David Collins | 7370f1a | 2017-01-18 16:21:53 -0800 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify |
| 5 | * it under the terms of the GNU General Public License version 2 and |
| 6 | * only version 2 as published by the Free Software Foundation. |
| 7 | * |
| 8 | * This program is distributed in the hope that it will be useful, |
| 9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 11 | * GNU General Public License for more details. |
| 12 | */ |
| 13 | |
| 14 | /* |
| 15 | * This file contains utility functions to be used by platform specific CPR3 |
| 16 | * regulator drivers. |
| 17 | */ |
| 18 | |
| 19 | #define pr_fmt(fmt) "%s: " fmt, __func__ |
| 20 | |
| 21 | #include <linux/cpumask.h> |
| 22 | #include <linux/device.h> |
| 23 | #include <linux/io.h> |
| 24 | #include <linux/kernel.h> |
| 25 | #include <linux/of.h> |
| 26 | #include <linux/platform_device.h> |
| 27 | #include <linux/slab.h> |
| 28 | #include <linux/types.h> |
| 29 | |
| 30 | #include "cpr3-regulator.h" |
| 31 | |
| 32 | #define BYTES_PER_FUSE_ROW 8 |
| 33 | #define MAX_FUSE_ROW_BIT 63 |
| 34 | |
| 35 | #define CPR3_CONSECUTIVE_UP_DOWN_MIN 0 |
| 36 | #define CPR3_CONSECUTIVE_UP_DOWN_MAX 15 |
| 37 | #define CPR3_UP_DOWN_THRESHOLD_MIN 0 |
| 38 | #define CPR3_UP_DOWN_THRESHOLD_MAX 31 |
| 39 | #define CPR3_STEP_QUOT_MIN 0 |
| 40 | #define CPR3_STEP_QUOT_MAX 63 |
| 41 | #define CPR3_IDLE_CLOCKS_MIN 0 |
| 42 | #define CPR3_IDLE_CLOCKS_MAX 31 |
| 43 | |
| 44 | /* This constant has units of uV/mV so 1000 corresponds to 100%. */ |
| 45 | #define CPR3_AGING_DERATE_UNITY 1000 |
| 46 | |
| 47 | /** |
| 48 | * cpr3_allocate_regulators() - allocate and initialize CPR3 regulators for a |
| 49 | * given thread based upon device tree data |
| 50 | * @thread: Pointer to the CPR3 thread |
| 51 | * |
| 52 | * This function allocates the thread->vreg array based upon the number of |
| 53 | * device tree regulator subnodes. It also initializes generic elements of each |
| 54 | * regulator struct such as name, of_node, and thread. |
| 55 | * |
| 56 | * Return: 0 on success, errno on failure |
| 57 | */ |
| 58 | static int cpr3_allocate_regulators(struct cpr3_thread *thread) |
| 59 | { |
| 60 | struct device_node *node; |
| 61 | int i, rc; |
| 62 | |
| 63 | thread->vreg_count = 0; |
| 64 | |
| 65 | for_each_available_child_of_node(thread->of_node, node) { |
| 66 | thread->vreg_count++; |
| 67 | } |
| 68 | |
| 69 | thread->vreg = devm_kcalloc(thread->ctrl->dev, thread->vreg_count, |
| 70 | sizeof(*thread->vreg), GFP_KERNEL); |
| 71 | if (!thread->vreg) |
| 72 | return -ENOMEM; |
| 73 | |
| 74 | i = 0; |
| 75 | for_each_available_child_of_node(thread->of_node, node) { |
| 76 | thread->vreg[i].of_node = node; |
| 77 | thread->vreg[i].thread = thread; |
| 78 | |
| 79 | rc = of_property_read_string(node, "regulator-name", |
| 80 | &thread->vreg[i].name); |
| 81 | if (rc) { |
| 82 | dev_err(thread->ctrl->dev, "could not find regulator name, rc=%d\n", |
| 83 | rc); |
| 84 | return rc; |
| 85 | } |
| 86 | |
| 87 | i++; |
| 88 | } |
| 89 | |
| 90 | return 0; |
| 91 | } |
| 92 | |
| 93 | /** |
| 94 | * cpr3_allocate_threads() - allocate and initialize CPR3 threads for a given |
| 95 | * controller based upon device tree data |
| 96 | * @ctrl: Pointer to the CPR3 controller |
| 97 | * @min_thread_id: Minimum allowed hardware thread ID for this controller |
| 98 | * @max_thread_id: Maximum allowed hardware thread ID for this controller |
| 99 | * |
| 100 | * This function allocates the ctrl->thread array based upon the number of |
| 101 | * device tree thread subnodes. It also initializes generic elements of each |
| 102 | * thread struct such as thread_id, of_node, ctrl, and vreg array. |
| 103 | * |
| 104 | * Return: 0 on success, errno on failure |
| 105 | */ |
| 106 | int cpr3_allocate_threads(struct cpr3_controller *ctrl, u32 min_thread_id, |
| 107 | u32 max_thread_id) |
| 108 | { |
| 109 | struct device *dev = ctrl->dev; |
| 110 | struct device_node *thread_node; |
| 111 | int i, j, rc; |
| 112 | |
| 113 | ctrl->thread_count = 0; |
| 114 | |
| 115 | for_each_available_child_of_node(dev->of_node, thread_node) { |
| 116 | ctrl->thread_count++; |
| 117 | } |
| 118 | |
| 119 | ctrl->thread = devm_kcalloc(dev, ctrl->thread_count, |
| 120 | sizeof(*ctrl->thread), GFP_KERNEL); |
| 121 | if (!ctrl->thread) |
| 122 | return -ENOMEM; |
| 123 | |
| 124 | i = 0; |
| 125 | for_each_available_child_of_node(dev->of_node, thread_node) { |
| 126 | ctrl->thread[i].of_node = thread_node; |
| 127 | ctrl->thread[i].ctrl = ctrl; |
| 128 | |
| 129 | rc = of_property_read_u32(thread_node, "qcom,cpr-thread-id", |
| 130 | &ctrl->thread[i].thread_id); |
| 131 | if (rc) { |
| 132 | dev_err(dev, "could not read DT property qcom,cpr-thread-id, rc=%d\n", |
| 133 | rc); |
| 134 | return rc; |
| 135 | } |
| 136 | |
| 137 | if (ctrl->thread[i].thread_id < min_thread_id || |
| 138 | ctrl->thread[i].thread_id > max_thread_id) { |
| 139 | dev_err(dev, "invalid thread id = %u; not within [%u, %u]\n", |
| 140 | ctrl->thread[i].thread_id, min_thread_id, |
| 141 | max_thread_id); |
| 142 | return -EINVAL; |
| 143 | } |
| 144 | |
| 145 | /* Verify that the thread ID is unique for all child nodes. */ |
| 146 | for (j = 0; j < i; j++) { |
| 147 | if (ctrl->thread[j].thread_id |
| 148 | == ctrl->thread[i].thread_id) { |
| 149 | dev_err(dev, "duplicate thread id = %u found\n", |
| 150 | ctrl->thread[i].thread_id); |
| 151 | return -EINVAL; |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | rc = cpr3_allocate_regulators(&ctrl->thread[i]); |
| 156 | if (rc) |
| 157 | return rc; |
| 158 | |
| 159 | i++; |
| 160 | } |
| 161 | |
| 162 | return 0; |
| 163 | } |
| 164 | |
| 165 | /** |
| 166 | * cpr3_map_fuse_base() - ioremap the base address of the fuse region |
| 167 | * @ctrl: Pointer to the CPR3 controller |
| 168 | * @pdev: Platform device pointer for the CPR3 controller |
| 169 | * |
| 170 | * Return: 0 on success, errno on failure |
| 171 | */ |
| 172 | int cpr3_map_fuse_base(struct cpr3_controller *ctrl, |
| 173 | struct platform_device *pdev) |
| 174 | { |
| 175 | struct resource *res; |
| 176 | |
| 177 | res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fuse_base"); |
| 178 | if (!res || !res->start) { |
| 179 | dev_err(&pdev->dev, "fuse base address is missing\n"); |
| 180 | return -ENXIO; |
| 181 | } |
| 182 | |
| 183 | ctrl->fuse_base = devm_ioremap(&pdev->dev, res->start, |
| 184 | resource_size(res)); |
| 185 | |
| 186 | return 0; |
| 187 | } |
| 188 | |
| 189 | /** |
| 190 | * cpr3_read_fuse_param() - reads a CPR3 fuse parameter out of eFuses |
| 191 | * @fuse_base_addr: Virtual memory address of the eFuse base address |
| 192 | * @param: Null terminated array of fuse param segments to read |
| 193 | * from |
| 194 | * @param_value: Output with value read from the eFuses |
| 195 | * |
| 196 | * This function reads from each of the parameter segments listed in the param |
| 197 | * array and concatenates their values together. Reading stops when an element |
| 198 | * is reached which has all 0 struct values. The total number of bits specified |
| 199 | * for the fuse parameter across all segments must be less than or equal to 64. |
| 200 | * |
| 201 | * Return: 0 on success, errno on failure |
| 202 | */ |
| 203 | int cpr3_read_fuse_param(void __iomem *fuse_base_addr, |
| 204 | const struct cpr3_fuse_param *param, u64 *param_value) |
| 205 | { |
| 206 | u64 fuse_val, val; |
| 207 | int bits; |
| 208 | int bits_total = 0; |
| 209 | |
| 210 | *param_value = 0; |
| 211 | |
| 212 | while (param->row || param->bit_start || param->bit_end) { |
| 213 | if (param->bit_start > param->bit_end |
| 214 | || param->bit_end > MAX_FUSE_ROW_BIT) { |
| 215 | pr_err("Invalid fuse parameter segment: row=%u, start=%u, end=%u\n", |
| 216 | param->row, param->bit_start, param->bit_end); |
| 217 | return -EINVAL; |
| 218 | } |
| 219 | |
| 220 | bits = param->bit_end - param->bit_start + 1; |
| 221 | if (bits_total + bits > 64) { |
| 222 | pr_err("Invalid fuse parameter segments; total bits = %d\n", |
| 223 | bits_total + bits); |
| 224 | return -EINVAL; |
| 225 | } |
| 226 | |
| 227 | fuse_val = readq_relaxed(fuse_base_addr |
| 228 | + param->row * BYTES_PER_FUSE_ROW); |
| 229 | val = (fuse_val >> param->bit_start) & ((1ULL << bits) - 1); |
| 230 | *param_value |= val << bits_total; |
| 231 | bits_total += bits; |
| 232 | |
| 233 | param++; |
| 234 | } |
| 235 | |
| 236 | return 0; |
| 237 | } |
| 238 | |
| 239 | /** |
| 240 | * cpr3_convert_open_loop_voltage_fuse() - converts an open loop voltage fuse |
| 241 | * value into an absolute voltage with units of microvolts |
| 242 | * @ref_volt: Reference voltage in microvolts |
| 243 | * @step_volt: The step size in microvolts of the fuse LSB |
| 244 | * @fuse: Open loop voltage fuse value |
| 245 | * @fuse_len: The bit length of the fuse value |
| 246 | * |
| 247 | * The MSB of the fuse parameter corresponds to a sign bit. If it is set, then |
| 248 | * the lower bits correspond to the number of steps to go down from the |
| 249 | * reference voltage. If it is not set, then the lower bits correspond to the |
| 250 | * number of steps to go up from the reference voltage. |
| 251 | */ |
| 252 | int cpr3_convert_open_loop_voltage_fuse(int ref_volt, int step_volt, u32 fuse, |
| 253 | int fuse_len) |
| 254 | { |
| 255 | int sign, steps; |
| 256 | |
| 257 | sign = (fuse & (1 << (fuse_len - 1))) ? -1 : 1; |
| 258 | steps = fuse & ((1 << (fuse_len - 1)) - 1); |
| 259 | |
| 260 | return ref_volt + sign * steps * step_volt; |
| 261 | } |
| 262 | |
| 263 | /** |
| 264 | * cpr3_interpolate() - performs linear interpolation |
| 265 | * @x1 Lower known x value |
| 266 | * @y1 Lower known y value |
| 267 | * @x2 Upper known x value |
| 268 | * @y2 Upper known y value |
| 269 | * @x Intermediate x value |
| 270 | * |
| 271 | * Returns y where (x, y) falls on the line between (x1, y1) and (x2, y2). |
| 272 | * It is required that x1 < x2, y1 <= y2, and x1 <= x <= x2. If these |
| 273 | * conditions are not met, then y2 will be returned. |
| 274 | */ |
| 275 | u64 cpr3_interpolate(u64 x1, u64 y1, u64 x2, u64 y2, u64 x) |
| 276 | { |
| 277 | u64 temp; |
| 278 | |
| 279 | if (x1 >= x2 || y1 > y2 || x1 > x || x > x2) |
| 280 | return y2; |
| 281 | |
| 282 | temp = (x2 - x) * (y2 - y1); |
| 283 | do_div(temp, (u32)(x2 - x1)); |
| 284 | |
| 285 | return y2 - temp; |
| 286 | } |
| 287 | |
| 288 | /** |
| 289 | * cpr3_parse_array_property() - fill an array from a portion of the values |
| 290 | * specified for a device tree property |
| 291 | * @vreg: Pointer to the CPR3 regulator |
| 292 | * @prop_name: The name of the device tree property to read from |
| 293 | * @tuple_size: The number of elements in each tuple |
| 294 | * @out: Output data array which must be of size tuple_size |
| 295 | * |
| 296 | * cpr3_parse_common_corner_data() must be called for vreg before this function |
| 297 | * is called so that fuse combo and speed bin size elements are initialized. |
| 298 | * |
| 299 | * Three formats are supported for the device tree property: |
| 300 | * 1. Length == tuple_size |
| 301 | * (reading begins at index 0) |
| 302 | * 2. Length == tuple_size * vreg->fuse_combos_supported |
| 303 | * (reading begins at index tuple_size * vreg->fuse_combo) |
| 304 | * 3. Length == tuple_size * vreg->speed_bins_supported |
| 305 | * (reading begins at index tuple_size * vreg->speed_bin_fuse) |
| 306 | * |
| 307 | * All other property lengths are treated as errors. |
| 308 | * |
| 309 | * Return: 0 on success, errno on failure |
| 310 | */ |
| 311 | int cpr3_parse_array_property(struct cpr3_regulator *vreg, |
| 312 | const char *prop_name, int tuple_size, u32 *out) |
| 313 | { |
| 314 | struct device_node *node = vreg->of_node; |
| 315 | int len = 0; |
| 316 | int i, offset, rc; |
| 317 | |
| 318 | if (!of_find_property(node, prop_name, &len)) { |
| 319 | cpr3_err(vreg, "property %s is missing\n", prop_name); |
| 320 | return -EINVAL; |
| 321 | } |
| 322 | |
| 323 | if (len == tuple_size * sizeof(u32)) { |
| 324 | offset = 0; |
| 325 | } else if (len == tuple_size * vreg->fuse_combos_supported |
| 326 | * sizeof(u32)) { |
| 327 | offset = tuple_size * vreg->fuse_combo; |
| 328 | } else if (vreg->speed_bins_supported > 0 && |
| 329 | len == tuple_size * vreg->speed_bins_supported * sizeof(u32)) { |
| 330 | offset = tuple_size * vreg->speed_bin_fuse; |
| 331 | } else { |
| 332 | if (vreg->speed_bins_supported > 0) |
| 333 | cpr3_err(vreg, "property %s has invalid length=%d, should be %zu, %zu, or %zu\n", |
| 334 | prop_name, len, |
| 335 | tuple_size * sizeof(u32), |
| 336 | tuple_size * vreg->speed_bins_supported |
| 337 | * sizeof(u32), |
| 338 | tuple_size * vreg->fuse_combos_supported |
| 339 | * sizeof(u32)); |
| 340 | else |
| 341 | cpr3_err(vreg, "property %s has invalid length=%d, should be %zu or %zu\n", |
| 342 | prop_name, len, |
| 343 | tuple_size * sizeof(u32), |
| 344 | tuple_size * vreg->fuse_combos_supported |
| 345 | * sizeof(u32)); |
| 346 | return -EINVAL; |
| 347 | } |
| 348 | |
| 349 | for (i = 0; i < tuple_size; i++) { |
| 350 | rc = of_property_read_u32_index(node, prop_name, offset + i, |
| 351 | &out[i]); |
| 352 | if (rc) { |
| 353 | cpr3_err(vreg, "error reading property %s, rc=%d\n", |
| 354 | prop_name, rc); |
| 355 | return rc; |
| 356 | } |
| 357 | } |
| 358 | |
| 359 | return 0; |
| 360 | } |
| 361 | |
| 362 | /** |
| 363 | * cpr3_parse_corner_array_property() - fill a per-corner array from a portion |
| 364 | * of the values specified for a device tree property |
| 365 | * @vreg: Pointer to the CPR3 regulator |
| 366 | * @prop_name: The name of the device tree property to read from |
| 367 | * @tuple_size: The number of elements in each per-corner tuple |
| 368 | * @out: Output data array which must be of size: |
| 369 | * tuple_size * vreg->corner_count |
| 370 | * |
| 371 | * cpr3_parse_common_corner_data() must be called for vreg before this function |
| 372 | * is called so that fuse combo and speed bin size elements are initialized. |
| 373 | * |
| 374 | * Three formats are supported for the device tree property: |
| 375 | * 1. Length == tuple_size * vreg->corner_count |
| 376 | * (reading begins at index 0) |
| 377 | * 2. Length == tuple_size * vreg->fuse_combo_corner_sum |
| 378 | * (reading begins at index tuple_size * vreg->fuse_combo_offset) |
| 379 | * 3. Length == tuple_size * vreg->speed_bin_corner_sum |
| 380 | * (reading begins at index tuple_size * vreg->speed_bin_offset) |
| 381 | * |
| 382 | * All other property lengths are treated as errors. |
| 383 | * |
| 384 | * Return: 0 on success, errno on failure |
| 385 | */ |
| 386 | int cpr3_parse_corner_array_property(struct cpr3_regulator *vreg, |
| 387 | const char *prop_name, int tuple_size, u32 *out) |
| 388 | { |
| 389 | struct device_node *node = vreg->of_node; |
| 390 | int len = 0; |
| 391 | int i, offset, rc; |
| 392 | |
| 393 | if (!of_find_property(node, prop_name, &len)) { |
| 394 | cpr3_err(vreg, "property %s is missing\n", prop_name); |
| 395 | return -EINVAL; |
| 396 | } |
| 397 | |
| 398 | if (len == tuple_size * vreg->corner_count * sizeof(u32)) { |
| 399 | offset = 0; |
| 400 | } else if (len == tuple_size * vreg->fuse_combo_corner_sum |
| 401 | * sizeof(u32)) { |
| 402 | offset = tuple_size * vreg->fuse_combo_offset; |
| 403 | } else if (vreg->speed_bin_corner_sum > 0 && |
| 404 | len == tuple_size * vreg->speed_bin_corner_sum * sizeof(u32)) { |
| 405 | offset = tuple_size * vreg->speed_bin_offset; |
| 406 | } else { |
| 407 | if (vreg->speed_bin_corner_sum > 0) |
| 408 | cpr3_err(vreg, "property %s has invalid length=%d, should be %zu, %zu, or %zu\n", |
| 409 | prop_name, len, |
| 410 | tuple_size * vreg->corner_count * sizeof(u32), |
| 411 | tuple_size * vreg->speed_bin_corner_sum |
| 412 | * sizeof(u32), |
| 413 | tuple_size * vreg->fuse_combo_corner_sum |
| 414 | * sizeof(u32)); |
| 415 | else |
| 416 | cpr3_err(vreg, "property %s has invalid length=%d, should be %zu or %zu\n", |
| 417 | prop_name, len, |
| 418 | tuple_size * vreg->corner_count * sizeof(u32), |
| 419 | tuple_size * vreg->fuse_combo_corner_sum |
| 420 | * sizeof(u32)); |
| 421 | return -EINVAL; |
| 422 | } |
| 423 | |
| 424 | for (i = 0; i < tuple_size * vreg->corner_count; i++) { |
| 425 | rc = of_property_read_u32_index(node, prop_name, offset + i, |
| 426 | &out[i]); |
| 427 | if (rc) { |
| 428 | cpr3_err(vreg, "error reading property %s, rc=%d\n", |
| 429 | prop_name, rc); |
| 430 | return rc; |
| 431 | } |
| 432 | } |
| 433 | |
| 434 | return 0; |
| 435 | } |
| 436 | |
| 437 | /** |
| 438 | * cpr3_parse_corner_band_array_property() - fill a per-corner band array |
| 439 | * from a portion of the values specified for a device tree |
| 440 | * property |
| 441 | * @vreg: Pointer to the CPR3 regulator |
| 442 | * @prop_name: The name of the device tree property to read from |
| 443 | * @tuple_size: The number of elements in each per-corner band tuple |
| 444 | * @out: Output data array which must be of size: |
| 445 | * tuple_size * vreg->corner_band_count |
| 446 | * |
| 447 | * cpr3_parse_common_corner_data() must be called for vreg before this function |
| 448 | * is called so that fuse combo and speed bin size elements are initialized. |
| 449 | * In addition, corner band fuse combo and speed bin sum and offset elements |
| 450 | * must be initialized prior to executing this function. |
| 451 | * |
| 452 | * Three formats are supported for the device tree property: |
| 453 | * 1. Length == tuple_size * vreg->corner_band_count |
| 454 | * (reading begins at index 0) |
| 455 | * 2. Length == tuple_size * vreg->fuse_combo_corner_band_sum |
| 456 | * (reading begins at index tuple_size * |
| 457 | * vreg->fuse_combo_corner_band_offset) |
| 458 | * 3. Length == tuple_size * vreg->speed_bin_corner_band_sum |
| 459 | * (reading begins at index tuple_size * |
| 460 | * vreg->speed_bin_corner_band_offset) |
| 461 | * |
| 462 | * All other property lengths are treated as errors. |
| 463 | * |
| 464 | * Return: 0 on success, errno on failure |
| 465 | */ |
| 466 | int cpr3_parse_corner_band_array_property(struct cpr3_regulator *vreg, |
| 467 | const char *prop_name, int tuple_size, u32 *out) |
| 468 | { |
| 469 | struct device_node *node = vreg->of_node; |
| 470 | int len = 0; |
| 471 | int i, offset, rc; |
| 472 | |
| 473 | if (!of_find_property(node, prop_name, &len)) { |
| 474 | cpr3_err(vreg, "property %s is missing\n", prop_name); |
| 475 | return -EINVAL; |
| 476 | } |
| 477 | |
| 478 | if (len == tuple_size * vreg->corner_band_count * sizeof(u32)) { |
| 479 | offset = 0; |
| 480 | } else if (len == tuple_size * vreg->fuse_combo_corner_band_sum |
| 481 | * sizeof(u32)) { |
| 482 | offset = tuple_size * vreg->fuse_combo_corner_band_offset; |
| 483 | } else if (vreg->speed_bin_corner_band_sum > 0 && |
| 484 | len == tuple_size * vreg->speed_bin_corner_band_sum * |
| 485 | sizeof(u32)) { |
| 486 | offset = tuple_size * vreg->speed_bin_corner_band_offset; |
| 487 | } else { |
| 488 | if (vreg->speed_bin_corner_band_sum > 0) |
| 489 | cpr3_err(vreg, "property %s has invalid length=%d, should be %zu, %zu, or %zu\n", |
| 490 | prop_name, len, |
| 491 | tuple_size * vreg->corner_band_count * |
| 492 | sizeof(u32), |
| 493 | tuple_size * vreg->speed_bin_corner_band_sum |
| 494 | * sizeof(u32), |
| 495 | tuple_size * vreg->fuse_combo_corner_band_sum |
| 496 | * sizeof(u32)); |
| 497 | else |
| 498 | cpr3_err(vreg, "property %s has invalid length=%d, should be %zu or %zu\n", |
| 499 | prop_name, len, |
| 500 | tuple_size * vreg->corner_band_count * |
| 501 | sizeof(u32), |
| 502 | tuple_size * vreg->fuse_combo_corner_band_sum |
| 503 | * sizeof(u32)); |
| 504 | return -EINVAL; |
| 505 | } |
| 506 | |
| 507 | for (i = 0; i < tuple_size * vreg->corner_band_count; i++) { |
| 508 | rc = of_property_read_u32_index(node, prop_name, offset + i, |
| 509 | &out[i]); |
| 510 | if (rc) { |
| 511 | cpr3_err(vreg, "error reading property %s, rc=%d\n", |
| 512 | prop_name, rc); |
| 513 | return rc; |
| 514 | } |
| 515 | } |
| 516 | |
| 517 | return 0; |
| 518 | } |
| 519 | |
| 520 | /** |
| 521 | * cpr3_parse_common_corner_data() - parse common CPR3 properties relating to |
| 522 | * the corners supported by a CPR3 regulator from device tree |
| 523 | * @vreg: Pointer to the CPR3 regulator |
| 524 | * |
| 525 | * This function reads, validates, and utilizes the following device tree |
| 526 | * properties: qcom,cpr-fuse-corners, qcom,cpr-fuse-combos, qcom,cpr-speed-bins, |
| 527 | * qcom,cpr-speed-bin-corners, qcom,cpr-corners, qcom,cpr-voltage-ceiling, |
| 528 | * qcom,cpr-voltage-floor, qcom,corner-frequencies, |
| 529 | * and qcom,cpr-corner-fmax-map. |
| 530 | * |
| 531 | * It initializes these CPR3 regulator elements: corner, corner_count, |
| 532 | * fuse_combos_supported, fuse_corner_map, and speed_bins_supported. It |
| 533 | * initializes these elements for each corner: ceiling_volt, floor_volt, |
| 534 | * proc_freq, and cpr_fuse_corner. |
| 535 | * |
| 536 | * It requires that the following CPR3 regulator elements be initialized before |
| 537 | * being called: fuse_corner_count, fuse_combo, and speed_bin_fuse. |
| 538 | * |
| 539 | * Return: 0 on success, errno on failure |
| 540 | */ |
| 541 | int cpr3_parse_common_corner_data(struct cpr3_regulator *vreg) |
| 542 | { |
| 543 | struct device_node *node = vreg->of_node; |
| 544 | struct cpr3_controller *ctrl = vreg->thread->ctrl; |
| 545 | u32 max_fuse_combos, fuse_corners, aging_allowed = 0; |
| 546 | u32 max_speed_bins = 0; |
| 547 | u32 *combo_corners; |
| 548 | u32 *speed_bin_corners; |
| 549 | u32 *temp; |
| 550 | int i, j, rc; |
| 551 | |
| 552 | rc = of_property_read_u32(node, "qcom,cpr-fuse-corners", &fuse_corners); |
| 553 | if (rc) { |
| 554 | cpr3_err(vreg, "error reading property qcom,cpr-fuse-corners, rc=%d\n", |
| 555 | rc); |
| 556 | return rc; |
| 557 | } |
| 558 | |
| 559 | if (vreg->fuse_corner_count != fuse_corners) { |
| 560 | cpr3_err(vreg, "device tree config supports %d fuse corners but the hardware has %d fuse corners\n", |
| 561 | fuse_corners, vreg->fuse_corner_count); |
| 562 | return -EINVAL; |
| 563 | } |
| 564 | |
| 565 | rc = of_property_read_u32(node, "qcom,cpr-fuse-combos", |
| 566 | &max_fuse_combos); |
| 567 | if (rc) { |
| 568 | cpr3_err(vreg, "error reading property qcom,cpr-fuse-combos, rc=%d\n", |
| 569 | rc); |
| 570 | return rc; |
| 571 | } |
| 572 | |
| 573 | /* |
| 574 | * Sanity check against arbitrarily large value to avoid excessive |
| 575 | * memory allocation. |
| 576 | */ |
| 577 | if (max_fuse_combos > 100 || max_fuse_combos == 0) { |
| 578 | cpr3_err(vreg, "qcom,cpr-fuse-combos is invalid: %u\n", |
| 579 | max_fuse_combos); |
| 580 | return -EINVAL; |
| 581 | } |
| 582 | |
| 583 | if (vreg->fuse_combo >= max_fuse_combos) { |
| 584 | cpr3_err(vreg, "device tree config supports fuse combos 0-%u but the hardware has combo %d\n", |
| 585 | max_fuse_combos - 1, vreg->fuse_combo); |
| 586 | BUG_ON(1); |
| 587 | return -EINVAL; |
| 588 | } |
| 589 | |
| 590 | vreg->fuse_combos_supported = max_fuse_combos; |
| 591 | |
| 592 | of_property_read_u32(node, "qcom,cpr-speed-bins", &max_speed_bins); |
| 593 | |
| 594 | /* |
| 595 | * Sanity check against arbitrarily large value to avoid excessive |
| 596 | * memory allocation. |
| 597 | */ |
| 598 | if (max_speed_bins > 100) { |
| 599 | cpr3_err(vreg, "qcom,cpr-speed-bins is invalid: %u\n", |
| 600 | max_speed_bins); |
| 601 | return -EINVAL; |
| 602 | } |
| 603 | |
| 604 | if (max_speed_bins && vreg->speed_bin_fuse >= max_speed_bins) { |
| 605 | cpr3_err(vreg, "device tree config supports speed bins 0-%u but the hardware has speed bin %d\n", |
| 606 | max_speed_bins - 1, vreg->speed_bin_fuse); |
| 607 | BUG(); |
| 608 | return -EINVAL; |
| 609 | } |
| 610 | |
| 611 | vreg->speed_bins_supported = max_speed_bins; |
| 612 | |
| 613 | combo_corners = kcalloc(vreg->fuse_combos_supported, |
| 614 | sizeof(*combo_corners), GFP_KERNEL); |
| 615 | if (!combo_corners) |
| 616 | return -ENOMEM; |
| 617 | |
| 618 | rc = of_property_read_u32_array(node, "qcom,cpr-corners", combo_corners, |
| 619 | vreg->fuse_combos_supported); |
| 620 | if (rc == -EOVERFLOW) { |
| 621 | /* Single value case */ |
| 622 | rc = of_property_read_u32(node, "qcom,cpr-corners", |
| 623 | combo_corners); |
| 624 | for (i = 1; i < vreg->fuse_combos_supported; i++) |
| 625 | combo_corners[i] = combo_corners[0]; |
| 626 | } |
| 627 | if (rc) { |
| 628 | cpr3_err(vreg, "error reading property qcom,cpr-corners, rc=%d\n", |
| 629 | rc); |
| 630 | kfree(combo_corners); |
| 631 | return rc; |
| 632 | } |
| 633 | |
| 634 | vreg->fuse_combo_offset = 0; |
| 635 | vreg->fuse_combo_corner_sum = 0; |
| 636 | for (i = 0; i < vreg->fuse_combos_supported; i++) { |
| 637 | vreg->fuse_combo_corner_sum += combo_corners[i]; |
| 638 | if (i < vreg->fuse_combo) |
| 639 | vreg->fuse_combo_offset += combo_corners[i]; |
| 640 | } |
| 641 | |
| 642 | vreg->corner_count = combo_corners[vreg->fuse_combo]; |
| 643 | |
| 644 | kfree(combo_corners); |
| 645 | |
| 646 | vreg->speed_bin_offset = 0; |
| 647 | vreg->speed_bin_corner_sum = 0; |
| 648 | if (vreg->speed_bins_supported > 0) { |
| 649 | speed_bin_corners = kcalloc(vreg->speed_bins_supported, |
| 650 | sizeof(*speed_bin_corners), GFP_KERNEL); |
| 651 | if (!speed_bin_corners) |
| 652 | return -ENOMEM; |
| 653 | |
| 654 | rc = of_property_read_u32_array(node, |
| 655 | "qcom,cpr-speed-bin-corners", speed_bin_corners, |
| 656 | vreg->speed_bins_supported); |
| 657 | if (rc) { |
| 658 | cpr3_err(vreg, "error reading property qcom,cpr-speed-bin-corners, rc=%d\n", |
| 659 | rc); |
| 660 | kfree(speed_bin_corners); |
| 661 | return rc; |
| 662 | } |
| 663 | |
| 664 | for (i = 0; i < vreg->speed_bins_supported; i++) { |
| 665 | vreg->speed_bin_corner_sum += speed_bin_corners[i]; |
| 666 | if (i < vreg->speed_bin_fuse) |
| 667 | vreg->speed_bin_offset += speed_bin_corners[i]; |
| 668 | } |
| 669 | |
| 670 | if (speed_bin_corners[vreg->speed_bin_fuse] |
| 671 | != vreg->corner_count) { |
| 672 | cpr3_err(vreg, "qcom,cpr-corners and qcom,cpr-speed-bin-corners conflict on number of corners: %d vs %u\n", |
| 673 | vreg->corner_count, |
| 674 | speed_bin_corners[vreg->speed_bin_fuse]); |
| 675 | kfree(speed_bin_corners); |
| 676 | return -EINVAL; |
| 677 | } |
| 678 | |
| 679 | kfree(speed_bin_corners); |
| 680 | } |
| 681 | |
| 682 | /* |
| 683 | * For CPRh compliant controllers two additional corners are |
| 684 | * allocated to correspond to the APM crossover voltage and the MEM ACC |
| 685 | * crossover voltage. |
| 686 | */ |
| 687 | vreg->corner = devm_kcalloc(ctrl->dev, ctrl->ctrl_type == |
| 688 | CPR_CTRL_TYPE_CPRH ? |
| 689 | vreg->corner_count + 2 : |
| 690 | vreg->corner_count, |
| 691 | sizeof(*vreg->corner), GFP_KERNEL); |
| 692 | temp = kcalloc(vreg->corner_count, sizeof(*temp), GFP_KERNEL); |
| 693 | if (!vreg->corner || !temp) |
| 694 | return -ENOMEM; |
| 695 | |
| 696 | rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-voltage-ceiling", |
| 697 | 1, temp); |
| 698 | if (rc) |
| 699 | goto free_temp; |
| 700 | for (i = 0; i < vreg->corner_count; i++) { |
| 701 | vreg->corner[i].ceiling_volt |
| 702 | = CPR3_ROUND(temp[i], ctrl->step_volt); |
| 703 | vreg->corner[i].abs_ceiling_volt = vreg->corner[i].ceiling_volt; |
| 704 | } |
| 705 | |
| 706 | rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-voltage-floor", |
| 707 | 1, temp); |
| 708 | if (rc) |
| 709 | goto free_temp; |
| 710 | for (i = 0; i < vreg->corner_count; i++) |
| 711 | vreg->corner[i].floor_volt |
| 712 | = CPR3_ROUND(temp[i], ctrl->step_volt); |
| 713 | |
| 714 | /* Validate ceiling and floor values */ |
| 715 | for (i = 0; i < vreg->corner_count; i++) { |
| 716 | if (vreg->corner[i].floor_volt |
| 717 | > vreg->corner[i].ceiling_volt) { |
| 718 | cpr3_err(vreg, "CPR floor[%d]=%d > ceiling[%d]=%d uV\n", |
| 719 | i, vreg->corner[i].floor_volt, |
| 720 | i, vreg->corner[i].ceiling_volt); |
| 721 | rc = -EINVAL; |
| 722 | goto free_temp; |
| 723 | } |
| 724 | } |
| 725 | |
| 726 | /* Load optional system-supply voltages */ |
| 727 | if (of_find_property(vreg->of_node, "qcom,system-voltage", NULL)) { |
| 728 | rc = cpr3_parse_corner_array_property(vreg, |
| 729 | "qcom,system-voltage", 1, temp); |
| 730 | if (rc) |
| 731 | goto free_temp; |
| 732 | for (i = 0; i < vreg->corner_count; i++) |
| 733 | vreg->corner[i].system_volt = temp[i]; |
| 734 | } |
| 735 | |
| 736 | rc = cpr3_parse_corner_array_property(vreg, "qcom,corner-frequencies", |
| 737 | 1, temp); |
| 738 | if (rc) |
| 739 | goto free_temp; |
| 740 | for (i = 0; i < vreg->corner_count; i++) |
| 741 | vreg->corner[i].proc_freq = temp[i]; |
| 742 | |
| 743 | /* Validate frequencies */ |
| 744 | for (i = 1; i < vreg->corner_count; i++) { |
| 745 | if (vreg->corner[i].proc_freq |
| 746 | < vreg->corner[i - 1].proc_freq) { |
| 747 | cpr3_err(vreg, "invalid frequency: freq[%d]=%u < freq[%d]=%u\n", |
| 748 | i, vreg->corner[i].proc_freq, i - 1, |
| 749 | vreg->corner[i - 1].proc_freq); |
| 750 | rc = -EINVAL; |
| 751 | goto free_temp; |
| 752 | } |
| 753 | } |
| 754 | |
| 755 | vreg->fuse_corner_map = devm_kcalloc(ctrl->dev, vreg->fuse_corner_count, |
| 756 | sizeof(*vreg->fuse_corner_map), GFP_KERNEL); |
| 757 | if (!vreg->fuse_corner_map) { |
| 758 | rc = -ENOMEM; |
| 759 | goto free_temp; |
| 760 | } |
| 761 | |
| 762 | rc = cpr3_parse_array_property(vreg, "qcom,cpr-corner-fmax-map", |
| 763 | vreg->fuse_corner_count, temp); |
| 764 | if (rc) |
| 765 | goto free_temp; |
| 766 | for (i = 0; i < vreg->fuse_corner_count; i++) { |
| 767 | vreg->fuse_corner_map[i] = temp[i] - CPR3_CORNER_OFFSET; |
| 768 | if (temp[i] < CPR3_CORNER_OFFSET |
| 769 | || temp[i] > vreg->corner_count + CPR3_CORNER_OFFSET) { |
| 770 | cpr3_err(vreg, "invalid corner value specified in qcom,cpr-corner-fmax-map: %u\n", |
| 771 | temp[i]); |
| 772 | rc = -EINVAL; |
| 773 | goto free_temp; |
| 774 | } else if (i > 0 && temp[i - 1] >= temp[i]) { |
| 775 | cpr3_err(vreg, "invalid corner %u less than or equal to previous corner %u\n", |
| 776 | temp[i], temp[i - 1]); |
| 777 | rc = -EINVAL; |
| 778 | goto free_temp; |
| 779 | } |
| 780 | } |
| 781 | if (temp[vreg->fuse_corner_count - 1] != vreg->corner_count) |
| 782 | cpr3_debug(vreg, "Note: highest Fmax corner %u in qcom,cpr-corner-fmax-map does not match highest supported corner %d\n", |
| 783 | temp[vreg->fuse_corner_count - 1], |
| 784 | vreg->corner_count); |
| 785 | |
| 786 | for (i = 0; i < vreg->corner_count; i++) { |
| 787 | for (j = 0; j < vreg->fuse_corner_count; j++) { |
| 788 | if (i + CPR3_CORNER_OFFSET <= temp[j]) { |
| 789 | vreg->corner[i].cpr_fuse_corner = j; |
| 790 | break; |
| 791 | } |
| 792 | } |
| 793 | if (j == vreg->fuse_corner_count) { |
| 794 | /* |
| 795 | * Handle the case where the highest fuse corner maps |
| 796 | * to a corner below the highest corner. |
| 797 | */ |
| 798 | vreg->corner[i].cpr_fuse_corner |
| 799 | = vreg->fuse_corner_count - 1; |
| 800 | } |
| 801 | } |
| 802 | |
| 803 | if (of_find_property(vreg->of_node, |
| 804 | "qcom,allow-aging-voltage-adjustment", NULL)) { |
| 805 | rc = cpr3_parse_array_property(vreg, |
| 806 | "qcom,allow-aging-voltage-adjustment", |
| 807 | 1, &aging_allowed); |
| 808 | if (rc) |
| 809 | goto free_temp; |
| 810 | |
| 811 | vreg->aging_allowed = aging_allowed; |
| 812 | } |
| 813 | |
| 814 | if (of_find_property(vreg->of_node, |
| 815 | "qcom,allow-aging-open-loop-voltage-adjustment", NULL)) { |
| 816 | rc = cpr3_parse_array_property(vreg, |
| 817 | "qcom,allow-aging-open-loop-voltage-adjustment", |
| 818 | 1, &aging_allowed); |
| 819 | if (rc) |
| 820 | goto free_temp; |
| 821 | |
| 822 | vreg->aging_allow_open_loop_adj = aging_allowed; |
| 823 | } |
| 824 | |
| 825 | if (vreg->aging_allowed) { |
| 826 | if (ctrl->aging_ref_volt <= 0) { |
| 827 | cpr3_err(ctrl, "qcom,cpr-aging-ref-voltage must be specified\n"); |
| 828 | rc = -EINVAL; |
| 829 | goto free_temp; |
| 830 | } |
| 831 | |
| 832 | rc = cpr3_parse_array_property(vreg, |
| 833 | "qcom,cpr-aging-max-voltage-adjustment", |
| 834 | 1, &vreg->aging_max_adjust_volt); |
| 835 | if (rc) |
| 836 | goto free_temp; |
| 837 | |
| 838 | rc = cpr3_parse_array_property(vreg, |
| 839 | "qcom,cpr-aging-ref-corner", 1, &vreg->aging_corner); |
| 840 | if (rc) { |
| 841 | goto free_temp; |
| 842 | } else if (vreg->aging_corner < CPR3_CORNER_OFFSET |
| 843 | || vreg->aging_corner > vreg->corner_count - 1 |
| 844 | + CPR3_CORNER_OFFSET) { |
| 845 | cpr3_err(vreg, "aging reference corner=%d not in range [%d, %d]\n", |
| 846 | vreg->aging_corner, CPR3_CORNER_OFFSET, |
| 847 | vreg->corner_count - 1 + CPR3_CORNER_OFFSET); |
| 848 | rc = -EINVAL; |
| 849 | goto free_temp; |
| 850 | } |
| 851 | vreg->aging_corner -= CPR3_CORNER_OFFSET; |
| 852 | |
| 853 | if (of_find_property(vreg->of_node, "qcom,cpr-aging-derate", |
| 854 | NULL)) { |
| 855 | rc = cpr3_parse_corner_array_property(vreg, |
| 856 | "qcom,cpr-aging-derate", 1, temp); |
| 857 | if (rc) |
| 858 | goto free_temp; |
| 859 | |
| 860 | for (i = 0; i < vreg->corner_count; i++) |
| 861 | vreg->corner[i].aging_derate = temp[i]; |
| 862 | } else { |
| 863 | for (i = 0; i < vreg->corner_count; i++) |
| 864 | vreg->corner[i].aging_derate |
| 865 | = CPR3_AGING_DERATE_UNITY; |
| 866 | } |
| 867 | } |
| 868 | |
| 869 | free_temp: |
| 870 | kfree(temp); |
| 871 | return rc; |
| 872 | } |
| 873 | |
| 874 | /** |
| 875 | * cpr3_parse_thread_u32() - parse the specified property from the CPR3 thread's |
| 876 | * device tree node and verify that it is within the allowed limits |
| 877 | * @thread: Pointer to the CPR3 thread |
| 878 | * @propname: The name of the device tree property to read |
| 879 | * @out_value: The output pointer to fill with the value read |
| 880 | * @value_min: The minimum allowed property value |
| 881 | * @value_max: The maximum allowed property value |
| 882 | * |
| 883 | * This function prints a verbose error message if the property is missing or |
| 884 | * has a value which is not within the specified range. |
| 885 | * |
| 886 | * Return: 0 on success, errno on failure |
| 887 | */ |
| 888 | int cpr3_parse_thread_u32(struct cpr3_thread *thread, const char *propname, |
| 889 | u32 *out_value, u32 value_min, u32 value_max) |
| 890 | { |
| 891 | int rc; |
| 892 | |
| 893 | rc = of_property_read_u32(thread->of_node, propname, out_value); |
| 894 | if (rc) { |
| 895 | cpr3_err(thread->ctrl, "thread %u error reading property %s, rc=%d\n", |
| 896 | thread->thread_id, propname, rc); |
| 897 | return rc; |
| 898 | } |
| 899 | |
| 900 | if (*out_value < value_min || *out_value > value_max) { |
| 901 | cpr3_err(thread->ctrl, "thread %u %s=%u is invalid; allowed range: [%u, %u]\n", |
| 902 | thread->thread_id, propname, *out_value, value_min, |
| 903 | value_max); |
| 904 | return -EINVAL; |
| 905 | } |
| 906 | |
| 907 | return 0; |
| 908 | } |
| 909 | |
| 910 | /** |
| 911 | * cpr3_parse_ctrl_u32() - parse the specified property from the CPR3 |
| 912 | * controller's device tree node and verify that it is within the |
| 913 | * allowed limits |
| 914 | * @ctrl: Pointer to the CPR3 controller |
| 915 | * @propname: The name of the device tree property to read |
| 916 | * @out_value: The output pointer to fill with the value read |
| 917 | * @value_min: The minimum allowed property value |
| 918 | * @value_max: The maximum allowed property value |
| 919 | * |
| 920 | * This function prints a verbose error message if the property is missing or |
| 921 | * has a value which is not within the specified range. |
| 922 | * |
| 923 | * Return: 0 on success, errno on failure |
| 924 | */ |
| 925 | int cpr3_parse_ctrl_u32(struct cpr3_controller *ctrl, const char *propname, |
| 926 | u32 *out_value, u32 value_min, u32 value_max) |
| 927 | { |
| 928 | int rc; |
| 929 | |
| 930 | rc = of_property_read_u32(ctrl->dev->of_node, propname, out_value); |
| 931 | if (rc) { |
| 932 | cpr3_err(ctrl, "error reading property %s, rc=%d\n", |
| 933 | propname, rc); |
| 934 | return rc; |
| 935 | } |
| 936 | |
| 937 | if (*out_value < value_min || *out_value > value_max) { |
| 938 | cpr3_err(ctrl, "%s=%u is invalid; allowed range: [%u, %u]\n", |
| 939 | propname, *out_value, value_min, value_max); |
| 940 | return -EINVAL; |
| 941 | } |
| 942 | |
| 943 | return 0; |
| 944 | } |
| 945 | |
| 946 | /** |
| 947 | * cpr3_parse_common_thread_data() - parse common CPR3 thread properties from |
| 948 | * device tree |
| 949 | * @thread: Pointer to the CPR3 thread |
| 950 | * |
| 951 | * Return: 0 on success, errno on failure |
| 952 | */ |
| 953 | int cpr3_parse_common_thread_data(struct cpr3_thread *thread) |
| 954 | { |
| 955 | int rc; |
| 956 | |
| 957 | rc = cpr3_parse_thread_u32(thread, "qcom,cpr-consecutive-up", |
| 958 | &thread->consecutive_up, CPR3_CONSECUTIVE_UP_DOWN_MIN, |
| 959 | CPR3_CONSECUTIVE_UP_DOWN_MAX); |
| 960 | if (rc) |
| 961 | return rc; |
| 962 | |
| 963 | rc = cpr3_parse_thread_u32(thread, "qcom,cpr-consecutive-down", |
| 964 | &thread->consecutive_down, CPR3_CONSECUTIVE_UP_DOWN_MIN, |
| 965 | CPR3_CONSECUTIVE_UP_DOWN_MAX); |
| 966 | if (rc) |
| 967 | return rc; |
| 968 | |
| 969 | rc = cpr3_parse_thread_u32(thread, "qcom,cpr-up-threshold", |
| 970 | &thread->up_threshold, CPR3_UP_DOWN_THRESHOLD_MIN, |
| 971 | CPR3_UP_DOWN_THRESHOLD_MAX); |
| 972 | if (rc) |
| 973 | return rc; |
| 974 | |
| 975 | rc = cpr3_parse_thread_u32(thread, "qcom,cpr-down-threshold", |
| 976 | &thread->down_threshold, CPR3_UP_DOWN_THRESHOLD_MIN, |
| 977 | CPR3_UP_DOWN_THRESHOLD_MAX); |
| 978 | if (rc) |
| 979 | return rc; |
| 980 | |
| 981 | return rc; |
| 982 | } |
| 983 | |
| 984 | /** |
| 985 | * cpr3_parse_irq_affinity() - parse CPR IRQ affinity information |
| 986 | * @ctrl: Pointer to the CPR3 controller |
| 987 | * |
| 988 | * Return: 0 on success, errno on failure |
| 989 | */ |
| 990 | static int cpr3_parse_irq_affinity(struct cpr3_controller *ctrl) |
| 991 | { |
| 992 | struct device_node *cpu_node; |
| 993 | int i, cpu; |
| 994 | int len = 0; |
| 995 | |
| 996 | if (!of_find_property(ctrl->dev->of_node, "qcom,cpr-interrupt-affinity", |
| 997 | &len)) { |
| 998 | /* No IRQ affinity required */ |
| 999 | return 0; |
| 1000 | } |
| 1001 | |
| 1002 | len /= sizeof(u32); |
| 1003 | |
| 1004 | for (i = 0; i < len; i++) { |
| 1005 | cpu_node = of_parse_phandle(ctrl->dev->of_node, |
| 1006 | "qcom,cpr-interrupt-affinity", i); |
| 1007 | if (!cpu_node) { |
| 1008 | cpr3_err(ctrl, "could not find CPU node %d\n", i); |
| 1009 | return -EINVAL; |
| 1010 | } |
| 1011 | |
| 1012 | for_each_possible_cpu(cpu) { |
| 1013 | if (of_get_cpu_node(cpu, NULL) == cpu_node) { |
| 1014 | cpumask_set_cpu(cpu, &ctrl->irq_affinity_mask); |
| 1015 | break; |
| 1016 | } |
| 1017 | } |
| 1018 | of_node_put(cpu_node); |
| 1019 | } |
| 1020 | |
| 1021 | return 0; |
| 1022 | } |
| 1023 | |
| 1024 | static int cpr3_panic_notifier_init(struct cpr3_controller *ctrl) |
| 1025 | { |
| 1026 | struct device_node *node = ctrl->dev->of_node; |
| 1027 | struct cpr3_panic_regs_info *panic_regs_info; |
| 1028 | struct cpr3_reg_info *regs; |
| 1029 | int i, reg_count, len, rc = 0; |
| 1030 | |
| 1031 | if (!of_find_property(node, "qcom,cpr-panic-reg-addr-list", &len)) { |
| 1032 | /* panic register address list not specified */ |
| 1033 | return rc; |
| 1034 | } |
| 1035 | |
| 1036 | reg_count = len / sizeof(u32); |
| 1037 | if (!reg_count) { |
| 1038 | cpr3_err(ctrl, "qcom,cpr-panic-reg-addr-list has invalid len = %d\n", |
| 1039 | len); |
| 1040 | return -EINVAL; |
| 1041 | } |
| 1042 | |
| 1043 | if (!of_find_property(node, "qcom,cpr-panic-reg-name-list", NULL)) { |
| 1044 | cpr3_err(ctrl, "property qcom,cpr-panic-reg-name-list not specified\n"); |
| 1045 | return -EINVAL; |
| 1046 | } |
| 1047 | |
| 1048 | len = of_property_count_strings(node, "qcom,cpr-panic-reg-name-list"); |
| 1049 | if (reg_count != len) { |
| 1050 | cpr3_err(ctrl, "qcom,cpr-panic-reg-name-list should have %d strings\n", |
| 1051 | reg_count); |
| 1052 | return -EINVAL; |
| 1053 | } |
| 1054 | |
| 1055 | panic_regs_info = devm_kzalloc(ctrl->dev, sizeof(*panic_regs_info), |
| 1056 | GFP_KERNEL); |
| 1057 | if (!panic_regs_info) |
| 1058 | return -ENOMEM; |
| 1059 | |
| 1060 | regs = devm_kcalloc(ctrl->dev, reg_count, sizeof(*regs), GFP_KERNEL); |
| 1061 | if (!regs) |
| 1062 | return -ENOMEM; |
| 1063 | |
| 1064 | for (i = 0; i < reg_count; i++) { |
| 1065 | rc = of_property_read_string_index(node, |
| 1066 | "qcom,cpr-panic-reg-name-list", i, |
| 1067 | &(regs[i].name)); |
| 1068 | if (rc) { |
| 1069 | cpr3_err(ctrl, "error reading property qcom,cpr-panic-reg-name-list, rc=%d\n", |
| 1070 | rc); |
| 1071 | return rc; |
| 1072 | } |
| 1073 | |
| 1074 | rc = of_property_read_u32_index(node, |
| 1075 | "qcom,cpr-panic-reg-addr-list", i, |
| 1076 | &(regs[i].addr)); |
| 1077 | if (rc) { |
| 1078 | cpr3_err(ctrl, "error reading property qcom,cpr-panic-reg-addr-list, rc=%d\n", |
| 1079 | rc); |
| 1080 | return rc; |
| 1081 | } |
| 1082 | regs[i].virt_addr = devm_ioremap(ctrl->dev, regs[i].addr, 0x4); |
| 1083 | if (!regs[i].virt_addr) { |
| 1084 | pr_err("Unable to map panic register addr 0x%08x\n", |
| 1085 | regs[i].addr); |
| 1086 | return -EINVAL; |
| 1087 | } |
| 1088 | regs[i].value = 0xFFFFFFFF; |
| 1089 | } |
| 1090 | |
| 1091 | panic_regs_info->reg_count = reg_count; |
| 1092 | panic_regs_info->regs = regs; |
| 1093 | ctrl->panic_regs_info = panic_regs_info; |
| 1094 | |
| 1095 | return rc; |
| 1096 | } |
| 1097 | |
| 1098 | /** |
| 1099 | * cpr3_parse_common_ctrl_data() - parse common CPR3 controller properties from |
| 1100 | * device tree |
| 1101 | * @ctrl: Pointer to the CPR3 controller |
| 1102 | * |
| 1103 | * Return: 0 on success, errno on failure |
| 1104 | */ |
| 1105 | int cpr3_parse_common_ctrl_data(struct cpr3_controller *ctrl) |
| 1106 | { |
| 1107 | int rc; |
| 1108 | |
| 1109 | rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-sensor-time", |
| 1110 | &ctrl->sensor_time, 0, UINT_MAX); |
| 1111 | if (rc) |
| 1112 | return rc; |
| 1113 | |
| 1114 | rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-loop-time", |
| 1115 | &ctrl->loop_time, 0, UINT_MAX); |
| 1116 | if (rc) |
| 1117 | return rc; |
| 1118 | |
| 1119 | rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-idle-cycles", |
| 1120 | &ctrl->idle_clocks, CPR3_IDLE_CLOCKS_MIN, |
| 1121 | CPR3_IDLE_CLOCKS_MAX); |
| 1122 | if (rc) |
| 1123 | return rc; |
| 1124 | |
| 1125 | rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-step-quot-init-min", |
| 1126 | &ctrl->step_quot_init_min, CPR3_STEP_QUOT_MIN, |
| 1127 | CPR3_STEP_QUOT_MAX); |
| 1128 | if (rc) |
| 1129 | return rc; |
| 1130 | |
| 1131 | rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-step-quot-init-max", |
| 1132 | &ctrl->step_quot_init_max, CPR3_STEP_QUOT_MIN, |
| 1133 | CPR3_STEP_QUOT_MAX); |
| 1134 | if (rc) |
| 1135 | return rc; |
| 1136 | |
| 1137 | rc = of_property_read_u32(ctrl->dev->of_node, "qcom,voltage-step", |
| 1138 | &ctrl->step_volt); |
| 1139 | if (rc) { |
| 1140 | cpr3_err(ctrl, "error reading property qcom,voltage-step, rc=%d\n", |
| 1141 | rc); |
| 1142 | return rc; |
| 1143 | } |
| 1144 | if (ctrl->step_volt <= 0) { |
| 1145 | cpr3_err(ctrl, "qcom,voltage-step=%d is invalid\n", |
| 1146 | ctrl->step_volt); |
| 1147 | return -EINVAL; |
| 1148 | } |
| 1149 | |
| 1150 | rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-count-mode", |
| 1151 | &ctrl->count_mode, CPR3_COUNT_MODE_ALL_AT_ONCE_MIN, |
| 1152 | CPR3_COUNT_MODE_STAGGERED); |
| 1153 | if (rc) |
| 1154 | return rc; |
| 1155 | |
| 1156 | /* Count repeat is optional */ |
| 1157 | ctrl->count_repeat = 0; |
| 1158 | of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-count-repeat", |
| 1159 | &ctrl->count_repeat); |
| 1160 | |
| 1161 | ctrl->cpr_allowed_sw = of_property_read_bool(ctrl->dev->of_node, |
| 1162 | "qcom,cpr-enable"); |
| 1163 | |
| 1164 | rc = cpr3_parse_irq_affinity(ctrl); |
| 1165 | if (rc) |
| 1166 | return rc; |
| 1167 | |
David Collins | 044e9e7 | 2017-03-06 16:47:09 -0800 | [diff] [blame] | 1168 | ctrl->ignore_invalid_fuses = of_property_read_bool(ctrl->dev->of_node, |
| 1169 | "qcom,cpr-ignore-invalid-fuses"); |
| 1170 | |
David Collins | 7370f1a | 2017-01-18 16:21:53 -0800 | [diff] [blame] | 1171 | /* Aging reference voltage is optional */ |
| 1172 | ctrl->aging_ref_volt = 0; |
| 1173 | of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-aging-ref-voltage", |
| 1174 | &ctrl->aging_ref_volt); |
| 1175 | |
| 1176 | /* Aging possible bitmask is optional */ |
| 1177 | ctrl->aging_possible_mask = 0; |
| 1178 | of_property_read_u32(ctrl->dev->of_node, |
| 1179 | "qcom,cpr-aging-allowed-reg-mask", |
| 1180 | &ctrl->aging_possible_mask); |
| 1181 | |
| 1182 | if (ctrl->aging_possible_mask) { |
| 1183 | /* |
| 1184 | * Aging possible register value required if bitmask is |
| 1185 | * specified |
| 1186 | */ |
| 1187 | rc = cpr3_parse_ctrl_u32(ctrl, |
| 1188 | "qcom,cpr-aging-allowed-reg-value", |
| 1189 | &ctrl->aging_possible_val, 0, UINT_MAX); |
| 1190 | if (rc) |
| 1191 | return rc; |
| 1192 | } |
| 1193 | |
| 1194 | if (of_find_property(ctrl->dev->of_node, "clock-names", NULL)) { |
| 1195 | ctrl->core_clk = devm_clk_get(ctrl->dev, "core_clk"); |
| 1196 | if (IS_ERR(ctrl->core_clk)) { |
| 1197 | rc = PTR_ERR(ctrl->core_clk); |
| 1198 | if (rc != -EPROBE_DEFER) |
| 1199 | cpr3_err(ctrl, "unable request core clock, rc=%d\n", |
| 1200 | rc); |
| 1201 | return rc; |
| 1202 | } |
| 1203 | } |
| 1204 | |
| 1205 | rc = cpr3_panic_notifier_init(ctrl); |
| 1206 | if (rc) |
| 1207 | return rc; |
| 1208 | |
| 1209 | if (of_find_property(ctrl->dev->of_node, "vdd-supply", NULL)) { |
| 1210 | ctrl->vdd_regulator = devm_regulator_get(ctrl->dev, "vdd"); |
| 1211 | if (IS_ERR(ctrl->vdd_regulator)) { |
| 1212 | rc = PTR_ERR(ctrl->vdd_regulator); |
| 1213 | if (rc != -EPROBE_DEFER) |
| 1214 | cpr3_err(ctrl, "unable to request vdd regulator, rc=%d\n", |
| 1215 | rc); |
| 1216 | return rc; |
| 1217 | } |
| 1218 | } else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPRH) { |
| 1219 | /* vdd-supply is optional for CPRh controllers. */ |
| 1220 | ctrl->vdd_regulator = NULL; |
| 1221 | } else { |
| 1222 | cpr3_err(ctrl, "vdd supply is not defined\n"); |
| 1223 | return -ENODEV; |
| 1224 | } |
| 1225 | |
| 1226 | /* |
Tirupathi Reddy | 718bc80 | 2017-02-09 16:29:24 +0530 | [diff] [blame] | 1227 | * Reset step_quot to default on each loop_en = 0 transition is |
| 1228 | * optional. |
| 1229 | */ |
| 1230 | ctrl->reset_step_quot_loop_en |
| 1231 | = of_property_read_bool(ctrl->dev->of_node, |
| 1232 | "qcom,cpr-reset-step-quot-loop-en"); |
| 1233 | |
| 1234 | /* |
David Collins | 7370f1a | 2017-01-18 16:21:53 -0800 | [diff] [blame] | 1235 | * Regulator device handles are not necessary for CPRh controllers |
| 1236 | * since communication with the regulators is completely managed |
| 1237 | * in hardware. |
| 1238 | */ |
| 1239 | if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPRH) |
| 1240 | return rc; |
| 1241 | |
| 1242 | ctrl->system_regulator = devm_regulator_get_optional(ctrl->dev, |
| 1243 | "system"); |
| 1244 | if (IS_ERR(ctrl->system_regulator)) { |
| 1245 | rc = PTR_ERR(ctrl->system_regulator); |
| 1246 | if (rc != -EPROBE_DEFER) { |
| 1247 | rc = 0; |
| 1248 | ctrl->system_regulator = NULL; |
| 1249 | } else { |
| 1250 | return rc; |
| 1251 | } |
| 1252 | } |
| 1253 | |
| 1254 | ctrl->mem_acc_regulator = devm_regulator_get_optional(ctrl->dev, |
| 1255 | "mem-acc"); |
| 1256 | if (IS_ERR(ctrl->mem_acc_regulator)) { |
| 1257 | rc = PTR_ERR(ctrl->mem_acc_regulator); |
| 1258 | if (rc != -EPROBE_DEFER) { |
| 1259 | rc = 0; |
| 1260 | ctrl->mem_acc_regulator = NULL; |
| 1261 | } else { |
| 1262 | return rc; |
| 1263 | } |
| 1264 | } |
| 1265 | |
| 1266 | return rc; |
| 1267 | } |
| 1268 | |
| 1269 | /** |
| 1270 | * cpr3_limit_open_loop_voltages() - modify the open-loop voltage of each corner |
| 1271 | * so that it fits within the floor to ceiling |
| 1272 | * voltage range of the corner |
| 1273 | * @vreg: Pointer to the CPR3 regulator |
| 1274 | * |
| 1275 | * This function clips the open-loop voltage for each corner so that it is |
| 1276 | * limited to the floor to ceiling range. It also rounds each open-loop voltage |
| 1277 | * so that it corresponds to a set point available to the underlying regulator. |
| 1278 | * |
| 1279 | * Return: 0 on success, errno on failure |
| 1280 | */ |
| 1281 | int cpr3_limit_open_loop_voltages(struct cpr3_regulator *vreg) |
| 1282 | { |
| 1283 | int i, volt; |
| 1284 | |
| 1285 | cpr3_debug(vreg, "open-loop voltages after trimming and rounding:\n"); |
| 1286 | for (i = 0; i < vreg->corner_count; i++) { |
| 1287 | volt = CPR3_ROUND(vreg->corner[i].open_loop_volt, |
| 1288 | vreg->thread->ctrl->step_volt); |
| 1289 | if (volt < vreg->corner[i].floor_volt) |
| 1290 | volt = vreg->corner[i].floor_volt; |
| 1291 | else if (volt > vreg->corner[i].ceiling_volt) |
| 1292 | volt = vreg->corner[i].ceiling_volt; |
| 1293 | vreg->corner[i].open_loop_volt = volt; |
| 1294 | cpr3_debug(vreg, "corner[%2d]: open-loop=%d uV\n", i, volt); |
| 1295 | } |
| 1296 | |
| 1297 | return 0; |
| 1298 | } |
| 1299 | |
| 1300 | /** |
| 1301 | * cpr3_open_loop_voltage_as_ceiling() - configures the ceiling voltage for each |
| 1302 | * corner to equal the open-loop voltage if the relevant device |
| 1303 | * tree property is found for the CPR3 regulator |
| 1304 | * @vreg: Pointer to the CPR3 regulator |
| 1305 | * |
| 1306 | * This function assumes that the the open-loop voltage for each corner has |
| 1307 | * already been rounded to the nearest allowed set point and that it falls |
| 1308 | * within the floor to ceiling range. |
| 1309 | * |
| 1310 | * Return: none |
| 1311 | */ |
| 1312 | void cpr3_open_loop_voltage_as_ceiling(struct cpr3_regulator *vreg) |
| 1313 | { |
| 1314 | int i; |
| 1315 | |
| 1316 | if (!of_property_read_bool(vreg->of_node, |
| 1317 | "qcom,cpr-scaled-open-loop-voltage-as-ceiling")) |
| 1318 | return; |
| 1319 | |
| 1320 | for (i = 0; i < vreg->corner_count; i++) |
| 1321 | vreg->corner[i].ceiling_volt |
| 1322 | = vreg->corner[i].open_loop_volt; |
| 1323 | } |
| 1324 | |
| 1325 | /** |
| 1326 | * cpr3_limit_floor_voltages() - raise the floor voltage of each corner so that |
| 1327 | * the optional maximum floor to ceiling voltage range specified in |
| 1328 | * device tree is satisfied |
| 1329 | * @vreg: Pointer to the CPR3 regulator |
| 1330 | * |
| 1331 | * This function also ensures that the open-loop voltage for each corner falls |
| 1332 | * within the final floor to ceiling voltage range and that floor voltages |
| 1333 | * increase monotonically. |
| 1334 | * |
| 1335 | * Return: 0 on success, errno on failure |
| 1336 | */ |
| 1337 | int cpr3_limit_floor_voltages(struct cpr3_regulator *vreg) |
| 1338 | { |
| 1339 | char *prop = "qcom,cpr-floor-to-ceiling-max-range"; |
| 1340 | int i, floor_new; |
| 1341 | u32 *floor_range; |
| 1342 | int rc = 0; |
| 1343 | |
| 1344 | if (!of_find_property(vreg->of_node, prop, NULL)) |
| 1345 | goto enforce_monotonicity; |
| 1346 | |
| 1347 | floor_range = kcalloc(vreg->corner_count, sizeof(*floor_range), |
| 1348 | GFP_KERNEL); |
| 1349 | if (!floor_range) |
| 1350 | return -ENOMEM; |
| 1351 | |
| 1352 | rc = cpr3_parse_corner_array_property(vreg, prop, 1, floor_range); |
| 1353 | if (rc) |
| 1354 | goto free_floor_adjust; |
| 1355 | |
| 1356 | for (i = 0; i < vreg->corner_count; i++) { |
| 1357 | if ((s32)floor_range[i] >= 0) { |
| 1358 | floor_new = CPR3_ROUND(vreg->corner[i].ceiling_volt |
| 1359 | - floor_range[i], |
| 1360 | vreg->thread->ctrl->step_volt); |
| 1361 | |
| 1362 | vreg->corner[i].floor_volt = max(floor_new, |
| 1363 | vreg->corner[i].floor_volt); |
| 1364 | if (vreg->corner[i].open_loop_volt |
| 1365 | < vreg->corner[i].floor_volt) |
| 1366 | vreg->corner[i].open_loop_volt |
| 1367 | = vreg->corner[i].floor_volt; |
| 1368 | } |
| 1369 | } |
| 1370 | |
| 1371 | free_floor_adjust: |
| 1372 | kfree(floor_range); |
| 1373 | |
| 1374 | enforce_monotonicity: |
| 1375 | /* Ensure that floor voltages increase monotonically. */ |
| 1376 | for (i = 1; i < vreg->corner_count; i++) { |
| 1377 | if (vreg->corner[i].floor_volt |
| 1378 | < vreg->corner[i - 1].floor_volt) { |
| 1379 | cpr3_debug(vreg, "corner %d floor voltage=%d uV < corner %d voltage=%d uV; overriding: corner %d voltage=%d\n", |
| 1380 | i, vreg->corner[i].floor_volt, |
| 1381 | i - 1, vreg->corner[i - 1].floor_volt, |
| 1382 | i, vreg->corner[i - 1].floor_volt); |
| 1383 | vreg->corner[i].floor_volt |
| 1384 | = vreg->corner[i - 1].floor_volt; |
| 1385 | |
| 1386 | if (vreg->corner[i].open_loop_volt |
| 1387 | < vreg->corner[i].floor_volt) |
| 1388 | vreg->corner[i].open_loop_volt |
| 1389 | = vreg->corner[i].floor_volt; |
| 1390 | if (vreg->corner[i].ceiling_volt |
| 1391 | < vreg->corner[i].floor_volt) |
| 1392 | vreg->corner[i].ceiling_volt |
| 1393 | = vreg->corner[i].floor_volt; |
| 1394 | } |
| 1395 | } |
| 1396 | |
| 1397 | return rc; |
| 1398 | } |
| 1399 | |
| 1400 | /** |
| 1401 | * cpr3_print_quots() - print CPR target quotients into the kernel log for |
| 1402 | * debugging purposes |
| 1403 | * @vreg: Pointer to the CPR3 regulator |
| 1404 | * |
| 1405 | * Return: none |
| 1406 | */ |
| 1407 | void cpr3_print_quots(struct cpr3_regulator *vreg) |
| 1408 | { |
| 1409 | int i, j, pos; |
| 1410 | size_t buflen; |
| 1411 | char *buf; |
| 1412 | |
| 1413 | buflen = sizeof(*buf) * CPR3_RO_COUNT * (MAX_CHARS_PER_INT + 2); |
| 1414 | buf = kzalloc(buflen, GFP_KERNEL); |
| 1415 | if (!buf) |
| 1416 | return; |
| 1417 | |
| 1418 | for (i = 0; i < vreg->corner_count; i++) { |
| 1419 | for (j = 0, pos = 0; j < CPR3_RO_COUNT; j++) |
| 1420 | pos += scnprintf(buf + pos, buflen - pos, " %u", |
| 1421 | vreg->corner[i].target_quot[j]); |
| 1422 | cpr3_debug(vreg, "target quots[%2d]:%s\n", i, buf); |
| 1423 | } |
| 1424 | |
| 1425 | kfree(buf); |
| 1426 | } |
| 1427 | |
| 1428 | /** |
| 1429 | * cpr3_adjust_fused_open_loop_voltages() - adjust the fused open-loop voltages |
| 1430 | * for each fuse corner according to device tree values |
| 1431 | * @vreg: Pointer to the CPR3 regulator |
| 1432 | * @fuse_volt: Pointer to an array of the fused open-loop voltage |
| 1433 | * values |
| 1434 | * |
| 1435 | * Voltage values in fuse_volt are modified in place. |
| 1436 | * |
| 1437 | * Return: 0 on success, errno on failure |
| 1438 | */ |
| 1439 | int cpr3_adjust_fused_open_loop_voltages(struct cpr3_regulator *vreg, |
| 1440 | int *fuse_volt) |
| 1441 | { |
| 1442 | int i, rc, prev_volt; |
| 1443 | int *volt_adjust; |
| 1444 | |
| 1445 | if (!of_find_property(vreg->of_node, |
| 1446 | "qcom,cpr-open-loop-voltage-fuse-adjustment", NULL)) { |
| 1447 | /* No adjustment required. */ |
| 1448 | return 0; |
| 1449 | } |
| 1450 | |
| 1451 | volt_adjust = kcalloc(vreg->fuse_corner_count, sizeof(*volt_adjust), |
| 1452 | GFP_KERNEL); |
| 1453 | if (!volt_adjust) |
| 1454 | return -ENOMEM; |
| 1455 | |
| 1456 | rc = cpr3_parse_array_property(vreg, |
| 1457 | "qcom,cpr-open-loop-voltage-fuse-adjustment", |
| 1458 | vreg->fuse_corner_count, volt_adjust); |
| 1459 | if (rc) { |
| 1460 | cpr3_err(vreg, "could not load open-loop fused voltage adjustments, rc=%d\n", |
| 1461 | rc); |
| 1462 | goto done; |
| 1463 | } |
| 1464 | |
| 1465 | for (i = 0; i < vreg->fuse_corner_count; i++) { |
| 1466 | if (volt_adjust[i]) { |
| 1467 | prev_volt = fuse_volt[i]; |
| 1468 | fuse_volt[i] += volt_adjust[i]; |
| 1469 | cpr3_debug(vreg, "adjusted fuse corner %d open-loop voltage: %d --> %d uV\n", |
| 1470 | i, prev_volt, fuse_volt[i]); |
| 1471 | } |
| 1472 | } |
| 1473 | |
| 1474 | done: |
| 1475 | kfree(volt_adjust); |
| 1476 | return rc; |
| 1477 | } |
| 1478 | |
| 1479 | /** |
| 1480 | * cpr3_adjust_open_loop_voltages() - adjust the open-loop voltages for each |
| 1481 | * corner according to device tree values |
| 1482 | * @vreg: Pointer to the CPR3 regulator |
| 1483 | * |
| 1484 | * Return: 0 on success, errno on failure |
| 1485 | */ |
| 1486 | int cpr3_adjust_open_loop_voltages(struct cpr3_regulator *vreg) |
| 1487 | { |
| 1488 | int i, rc, prev_volt, min_volt; |
| 1489 | int *volt_adjust, *volt_diff; |
| 1490 | |
| 1491 | if (!of_find_property(vreg->of_node, |
| 1492 | "qcom,cpr-open-loop-voltage-adjustment", NULL)) { |
| 1493 | /* No adjustment required. */ |
| 1494 | return 0; |
| 1495 | } |
| 1496 | |
| 1497 | volt_adjust = kcalloc(vreg->corner_count, sizeof(*volt_adjust), |
| 1498 | GFP_KERNEL); |
| 1499 | volt_diff = kcalloc(vreg->corner_count, sizeof(*volt_diff), GFP_KERNEL); |
| 1500 | if (!volt_adjust || !volt_diff) { |
| 1501 | rc = -ENOMEM; |
| 1502 | goto done; |
| 1503 | } |
| 1504 | |
| 1505 | rc = cpr3_parse_corner_array_property(vreg, |
| 1506 | "qcom,cpr-open-loop-voltage-adjustment", 1, volt_adjust); |
| 1507 | if (rc) { |
| 1508 | cpr3_err(vreg, "could not load open-loop voltage adjustments, rc=%d\n", |
| 1509 | rc); |
| 1510 | goto done; |
| 1511 | } |
| 1512 | |
| 1513 | for (i = 0; i < vreg->corner_count; i++) { |
| 1514 | if (volt_adjust[i]) { |
| 1515 | prev_volt = vreg->corner[i].open_loop_volt; |
| 1516 | vreg->corner[i].open_loop_volt += volt_adjust[i]; |
| 1517 | cpr3_debug(vreg, "adjusted corner %d open-loop voltage: %d --> %d uV\n", |
| 1518 | i, prev_volt, vreg->corner[i].open_loop_volt); |
| 1519 | } |
| 1520 | } |
| 1521 | |
| 1522 | if (of_find_property(vreg->of_node, |
| 1523 | "qcom,cpr-open-loop-voltage-min-diff", NULL)) { |
| 1524 | rc = cpr3_parse_corner_array_property(vreg, |
| 1525 | "qcom,cpr-open-loop-voltage-min-diff", 1, volt_diff); |
| 1526 | if (rc) { |
| 1527 | cpr3_err(vreg, "could not load minimum open-loop voltage differences, rc=%d\n", |
| 1528 | rc); |
| 1529 | goto done; |
| 1530 | } |
| 1531 | } |
| 1532 | |
| 1533 | /* |
| 1534 | * Ensure that open-loop voltages increase monotonically with respect |
| 1535 | * to configurable minimum allowed differences. |
| 1536 | */ |
| 1537 | for (i = 1; i < vreg->corner_count; i++) { |
| 1538 | min_volt = vreg->corner[i - 1].open_loop_volt + volt_diff[i]; |
| 1539 | if (vreg->corner[i].open_loop_volt < min_volt) { |
| 1540 | cpr3_debug(vreg, "adjusted corner %d open-loop voltage=%d uV < corner %d voltage=%d uV + min diff=%d uV; overriding: corner %d voltage=%d\n", |
| 1541 | i, vreg->corner[i].open_loop_volt, |
| 1542 | i - 1, vreg->corner[i - 1].open_loop_volt, |
| 1543 | volt_diff[i], i, min_volt); |
| 1544 | vreg->corner[i].open_loop_volt = min_volt; |
| 1545 | } |
| 1546 | } |
| 1547 | |
| 1548 | done: |
| 1549 | kfree(volt_diff); |
| 1550 | kfree(volt_adjust); |
| 1551 | return rc; |
| 1552 | } |
| 1553 | |
| 1554 | /** |
| 1555 | * cpr3_quot_adjustment() - returns the quotient adjustment value resulting from |
| 1556 | * the specified voltage adjustment and RO scaling factor |
| 1557 | * @ro_scale: The CPR ring oscillator (RO) scaling factor with units |
| 1558 | * of QUOT/V |
| 1559 | * @volt_adjust: The amount to adjust the voltage by in units of |
| 1560 | * microvolts. This value may be positive or negative. |
| 1561 | */ |
| 1562 | int cpr3_quot_adjustment(int ro_scale, int volt_adjust) |
| 1563 | { |
| 1564 | unsigned long long temp; |
| 1565 | int quot_adjust; |
| 1566 | int sign = 1; |
| 1567 | |
| 1568 | if (ro_scale < 0) { |
| 1569 | sign = -sign; |
| 1570 | ro_scale = -ro_scale; |
| 1571 | } |
| 1572 | |
| 1573 | if (volt_adjust < 0) { |
| 1574 | sign = -sign; |
| 1575 | volt_adjust = -volt_adjust; |
| 1576 | } |
| 1577 | |
| 1578 | temp = (unsigned long long)ro_scale * (unsigned long long)volt_adjust; |
| 1579 | do_div(temp, 1000000); |
| 1580 | |
| 1581 | quot_adjust = temp; |
| 1582 | quot_adjust *= sign; |
| 1583 | |
| 1584 | return quot_adjust; |
| 1585 | } |
| 1586 | |
| 1587 | /** |
| 1588 | * cpr3_voltage_adjustment() - returns the voltage adjustment value resulting |
| 1589 | * from the specified quotient adjustment and RO scaling factor |
| 1590 | * @ro_scale: The CPR ring oscillator (RO) scaling factor with units |
| 1591 | * of QUOT/V |
| 1592 | * @quot_adjust: The amount to adjust the quotient by in units of |
| 1593 | * QUOT. This value may be positive or negative. |
| 1594 | */ |
| 1595 | int cpr3_voltage_adjustment(int ro_scale, int quot_adjust) |
| 1596 | { |
| 1597 | unsigned long long temp; |
| 1598 | int volt_adjust; |
| 1599 | int sign = 1; |
| 1600 | |
| 1601 | if (ro_scale < 0) { |
| 1602 | sign = -sign; |
| 1603 | ro_scale = -ro_scale; |
| 1604 | } |
| 1605 | |
| 1606 | if (quot_adjust < 0) { |
| 1607 | sign = -sign; |
| 1608 | quot_adjust = -quot_adjust; |
| 1609 | } |
| 1610 | |
| 1611 | if (ro_scale == 0) |
| 1612 | return 0; |
| 1613 | |
| 1614 | temp = (unsigned long long)quot_adjust * 1000000; |
| 1615 | do_div(temp, ro_scale); |
| 1616 | |
| 1617 | volt_adjust = temp; |
| 1618 | volt_adjust *= sign; |
| 1619 | |
| 1620 | return volt_adjust; |
| 1621 | } |
| 1622 | |
| 1623 | /** |
| 1624 | * cpr3_parse_closed_loop_voltage_adjustments() - load per-fuse-corner and |
| 1625 | * per-corner closed-loop adjustment values from device tree |
| 1626 | * @vreg: Pointer to the CPR3 regulator |
| 1627 | * @ro_sel: Array of ring oscillator values selected for each |
| 1628 | * fuse corner |
| 1629 | * @volt_adjust: Pointer to array which will be filled with the |
| 1630 | * per-corner closed-loop adjustment voltages |
| 1631 | * @volt_adjust_fuse: Pointer to array which will be filled with the |
| 1632 | * per-fuse-corner closed-loop adjustment voltages |
| 1633 | * @ro_scale: Pointer to array which will be filled with the |
| 1634 | * per-fuse-corner RO scaling factor values with units of |
| 1635 | * QUOT/V |
| 1636 | * |
| 1637 | * Return: 0 on success, errno on failure |
| 1638 | */ |
| 1639 | int cpr3_parse_closed_loop_voltage_adjustments( |
| 1640 | struct cpr3_regulator *vreg, u64 *ro_sel, |
| 1641 | int *volt_adjust, int *volt_adjust_fuse, int *ro_scale) |
| 1642 | { |
| 1643 | int i, rc; |
| 1644 | u32 *ro_all_scale; |
| 1645 | |
| 1646 | if (!of_find_property(vreg->of_node, |
| 1647 | "qcom,cpr-closed-loop-voltage-adjustment", NULL) |
| 1648 | && !of_find_property(vreg->of_node, |
| 1649 | "qcom,cpr-closed-loop-voltage-fuse-adjustment", NULL) |
| 1650 | && !vreg->aging_allowed) { |
| 1651 | /* No adjustment required. */ |
| 1652 | return 0; |
| 1653 | } else if (!of_find_property(vreg->of_node, |
| 1654 | "qcom,cpr-ro-scaling-factor", NULL)) { |
| 1655 | cpr3_err(vreg, "qcom,cpr-ro-scaling-factor is required for closed-loop voltage adjustment, but is missing\n"); |
| 1656 | return -EINVAL; |
| 1657 | } |
| 1658 | |
| 1659 | ro_all_scale = kcalloc(vreg->fuse_corner_count * CPR3_RO_COUNT, |
| 1660 | sizeof(*ro_all_scale), GFP_KERNEL); |
| 1661 | if (!ro_all_scale) |
| 1662 | return -ENOMEM; |
| 1663 | |
| 1664 | rc = cpr3_parse_array_property(vreg, "qcom,cpr-ro-scaling-factor", |
| 1665 | vreg->fuse_corner_count * CPR3_RO_COUNT, ro_all_scale); |
| 1666 | if (rc) { |
| 1667 | cpr3_err(vreg, "could not load RO scaling factors, rc=%d\n", |
| 1668 | rc); |
| 1669 | goto done; |
| 1670 | } |
| 1671 | |
| 1672 | for (i = 0; i < vreg->fuse_corner_count; i++) |
| 1673 | ro_scale[i] = ro_all_scale[i * CPR3_RO_COUNT + ro_sel[i]]; |
| 1674 | |
| 1675 | for (i = 0; i < vreg->corner_count; i++) |
| 1676 | memcpy(vreg->corner[i].ro_scale, |
| 1677 | &ro_all_scale[vreg->corner[i].cpr_fuse_corner * CPR3_RO_COUNT], |
| 1678 | sizeof(*ro_all_scale) * CPR3_RO_COUNT); |
| 1679 | |
| 1680 | if (of_find_property(vreg->of_node, |
| 1681 | "qcom,cpr-closed-loop-voltage-fuse-adjustment", NULL)) { |
| 1682 | rc = cpr3_parse_array_property(vreg, |
| 1683 | "qcom,cpr-closed-loop-voltage-fuse-adjustment", |
| 1684 | vreg->fuse_corner_count, volt_adjust_fuse); |
| 1685 | if (rc) { |
| 1686 | cpr3_err(vreg, "could not load closed-loop fused voltage adjustments, rc=%d\n", |
| 1687 | rc); |
| 1688 | goto done; |
| 1689 | } |
| 1690 | } |
| 1691 | |
| 1692 | if (of_find_property(vreg->of_node, |
| 1693 | "qcom,cpr-closed-loop-voltage-adjustment", NULL)) { |
| 1694 | rc = cpr3_parse_corner_array_property(vreg, |
| 1695 | "qcom,cpr-closed-loop-voltage-adjustment", |
| 1696 | 1, volt_adjust); |
| 1697 | if (rc) { |
| 1698 | cpr3_err(vreg, "could not load closed-loop voltage adjustments, rc=%d\n", |
| 1699 | rc); |
| 1700 | goto done; |
| 1701 | } |
| 1702 | } |
| 1703 | |
| 1704 | done: |
| 1705 | kfree(ro_all_scale); |
| 1706 | return rc; |
| 1707 | } |
| 1708 | |
| 1709 | /** |
| 1710 | * cpr3_apm_init() - initialize APM data for a CPR3 controller |
| 1711 | * @ctrl: Pointer to the CPR3 controller |
| 1712 | * |
| 1713 | * This function loads memory array power mux (APM) data from device tree |
| 1714 | * if it is present and requests a handle to the appropriate APM controller |
| 1715 | * device. |
| 1716 | * |
| 1717 | * Return: 0 on success, errno on failure |
| 1718 | */ |
| 1719 | int cpr3_apm_init(struct cpr3_controller *ctrl) |
| 1720 | { |
| 1721 | struct device_node *node = ctrl->dev->of_node; |
| 1722 | int rc; |
| 1723 | |
| 1724 | if (!of_find_property(node, "qcom,apm-ctrl", NULL)) { |
| 1725 | /* No APM used */ |
| 1726 | return 0; |
| 1727 | } |
| 1728 | |
| 1729 | ctrl->apm = msm_apm_ctrl_dev_get(ctrl->dev); |
| 1730 | if (IS_ERR(ctrl->apm)) { |
| 1731 | rc = PTR_ERR(ctrl->apm); |
| 1732 | if (rc != -EPROBE_DEFER) |
| 1733 | cpr3_err(ctrl, "APM get failed, rc=%d\n", rc); |
| 1734 | return rc; |
| 1735 | } |
| 1736 | |
| 1737 | rc = of_property_read_u32(node, "qcom,apm-threshold-voltage", |
| 1738 | &ctrl->apm_threshold_volt); |
| 1739 | if (rc) { |
| 1740 | cpr3_err(ctrl, "error reading qcom,apm-threshold-voltage, rc=%d\n", |
| 1741 | rc); |
| 1742 | return rc; |
| 1743 | } |
| 1744 | ctrl->apm_threshold_volt |
| 1745 | = CPR3_ROUND(ctrl->apm_threshold_volt, ctrl->step_volt); |
| 1746 | |
| 1747 | /* No error check since this is an optional property. */ |
| 1748 | of_property_read_u32(node, "qcom,apm-hysteresis-voltage", |
| 1749 | &ctrl->apm_adj_volt); |
| 1750 | ctrl->apm_adj_volt = CPR3_ROUND(ctrl->apm_adj_volt, ctrl->step_volt); |
| 1751 | |
| 1752 | ctrl->apm_high_supply = MSM_APM_SUPPLY_APCC; |
| 1753 | ctrl->apm_low_supply = MSM_APM_SUPPLY_MX; |
| 1754 | |
| 1755 | return 0; |
| 1756 | } |
| 1757 | |
| 1758 | /** |
| 1759 | * cpr3_mem_acc_init() - initialize mem-acc regulator data for |
| 1760 | * a CPR3 regulator |
| 1761 | * @ctrl: Pointer to the CPR3 controller |
| 1762 | * |
| 1763 | * Return: 0 on success, errno on failure |
| 1764 | */ |
| 1765 | int cpr3_mem_acc_init(struct cpr3_regulator *vreg) |
| 1766 | { |
| 1767 | struct cpr3_controller *ctrl = vreg->thread->ctrl; |
| 1768 | u32 *temp; |
| 1769 | int i, rc; |
| 1770 | |
| 1771 | if (!ctrl->mem_acc_regulator) { |
| 1772 | cpr3_info(ctrl, "not using memory accelerator regulator\n"); |
| 1773 | return 0; |
| 1774 | } |
| 1775 | |
| 1776 | temp = kcalloc(vreg->corner_count, sizeof(*temp), GFP_KERNEL); |
| 1777 | if (!temp) |
| 1778 | return -ENOMEM; |
| 1779 | |
| 1780 | rc = cpr3_parse_corner_array_property(vreg, "qcom,mem-acc-voltage", |
| 1781 | 1, temp); |
| 1782 | if (rc) { |
| 1783 | cpr3_err(ctrl, "could not load mem-acc corners, rc=%d\n", rc); |
| 1784 | } else { |
| 1785 | for (i = 0; i < vreg->corner_count; i++) |
| 1786 | vreg->corner[i].mem_acc_volt = temp[i]; |
| 1787 | } |
| 1788 | |
| 1789 | kfree(temp); |
| 1790 | return rc; |
| 1791 | } |
| 1792 | |
| 1793 | /** |
| 1794 | * cpr4_load_core_and_temp_adj() - parse amount of voltage adjustment for |
| 1795 | * per-online-core and per-temperature voltage adjustment for a |
| 1796 | * given corner or corner band from device tree. |
| 1797 | * @vreg: Pointer to the CPR3 regulator |
| 1798 | * @num: Corner number or corner band number |
| 1799 | * @use_corner_band: Boolean indicating if the CPR3 regulator supports |
| 1800 | * adjustments per corner band |
| 1801 | * |
| 1802 | * Return: 0 on success, errno on failure |
| 1803 | */ |
| 1804 | static int cpr4_load_core_and_temp_adj(struct cpr3_regulator *vreg, |
| 1805 | int num, bool use_corner_band) |
| 1806 | { |
| 1807 | struct cpr3_controller *ctrl = vreg->thread->ctrl; |
| 1808 | struct cpr4_sdelta *sdelta; |
| 1809 | int sdelta_size, i, j, pos, rc = 0; |
| 1810 | char str[75]; |
| 1811 | size_t buflen; |
| 1812 | char *buf; |
| 1813 | |
| 1814 | sdelta = use_corner_band ? vreg->corner_band[num].sdelta : |
| 1815 | vreg->corner[num].sdelta; |
| 1816 | |
| 1817 | if (!sdelta->allow_core_count_adj && !sdelta->allow_temp_adj) { |
| 1818 | /* corner doesn't need sdelta table */ |
| 1819 | sdelta->max_core_count = 0; |
| 1820 | sdelta->temp_band_count = 0; |
| 1821 | return rc; |
| 1822 | } |
| 1823 | |
| 1824 | sdelta_size = sdelta->max_core_count * sdelta->temp_band_count; |
| 1825 | snprintf(str, sizeof(str), use_corner_band ? |
| 1826 | "corner_band=%d core_config_count=%d temp_band_count=%d sdelta_size=%d\n" |
| 1827 | : "corner=%d core_config_count=%d temp_band_count=%d sdelta_size=%d\n", |
| 1828 | num, sdelta->max_core_count, |
| 1829 | sdelta->temp_band_count, sdelta_size); |
| 1830 | |
| 1831 | cpr3_debug(vreg, "%s", str); |
| 1832 | |
| 1833 | sdelta->table = devm_kcalloc(ctrl->dev, sdelta_size, |
| 1834 | sizeof(*sdelta->table), GFP_KERNEL); |
| 1835 | if (!sdelta->table) |
| 1836 | return -ENOMEM; |
| 1837 | |
| 1838 | snprintf(str, sizeof(str), use_corner_band ? |
| 1839 | "qcom,cpr-corner-band%d-temp-core-voltage-adjustment" : |
| 1840 | "qcom,cpr-corner%d-temp-core-voltage-adjustment", |
| 1841 | num + CPR3_CORNER_OFFSET); |
| 1842 | |
| 1843 | rc = cpr3_parse_array_property(vreg, str, sdelta_size, |
| 1844 | sdelta->table); |
| 1845 | if (rc) { |
| 1846 | cpr3_err(vreg, "could not load %s, rc=%d\n", str, rc); |
| 1847 | return rc; |
| 1848 | } |
| 1849 | |
| 1850 | /* |
| 1851 | * Convert sdelta margins from uV to PMIC steps and apply negation to |
| 1852 | * follow the SDELTA register semantics. |
| 1853 | */ |
| 1854 | for (i = 0; i < sdelta_size; i++) |
| 1855 | sdelta->table[i] = -(sdelta->table[i] / ctrl->step_volt); |
| 1856 | |
| 1857 | buflen = sizeof(*buf) * sdelta_size * (MAX_CHARS_PER_INT + 2); |
| 1858 | buf = kzalloc(buflen, GFP_KERNEL); |
| 1859 | if (!buf) |
| 1860 | return rc; |
| 1861 | |
| 1862 | for (i = 0; i < sdelta->max_core_count; i++) { |
| 1863 | for (j = 0, pos = 0; j < sdelta->temp_band_count; j++) |
| 1864 | pos += scnprintf(buf + pos, buflen - pos, " %u", |
| 1865 | sdelta->table[i * sdelta->temp_band_count + j]); |
| 1866 | cpr3_debug(vreg, "sdelta[%d]:%s\n", i, buf); |
| 1867 | } |
| 1868 | |
| 1869 | kfree(buf); |
| 1870 | return rc; |
| 1871 | } |
| 1872 | |
| 1873 | /** |
| 1874 | * cpr4_parse_core_count_temp_voltage_adj() - parse configuration data for |
| 1875 | * per-online-core and per-temperature voltage adjustment for |
| 1876 | * a CPR3 regulator from device tree. |
| 1877 | * @vreg: Pointer to the CPR3 regulator |
| 1878 | * @use_corner_band: Boolean indicating if the CPR3 regulator supports |
| 1879 | * adjustments per corner band |
| 1880 | * |
| 1881 | * This function supports parsing of per-online-core and per-temperature |
| 1882 | * adjustments per corner or per corner band. CPR controllers which support |
| 1883 | * corner bands apply the same adjustments to all corners within a corner band. |
| 1884 | * |
| 1885 | * Return: 0 on success, errno on failure |
| 1886 | */ |
| 1887 | int cpr4_parse_core_count_temp_voltage_adj( |
| 1888 | struct cpr3_regulator *vreg, bool use_corner_band) |
| 1889 | { |
| 1890 | struct cpr3_controller *ctrl = vreg->thread->ctrl; |
| 1891 | struct device_node *node = vreg->of_node; |
| 1892 | struct cpr3_corner *corner; |
| 1893 | struct cpr4_sdelta *sdelta; |
| 1894 | int i, sdelta_table_count, rc = 0; |
| 1895 | int *allow_core_count_adj = NULL, *allow_temp_adj = NULL; |
| 1896 | char prop_str[75]; |
| 1897 | |
| 1898 | if (of_find_property(node, use_corner_band ? |
| 1899 | "qcom,corner-band-allow-temp-adjustment" |
| 1900 | : "qcom,corner-allow-temp-adjustment", NULL)) { |
| 1901 | if (!ctrl->allow_temp_adj) { |
| 1902 | cpr3_err(ctrl, "Temperature adjustment configurations missing\n"); |
| 1903 | return -EINVAL; |
| 1904 | } |
| 1905 | |
| 1906 | vreg->allow_temp_adj = true; |
| 1907 | } |
| 1908 | |
| 1909 | if (of_find_property(node, use_corner_band ? |
| 1910 | "qcom,corner-band-allow-core-count-adjustment" |
| 1911 | : "qcom,corner-allow-core-count-adjustment", |
| 1912 | NULL)) { |
| 1913 | rc = of_property_read_u32(node, "qcom,max-core-count", |
| 1914 | &vreg->max_core_count); |
| 1915 | if (rc) { |
| 1916 | cpr3_err(vreg, "error reading qcom,max-core-count, rc=%d\n", |
| 1917 | rc); |
| 1918 | return -EINVAL; |
| 1919 | } |
| 1920 | |
| 1921 | vreg->allow_core_count_adj = true; |
| 1922 | ctrl->allow_core_count_adj = true; |
| 1923 | } |
| 1924 | |
| 1925 | if (!vreg->allow_temp_adj && !vreg->allow_core_count_adj) { |
| 1926 | /* |
| 1927 | * Both per-online-core and temperature based adjustments are |
| 1928 | * disabled for this regulator. |
| 1929 | */ |
| 1930 | return 0; |
| 1931 | } else if (!vreg->allow_core_count_adj) { |
| 1932 | /* |
| 1933 | * Only per-temperature voltage adjusments are allowed. |
| 1934 | * Keep max core count value as 1 to allocate SDELTA. |
| 1935 | */ |
| 1936 | vreg->max_core_count = 1; |
| 1937 | } |
| 1938 | |
| 1939 | if (vreg->allow_core_count_adj) { |
| 1940 | allow_core_count_adj = kcalloc(vreg->corner_count, |
| 1941 | sizeof(*allow_core_count_adj), |
| 1942 | GFP_KERNEL); |
| 1943 | if (!allow_core_count_adj) |
| 1944 | return -ENOMEM; |
| 1945 | |
| 1946 | snprintf(prop_str, sizeof(prop_str), use_corner_band ? |
| 1947 | "qcom,corner-band-allow-core-count-adjustment" : |
| 1948 | "qcom,corner-allow-core-count-adjustment"); |
| 1949 | |
| 1950 | rc = use_corner_band ? |
| 1951 | cpr3_parse_corner_band_array_property(vreg, prop_str, |
| 1952 | 1, allow_core_count_adj) : |
| 1953 | cpr3_parse_corner_array_property(vreg, prop_str, |
| 1954 | 1, allow_core_count_adj); |
| 1955 | if (rc) { |
| 1956 | cpr3_err(vreg, "error reading %s, rc=%d\n", prop_str, |
| 1957 | rc); |
| 1958 | goto done; |
| 1959 | } |
| 1960 | } |
| 1961 | |
| 1962 | if (vreg->allow_temp_adj) { |
| 1963 | allow_temp_adj = kcalloc(vreg->corner_count, |
| 1964 | sizeof(*allow_temp_adj), GFP_KERNEL); |
| 1965 | if (!allow_temp_adj) { |
| 1966 | rc = -ENOMEM; |
| 1967 | goto done; |
| 1968 | } |
| 1969 | |
| 1970 | snprintf(prop_str, sizeof(prop_str), use_corner_band ? |
| 1971 | "qcom,corner-band-allow-temp-adjustment" : |
| 1972 | "qcom,corner-allow-temp-adjustment"); |
| 1973 | |
| 1974 | rc = use_corner_band ? |
| 1975 | cpr3_parse_corner_band_array_property(vreg, prop_str, |
| 1976 | 1, allow_temp_adj) : |
| 1977 | cpr3_parse_corner_array_property(vreg, prop_str, |
| 1978 | 1, allow_temp_adj); |
| 1979 | if (rc) { |
| 1980 | cpr3_err(vreg, "error reading %s, rc=%d\n", prop_str, |
| 1981 | rc); |
| 1982 | goto done; |
| 1983 | } |
| 1984 | } |
| 1985 | |
| 1986 | sdelta_table_count = use_corner_band ? vreg->corner_band_count : |
| 1987 | vreg->corner_count; |
| 1988 | |
| 1989 | for (i = 0; i < sdelta_table_count; i++) { |
| 1990 | sdelta = devm_kzalloc(ctrl->dev, sizeof(*corner->sdelta), |
| 1991 | GFP_KERNEL); |
| 1992 | if (!sdelta) { |
| 1993 | rc = -ENOMEM; |
| 1994 | goto done; |
| 1995 | } |
| 1996 | |
| 1997 | if (allow_core_count_adj) |
| 1998 | sdelta->allow_core_count_adj = allow_core_count_adj[i]; |
| 1999 | if (allow_temp_adj) |
| 2000 | sdelta->allow_temp_adj = allow_temp_adj[i]; |
| 2001 | sdelta->max_core_count = vreg->max_core_count; |
| 2002 | sdelta->temp_band_count = ctrl->temp_band_count; |
| 2003 | |
| 2004 | if (use_corner_band) |
| 2005 | vreg->corner_band[i].sdelta = sdelta; |
| 2006 | else |
| 2007 | vreg->corner[i].sdelta = sdelta; |
| 2008 | |
| 2009 | rc = cpr4_load_core_and_temp_adj(vreg, i, use_corner_band); |
| 2010 | if (rc) { |
| 2011 | cpr3_err(vreg, "corner/band %d core and temp adjustment loading failed, rc=%d\n", |
| 2012 | i, rc); |
| 2013 | goto done; |
| 2014 | } |
| 2015 | } |
| 2016 | |
| 2017 | done: |
| 2018 | kfree(allow_core_count_adj); |
| 2019 | kfree(allow_temp_adj); |
| 2020 | |
| 2021 | return rc; |
| 2022 | } |
| 2023 | |
| 2024 | /** |
| 2025 | * cprh_adjust_voltages_for_apm() - adjust per-corner floor and ceiling voltages |
| 2026 | * so that they do not overlap the APM threshold voltage. |
| 2027 | * @vreg: Pointer to the CPR3 regulator |
| 2028 | * |
| 2029 | * The memory array power mux (APM) must be configured for a specific supply |
| 2030 | * based upon where the VDD voltage lies with respect to the APM threshold |
| 2031 | * voltage. When using CPR hardware closed-loop, the voltage may vary anywhere |
| 2032 | * between the floor and ceiling voltage without software notification. |
| 2033 | * Therefore, it is required that the floor to ceiling range for every corner |
| 2034 | * not intersect the APM threshold voltage. This function adjusts the floor to |
| 2035 | * ceiling range for each corner which violates this requirement. |
| 2036 | * |
| 2037 | * The following algorithm is applied: |
| 2038 | * if floor < threshold <= ceiling: |
| 2039 | * if open_loop >= threshold, then floor = threshold - adj |
| 2040 | * else ceiling = threshold - step |
| 2041 | * where: |
| 2042 | * adj = APM hysteresis voltage established to minimize the number of |
| 2043 | * corners with artificially increased floor voltages |
| 2044 | * step = voltage in microvolts of a single step of the VDD supply |
| 2045 | * |
| 2046 | * The open-loop voltage is also bounded by the new floor or ceiling value as |
| 2047 | * needed. |
| 2048 | * |
| 2049 | * Return: none |
| 2050 | */ |
| 2051 | void cprh_adjust_voltages_for_apm(struct cpr3_regulator *vreg) |
| 2052 | { |
| 2053 | struct cpr3_controller *ctrl = vreg->thread->ctrl; |
| 2054 | struct cpr3_corner *corner; |
| 2055 | int i, adj, threshold, prev_ceiling, prev_floor, prev_open_loop; |
| 2056 | |
| 2057 | if (!ctrl->apm_threshold_volt) { |
| 2058 | /* APM not being used. */ |
| 2059 | return; |
| 2060 | } |
| 2061 | |
| 2062 | ctrl->apm_threshold_volt = CPR3_ROUND(ctrl->apm_threshold_volt, |
| 2063 | ctrl->step_volt); |
| 2064 | ctrl->apm_adj_volt = CPR3_ROUND(ctrl->apm_adj_volt, ctrl->step_volt); |
| 2065 | |
| 2066 | threshold = ctrl->apm_threshold_volt; |
| 2067 | adj = ctrl->apm_adj_volt; |
| 2068 | |
| 2069 | for (i = 0; i < vreg->corner_count; i++) { |
| 2070 | corner = &vreg->corner[i]; |
| 2071 | |
| 2072 | if (threshold <= corner->floor_volt |
| 2073 | || threshold > corner->ceiling_volt) |
| 2074 | continue; |
| 2075 | |
| 2076 | prev_floor = corner->floor_volt; |
| 2077 | prev_ceiling = corner->ceiling_volt; |
| 2078 | prev_open_loop = corner->open_loop_volt; |
| 2079 | |
| 2080 | if (corner->open_loop_volt >= threshold) { |
| 2081 | corner->floor_volt = max(corner->floor_volt, |
| 2082 | threshold - adj); |
| 2083 | if (corner->open_loop_volt < corner->floor_volt) |
| 2084 | corner->open_loop_volt = corner->floor_volt; |
| 2085 | } else { |
| 2086 | corner->ceiling_volt = threshold - ctrl->step_volt; |
| 2087 | } |
| 2088 | |
| 2089 | if (corner->floor_volt != prev_floor |
| 2090 | || corner->ceiling_volt != prev_ceiling |
| 2091 | || corner->open_loop_volt != prev_open_loop) |
| 2092 | cpr3_debug(vreg, "APM threshold=%d, APM adj=%d changed corner %d voltages; prev: floor=%d, ceiling=%d, open-loop=%d; new: floor=%d, ceiling=%d, open-loop=%d\n", |
| 2093 | threshold, adj, i, prev_floor, prev_ceiling, |
| 2094 | prev_open_loop, corner->floor_volt, |
| 2095 | corner->ceiling_volt, corner->open_loop_volt); |
| 2096 | } |
| 2097 | } |
| 2098 | |
| 2099 | /** |
| 2100 | * cprh_adjust_voltages_for_mem_acc() - adjust per-corner floor and ceiling |
| 2101 | * voltages so that they do not intersect the MEM ACC threshold |
| 2102 | * voltage |
| 2103 | * @vreg: Pointer to the CPR3 regulator |
| 2104 | * |
| 2105 | * The following algorithm is applied: |
| 2106 | * if floor < threshold <= ceiling: |
| 2107 | * if open_loop >= threshold, then floor = threshold |
| 2108 | * else ceiling = threshold - step |
| 2109 | * where: |
| 2110 | * step = voltage in microvolts of a single step of the VDD supply |
| 2111 | * |
| 2112 | * The open-loop voltage is also bounded by the new floor or ceiling value as |
| 2113 | * needed. |
| 2114 | * |
| 2115 | * Return: none |
| 2116 | */ |
| 2117 | void cprh_adjust_voltages_for_mem_acc(struct cpr3_regulator *vreg) |
| 2118 | { |
| 2119 | struct cpr3_controller *ctrl = vreg->thread->ctrl; |
| 2120 | struct cpr3_corner *corner; |
| 2121 | int i, threshold, prev_ceiling, prev_floor, prev_open_loop; |
| 2122 | |
| 2123 | if (!ctrl->mem_acc_threshold_volt) { |
| 2124 | /* MEM ACC not being used. */ |
| 2125 | return; |
| 2126 | } |
| 2127 | |
| 2128 | ctrl->mem_acc_threshold_volt = CPR3_ROUND(ctrl->mem_acc_threshold_volt, |
| 2129 | ctrl->step_volt); |
| 2130 | |
| 2131 | threshold = ctrl->mem_acc_threshold_volt; |
| 2132 | |
| 2133 | for (i = 0; i < vreg->corner_count; i++) { |
| 2134 | corner = &vreg->corner[i]; |
| 2135 | |
| 2136 | if (threshold <= corner->floor_volt |
| 2137 | || threshold > corner->ceiling_volt) |
| 2138 | continue; |
| 2139 | |
| 2140 | prev_floor = corner->floor_volt; |
| 2141 | prev_ceiling = corner->ceiling_volt; |
| 2142 | prev_open_loop = corner->open_loop_volt; |
| 2143 | |
| 2144 | if (corner->open_loop_volt >= threshold) { |
| 2145 | corner->floor_volt = max(corner->floor_volt, threshold); |
| 2146 | if (corner->open_loop_volt < corner->floor_volt) |
| 2147 | corner->open_loop_volt = corner->floor_volt; |
| 2148 | } else { |
| 2149 | corner->ceiling_volt = threshold - ctrl->step_volt; |
| 2150 | } |
| 2151 | |
| 2152 | if (corner->floor_volt != prev_floor |
| 2153 | || corner->ceiling_volt != prev_ceiling |
| 2154 | || corner->open_loop_volt != prev_open_loop) |
| 2155 | cpr3_debug(vreg, "MEM ACC threshold=%d changed corner %d voltages; prev: floor=%d, ceiling=%d, open-loop=%d; new: floor=%d, ceiling=%d, open-loop=%d\n", |
| 2156 | threshold, i, prev_floor, prev_ceiling, |
| 2157 | prev_open_loop, corner->floor_volt, |
| 2158 | corner->ceiling_volt, corner->open_loop_volt); |
| 2159 | } |
| 2160 | } |
| 2161 | |
| 2162 | /** |
| 2163 | * cpr3_apply_closed_loop_offset_voltages() - modify the closed-loop voltage |
| 2164 | * adjustments by the amounts that are needed for this |
| 2165 | * fuse combo |
| 2166 | * @vreg: Pointer to the CPR3 regulator |
| 2167 | * @volt_adjust: Array of closed-loop voltage adjustment values of length |
| 2168 | * vreg->corner_count which is further adjusted based upon |
| 2169 | * offset voltage fuse values. |
| 2170 | * @fuse_volt_adjust: Fused closed-loop voltage adjustment values of length |
| 2171 | * vreg->fuse_corner_count. |
| 2172 | * |
| 2173 | * Return: 0 on success, errno on failure |
| 2174 | */ |
| 2175 | static int cpr3_apply_closed_loop_offset_voltages(struct cpr3_regulator *vreg, |
| 2176 | int *volt_adjust, int *fuse_volt_adjust) |
| 2177 | { |
| 2178 | u32 *corner_map; |
| 2179 | int rc = 0, i; |
| 2180 | |
| 2181 | if (!of_find_property(vreg->of_node, |
| 2182 | "qcom,cpr-fused-closed-loop-voltage-adjustment-map", NULL)) { |
| 2183 | /* No closed-loop offset required. */ |
| 2184 | return 0; |
| 2185 | } |
| 2186 | |
| 2187 | corner_map = kcalloc(vreg->corner_count, sizeof(*corner_map), |
| 2188 | GFP_KERNEL); |
| 2189 | if (!corner_map) |
| 2190 | return -ENOMEM; |
| 2191 | |
| 2192 | rc = cpr3_parse_corner_array_property(vreg, |
| 2193 | "qcom,cpr-fused-closed-loop-voltage-adjustment-map", |
| 2194 | 1, corner_map); |
| 2195 | if (rc) |
| 2196 | goto done; |
| 2197 | |
| 2198 | for (i = 0; i < vreg->corner_count; i++) { |
| 2199 | if (corner_map[i] == 0) { |
| 2200 | continue; |
| 2201 | } else if (corner_map[i] > vreg->fuse_corner_count) { |
| 2202 | cpr3_err(vreg, "corner %d mapped to invalid fuse corner: %u\n", |
| 2203 | i, corner_map[i]); |
| 2204 | rc = -EINVAL; |
| 2205 | goto done; |
| 2206 | } |
| 2207 | |
| 2208 | volt_adjust[i] += fuse_volt_adjust[corner_map[i] - 1]; |
| 2209 | } |
| 2210 | |
| 2211 | done: |
| 2212 | kfree(corner_map); |
| 2213 | return rc; |
| 2214 | } |
| 2215 | |
| 2216 | /** |
| 2217 | * cpr3_enforce_inc_quotient_monotonicity() - Ensure that target quotients |
| 2218 | * increase monotonically from lower to higher corners |
| 2219 | * @vreg: Pointer to the CPR3 regulator |
| 2220 | * |
| 2221 | * Return: 0 on success, errno on failure |
| 2222 | */ |
| 2223 | static void cpr3_enforce_inc_quotient_monotonicity(struct cpr3_regulator *vreg) |
| 2224 | { |
| 2225 | int i, j; |
| 2226 | |
| 2227 | for (i = 1; i < vreg->corner_count; i++) { |
| 2228 | for (j = 0; j < CPR3_RO_COUNT; j++) { |
| 2229 | if (vreg->corner[i].target_quot[j] |
| 2230 | && vreg->corner[i].target_quot[j] |
| 2231 | < vreg->corner[i - 1].target_quot[j]) { |
| 2232 | cpr3_debug(vreg, "corner %d RO%u target quot=%u < corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n", |
| 2233 | i, j, |
| 2234 | vreg->corner[i].target_quot[j], |
| 2235 | i - 1, j, |
| 2236 | vreg->corner[i - 1].target_quot[j], |
| 2237 | i, j, |
| 2238 | vreg->corner[i - 1].target_quot[j]); |
| 2239 | vreg->corner[i].target_quot[j] |
| 2240 | = vreg->corner[i - 1].target_quot[j]; |
| 2241 | } |
| 2242 | } |
| 2243 | } |
| 2244 | } |
| 2245 | |
| 2246 | /** |
| 2247 | * cpr3_enforce_dec_quotient_monotonicity() - Ensure that target quotients |
| 2248 | * decrease monotonically from higher to lower corners |
| 2249 | * @vreg: Pointer to the CPR3 regulator |
| 2250 | * |
| 2251 | * Return: 0 on success, errno on failure |
| 2252 | */ |
| 2253 | static void cpr3_enforce_dec_quotient_monotonicity(struct cpr3_regulator *vreg) |
| 2254 | { |
| 2255 | int i, j; |
| 2256 | |
| 2257 | for (i = vreg->corner_count - 2; i >= 0; i--) { |
| 2258 | for (j = 0; j < CPR3_RO_COUNT; j++) { |
| 2259 | if (vreg->corner[i + 1].target_quot[j] |
| 2260 | && vreg->corner[i].target_quot[j] |
| 2261 | > vreg->corner[i + 1].target_quot[j]) { |
| 2262 | cpr3_debug(vreg, "corner %d RO%u target quot=%u > corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n", |
| 2263 | i, j, |
| 2264 | vreg->corner[i].target_quot[j], |
| 2265 | i + 1, j, |
| 2266 | vreg->corner[i + 1].target_quot[j], |
| 2267 | i, j, |
| 2268 | vreg->corner[i + 1].target_quot[j]); |
| 2269 | vreg->corner[i].target_quot[j] |
| 2270 | = vreg->corner[i + 1].target_quot[j]; |
| 2271 | } |
| 2272 | } |
| 2273 | } |
| 2274 | } |
| 2275 | |
| 2276 | /** |
| 2277 | * _cpr3_adjust_target_quotients() - adjust the target quotients for each |
| 2278 | * corner of the regulator according to input adjustment and |
| 2279 | * scaling arrays |
| 2280 | * @vreg: Pointer to the CPR3 regulator |
| 2281 | * @volt_adjust: Pointer to an array of closed-loop voltage adjustments |
| 2282 | * with units of microvolts. The array must have |
| 2283 | * vreg->corner_count number of elements. |
| 2284 | * @ro_scale: Pointer to a flattened 2D array of RO scaling factors. |
| 2285 | * The array must have an inner dimension of CPR3_RO_COUNT |
| 2286 | * and an outer dimension of vreg->corner_count |
| 2287 | * @label: Null terminated string providing a label for the type |
| 2288 | * of adjustment. |
| 2289 | * |
| 2290 | * Return: true if any corners received a positive voltage adjustment (> 0), |
| 2291 | * else false |
| 2292 | */ |
| 2293 | static bool _cpr3_adjust_target_quotients(struct cpr3_regulator *vreg, |
| 2294 | const int *volt_adjust, const int *ro_scale, const char *label) |
| 2295 | { |
| 2296 | int i, j, quot_adjust; |
| 2297 | bool is_increasing = false; |
| 2298 | u32 prev_quot; |
| 2299 | |
| 2300 | for (i = 0; i < vreg->corner_count; i++) { |
| 2301 | for (j = 0; j < CPR3_RO_COUNT; j++) { |
| 2302 | if (vreg->corner[i].target_quot[j]) { |
| 2303 | quot_adjust = cpr3_quot_adjustment( |
| 2304 | ro_scale[i * CPR3_RO_COUNT + j], |
| 2305 | volt_adjust[i]); |
| 2306 | if (quot_adjust) { |
| 2307 | prev_quot = vreg->corner[i]. |
| 2308 | target_quot[j]; |
| 2309 | vreg->corner[i].target_quot[j] |
| 2310 | += quot_adjust; |
| 2311 | cpr3_debug(vreg, "adjusted corner %d RO%d target quot %s: %u --> %u (%d uV)\n", |
| 2312 | i, j, label, prev_quot, |
| 2313 | vreg->corner[i].target_quot[j], |
| 2314 | volt_adjust[i]); |
| 2315 | } |
| 2316 | } |
| 2317 | } |
| 2318 | if (volt_adjust[i] > 0) |
| 2319 | is_increasing = true; |
| 2320 | } |
| 2321 | |
| 2322 | return is_increasing; |
| 2323 | } |
| 2324 | |
| 2325 | /** |
| 2326 | * cpr3_adjust_target_quotients() - adjust the target quotients for each |
| 2327 | * corner according to device tree values and fuse values |
| 2328 | * @vreg: Pointer to the CPR3 regulator |
| 2329 | * @fuse_volt_adjust: Fused closed-loop voltage adjustment values of length |
| 2330 | * vreg->fuse_corner_count. This parameter could be null |
| 2331 | * pointer when no fused adjustments are needed. |
| 2332 | * |
| 2333 | * Return: 0 on success, errno on failure |
| 2334 | */ |
| 2335 | int cpr3_adjust_target_quotients(struct cpr3_regulator *vreg, |
| 2336 | int *fuse_volt_adjust) |
| 2337 | { |
| 2338 | int i, rc; |
| 2339 | int *volt_adjust, *ro_scale; |
| 2340 | bool explicit_adjustment, fused_adjustment, is_increasing; |
| 2341 | |
| 2342 | explicit_adjustment = of_find_property(vreg->of_node, |
| 2343 | "qcom,cpr-closed-loop-voltage-adjustment", NULL); |
| 2344 | fused_adjustment = of_find_property(vreg->of_node, |
| 2345 | "qcom,cpr-fused-closed-loop-voltage-adjustment-map", NULL); |
| 2346 | |
| 2347 | if (!explicit_adjustment && !fused_adjustment && !vreg->aging_allowed) { |
| 2348 | /* No adjustment required. */ |
| 2349 | return 0; |
| 2350 | } else if (!of_find_property(vreg->of_node, |
| 2351 | "qcom,cpr-ro-scaling-factor", NULL)) { |
| 2352 | cpr3_err(vreg, "qcom,cpr-ro-scaling-factor is required for closed-loop voltage adjustment, but is missing\n"); |
| 2353 | return -EINVAL; |
| 2354 | } |
| 2355 | |
| 2356 | volt_adjust = kcalloc(vreg->corner_count, sizeof(*volt_adjust), |
| 2357 | GFP_KERNEL); |
| 2358 | ro_scale = kcalloc(vreg->corner_count * CPR3_RO_COUNT, |
| 2359 | sizeof(*ro_scale), GFP_KERNEL); |
| 2360 | if (!volt_adjust || !ro_scale) { |
| 2361 | rc = -ENOMEM; |
| 2362 | goto done; |
| 2363 | } |
| 2364 | |
| 2365 | rc = cpr3_parse_corner_array_property(vreg, |
| 2366 | "qcom,cpr-ro-scaling-factor", CPR3_RO_COUNT, ro_scale); |
| 2367 | if (rc) { |
| 2368 | cpr3_err(vreg, "could not load RO scaling factors, rc=%d\n", |
| 2369 | rc); |
| 2370 | goto done; |
| 2371 | } |
| 2372 | |
| 2373 | for (i = 0; i < vreg->corner_count; i++) |
| 2374 | memcpy(vreg->corner[i].ro_scale, &ro_scale[i * CPR3_RO_COUNT], |
| 2375 | sizeof(*ro_scale) * CPR3_RO_COUNT); |
| 2376 | |
| 2377 | if (explicit_adjustment) { |
| 2378 | rc = cpr3_parse_corner_array_property(vreg, |
| 2379 | "qcom,cpr-closed-loop-voltage-adjustment", |
| 2380 | 1, volt_adjust); |
| 2381 | if (rc) { |
| 2382 | cpr3_err(vreg, "could not load closed-loop voltage adjustments, rc=%d\n", |
| 2383 | rc); |
| 2384 | goto done; |
| 2385 | } |
| 2386 | |
| 2387 | _cpr3_adjust_target_quotients(vreg, volt_adjust, ro_scale, |
| 2388 | "from DT"); |
| 2389 | cpr3_enforce_inc_quotient_monotonicity(vreg); |
| 2390 | } |
| 2391 | |
| 2392 | if (fused_adjustment && fuse_volt_adjust) { |
| 2393 | memset(volt_adjust, 0, |
| 2394 | sizeof(*volt_adjust) * vreg->corner_count); |
| 2395 | |
| 2396 | rc = cpr3_apply_closed_loop_offset_voltages(vreg, volt_adjust, |
| 2397 | fuse_volt_adjust); |
| 2398 | if (rc) { |
| 2399 | cpr3_err(vreg, "could not apply fused closed-loop voltage reductions, rc=%d\n", |
| 2400 | rc); |
| 2401 | goto done; |
| 2402 | } |
| 2403 | |
| 2404 | is_increasing = _cpr3_adjust_target_quotients(vreg, volt_adjust, |
| 2405 | ro_scale, "from fuse"); |
| 2406 | if (is_increasing) |
| 2407 | cpr3_enforce_inc_quotient_monotonicity(vreg); |
| 2408 | else |
| 2409 | cpr3_enforce_dec_quotient_monotonicity(vreg); |
| 2410 | } |
| 2411 | |
| 2412 | done: |
| 2413 | kfree(volt_adjust); |
| 2414 | kfree(ro_scale); |
| 2415 | return rc; |
| 2416 | } |