_trans_inode_buf(tp, ibp);
1923 xfs_trans_log_buf(tp, ibp, offset,
1924 (offset + sizeof(xfs_agino_t) - 1));
1925 xfs_inobp_check(mp, ibp);
1926 }
1927
1928 /*
1929 * Point the bucket head pointer at the inode being inserted.
1930 */
1931 ASSERT(agino != 0);
Christoph Hellwig16259e72005-11-02 15:11:25 +11001932 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001933 offset = offsetof(xfs_agi_t, agi_unlinked) +
1934 (sizeof(xfs_agino_t) * bucket_index);
1935 xfs_trans_log_buf(tp, agibp, offset,
1936 (offset + sizeof(xfs_agino_t) - 1));
1937 return 0;
1938}
1939
1940/*
1941 * Pull the on-disk inode from the AGI unlinked list.
1942 */
1943STATIC int
1944xfs_iunlink_remove(
1945 xfs_trans_t *tp,
1946 xfs_inode_t *ip)
1947{
1948 xfs_ino_t next_ino;
1949 xfs_mount_t *mp;
1950 xfs_agi_t *agi;
1951 xfs_dinode_t *dip;
1952 xfs_buf_t *agibp;
1953 xfs_buf_t *ibp;
1954 xfs_agnumber_t agno;
1955 xfs_daddr_t agdaddr;
1956 xfs_agino_t agino;
1957 xfs_agino_t next_agino;
1958 xfs_buf_t *last_ibp;
1959 xfs_dinode_t *last_dip;
1960 short bucket_index;
1961 int offset, last_offset;
1962 int error;
1963 int agi_ok;
1964
1965 /*
1966 * First pull the on-disk inode from the AGI unlinked list.
1967 */
1968 mp = tp->t_mountp;
1969
1970 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1971 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1972
1973 /*
1974 * Get the agi buffer first. It ensures lock ordering
1975 * on the list.
1976 */
1977 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1978 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1979 if (error) {
1980 cmn_err(CE_WARN,
1981 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1982 error, mp->m_fsname);
1983 return error;
1984 }
1985 /*
1986 * Validate the magic number of the agi block.
1987 */
1988 agi = XFS_BUF_TO_AGI(agibp);
1989 agi_ok =
Christoph Hellwig16259e72005-11-02 15:11:25 +11001990 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1991 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001992 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
1993 XFS_RANDOM_IUNLINK_REMOVE))) {
1994 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
1995 mp, agi);
1996 xfs_trans_brelse(tp, agibp);
1997 cmn_err(CE_WARN,
1998 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
1999 mp->m_fsname);
2000 return XFS_ERROR(EFSCORRUPTED);
2001 }
2002 /*
2003 * Get the index into the agi hash table for the
2004 * list this inode will go on.
2005 */
2006 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2007 ASSERT(agino != 0);
2008 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
Christoph Hellwig16259e72005-11-02 15:11:25 +11002009 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002010 ASSERT(agi->agi_unlinked[bucket_index]);
2011
Christoph Hellwig16259e72005-11-02 15:11:25 +11002012 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002013 /*
2014 * We're at the head of the list. Get the inode's
2015 * on-disk buffer to see if there is anyone after us
2016 * on the list. Only modify our next pointer if it
2017 * is not already NULLAGINO. This saves us the overhead
2018 * of dealing with the buffer when there is no need to
2019 * change it.
2020 */
Nathan Scottb12dd342006-03-17 17:26:04 +11002021 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002022 if (error) {
2023 cmn_err(CE_WARN,
2024 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2025 error, mp->m_fsname);
2026 return error;
2027 }
2028 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2029 ASSERT(next_agino != 0);
2030 if (next_agino != NULLAGINO) {
2031 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2032 offset = ip->i_boffset +
2033 offsetof(xfs_dinode_t, di_next_unlinked);
2034 xfs_trans_inode_buf(tp, ibp);
2035 xfs_trans_log_buf(tp, ibp, offset,
2036 (offset + sizeof(xfs_agino_t) - 1));
2037 xfs_inobp_check(mp, ibp);
2038 } else {
2039 xfs_trans_brelse(tp, ibp);
2040 }
2041 /*
2042 * Point the bucket head pointer at the next inode.
2043 */
2044 ASSERT(next_agino != 0);
2045 ASSERT(next_agino != agino);
Christoph Hellwig16259e72005-11-02 15:11:25 +11002046 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002047 offset = offsetof(xfs_agi_t, agi_unlinked) +
2048 (sizeof(xfs_agino_t) * bucket_index);
2049 xfs_trans_log_buf(tp, agibp, offset,
2050 (offset + sizeof(xfs_agino_t) - 1));
2051 } else {
2052 /*
2053 * We need to search the list for the inode being freed.
2054 */
Christoph Hellwig16259e72005-11-02 15:11:25 +11002055 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002056 last_ibp = NULL;
2057 while (next_agino != agino) {
2058 /*
2059 * If the last inode wasn't the one pointing to
2060 * us, then release its buffer since we're not
2061 * going to do anything with it.
2062 */
2063 if (last_ibp != NULL) {
2064 xfs_trans_brelse(tp, last_ibp);
2065 }
2066 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2067 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2068 &last_ibp, &last_offset);
2069 if (error) {
2070 cmn_err(CE_WARN,
2071 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2072 error, mp->m_fsname);
2073 return error;
2074 }
2075 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2076 ASSERT(next_agino != NULLAGINO);
2077 ASSERT(next_agino != 0);
2078 }
2079 /*
2080 * Now last_ibp points to the buffer previous to us on
2081 * the unlinked list. Pull us from the list.
2082 */
Nathan Scottb12dd342006-03-17 17:26:04 +11002083 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002084 if (error) {
2085 cmn_err(CE_WARN,
2086 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2087 error, mp->m_fsname);
2088 return error;
2089 }
2090 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2091 ASSERT(next_agino != 0);
2092 ASSERT(next_agino != agino);
2093 if (next_agino != NULLAGINO) {
2094 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2095 offset = ip->i_boffset +
2096 offsetof(xfs_dinode_t, di_next_unlinked);
2097 xfs_trans_inode_buf(tp, ibp);
2098 xfs_trans_log_buf(tp, ibp, offset,
2099 (offset + sizeof(xfs_agino_t) - 1));
2100 xfs_inobp_check(mp, ibp);
2101 } else {
2102 xfs_trans_brelse(tp, ibp);
2103 }
2104 /*
2105 * Point the previous inode on the list to the next inode.
2106 */
2107 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2108 ASSERT(next_agino != 0);
2109 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2110 xfs_trans_inode_buf(tp, last_ibp);
2111 xfs_trans_log_buf(tp, last_ibp, offset,
2112 (offset + sizeof(xfs_agino_t) - 1));
2113 xfs_inobp_check(mp, last_ibp);
2114 }
2115 return 0;
2116}
2117
2118static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
2119{
2120 return (((ip->i_itemp == NULL) ||
2121 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2122 (ip->i_update_core == 0));
2123}
2124
Christoph Hellwigba0f32d2005-06-21 15:36:52 +10002125STATIC void
Linus Torvalds1da177e2005-04-16 15:20:36 -07002126xfs_ifree_cluster(
2127 xfs_inode_t *free_ip,
2128 xfs_trans_t *tp,
2129 xfs_ino_t inum)
2130{
2131 xfs_mount_t *mp = free_ip->i_mount;
2132 int blks_per_cluster;
2133 int nbufs;
2134 int ninodes;
2135 int i, j, found, pre_flushed;
2136 xfs_daddr_t blkno;
2137 xfs_buf_t *bp;
2138 xfs_ihash_t *ih;
2139 xfs_inode_t *ip, **ip_found;
2140 xfs_inode_log_item_t *iip;
2141 xfs_log_item_t *lip;
2142 SPLDECL(s);
2143
2144 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2145 blks_per_cluster = 1;
2146 ninodes = mp->m_sb.sb_inopblock;
2147 nbufs = XFS_IALLOC_BLOCKS(mp);
2148 } else {
2149 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2150 mp->m_sb.sb_blocksize;
2151 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2152 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2153 }
2154
2155 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2156
2157 for (j = 0; j < nbufs; j++, inum += ninodes) {
2158 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2159 XFS_INO_TO_AGBNO(mp, inum));
2160
2161
2162 /*
2163 * Look for each inode in memory and attempt to lock it,
2164 * we can be racing with flush and tail pushing here.
2165 * any inode we get the locks on, add to an array of
2166 * inode items to process later.
2167 *
2168 * The get the buffer lock, we could beat a flush
2169 * or tail pushing thread to the lock here, in which
2170 * case they will go looking for the inode buffer
2171 * and fail, we need some other form of interlock
2172 * here.
2173 */
2174 found = 0;
2175 for (i = 0; i < ninodes; i++) {
2176 ih = XFS_IHASH(mp, inum + i);
2177 read_lock(&ih->ih_lock);
2178 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2179 if (ip->i_ino == inum + i)
2180 break;
2181 }
2182
2183 /* Inode not in memory or we found it already,
2184 * nothing to do
2185 */
2186 if (!ip || (ip->i_flags & XFS_ISTALE)) {
2187 read_unlock(&ih->ih_lock);
2188 continue;
2189 }
2190
2191 if (xfs_inode_clean(ip)) {
2192 read_unlock(&ih->ih_lock);
2193 continue;
2194 }
2195
2196 /* If we can get the locks then add it to the
2197 * list, otherwise by the time we get the bp lock
2198 * below it will already be attached to the
2199 * inode buffer.
2200 */
2201
2202 /* This inode will already be locked - by us, lets
2203 * keep it that way.
2204 */
2205
2206 if (ip == free_ip) {
2207 if (xfs_iflock_nowait(ip)) {
2208 ip->i_flags |= XFS_ISTALE;
2209
2210 if (xfs_inode_clean(ip)) {
2211 xfs_ifunlock(ip);
2212 } else {
2213 ip_found[found++] = ip;
2214 }
2215 }
2216 read_unlock(&ih->ih_lock);
2217 continue;
2218 }
2219
2220 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2221 if (xfs_iflock_nowait(ip)) {
2222 ip->i_flags |= XFS_ISTALE;
2223
2224 if (xfs_inode_clean(ip)) {
2225 xfs_ifunlock(ip);
2226 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2227 } else {
2228 ip_found[found++] = ip;
2229 }
2230 } else {
2231 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2232 }
2233 }
2234
2235 read_unlock(&ih->ih_lock);
2236 }
2237
2238 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2239 mp->m_bsize * blks_per_cluster,
2240 XFS_BUF_LOCK);
2241
2242 pre_flushed = 0;
2243 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2244 while (lip) {
2245 if (lip->li_type == XFS_LI_INODE) {
2246 iip = (xfs_inode_log_item_t *)lip;
2247 ASSERT(iip->ili_logged == 1);
2248 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2249 AIL_LOCK(mp,s);
2250 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2251 AIL_UNLOCK(mp, s);
2252 iip->ili_inode->i_flags |= XFS_ISTALE;
2253 pre_flushed++;
2254 }
2255 lip = lip->li_bio_list;
2256 }
2257
2258 for (i = 0; i < found; i++) {
2259 ip = ip_found[i];
2260 iip = ip->i_itemp;
2261
2262 if (!iip) {
2263 ip->i_update_core = 0;
2264 xfs_ifunlock(ip);
2265 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2266 continue;
2267 }
2268
2269 iip->ili_last_fields = iip->ili_format.ilf_fields;
2270 iip->ili_format.ilf_fields = 0;
2271 iip->ili_logged = 1;
2272 AIL_LOCK(mp,s);
2273 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2274 AIL_UNLOCK(mp, s);
2275
2276 xfs_buf_attach_iodone(bp,
2277 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2278 xfs_istale_done, (xfs_log_item_t *)iip);
2279 if (ip != free_ip) {
2280 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2281 }
2282 }
2283
2284 if (found || pre_flushed)
2285 xfs_trans_stale_inode_buf(tp, bp);
2286 xfs_trans_binval(tp, bp);
2287 }
2288
2289 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2290}
2291
2292/*
2293 * This is called to return an inode to the inode free list.
2294 * The inode should already be truncated to 0 length and have
2295 * no pages associated with it. This routine also assumes that
2296 * the inode is already a part of the transaction.
2297 *
2298 * The on-disk copy of the inode will have been added to the list
2299 * of unlinked inodes in the AGI. We need to remove the inode from
2300 * that list atomically with respect to freeing it here.
2301 */
2302int
2303xfs_ifree(
2304 xfs_trans_t *tp,
2305 xfs_inode_t *ip,
2306 xfs_bmap_free_t *flist)
2307{
2308 int error;
2309 int delete;
2310 xfs_ino_t first_ino;
2311
2312 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2313 ASSERT(ip->i_transp == tp);
2314 ASSERT(ip->i_d.di_nlink == 0);
2315 ASSERT(ip->i_d.di_nextents == 0);
2316 ASSERT(ip->i_d.di_anextents == 0);
2317 ASSERT((ip->i_d.di_size == 0) ||
2318 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2319 ASSERT(ip->i_d.di_nblocks == 0);
2320
2321 /*
2322 * Pull the on-disk inode from the AGI unlinked list.
2323 */
2324 error = xfs_iunlink_remove(tp, ip);
2325 if (error != 0) {
2326 return error;
2327 }
2328
2329 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2330 if (error != 0) {
2331 return error;
2332 }
2333 ip->i_d.di_mode = 0; /* mark incore inode as free */
2334 ip->i_d.di_flags = 0;
2335 ip->i_d.di_dmevmask = 0;
2336 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2337 ip->i_df.if_ext_max =
2338 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2339 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2340 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2341 /*
2342 * Bump the generation count so no one will be confused
2343 * by reincarnations of this inode.
2344 */
2345 ip->i_d.di_gen++;
2346 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2347
2348 if (delete) {
2349 xfs_ifree_cluster(ip, tp, first_ino);
2350 }
2351
2352 return 0;
2353}
2354
2355/*
2356 * Reallocate the space for if_broot based on the number of records
2357 * being added or deleted as indicated in rec_diff. Move the records
2358 * and pointers in if_broot to fit the new size. When shrinking this
2359 * will eliminate holes between the records and pointers created by
2360 * the caller. When growing this will create holes to be filled in
2361 * by the caller.
2362 *
2363 * The caller must not request to add more records than would fit in
2364 * the on-disk inode root. If the if_broot is currently NULL, then
2365 * if we adding records one will be allocated. The caller must also
2366 * not request that the number of records go below zero, although
2367 * it can go to zero.
2368 *
2369 * ip -- the inode whose if_broot area is changing
2370 * ext_diff -- the change in the number of records, positive or negative,
2371 * requested for the if_broot array.
2372 */
2373void
2374xfs_iroot_realloc(
2375 xfs_inode_t *ip,
2376 int rec_diff,
2377 int whichfork)
2378{
2379 int cur_max;
2380 xfs_ifork_t *ifp;
2381 xfs_bmbt_block_t *new_broot;
2382 int new_max;
2383 size_t new_size;
2384 char *np;
2385 char *op;
2386
2387 /*
2388 * Handle the degenerate case quietly.
2389 */
2390 if (rec_diff == 0) {
2391 return;
2392 }
2393
2394 ifp = XFS_IFORK_PTR(ip, whichfork);
2395 if (rec_diff > 0) {
2396 /*
2397 * If there wasn't any memory allocated before, just
2398 * allocate it now and get out.
2399 */
2400 if (ifp->if_broot_bytes == 0) {
2401 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2402 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2403 KM_SLEEP);
2404 ifp->if_broot_bytes = (int)new_size;
2405 return;
2406 }
2407
2408 /*
2409 * If there is already an existing if_broot, then we need
2410 * to realloc() it and shift the pointers to their new
2411 * location. The records don't change location because
2412 * they are kept butted up against the btree block header.
2413 */
2414 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2415 new_max = cur_max + rec_diff;
2416 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2417 ifp->if_broot = (xfs_bmbt_block_t *)
2418 kmem_realloc(ifp->if_broot,
2419 new_size,
2420 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2421 KM_SLEEP);
2422 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2423 ifp->if_broot_bytes);
2424 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2425 (int)new_size);
2426 ifp->if_broot_bytes = (int)new_size;
2427 ASSERT(ifp->if_broot_bytes <=
2428 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2429 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2430 return;
2431 }
2432
2433 /*
2434 * rec_diff is less than 0. In this case, we are shrinking the
2435 * if_broot buffer. It must already exist. If we go to zero
2436 * records, just get rid of the root and clear the status bit.
2437 */
2438 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2439 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2440 new_max = cur_max + rec_diff;
2441 ASSERT(new_max >= 0);
2442 if (new_max > 0)
2443 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2444 else
2445 new_size = 0;
2446 if (new_size > 0) {
2447 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2448 /*
2449 * First copy over the btree block header.
2450 */
2451 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2452 } else {
2453 new_broot = NULL;
2454 ifp->if_flags &= ~XFS_IFBROOT;
2455 }
2456
2457 /*
2458 * Only copy the records and pointers if there are any.
2459 */
2460 if (new_max > 0) {
2461 /*
2462 * First copy the records.
2463 */
2464 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2465 ifp->if_broot_bytes);
2466 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2467 (int)new_size);
2468 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2469
2470 /*
2471 * Then copy the pointers.
2472 */
2473 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2474 ifp->if_broot_bytes);
2475 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2476 (int)new_size);
2477 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2478 }
2479 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2480 ifp->if_broot = new_broot;
2481 ifp->if_broot_bytes = (int)new_size;
2482 ASSERT(ifp->if_broot_bytes <=
2483 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2484 return;
2485}
2486
2487
2488/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002489 * This is called when the amount of space needed for if_data
2490 * is increased or decreased. The change in size is indicated by
2491 * the number of bytes that need to be added or deleted in the
2492 * byte_diff parameter.
2493 *
2494 * If the amount of space needed has decreased below the size of the
2495 * inline buffer, then switch to using the inline buffer. Otherwise,
2496 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2497 * to what is needed.
2498 *
2499 * ip -- the inode whose if_data area is changing
2500 * byte_diff -- the change in the number of bytes, positive or negative,
2501 * requested for the if_data array.
2502 */
2503void
2504xfs_idata_realloc(
2505 xfs_inode_t *ip,
2506 int byte_diff,
2507 int whichfork)
2508{
2509 xfs_ifork_t *ifp;
2510 int new_size;
2511 int real_size;
2512
2513 if (byte_diff == 0) {
2514 return;
2515 }
2516
2517 ifp = XFS_IFORK_PTR(ip, whichfork);
2518 new_size = (int)ifp->if_bytes + byte_diff;
2519 ASSERT(new_size >= 0);
2520
2521 if (new_size == 0) {
2522 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2523 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2524 }
2525 ifp->if_u1.if_data = NULL;
2526 real_size = 0;
2527 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2528 /*
2529 * If the valid extents/data can fit in if_inline_ext/data,
2530 * copy them from the malloc'd vector and free it.
2531 */
2532 if (ifp->if_u1.if_data == NULL) {
2533 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2534 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2535 ASSERT(ifp->if_real_bytes != 0);
2536 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2537 new_size);
2538 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2539 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2540 }
2541 real_size = 0;
2542 } else {
2543 /*
2544 * Stuck with malloc/realloc.
2545 * For inline data, the underlying buffer must be
2546 * a multiple of 4 bytes in size so that it can be
2547 * logged and stay on word boundaries. We enforce
2548 * that here.
2549 */
2550 real_size = roundup(new_size, 4);
2551 if (ifp->if_u1.if_data == NULL) {
2552 ASSERT(ifp->if_real_bytes == 0);
2553 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2554 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2555 /*
2556 * Only do the realloc if the underlying size
2557 * is really changing.
2558 */
2559 if (ifp->if_real_bytes != real_size) {
2560 ifp->if_u1.if_data =
2561 kmem_realloc(ifp->if_u1.if_data,
2562 real_size,
2563 ifp->if_real_bytes,
2564 KM_SLEEP);
2565 }
2566 } else {
2567 ASSERT(ifp->if_real_bytes == 0);
2568 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2569 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2570 ifp->if_bytes);
2571 }
2572 }
2573 ifp->if_real_bytes = real_size;
2574 ifp->if_bytes = new_size;
2575 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2576}
2577
2578
2579
2580
2581/*
2582 * Map inode to disk block and offset.
2583 *
2584 * mp -- the mount point structure for the current file system
2585 * tp -- the current transaction
2586 * ino -- the inode number of the inode to be located
2587 * imap -- this structure is filled in with the information necessary
2588 * to retrieve the given inode from disk
2589 * flags -- flags to pass to xfs_dilocate indicating whether or not
2590 * lookups in the inode btree were OK or not
2591 */
2592int
2593xfs_imap(
2594 xfs_mount_t *mp,
2595 xfs_trans_t *tp,
2596 xfs_ino_t ino,
2597 xfs_imap_t *imap,
2598 uint flags)
2599{
2600 xfs_fsblock_t fsbno;
2601 int len;
2602 int off;
2603 int error;
2604
2605 fsbno = imap->im_blkno ?
2606 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2607 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2608 if (error != 0) {
2609 return error;
2610 }
2611 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2612 imap->im_len = XFS_FSB_TO_BB(mp, len);
2613 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2614 imap->im_ioffset = (ushort)off;
2615 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2616 return 0;
2617}
2618
2619void
2620xfs_idestroy_fork(
2621 xfs_inode_t *ip,
2622 int whichfork)
2623{
2624 xfs_ifork_t *ifp;
2625
2626 ifp = XFS_IFORK_PTR(ip, whichfork);
2627 if (ifp->if_broot != NULL) {
2628 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2629 ifp->if_broot = NULL;
2630 }
2631
2632 /*
2633 * If the format is local, then we can't have an extents
2634 * array so just look for an inline data array. If we're
2635 * not local then we may or may not have an extents list,
2636 * so check and free it up if we do.
2637 */
2638 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2639 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2640 (ifp->if_u1.if_data != NULL)) {
2641 ASSERT(ifp->if_real_bytes != 0);
2642 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2643 ifp->if_u1.if_data = NULL;
2644 ifp->if_real_bytes = 0;
2645 }
2646 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11002647 ((ifp->if_flags & XFS_IFEXTIREC) ||
2648 ((ifp->if_u1.if_extents != NULL) &&
2649 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002650 ASSERT(ifp->if_real_bytes != 0);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002651 xfs_iext_destroy(ifp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002652 }
2653 ASSERT(ifp->if_u1.if_extents == NULL ||
2654 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2655 ASSERT(ifp->if_real_bytes == 0);
2656 if (whichfork == XFS_ATTR_FORK) {
2657 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2658 ip->i_afp = NULL;
2659 }
2660}
2661
2662/*
2663 * This is called free all the memory associated with an inode.
2664 * It must free the inode itself and any buffers allocated for
2665 * if_extents/if_data and if_broot. It must also free the lock
2666 * associated with the inode.
2667 */
2668void
2669xfs_idestroy(
2670 xfs_inode_t *ip)
2671{
2672
2673 switch (ip->i_d.di_mode & S_IFMT) {
2674 case S_IFREG:
2675 case S_IFDIR:
2676 case S_IFLNK:
2677 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2678 break;
2679 }
2680 if (ip->i_afp)
2681 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2682 mrfree(&ip->i_lock);
2683 mrfree(&ip->i_iolock);
2684 freesema(&ip->i_flock);
2685#ifdef XFS_BMAP_TRACE
2686 ktrace_free(ip->i_xtrace);
2687#endif
2688#ifdef XFS_BMBT_TRACE
2689 ktrace_free(ip->i_btrace);
2690#endif
2691#ifdef XFS_RW_TRACE
2692 ktrace_free(ip->i_rwtrace);
2693#endif
2694#ifdef XFS_ILOCK_TRACE
2695 ktrace_free(ip->i_lock_trace);
2696#endif
2697#ifdef XFS_DIR2_TRACE
2698 ktrace_free(ip->i_dir_trace);
2699#endif
2700 if (ip->i_itemp) {
2701 /* XXXdpd should be able to assert this but shutdown
2702 * is leaving the AIL behind. */
2703 ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
2704 XFS_FORCED_SHUTDOWN(ip->i_mount));
2705 xfs_inode_item_destroy(ip);
2706 }
2707 kmem_zone_free(xfs_inode_zone, ip);
2708}
2709
2710
2711/*
2712 * Increment the pin count of the given buffer.
2713 * This value is protected by ipinlock spinlock in the mount structure.
2714 */
2715void
2716xfs_ipin(
2717 xfs_inode_t *ip)
2718{
2719 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2720
2721 atomic_inc(&ip->i_pincount);
2722}
2723
2724/*
2725 * Decrement the pin count of the given inode, and wake up
2726 * anyone in xfs_iwait_unpin() if the count goes to 0. The
Nathan Scottc41564b2006-03-29 08:55:14 +10002727 * inode must have been previously pinned with a call to xfs_ipin().
Linus Torvalds1da177e2005-04-16 15:20:36 -07002728 */
2729void
2730xfs_iunpin(
2731 xfs_inode_t *ip)
2732{
2733 ASSERT(atomic_read(&ip->i_pincount) > 0);
2734
2735 if (atomic_dec_and_test(&ip->i_pincount)) {
David Chinner58829e42006-04-11 15:11:20 +10002736 /*
2737 * If the inode is currently being reclaimed, the
2738 * linux inode _and_ the xfs vnode may have been
2739 * freed so we cannot reference either of them safely.
2740 * Hence we should not try to do anything to them
2741 * if the xfs inode is currently in the reclaim
2742 * path.
2743 *
2744 * However, we still need to issue the unpin wakeup
2745 * call as the inode reclaim may be blocked waiting for
2746 * the inode to become unpinned.
2747 */
2748 if (!(ip->i_flags & (XFS_IRECLAIM|XFS_IRECLAIMABLE))) {
2749 vnode_t *vp = XFS_ITOV_NULL(ip);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002750
David Chinner58829e42006-04-11 15:11:20 +10002751 /* make sync come back and flush this inode */
2752 if (vp) {
2753 struct inode *inode = vn_to_inode(vp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002754
David Chinner58829e42006-04-11 15:11:20 +10002755 if (!(inode->i_state & I_NEW))
2756 mark_inode_dirty_sync(inode);
2757 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002758 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002759 wake_up(&ip->i_ipin_wait);
2760 }
2761}
2762
2763/*
2764 * This is called to wait for the given inode to be unpinned.
2765 * It will sleep until this happens. The caller must have the
2766 * inode locked in at least shared mode so that the buffer cannot
2767 * be subsequently pinned once someone is waiting for it to be
2768 * unpinned.
2769 */
Christoph Hellwigba0f32d2005-06-21 15:36:52 +10002770STATIC void
Linus Torvalds1da177e2005-04-16 15:20:36 -07002771xfs_iunpin_wait(
2772 xfs_inode_t *ip)
2773{
2774 xfs_inode_log_item_t *iip;
2775 xfs_lsn_t lsn;
2776
2777 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2778
2779 if (atomic_read(&ip->i_pincount) == 0) {
2780 return;
2781 }
2782
2783 iip = ip->i_itemp;
2784 if (iip && iip->ili_last_lsn) {
2785 lsn = iip->ili_last_lsn;
2786 } else {
2787 lsn = (xfs_lsn_t)0;
2788 }
2789
2790 /*
2791 * Give the log a push so we don't wait here too long.
2792 */
2793 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2794
2795 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2796}
2797
2798
2799/*
2800 * xfs_iextents_copy()
2801 *
2802 * This is called to copy the REAL extents (as opposed to the delayed
2803 * allocation extents) from the inode into the given buffer. It
2804 * returns the number of bytes copied into the buffer.
2805 *
2806 * If there are no delayed allocation extents, then we can just
2807 * memcpy() the extents into the buffer. Otherwise, we need to
2808 * examine each extent in turn and skip those which are delayed.
2809 */
2810int
2811xfs_iextents_copy(
2812 xfs_inode_t *ip,
2813 xfs_bmbt_rec_t *buffer,
2814 int whichfork)
2815{
2816 int copied;
2817 xfs_bmbt_rec_t *dest_ep;
2818 xfs_bmbt_rec_t *ep;
2819#ifdef XFS_BMAP_TRACE
2820 static char fname[] = "xfs_iextents_copy";
2821#endif
2822 int i;
2823 xfs_ifork_t *ifp;
2824 int nrecs;
2825 xfs_fsblock_t start_block;
2826
2827 ifp = XFS_IFORK_PTR(ip, whichfork);
2828 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2829 ASSERT(ifp->if_bytes > 0);
2830
2831 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2832 xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
2833 ASSERT(nrecs > 0);
2834
2835 /*
2836 * There are some delayed allocation extents in the
2837 * inode, so copy the extents one at a time and skip
2838 * the delayed ones. There must be at least one
2839 * non-delayed extent.
2840 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002841 dest_ep = buffer;
2842 copied = 0;
2843 for (i = 0; i < nrecs; i++) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002844 ep = xfs_iext_get_ext(ifp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002845 start_block = xfs_bmbt_get_startblock(ep);
2846 if (ISNULLSTARTBLOCK(start_block)) {
2847 /*
2848 * It's a delayed allocation extent, so skip it.
2849 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002850 continue;
2851 }
2852
2853 /* Translate to on disk format */
2854 put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2855 (__uint64_t*)&dest_ep->l0);
2856 put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2857 (__uint64_t*)&dest_ep->l1);
2858 dest_ep++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002859 copied++;
2860 }
2861 ASSERT(copied != 0);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002862 xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002863
2864 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2865}
2866
2867/*
2868 * Each of the following cases stores data into the same region
2869 * of the on-disk inode, so only one of them can be valid at
2870 * any given time. While it is possible to have conflicting formats
2871 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2872 * in EXTENTS format, this can only happen when the fork has
2873 * changed formats after being modified but before being flushed.
2874 * In these cases, the format always takes precedence, because the
2875 * format indicates the current state of the fork.
2876 */
2877/*ARGSUSED*/
2878STATIC int
2879xfs_iflush_fork(
2880 xfs_inode_t *ip,
2881 xfs_dinode_t *dip,
2882 xfs_inode_log_item_t *iip,
2883 int whichfork,
2884 xfs_buf_t *bp)
2885{
2886 char *cp;
2887 xfs_ifork_t *ifp;
2888 xfs_mount_t *mp;
2889#ifdef XFS_TRANS_DEBUG
2890 int first;
2891#endif
2892 static const short brootflag[2] =
2893 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2894 static const short dataflag[2] =
2895 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2896 static const short extflag[2] =
2897 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2898
2899 if (iip == NULL)
2900 return 0;
2901 ifp = XFS_IFORK_PTR(ip, whichfork);
2902 /*
2903 * This can happen if we gave up in iformat in an error path,
2904 * for the attribute fork.
2905 */
2906 if (ifp == NULL) {
2907 ASSERT(whichfork == XFS_ATTR_FORK);
2908 return 0;
2909 }
2910 cp = XFS_DFORK_PTR(dip, whichfork);
2911 mp = ip->i_mount;
2912 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2913 case XFS_DINODE_FMT_LOCAL:
2914 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2915 (ifp->if_bytes > 0)) {
2916 ASSERT(ifp->if_u1.if_data != NULL);
2917 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2918 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2919 }
2920 if (whichfork == XFS_DATA_FORK) {
2921 if (unlikely(XFS_DIR_SHORTFORM_VALIDATE_ONDISK(mp, dip))) {
2922 XFS_ERROR_REPORT("xfs_iflush_fork",
2923 XFS_ERRLEVEL_LOW, mp);
2924 return XFS_ERROR(EFSCORRUPTED);
2925 }
2926 }
2927 break;
2928
2929 case XFS_DINODE_FMT_EXTENTS:
2930 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2931 !(iip->ili_format.ilf_fields & extflag[whichfork]));
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002932 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2933 (ifp->if_bytes == 0));
2934 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2935 (ifp->if_bytes > 0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002936 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2937 (ifp->if_bytes > 0)) {
2938 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2939 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2940 whichfork);
2941 }
2942 break;
2943
2944 case XFS_DINODE_FMT_BTREE:
2945 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2946 (ifp->if_broot_bytes > 0)) {
2947 ASSERT(ifp->if_broot != NULL);
2948 ASSERT(ifp->if_broot_bytes <=
2949 (XFS_IFORK_SIZE(ip, whichfork) +
2950 XFS_BROOT_SIZE_ADJ));
2951 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
2952 (xfs_bmdr_block_t *)cp,
2953 XFS_DFORK_SIZE(dip, mp, whichfork));
2954 }
2955 break;
2956
2957 case XFS_DINODE_FMT_DEV:
2958 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2959 ASSERT(whichfork == XFS_DATA_FORK);
2960 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
2961 }
2962 break;
2963
2964 case XFS_DINODE_FMT_UUID:
2965 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2966 ASSERT(whichfork == XFS_DATA_FORK);
2967 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
2968 sizeof(uuid_t));
2969 }
2970 break;
2971
2972 default:
2973 ASSERT(0);
2974 break;
2975 }
2976
2977 return 0;
2978}
2979
2980/*
2981 * xfs_iflush() will write a modified inode's changes out to the
2982 * inode's on disk home. The caller must have the inode lock held
2983 * in at least shared mode and the inode flush semaphore must be
2984 * held as well. The inode lock will still be held upon return from
2985 * the call and the caller is free to unlock it.
2986 * The inode flush lock will be unlocked when the inode reaches the disk.
2987 * The flags indicate how the inode's buffer should be written out.
2988 */
2989int
2990xfs_iflush(
2991 xfs_inode_t *ip,
2992 uint flags)
2993{
2994 xfs_inode_log_item_t *iip;
2995 xfs_buf_t *bp;
2996 xfs_dinode_t *dip;
2997 xfs_mount_t *mp;
2998 int error;
2999 /* REFERENCED */
3000 xfs_chash_t *ch;
3001 xfs_inode_t *iq;
3002 int clcount; /* count of inodes clustered */
3003 int bufwasdelwri;
3004 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3005 SPLDECL(s);
3006
3007 XFS_STATS_INC(xs_iflush_count);
3008
3009 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3010 ASSERT(valusema(&ip->i_flock) <= 0);
3011 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3012 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3013
3014 iip = ip->i_itemp;
3015 mp = ip->i_mount;
3016
3017 /*
3018 * If the inode isn't dirty, then just release the inode
3019 * flush lock and do nothing.
3020 */
3021 if ((ip->i_update_core == 0) &&
3022 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3023 ASSERT((iip != NULL) ?
3024 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3025 xfs_ifunlock(ip);
3026 return 0;
3027 }
3028
3029 /*
3030 * We can't flush the inode until it is unpinned, so
3031 * wait for it. We know noone new can pin it, because
3032 * we are holding the inode lock shared and you need
3033 * to hold it exclusively to pin the inode.
3034 */
3035 xfs_iunpin_wait(ip);
3036
3037 /*
3038 * This may have been unpinned because the filesystem is shutting
3039 * down forcibly. If that's the case we must not write this inode
3040 * to disk, because the log record didn't make it to disk!
3041 */
3042 if (XFS_FORCED_SHUTDOWN(mp)) {
3043 ip->i_update_core = 0;
3044 if (iip)
3045 iip->ili_format.ilf_fields = 0;
3046 xfs_ifunlock(ip);
3047 return XFS_ERROR(EIO);
3048 }
3049
3050 /*
3051 * Get the buffer containing the on-disk inode.
3052 */
Nathan Scottb12dd342006-03-17 17:26:04 +11003053 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3054 if (error) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003055 xfs_ifunlock(ip);
3056 return error;
3057 }
3058
3059 /*
3060 * Decide how buffer will be flushed out. This is done before
3061 * the call to xfs_iflush_int because this field is zeroed by it.
3062 */
3063 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3064 /*
3065 * Flush out the inode buffer according to the directions
3066 * of the caller. In the cases where the caller has given
3067 * us a choice choose the non-delwri case. This is because
3068 * the inode is in the AIL and we need to get it out soon.
3069 */
3070 switch (flags) {
3071 case XFS_IFLUSH_SYNC:
3072 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3073 flags = 0;
3074 break;
3075 case XFS_IFLUSH_ASYNC:
3076 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3077 flags = INT_ASYNC;
3078 break;
3079 case XFS_IFLUSH_DELWRI:
3080 flags = INT_DELWRI;
3081 break;
3082 default:
3083 ASSERT(0);
3084 flags = 0;
3085 break;
3086 }
3087 } else {
3088 switch (flags) {
3089 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3090 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3091 case XFS_IFLUSH_DELWRI:
3092 flags = INT_DELWRI;
3093 break;
3094 case XFS_IFLUSH_ASYNC:
3095 flags = INT_ASYNC;
3096 break;
3097 case XFS_IFLUSH_SYNC:
3098 flags = 0;
3099 break;
3100 default:
3101 ASSERT(0);
3102 flags = 0;
3103 break;
3104 }
3105 }
3106
3107 /*
3108 * First flush out the inode that xfs_iflush was called with.
3109 */
3110 error = xfs_iflush_int(ip, bp);
3111 if (error) {
3112 goto corrupt_out;
3113 }
3114
3115 /*
3116 * inode clustering:
3117 * see if other inodes can be gathered into this write
3118 */
3119
3120 ip->i_chash->chl_buf = bp;
3121
3122 ch = XFS_CHASH(mp, ip->i_blkno);
3123 s = mutex_spinlock(&ch->ch_lock);
3124
3125 clcount = 0;
3126 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3127 /*
3128 * Do an un-protected check to see if the inode is dirty and
3129 * is a candidate for flushing. These checks will be repeated
3130 * later after the appropriate locks are acquired.
3131 */
3132 iip = iq->i_itemp;
3133 if ((iq->i_update_core == 0) &&
3134 ((iip == NULL) ||
3135 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3136 xfs_ipincount(iq) == 0) {
3137 continue;
3138 }
3139
3140 /*
3141 * Try to get locks. If any are unavailable,
3142 * then this inode cannot be flushed and is skipped.
3143 */
3144
3145 /* get inode locks (just i_lock) */
3146 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3147 /* get inode flush lock */
3148 if (xfs_iflock_nowait(iq)) {
3149 /* check if pinned */
3150 if (xfs_ipincount(iq) == 0) {
3151 /* arriving here means that
3152 * this inode can be flushed.
3153 * first re-check that it's
3154 * dirty
3155 */
3156 iip = iq->i_itemp;
3157 if ((iq->i_update_core != 0)||
3158 ((iip != NULL) &&
3159 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3160 clcount++;
3161 error = xfs_iflush_int(iq, bp);
3162 if (error) {
3163 xfs_iunlock(iq,
3164 XFS_ILOCK_SHARED);
3165 goto cluster_corrupt_out;
3166 }
3167 } else {
3168 xfs_ifunlock(iq);
3169 }
3170 } else {
3171 xfs_ifunlock(iq);
3172 }
3173 }
3174 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3175 }
3176 }
3177 mutex_spinunlock(&ch->ch_lock, s);
3178
3179 if (clcount) {
3180 XFS_STATS_INC(xs_icluster_flushcnt);
3181 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3182 }
3183
3184 /*
3185 * If the buffer is pinned then push on the log so we won't
3186 * get stuck waiting in the write for too long.
3187 */
3188 if (XFS_BUF_ISPINNED(bp)){
3189 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3190 }
3191
3192 if (flags & INT_DELWRI) {
3193 xfs_bdwrite(mp, bp);
3194 } else if (flags & INT_ASYNC) {
3195 xfs_bawrite(mp, bp);
3196 } else {
3197 error = xfs_bwrite(mp, bp);
3198 }
3199 return error;
3200
3201corrupt_out:
3202 xfs_buf_relse(bp);
3203 xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3204 xfs_iflush_abort(ip);
3205 /*
3206 * Unlocks the flush lock
3207 */
3208 return XFS_ERROR(EFSCORRUPTED);
3209
3210cluster_corrupt_out:
3211 /* Corruption detected in the clustering loop. Invalidate the
3212 * inode buffer and shut down the filesystem.
3213 */
3214 mutex_spinunlock(&ch->ch_lock, s);
3215
3216 /*
3217 * Clean up the buffer. If it was B_DELWRI, just release it --
3218 * brelse can handle it with no problems. If not, shut down the
3219 * filesystem before releasing the buffer.
3220 */
3221 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3222 xfs_buf_relse(bp);
3223 }
3224
3225 xfs_force_shutdown(mp, XFS_CORRUPT_INCORE);
3226
3227 if(!bufwasdelwri) {
3228 /*
3229 * Just like incore_relse: if we have b_iodone functions,
3230 * mark the buffer as an error and call them. Otherwise
3231 * mark it as stale and brelse.
3232 */
3233 if (XFS_BUF_IODONE_FUNC(bp)) {
3234 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3235 XFS_BUF_UNDONE(bp);
3236 XFS_BUF_STALE(bp);
3237 XFS_BUF_SHUT(bp);
3238 XFS_BUF_ERROR(bp,EIO);
3239 xfs_biodone(bp);
3240 } else {
3241 XFS_BUF_STALE(bp);
3242 xfs_buf_relse(bp);
3243 }
3244 }
3245
3246 xfs_iflush_abort(iq);
3247 /*
3248 * Unlocks the flush lock
3249 */
3250 return XFS_ERROR(EFSCORRUPTED);
3251}
3252
3253
3254STATIC int
3255xfs_iflush_int(
3256 xfs_inode_t *ip,
3257 xfs_buf_t *bp)
3258{
3259 xfs_inode_log_item_t *iip;
3260 xfs_dinode_t *dip;
3261 xfs_mount_t *mp;
3262#ifdef XFS_TRANS_DEBUG
3263 int first;
3264#endif
3265 SPLDECL(s);
3266
3267 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
3268 ASSERT(valusema(&ip->i_flock) <= 0);
3269 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3270 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3271
3272 iip = ip->i_itemp;
3273 mp = ip->i_mount;
3274
3275
3276 /*
3277 * If the inode isn't dirty, then just release the inode
3278 * flush lock and do nothing.
3279 */
3280 if ((ip->i_update_core == 0) &&
3281 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3282 xfs_ifunlock(ip);
3283 return 0;
3284 }
3285
3286 /* set *dip = inode's place in the buffer */
3287 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3288
3289 /*
3290 * Clear i_update_core before copying out the data.
3291 * This is for coordination with our timestamp updates
3292 * that don't hold the inode lock. They will always
3293 * update the timestamps BEFORE setting i_update_core,
3294 * so if we clear i_update_core after they set it we
3295 * are guaranteed to see their updates to the timestamps.
3296 * I believe that this depends on strongly ordered memory
3297 * semantics, but we have that. We use the SYNCHRONIZE
3298 * macro to make sure that the compiler does not reorder
3299 * the i_update_core access below the data copy below.
3300 */
3301 ip->i_update_core = 0;
3302 SYNCHRONIZE();
3303
Christoph Hellwig42fe2b12006-01-11 15:35:17 +11003304 /*
3305 * Make sure to get the latest atime from the Linux inode.
3306 */
3307 xfs_synchronize_atime(ip);
3308
Linus Torvalds1da177e2005-04-16 15:20:36 -07003309 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3310 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3311 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3312 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3313 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3314 goto corrupt_out;
3315 }
3316 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3317 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3318 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3319 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3320 ip->i_ino, ip, ip->i_d.di_magic);
3321 goto corrupt_out;
3322 }
3323 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3324 if (XFS_TEST_ERROR(
3325 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3326 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3327 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3328 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3329 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3330 ip->i_ino, ip);
3331 goto corrupt_out;
3332 }
3333 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3334 if (XFS_TEST_ERROR(
3335 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3336 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3337 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3338 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3339 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3340 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3341 ip->i_ino, ip);
3342 goto corrupt_out;
3343 }
3344 }
3345 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3346 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3347 XFS_RANDOM_IFLUSH_5)) {
3348 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3349 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3350 ip->i_ino,
3351 ip->i_d.di_nextents + ip->i_d.di_anextents,
3352 ip->i_d.di_nblocks,
3353 ip);
3354 goto corrupt_out;
3355 }
3356 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3357 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3358 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3359 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3360 ip->i_ino, ip->i_d.di_forkoff, ip);
3361 goto corrupt_out;
3362 }
3363 /*
3364 * bump the flush iteration count, used to detect flushes which
3365 * postdate a log record during recovery.
3366 */
3367
3368 ip->i_d.di_flushiter++;
3369
3370 /*
3371 * Copy the dirty parts of the inode into the on-disk
3372 * inode. We always copy out the core of the inode,
3373 * because if the inode is dirty at all the core must
3374 * be.
3375 */
3376 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
3377
3378 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3379 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3380 ip->i_d.di_flushiter = 0;
3381
3382 /*
3383 * If this is really an old format inode and the superblock version
3384 * has not been updated to support only new format inodes, then
3385 * convert back to the old inode format. If the superblock version
3386 * has been updated, then make the conversion permanent.
3387 */
3388 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3389 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3390 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3391 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3392 /*
3393 * Convert it back.
3394 */
3395 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3396 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3397 } else {
3398 /*
3399 * The superblock version has already been bumped,
3400 * so just make the conversion to the new inode
3401 * format permanent.
3402 */
3403 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3404 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3405 ip->i_d.di_onlink = 0;
3406 dip->di_core.di_onlink = 0;
3407 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3408 memset(&(dip->di_core.di_pad[0]), 0,
3409 sizeof(dip->di_core.di_pad));
3410 ASSERT(ip->i_d.di_projid == 0);
3411 }
3412 }
3413
3414 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3415 goto corrupt_out;
3416 }
3417
3418 if (XFS_IFORK_Q(ip)) {
3419 /*
3420 * The only error from xfs_iflush_fork is on the data fork.
3421 */
3422 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3423 }
3424 xfs_inobp_check(mp, bp);
3425
3426 /*
3427 * We've recorded everything logged in the inode, so we'd
3428 * like to clear the ilf_fields bits so we don't log and
3429 * flush things unnecessarily. However, we can't stop
3430 * logging all this information until the data we've copied
3431 * into the disk buffer is written to disk. If we did we might
3432 * overwrite the copy of the inode in the log with all the
3433 * data after re-logging only part of it, and in the face of
3434 * a crash we wouldn't have all the data we need to recover.
3435 *
3436 * What we do is move the bits to the ili_last_fields field.
3437 * When logging the inode, these bits are moved back to the
3438 * ilf_fields field. In the xfs_iflush_done() routine we
3439 * clear ili_last_fields, since we know that the information
3440 * those bits represent is permanently on disk. As long as
3441 * the flush completes before the inode is logged again, then
3442 * both ilf_fields and ili_last_fields will be cleared.
3443 *
3444 * We can play with the ilf_fields bits here, because the inode
3445 * lock must be held exclusively in order to set bits there
3446 * and the flush lock protects the ili_last_fields bits.
3447 * Set ili_logged so the flush done
3448 * routine can tell whether or not to look in the AIL.
3449 * Also, store the current LSN of the inode so that we can tell
3450 * whether the item has moved in the AIL from xfs_iflush_done().
3451 * In order to read the lsn we need the AIL lock, because
3452 * it is a 64 bit value that cannot be read atomically.
3453 */
3454 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3455 iip->ili_last_fields = iip->ili_format.ilf_fields;
3456 iip->ili_format.ilf_fields = 0;
3457 iip->ili_logged = 1;
3458
3459 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3460 AIL_LOCK(mp,s);
3461 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3462 AIL_UNLOCK(mp, s);
3463
3464 /*
3465 * Attach the function xfs_iflush_done to the inode's
3466 * buffer. This will remove the inode from the AIL
3467 * and unlock the inode's flush lock when the inode is
3468 * completely written to disk.
3469 */
3470 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3471 xfs_iflush_done, (xfs_log_item_t *)iip);
3472
3473 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3474 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3475 } else {
3476 /*
3477 * We're flushing an inode which is not in the AIL and has
3478 * not been logged but has i_update_core set. For this
3479 * case we can use a B_DELWRI flush and immediately drop
3480 * the inode flush lock because we can avoid the whole
3481 * AIL state thing. It's OK to drop the flush lock now,
3482 * because we've already locked the buffer and to do anything
3483 * you really need both.
3484 */
3485 if (iip != NULL) {
3486 ASSERT(iip->ili_logged == 0);
3487 ASSERT(iip->ili_last_fields == 0);
3488 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3489 }
3490 xfs_ifunlock(ip);
3491 }
3492
3493 return 0;
3494
3495corrupt_out:
3496 return XFS_ERROR(EFSCORRUPTED);
3497}
3498
3499
3500/*
Christoph Hellwigefa80272005-06-21 15:37:17 +10003501 * Flush all inactive inodes in mp.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003502 */
Christoph Hellwigefa80272005-06-21 15:37:17 +10003503void
Linus Torvalds1da177e2005-04-16 15:20:36 -07003504xfs_iflush_all(
Christoph Hellwigefa80272005-06-21 15:37:17 +10003505 xfs_mount_t *mp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003506{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003507 xfs_inode_t *ip;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003508 vnode_t *vp;
3509
Christoph Hellwigefa80272005-06-21 15:37:17 +10003510 again:
3511 XFS_MOUNT_ILOCK(mp);
3512 ip = mp->m_inodes;
3513 if (ip == NULL)
3514 goto out;
3515
3516 do {
3517 /* Make sure we skip markers inserted by sync */
3518 if (ip->i_mount == NULL) {
3519 ip = ip->i_mnext;
3520 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003521 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003522
Christoph Hellwigefa80272005-06-21 15:37:17 +10003523 vp = XFS_ITOV_NULL(ip);
3524 if (!vp) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003525 XFS_MOUNT_IUNLOCK(mp);
Christoph Hellwigefa80272005-06-21 15:37:17 +10003526 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3527 goto again;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003528 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003529
Christoph Hellwigefa80272005-06-21 15:37:17 +10003530 ASSERT(vn_count(vp) == 0);
3531
3532 ip = ip->i_mnext;
3533 } while (ip != mp->m_inodes);
3534 out:
3535 XFS_MOUNT_IUNLOCK(mp);
3536}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003537
3538/*
3539 * xfs_iaccess: check accessibility of inode for mode.
3540 */
3541int
3542xfs_iaccess(
3543 xfs_inode_t *ip,
3544 mode_t mode,
3545 cred_t *cr)
3546{
3547 int error;
3548 mode_t orgmode = mode;
Nathan Scottec86dc02006-03-17 17:25:36 +11003549 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003550
3551 if (mode & S_IWUSR) {
3552 umode_t imode = inode->i_mode;
3553
3554 if (IS_RDONLY(inode) &&
3555 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3556 return XFS_ERROR(EROFS);
3557
3558 if (IS_IMMUTABLE(inode))
3559 return XFS_ERROR(EACCES);
3560 }
3561
3562 /*
3563 * If there's an Access Control List it's used instead of
3564 * the mode bits.
3565 */
3566 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3567 return error ? XFS_ERROR(error) : 0;
3568
3569 if (current_fsuid(cr) != ip->i_d.di_uid) {
3570 mode >>= 3;
3571 if (!in_group_p((gid_t)ip->i_d.di_gid))
3572 mode >>= 3;
3573 }
3574
3575 /*
3576 * If the DACs are ok we don't need any capability check.
3577 */
3578 if ((ip->i_d.di_mode & mode) == mode)
3579 return 0;
3580 /*
3581 * Read/write DACs are always overridable.
3582 * Executable DACs are overridable if at least one exec bit is set.
3583 */
3584 if (!(orgmode & S_IXUSR) ||
3585 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3586 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3587 return 0;
3588
3589 if ((orgmode == S_IRUSR) ||
3590 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3591 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3592 return 0;
3593#ifdef NOISE
3594 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3595#endif /* NOISE */
3596 return XFS_ERROR(EACCES);
3597 }
3598 return XFS_ERROR(EACCES);
3599}
3600
3601/*
3602 * xfs_iroundup: round up argument to next power of two
3603 */
3604uint
3605xfs_iroundup(
3606 uint v)
3607{
3608 int i;
3609 uint m;
3610
3611 if ((v & (v - 1)) == 0)
3612 return v;
3613 ASSERT((v & 0x80000000) == 0);
3614 if ((v & (v + 1)) == 0)
3615 return v + 1;
3616 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3617 if (v & m)
3618 continue;
3619 v |= m;
3620 if ((v & (v + 1)) == 0)
3621 return v + 1;
3622 }
3623 ASSERT(0);
3624 return( 0 );
3625}
3626
Linus Torvalds1da177e2005-04-16 15:20:36 -07003627#ifdef XFS_ILOCK_TRACE
3628ktrace_t *xfs_ilock_trace_buf;
3629
3630void
3631xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3632{
3633 ktrace_enter(ip->i_lock_trace,
3634 (void *)ip,
3635 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3636 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3637 (void *)ra, /* caller of ilock */
3638 (void *)(unsigned long)current_cpu(),
3639 (void *)(unsigned long)current_pid(),
3640 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3641}
3642#endif
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003643
3644/*
3645 * Return a pointer to the extent record at file index idx.
3646 */
3647xfs_bmbt_rec_t *
3648xfs_iext_get_ext(
3649 xfs_ifork_t *ifp, /* inode fork pointer */
3650 xfs_extnum_t idx) /* index of target extent */
3651{
3652 ASSERT(idx >= 0);
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003653 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3654 return ifp->if_u1.if_ext_irec->er_extbuf;
3655 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3656 xfs_ext_irec_t *erp; /* irec pointer */
3657 int erp_idx = 0; /* irec index */
3658 xfs_extnum_t page_idx = idx; /* ext index in target list */
3659
3660 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3661 return &erp->er_extbuf[page_idx];
3662 } else if (ifp->if_bytes) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003663 return &ifp->if_u1.if_extents[idx];
3664 } else {
3665 return NULL;
3666 }
3667}
3668
3669/*
3670 * Insert new item(s) into the extent records for incore inode
3671 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3672 */
3673void
3674xfs_iext_insert(
3675 xfs_ifork_t *ifp, /* inode fork pointer */
3676 xfs_extnum_t idx, /* starting index of new items */
3677 xfs_extnum_t count, /* number of inserted items */
3678 xfs_bmbt_irec_t *new) /* items to insert */
3679{
3680 xfs_bmbt_rec_t *ep; /* extent record pointer */
3681 xfs_extnum_t i; /* extent record index */
3682
3683 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3684 xfs_iext_add(ifp, idx, count);
3685 for (i = idx; i < idx + count; i++, new++) {
3686 ep = xfs_iext_get_ext(ifp, i);
3687 xfs_bmbt_set_all(ep, new);
3688 }
3689}
3690
3691/*
3692 * This is called when the amount of space required for incore file
3693 * extents needs to be increased. The ext_diff parameter stores the
3694 * number of new extents being added and the idx parameter contains
3695 * the extent index where the new extents will be added. If the new
3696 * extents are being appended, then we just need to (re)allocate and
3697 * initialize the space. Otherwise, if the new extents are being
3698 * inserted into the middle of the existing entries, a bit more work
3699 * is required to make room for the new extents to be inserted. The
3700 * caller is responsible for filling in the new extent entries upon
3701 * return.
3702 */
3703void
3704xfs_iext_add(
3705 xfs_ifork_t *ifp, /* inode fork pointer */
3706 xfs_extnum_t idx, /* index to begin adding exts */
Nathan Scottc41564b2006-03-29 08:55:14 +10003707 int ext_diff) /* number of extents to add */
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003708{
3709 int byte_diff; /* new bytes being added */
3710 int new_size; /* size of extents after adding */
3711 xfs_extnum_t nextents; /* number of extents in file */
3712
3713 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3714 ASSERT((idx >= 0) && (idx <= nextents));
3715 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3716 new_size = ifp->if_bytes + byte_diff;
3717 /*
3718 * If the new number of extents (nextents + ext_diff)
3719 * fits inside the inode, then continue to use the inline
3720 * extent buffer.
3721 */
3722 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3723 if (idx < nextents) {
3724 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3725 &ifp->if_u2.if_inline_ext[idx],
3726 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3727 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3728 }
3729 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3730 ifp->if_real_bytes = 0;
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003731 ifp->if_lastex = nextents + ext_diff;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003732 }
3733 /*
3734 * Otherwise use a linear (direct) extent list.
3735 * If the extents are currently inside the inode,
3736 * xfs_iext_realloc_direct will switch us from
3737 * inline to direct extent allocation mode.
3738 */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003739 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003740 xfs_iext_realloc_direct(ifp, new_size);
3741 if (idx < nextents) {
3742 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3743 &ifp->if_u1.if_extents[idx],
3744 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3745 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3746 }
3747 }
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003748 /* Indirection array */
3749 else {
3750 xfs_ext_irec_t *erp;
3751 int erp_idx = 0;
3752 int page_idx = idx;
3753
3754 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3755 if (ifp->if_flags & XFS_IFEXTIREC) {
3756 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3757 } else {
3758 xfs_iext_irec_init(ifp);
3759 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3760 erp = ifp->if_u1.if_ext_irec;
3761 }
3762 /* Extents fit in target extent page */
3763 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3764 if (page_idx < erp->er_extcount) {
3765 memmove(&erp->er_extbuf[page_idx + ext_diff],
3766 &erp->er_extbuf[page_idx],
3767 (erp->er_extcount - page_idx) *
3768 sizeof(xfs_bmbt_rec_t));
3769 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3770 }
3771 erp->er_extcount += ext_diff;
3772 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3773 }
3774 /* Insert a new extent page */
3775 else if (erp) {
3776 xfs_iext_add_indirect_multi(ifp,
3777 erp_idx, page_idx, ext_diff);
3778 }
3779 /*
3780 * If extent(s) are being appended to the last page in
3781 * the indirection array and the new extent(s) don't fit
3782 * in the page, then erp is NULL and erp_idx is set to
3783 * the next index needed in the indirection array.
3784 */
3785 else {
3786 int count = ext_diff;
3787
3788 while (count) {
3789 erp = xfs_iext_irec_new(ifp, erp_idx);
3790 erp->er_extcount = count;
3791 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3792 if (count) {
3793 erp_idx++;
3794 }
3795 }
3796 }
3797 }
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003798 ifp->if_bytes = new_size;
3799}
3800
3801/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003802 * This is called when incore extents are being added to the indirection
3803 * array and the new extents do not fit in the target extent list. The
3804 * erp_idx parameter contains the irec index for the target extent list
3805 * in the indirection array, and the idx parameter contains the extent
3806 * index within the list. The number of extents being added is stored
3807 * in the count parameter.
3808 *
3809 * |-------| |-------|
3810 * | | | | idx - number of extents before idx
3811 * | idx | | count |
3812 * | | | | count - number of extents being inserted at idx
3813 * |-------| |-------|
3814 * | count | | nex2 | nex2 - number of extents after idx + count
3815 * |-------| |-------|
3816 */
3817void
3818xfs_iext_add_indirect_multi(
3819 xfs_ifork_t *ifp, /* inode fork pointer */
3820 int erp_idx, /* target extent irec index */
3821 xfs_extnum_t idx, /* index within target list */
3822 int count) /* new extents being added */
3823{
3824 int byte_diff; /* new bytes being added */
3825 xfs_ext_irec_t *erp; /* pointer to irec entry */
3826 xfs_extnum_t ext_diff; /* number of extents to add */
3827 xfs_extnum_t ext_cnt; /* new extents still needed */
3828 xfs_extnum_t nex2; /* extents after idx + count */
3829 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3830 int nlists; /* number of irec's (lists) */
3831
3832 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3833 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3834 nex2 = erp->er_extcount - idx;
3835 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3836
3837 /*
3838 * Save second part of target extent list
3839 * (all extents past */
3840 if (nex2) {
3841 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3842 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3843 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3844 erp->er_extcount -= nex2;
3845 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3846 memset(&erp->er_extbuf[idx], 0, byte_diff);
3847 }
3848
3849 /*
3850 * Add the new extents to the end of the target
3851 * list, then allocate new irec record(s) and
3852 * extent buffer(s) as needed to store the rest
3853 * of the new extents.
3854 */
3855 ext_cnt = count;
3856 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3857 if (ext_diff) {
3858 erp->er_extcount += ext_diff;
3859 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3860 ext_cnt -= ext_diff;
3861 }
3862 while (ext_cnt) {
3863 erp_idx++;
3864 erp = xfs_iext_irec_new(ifp, erp_idx);
3865 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3866 erp->er_extcount = ext_diff;
3867 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3868 ext_cnt -= ext_diff;
3869 }
3870
3871 /* Add nex2 extents back to indirection array */
3872 if (nex2) {
3873 xfs_extnum_t ext_avail;
3874 int i;
3875
3876 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3877 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3878 i = 0;
3879 /*
3880 * If nex2 extents fit in the current page, append
3881 * nex2_ep after the new extents.
3882 */
3883 if (nex2 <= ext_avail) {
3884 i = erp->er_extcount;
3885 }
3886 /*
3887 * Otherwise, check if space is available in the
3888 * next page.
3889 */
3890 else if ((erp_idx < nlists - 1) &&
3891 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3892 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3893 erp_idx++;
3894 erp++;
3895 /* Create a hole for nex2 extents */
3896 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3897 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3898 }
3899 /*
3900 * Final choice, create a new extent page for
3901 * nex2 extents.
3902 */
3903 else {
3904 erp_idx++;
3905 erp = xfs_iext_irec_new(ifp, erp_idx);
3906 }
3907 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3908 kmem_free(nex2_ep, byte_diff);
3909 erp->er_extcount += nex2;
3910 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3911 }
3912}
3913
3914/*
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003915 * This is called when the amount of space required for incore file
3916 * extents needs to be decreased. The ext_diff parameter stores the
3917 * number of extents to be removed and the idx parameter contains
3918 * the extent index where the extents will be removed from.
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003919 *
3920 * If the amount of space needed has decreased below the linear
3921 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3922 * extent array. Otherwise, use kmem_realloc() to adjust the
3923 * size to what is needed.
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003924 */
3925void
3926xfs_iext_remove(
3927 xfs_ifork_t *ifp, /* inode fork pointer */
3928 xfs_extnum_t idx, /* index to begin removing exts */
3929 int ext_diff) /* number of extents to remove */
3930{
3931 xfs_extnum_t nextents; /* number of extents in file */
3932 int new_size; /* size of extents after removal */
3933
3934 ASSERT(ext_diff > 0);
3935 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3936 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3937
3938 if (new_size == 0) {
3939 xfs_iext_destroy(ifp);
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003940 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3941 xfs_iext_remove_indirect(ifp, idx, ext_diff);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003942 } else if (ifp->if_real_bytes) {
3943 xfs_iext_remove_direct(ifp, idx, ext_diff);
3944 } else {
3945 xfs_iext_remove_inline(ifp, idx, ext_diff);
3946 }
3947 ifp->if_bytes = new_size;
3948}
3949
3950/*
3951 * This removes ext_diff extents from the inline buffer, beginning
3952 * at extent index idx.
3953 */
3954void
3955xfs_iext_remove_inline(
3956 xfs_ifork_t *ifp, /* inode fork pointer */
3957 xfs_extnum_t idx, /* index to begin removing exts */
3958 int ext_diff) /* number of extents to remove */
3959{
3960 int nextents; /* number of extents in file */
3961
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003962 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003963 ASSERT(idx < XFS_INLINE_EXTS);
3964 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3965 ASSERT(((nextents - ext_diff) > 0) &&
3966 (nextents - ext_diff) < XFS_INLINE_EXTS);
3967
3968 if (idx + ext_diff < nextents) {
3969 memmove(&ifp->if_u2.if_inline_ext[idx],
3970 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3971 (nextents - (idx + ext_diff)) *
3972 sizeof(xfs_bmbt_rec_t));
3973 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3974 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3975 } else {
3976 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3977 ext_diff * sizeof(xfs_bmbt_rec_t));
3978 }
3979}
3980
3981/*
3982 * This removes ext_diff extents from a linear (direct) extent list,
3983 * beginning at extent index idx. If the extents are being removed
3984 * from the end of the list (ie. truncate) then we just need to re-
3985 * allocate the list to remove the extra space. Otherwise, if the
3986 * extents are being removed from the middle of the existing extent
3987 * entries, then we first need to move the extent records beginning
3988 * at idx + ext_diff up in the list to overwrite the records being
3989 * removed, then remove the extra space via kmem_realloc.
3990 */
3991void
3992xfs_iext_remove_direct(
3993 xfs_ifork_t *ifp, /* inode fork pointer */
3994 xfs_extnum_t idx, /* index to begin removing exts */
3995 int ext_diff) /* number of extents to remove */
3996{
3997 xfs_extnum_t nextents; /* number of extents in file */
3998 int new_size; /* size of extents after removal */
3999
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004000 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004001 new_size = ifp->if_bytes -
4002 (ext_diff * sizeof(xfs_bmbt_rec_t));
4003 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4004
4005 if (new_size == 0) {
4006 xfs_iext_destroy(ifp);
4007 return;
4008 }
4009 /* Move extents up in the list (if needed) */
4010 if (idx + ext_diff < nextents) {
4011 memmove(&ifp->if_u1.if_extents[idx],
4012 &ifp->if_u1.if_extents[idx + ext_diff],
4013 (nextents - (idx + ext_diff)) *
4014 sizeof(xfs_bmbt_rec_t));
4015 }
4016 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4017 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4018 /*
4019 * Reallocate the direct extent list. If the extents
4020 * will fit inside the inode then xfs_iext_realloc_direct
4021 * will switch from direct to inline extent allocation
4022 * mode for us.
4023 */
4024 xfs_iext_realloc_direct(ifp, new_size);
4025 ifp->if_bytes = new_size;
4026}
4027
4028/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004029 * This is called when incore extents are being removed from the
4030 * indirection array and the extents being removed span multiple extent
4031 * buffers. The idx parameter contains the file extent index where we
4032 * want to begin removing extents, and the count parameter contains
4033 * how many extents need to be removed.
4034 *
4035 * |-------| |-------|
4036 * | nex1 | | | nex1 - number of extents before idx
4037 * |-------| | count |
4038 * | | | | count - number of extents being removed at idx
4039 * | count | |-------|
4040 * | | | nex2 | nex2 - number of extents after idx + count
4041 * |-------| |-------|
4042 */
4043void
4044xfs_iext_remove_indirect(
4045 xfs_ifork_t *ifp, /* inode fork pointer */
4046 xfs_extnum_t idx, /* index to begin removing extents */
4047 int count) /* number of extents to remove */
4048{
4049 xfs_ext_irec_t *erp; /* indirection array pointer */
4050 int erp_idx = 0; /* indirection array index */
4051 xfs_extnum_t ext_cnt; /* extents left to remove */
4052 xfs_extnum_t ext_diff; /* extents to remove in current list */
4053 xfs_extnum_t nex1; /* number of extents before idx */
4054 xfs_extnum_t nex2; /* extents after idx + count */
Nathan Scottc41564b2006-03-29 08:55:14 +10004055 int nlists; /* entries in indirection array */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004056 int page_idx = idx; /* index in target extent list */
4057
4058 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4059 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
4060 ASSERT(erp != NULL);
4061 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4062 nex1 = page_idx;
4063 ext_cnt = count;
4064 while (ext_cnt) {
4065 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4066 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4067 /*
4068 * Check for deletion of entire list;
4069 * xfs_iext_irec_remove() updates extent offsets.
4070 */
4071 if (ext_diff == erp->er_extcount) {
4072 xfs_iext_irec_remove(ifp, erp_idx);
4073 ext_cnt -= ext_diff;
4074 nex1 = 0;
4075 if (ext_cnt) {
4076 ASSERT(erp_idx < ifp->if_real_bytes /
4077 XFS_IEXT_BUFSZ);
4078 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4079 nex1 = 0;
4080 continue;
4081 } else {
4082 break;
4083 }
4084 }
4085 /* Move extents up (if needed) */
4086 if (nex2) {
4087 memmove(&erp->er_extbuf[nex1],
4088 &erp->er_extbuf[nex1 + ext_diff],
4089 nex2 * sizeof(xfs_bmbt_rec_t));
4090 }
4091 /* Zero out rest of page */
4092 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4093 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4094 /* Update remaining counters */
4095 erp->er_extcount -= ext_diff;
4096 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4097 ext_cnt -= ext_diff;
4098 nex1 = 0;
4099 erp_idx++;
4100 erp++;
4101 }
4102 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4103 xfs_iext_irec_compact(ifp);
4104}
4105
4106/*
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004107 * Create, destroy, or resize a linear (direct) block of extents.
4108 */
4109void
4110xfs_iext_realloc_direct(
4111 xfs_ifork_t *ifp, /* inode fork pointer */
4112 int new_size) /* new size of extents */
4113{
4114 int rnew_size; /* real new size of extents */
4115
4116 rnew_size = new_size;
4117
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004118 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4119 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4120 (new_size != ifp->if_real_bytes)));
4121
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004122 /* Free extent records */
4123 if (new_size == 0) {
4124 xfs_iext_destroy(ifp);
4125 }
4126 /* Resize direct extent list and zero any new bytes */
4127 else if (ifp->if_real_bytes) {
4128 /* Check if extents will fit inside the inode */
4129 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4130 xfs_iext_direct_to_inline(ifp, new_size /
4131 (uint)sizeof(xfs_bmbt_rec_t));
4132 ifp->if_bytes = new_size;
4133 return;
4134 }
4135 if ((new_size & (new_size - 1)) != 0) {
4136 rnew_size = xfs_iroundup(new_size);
4137 }
4138 if (rnew_size != ifp->if_real_bytes) {
4139 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4140 kmem_realloc(ifp->if_u1.if_extents,
4141 rnew_size,
4142 ifp->if_real_bytes,
4143 KM_SLEEP);
4144 }
4145 if (rnew_size > ifp->if_real_bytes) {
4146 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4147 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4148 rnew_size - ifp->if_real_bytes);
4149 }
4150 }
4151 /*
4152 * Switch from the inline extent buffer to a direct
4153 * extent list. Be sure to include the inline extent
4154 * bytes in new_size.
4155 */
4156 else {
4157 new_size += ifp->if_bytes;
4158 if ((new_size & (new_size - 1)) != 0) {
4159 rnew_size = xfs_iroundup(new_size);
4160 }
4161 xfs_iext_inline_to_direct(ifp, rnew_size);
4162 }
4163 ifp->if_real_bytes = rnew_size;
4164 ifp->if_bytes = new_size;
4165}
4166
4167/*
4168 * Switch from linear (direct) extent records to inline buffer.
4169 */
4170void
4171xfs_iext_direct_to_inline(
4172 xfs_ifork_t *ifp, /* inode fork pointer */
4173 xfs_extnum_t nextents) /* number of extents in file */
4174{
4175 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4176 ASSERT(nextents <= XFS_INLINE_EXTS);
4177 /*
4178 * The inline buffer was zeroed when we switched
4179 * from inline to direct extent allocation mode,
4180 * so we don't need to clear it here.
4181 */
4182 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4183 nextents * sizeof(xfs_bmbt_rec_t));
4184 kmem_free(ifp->if_u1.if_extents, KM_SLEEP);
4185 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4186 ifp->if_real_bytes = 0;
4187}
4188
4189/*
4190 * Switch from inline buffer to linear (direct) extent records.
4191 * new_size should already be rounded up to the next power of 2
4192 * by the caller (when appropriate), so use new_size as it is.
4193 * However, since new_size may be rounded up, we can't update
4194 * if_bytes here. It is the caller's responsibility to update
4195 * if_bytes upon return.
4196 */
4197void
4198xfs_iext_inline_to_direct(
4199 xfs_ifork_t *ifp, /* inode fork pointer */
4200 int new_size) /* number of extents in file */
4201{
4202 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4203 kmem_alloc(new_size, KM_SLEEP);
4204 memset(ifp->if_u1.if_extents, 0, new_size);
4205 if (ifp->if_bytes) {
4206 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4207 ifp->if_bytes);
4208 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4209 sizeof(xfs_bmbt_rec_t));
4210 }
4211 ifp->if_real_bytes = new_size;
4212}
4213
4214/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004215 * Resize an extent indirection array to new_size bytes.
4216 */
4217void
4218xfs_iext_realloc_indirect(
4219 xfs_ifork_t *ifp, /* inode fork pointer */
4220 int new_size) /* new indirection array size */
4221{
4222 int nlists; /* number of irec's (ex lists) */
4223 int size; /* current indirection array size */
4224
4225 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4226 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4227 size = nlists * sizeof(xfs_ext_irec_t);
4228 ASSERT(ifp->if_real_bytes);
4229 ASSERT((new_size >= 0) && (new_size != size));
4230 if (new_size == 0) {
4231 xfs_iext_destroy(ifp);
4232 } else {
4233 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4234 kmem_realloc(ifp->if_u1.if_ext_irec,
4235 new_size, size, KM_SLEEP);
4236 }
4237}
4238
4239/*
4240 * Switch from indirection array to linear (direct) extent allocations.
4241 */
4242void
4243xfs_iext_indirect_to_direct(
4244 xfs_ifork_t *ifp) /* inode fork pointer */
4245{
4246 xfs_bmbt_rec_t *ep; /* extent record pointer */
4247 xfs_extnum_t nextents; /* number of extents in file */
4248 int size; /* size of file extents */
4249
4250 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4251 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4252 ASSERT(nextents <= XFS_LINEAR_EXTS);
4253 size = nextents * sizeof(xfs_bmbt_rec_t);
4254
4255 xfs_iext_irec_compact_full(ifp);
4256 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4257
4258 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4259 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4260 ifp->if_flags &= ~XFS_IFEXTIREC;
4261 ifp->if_u1.if_extents = ep;
4262 ifp->if_bytes = size;
4263 if (nextents < XFS_LINEAR_EXTS) {
4264 xfs_iext_realloc_direct(ifp, size);
4265 }
4266}
4267
4268/*
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004269 * Free incore file extents.
4270 */
4271void
4272xfs_iext_destroy(
4273 xfs_ifork_t *ifp) /* inode fork pointer */
4274{
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004275 if (ifp->if_flags & XFS_IFEXTIREC) {
4276 int erp_idx;
4277 int nlists;
4278
4279 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4280 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4281 xfs_iext_irec_remove(ifp, erp_idx);
4282 }
4283 ifp->if_flags &= ~XFS_IFEXTIREC;
4284 } else if (ifp->if_real_bytes) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004285 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4286 } else if (ifp->if_bytes) {
4287 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4288 sizeof(xfs_bmbt_rec_t));
4289 }
4290 ifp->if_u1.if_extents = NULL;
4291 ifp->if_real_bytes = 0;
4292 ifp->if_bytes = 0;
4293}
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004294
4295/*
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004296 * Return a pointer to the extent record for file system block bno.
4297 */
4298xfs_bmbt_rec_t * /* pointer to found extent record */
4299xfs_iext_bno_to_ext(
4300 xfs_ifork_t *ifp, /* inode fork pointer */
4301 xfs_fileoff_t bno, /* block number to search for */
4302 xfs_extnum_t *idxp) /* index of target extent */
4303{
4304 xfs_bmbt_rec_t *base; /* pointer to first extent */
4305 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
4306 xfs_bmbt_rec_t *ep = NULL; /* pointer to target extent */
4307 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
Nathan Scottc41564b2006-03-29 08:55:14 +10004308 int high; /* upper boundary in search */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004309 xfs_extnum_t idx = 0; /* index of target extent */
Nathan Scottc41564b2006-03-29 08:55:14 +10004310 int low; /* lower boundary in search */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004311 xfs_extnum_t nextents; /* number of file extents */
4312 xfs_fileoff_t startoff = 0; /* start offset of extent */
4313
4314 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4315 if (nextents == 0) {
4316 *idxp = 0;
4317 return NULL;
4318 }
4319 low = 0;
4320 if (ifp->if_flags & XFS_IFEXTIREC) {
4321 /* Find target extent list */
4322 int erp_idx = 0;
4323 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4324 base = erp->er_extbuf;
4325 high = erp->er_extcount - 1;
4326 } else {
4327 base = ifp->if_u1.if_extents;
4328 high = nextents - 1;
4329 }
4330 /* Binary search extent records */
4331 while (low <= high) {
4332 idx = (low + high) >> 1;
4333 ep = base + idx;
4334 startoff = xfs_bmbt_get_startoff(ep);
4335 blockcount = xfs_bmbt_get_blockcount(ep);
4336 if (bno < startoff) {
4337 high = idx - 1;
4338 } else if (bno >= startoff + blockcount) {
4339 low = idx + 1;
4340 } else {
4341 /* Convert back to file-based extent index */
4342 if (ifp->if_flags & XFS_IFEXTIREC) {
4343 idx += erp->er_extoff;
4344 }
4345 *idxp = idx;
4346 return ep;
4347 }
4348 }
4349 /* Convert back to file-based extent index */
4350 if (ifp->if_flags & XFS_IFEXTIREC) {
4351 idx += erp->er_extoff;
4352 }
4353 if (bno >= startoff + blockcount) {
4354 if (++idx == nextents) {
4355 ep = NULL;
4356 } else {
4357 ep = xfs_iext_get_ext(ifp, idx);
4358 }
4359 }
4360 *idxp = idx;
4361 return ep;
4362}
4363
4364/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004365 * Return a pointer to the indirection array entry containing the
4366 * extent record for filesystem block bno. Store the index of the
4367 * target irec in *erp_idxp.
4368 */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004369xfs_ext_irec_t * /* pointer to found extent record */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004370xfs_iext_bno_to_irec(
4371 xfs_ifork_t *ifp, /* inode fork pointer */
4372 xfs_fileoff_t bno, /* block number to search for */
4373 int *erp_idxp) /* irec index of target ext list */
4374{
4375 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4376 xfs_ext_irec_t *erp_next; /* next indirection array entry */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004377 int erp_idx; /* indirection array index */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004378 int nlists; /* number of extent irec's (lists) */
4379 int high; /* binary search upper limit */
4380 int low; /* binary search lower limit */
4381
4382 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4383 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4384 erp_idx = 0;
4385 low = 0;
4386 high = nlists - 1;
4387 while (low <= high) {
4388 erp_idx = (low + high) >> 1;
4389 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4390 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4391 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4392 high = erp_idx - 1;
4393 } else if (erp_next && bno >=
4394 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4395 low = erp_idx + 1;
4396 } else {
4397 break;
4398 }
4399 }
4400 *erp_idxp = erp_idx;
4401 return erp;
4402}
4403
4404/*
4405 * Return a pointer to the indirection array entry containing the
4406 * extent record at file extent index *idxp. Store the index of the
4407 * target irec in *erp_idxp and store the page index of the target
4408 * extent record in *idxp.
4409 */
4410xfs_ext_irec_t *
4411xfs_iext_idx_to_irec(
4412 xfs_ifork_t *ifp, /* inode fork pointer */
4413 xfs_extnum_t *idxp, /* extent index (file -> page) */
4414 int *erp_idxp, /* pointer to target irec */
4415 int realloc) /* new bytes were just added */
4416{
4417 xfs_ext_irec_t *prev; /* pointer to previous irec */
4418 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4419 int erp_idx; /* indirection array index */
4420 int nlists; /* number of irec's (ex lists) */
4421 int high; /* binary search upper limit */
4422 int low; /* binary search lower limit */
4423 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4424
4425 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4426 ASSERT(page_idx >= 0 && page_idx <=
4427 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4428 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4429 erp_idx = 0;
4430 low = 0;
4431 high = nlists - 1;
4432
4433 /* Binary search extent irec's */
4434 while (low <= high) {
4435 erp_idx = (low + high) >> 1;
4436 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4437 prev = erp_idx > 0 ? erp - 1 : NULL;
4438 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4439 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4440 high = erp_idx - 1;
4441 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4442 (page_idx == erp->er_extoff + erp->er_extcount &&
4443 !realloc)) {
4444 low = erp_idx + 1;
4445 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4446 erp->er_extcount == XFS_LINEAR_EXTS) {
4447 ASSERT(realloc);
4448 page_idx = 0;
4449 erp_idx++;
4450 erp = erp_idx < nlists ? erp + 1 : NULL;
4451 break;
4452 } else {
4453 page_idx -= erp->er_extoff;
4454 break;
4455 }
4456 }
4457 *idxp = page_idx;
4458 *erp_idxp = erp_idx;
4459 return(erp);
4460}
4461
4462/*
4463 * Allocate and initialize an indirection array once the space needed
4464 * for incore extents increases above XFS_IEXT_BUFSZ.
4465 */
4466void
4467xfs_iext_irec_init(
4468 xfs_ifork_t *ifp) /* inode fork pointer */
4469{
4470 xfs_ext_irec_t *erp; /* indirection array pointer */
4471 xfs_extnum_t nextents; /* number of extents in file */
4472
4473 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4474 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4475 ASSERT(nextents <= XFS_LINEAR_EXTS);
4476
4477 erp = (xfs_ext_irec_t *)
4478 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4479
4480 if (nextents == 0) {
4481 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4482 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4483 } else if (!ifp->if_real_bytes) {
4484 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4485 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4486 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4487 }
4488 erp->er_extbuf = ifp->if_u1.if_extents;
4489 erp->er_extcount = nextents;
4490 erp->er_extoff = 0;
4491
4492 ifp->if_flags |= XFS_IFEXTIREC;
4493 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4494 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4495 ifp->if_u1.if_ext_irec = erp;
4496
4497 return;
4498}
4499
4500/*
4501 * Allocate and initialize a new entry in the indirection array.
4502 */
4503xfs_ext_irec_t *
4504xfs_iext_irec_new(
4505 xfs_ifork_t *ifp, /* inode fork pointer */
4506 int erp_idx) /* index for new irec */
4507{
4508 xfs_ext_irec_t *erp; /* indirection array pointer */
4509 int i; /* loop counter */
4510 int nlists; /* number of irec's (ex lists) */
4511
4512 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4513 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4514
4515 /* Resize indirection array */
4516 xfs_iext_realloc_indirect(ifp, ++nlists *
4517 sizeof(xfs_ext_irec_t));
4518 /*
4519 * Move records down in the array so the
4520 * new page can use erp_idx.
4521 */
4522 erp = ifp->if_u1.if_ext_irec;
4523 for (i = nlists - 1; i > erp_idx; i--) {
4524 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4525 }
4526 ASSERT(i == erp_idx);
4527
4528 /* Initialize new extent record */
4529 erp = ifp->if_u1.if_ext_irec;
4530 erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *)
4531 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4532 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4533 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4534 erp[erp_idx].er_extcount = 0;
4535 erp[erp_idx].er_extoff = erp_idx > 0 ?
4536 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4537 return (&erp[erp_idx]);
4538}
4539
4540/*
4541 * Remove a record from the indirection array.
4542 */
4543void
4544xfs_iext_irec_remove(
4545 xfs_ifork_t *ifp, /* inode fork pointer */
4546 int erp_idx) /* irec index to remove */
4547{
4548 xfs_ext_irec_t *erp; /* indirection array pointer */
4549 int i; /* loop counter */
4550 int nlists; /* number of irec's (ex lists) */
4551
4552 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4553 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4554 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4555 if (erp->er_extbuf) {
4556 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4557 -erp->er_extcount);
4558 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4559 }
4560 /* Compact extent records */
4561 erp = ifp->if_u1.if_ext_irec;
4562 for (i = erp_idx; i < nlists - 1; i++) {
4563 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4564 }
4565 /*
4566 * Manually free the last extent record from the indirection
4567 * array. A call to xfs_iext_realloc_indirect() with a size
4568 * of zero would result in a call to xfs_iext_destroy() which
4569 * would in turn call this function again, creating a nasty
4570 * infinite loop.
4571 */
4572 if (--nlists) {
4573 xfs_iext_realloc_indirect(ifp,
4574 nlists * sizeof(xfs_ext_irec_t));
4575 } else {
4576 kmem_free(ifp->if_u1.if_ext_irec,
4577 sizeof(xfs_ext_irec_t));
4578 }
4579 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4580}
4581
4582/*
4583 * This is called to clean up large amounts of unused memory allocated
4584 * by the indirection array. Before compacting anything though, verify
4585 * that the indirection array is still needed and switch back to the
4586 * linear extent list (or even the inline buffer) if possible. The
4587 * compaction policy is as follows:
4588 *
4589 * Full Compaction: Extents fit into a single page (or inline buffer)
4590 * Full Compaction: Extents occupy less than 10% of allocated space
4591 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4592 * No Compaction: Extents occupy at least 50% of allocated space
4593 */
4594void
4595xfs_iext_irec_compact(
4596 xfs_ifork_t *ifp) /* inode fork pointer */
4597{
4598 xfs_extnum_t nextents; /* number of extents in file */
4599 int nlists; /* number of irec's (ex lists) */
4600
4601 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4602 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4603 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4604
4605 if (nextents == 0) {
4606 xfs_iext_destroy(ifp);
4607 } else if (nextents <= XFS_INLINE_EXTS) {
4608 xfs_iext_indirect_to_direct(ifp);
4609 xfs_iext_direct_to_inline(ifp, nextents);
4610 } else if (nextents <= XFS_LINEAR_EXTS) {
4611 xfs_iext_indirect_to_direct(ifp);
4612 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4613 xfs_iext_irec_compact_full(ifp);
4614 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4615 xfs_iext_irec_compact_pages(ifp);
4616 }
4617}
4618
4619/*
4620 * Combine extents from neighboring extent pages.
4621 */
4622void
4623xfs_iext_irec_compact_pages(
4624 xfs_ifork_t *ifp) /* inode fork pointer */
4625{
4626 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4627 int erp_idx = 0; /* indirection array index */
4628 int nlists; /* number of irec's (ex lists) */
4629
4630 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4631 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4632 while (erp_idx < nlists - 1) {
4633 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4634 erp_next = erp + 1;
4635 if (erp_next->er_extcount <=
4636 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4637 memmove(&erp->er_extbuf[erp->er_extcount],
4638 erp_next->er_extbuf, erp_next->er_extcount *
4639 sizeof(xfs_bmbt_rec_t));
4640 erp->er_extcount += erp_next->er_extcount;
4641 /*
4642 * Free page before removing extent record
4643 * so er_extoffs don't get modified in
4644 * xfs_iext_irec_remove.
4645 */
4646 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4647 erp_next->er_extbuf = NULL;
4648 xfs_iext_irec_remove(ifp, erp_idx + 1);
4649 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4650 } else {
4651 erp_idx++;
4652 }
4653 }
4654}
4655
4656/*
4657 * Fully compact the extent records managed by the indirection array.
4658 */
4659void
4660xfs_iext_irec_compact_full(
4661 xfs_ifork_t *ifp) /* inode fork pointer */
4662{
4663 xfs_bmbt_rec_t *ep, *ep_next; /* extent record pointers */
4664 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4665 int erp_idx = 0; /* extent irec index */
4666 int ext_avail; /* empty entries in ex list */
4667 int ext_diff; /* number of exts to add */
4668 int nlists; /* number of irec's (ex lists) */
4669
4670 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4671 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4672 erp = ifp->if_u1.if_ext_irec;
4673 ep = &erp->er_extbuf[erp->er_extcount];
4674 erp_next = erp + 1;
4675 ep_next = erp_next->er_extbuf;
4676 while (erp_idx < nlists - 1) {
4677 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4678 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4679 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4680 erp->er_extcount += ext_diff;
4681 erp_next->er_extcount -= ext_diff;
4682 /* Remove next page */
4683 if (erp_next->er_extcount == 0) {
4684 /*
4685 * Free page before removing extent record
4686 * so er_extoffs don't get modified in
4687 * xfs_iext_irec_remove.
4688 */
4689 kmem_free(erp_next->er_extbuf,
4690 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4691 erp_next->er_extbuf = NULL;
4692 xfs_iext_irec_remove(ifp, erp_idx + 1);
4693 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4694 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4695 /* Update next page */
4696 } else {
4697 /* Move rest of page up to become next new page */
4698 memmove(erp_next->er_extbuf, ep_next,
4699 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4700 ep_next = erp_next->er_extbuf;
4701 memset(&ep_next[erp_next->er_extcount], 0,
4702 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4703 sizeof(xfs_bmbt_rec_t));
4704 }
4705 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4706 erp_idx++;
4707 if (erp_idx < nlists)
4708 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4709 else
4710 break;
4711 }
4712 ep = &erp->er_extbuf[erp->er_extcount];
4713 erp_next = erp + 1;
4714 ep_next = erp_next->er_extbuf;
4715 }
4716}
4717
4718/*
4719 * This is called to update the er_extoff field in the indirection
4720 * array when extents have been added or removed from one of the
4721 * extent lists. erp_idx contains the irec index to begin updating
4722 * at and ext_diff contains the number of extents that were added
4723 * or removed.
4724 */
4725void
4726xfs_iext_irec_update_extoffs(
4727 xfs_ifork_t *ifp, /* inode fork pointer */
4728 int erp_idx, /* irec index to update */
4729 int ext_diff) /* number of new extents */
4730{
4731 int i; /* loop counter */
4732 int nlists; /* number of irec's (ex lists */
4733
4734 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4735 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4736 for (i = erp_idx; i < nlists; i++) {
4737 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4738 }
4739}