blob: 9463ede32e6a0f64610a6cb86aed2c5cd17e9e0a [file] [log] [blame]
Marcin Wojtas3f518502014-07-10 16:52:13 -03001/*
2 * Driver for Marvell PPv2 network controller for Armada 375 SoC.
3 *
4 * Copyright (C) 2014 Marvell
5 *
6 * Marcin Wojtas <mw@semihalf.com>
7 *
8 * This file is licensed under the terms of the GNU General Public
9 * License version 2. This program is licensed "as is" without any
10 * warranty of any kind, whether express or implied.
11 */
12
13#include <linux/kernel.h>
14#include <linux/netdevice.h>
15#include <linux/etherdevice.h>
16#include <linux/platform_device.h>
17#include <linux/skbuff.h>
18#include <linux/inetdevice.h>
19#include <linux/mbus.h>
20#include <linux/module.h>
21#include <linux/interrupt.h>
22#include <linux/cpumask.h>
23#include <linux/of.h>
24#include <linux/of_irq.h>
25#include <linux/of_mdio.h>
26#include <linux/of_net.h>
27#include <linux/of_address.h>
28#include <linux/phy.h>
29#include <linux/clk.h>
30#include <uapi/linux/ppp_defs.h>
31#include <net/ip.h>
32#include <net/ipv6.h>
33
34/* RX Fifo Registers */
35#define MVPP2_RX_DATA_FIFO_SIZE_REG(port) (0x00 + 4 * (port))
36#define MVPP2_RX_ATTR_FIFO_SIZE_REG(port) (0x20 + 4 * (port))
37#define MVPP2_RX_MIN_PKT_SIZE_REG 0x60
38#define MVPP2_RX_FIFO_INIT_REG 0x64
39
40/* RX DMA Top Registers */
41#define MVPP2_RX_CTRL_REG(port) (0x140 + 4 * (port))
42#define MVPP2_RX_LOW_LATENCY_PKT_SIZE(s) (((s) & 0xfff) << 16)
43#define MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK BIT(31)
44#define MVPP2_POOL_BUF_SIZE_REG(pool) (0x180 + 4 * (pool))
45#define MVPP2_POOL_BUF_SIZE_OFFSET 5
46#define MVPP2_RXQ_CONFIG_REG(rxq) (0x800 + 4 * (rxq))
47#define MVPP2_SNOOP_PKT_SIZE_MASK 0x1ff
48#define MVPP2_SNOOP_BUF_HDR_MASK BIT(9)
49#define MVPP2_RXQ_POOL_SHORT_OFFS 20
50#define MVPP2_RXQ_POOL_SHORT_MASK 0x700000
51#define MVPP2_RXQ_POOL_LONG_OFFS 24
52#define MVPP2_RXQ_POOL_LONG_MASK 0x7000000
53#define MVPP2_RXQ_PACKET_OFFSET_OFFS 28
54#define MVPP2_RXQ_PACKET_OFFSET_MASK 0x70000000
55#define MVPP2_RXQ_DISABLE_MASK BIT(31)
56
57/* Parser Registers */
58#define MVPP2_PRS_INIT_LOOKUP_REG 0x1000
59#define MVPP2_PRS_PORT_LU_MAX 0xf
60#define MVPP2_PRS_PORT_LU_MASK(port) (0xff << ((port) * 4))
61#define MVPP2_PRS_PORT_LU_VAL(port, val) ((val) << ((port) * 4))
62#define MVPP2_PRS_INIT_OFFS_REG(port) (0x1004 + ((port) & 4))
63#define MVPP2_PRS_INIT_OFF_MASK(port) (0x3f << (((port) % 4) * 8))
64#define MVPP2_PRS_INIT_OFF_VAL(port, val) ((val) << (((port) % 4) * 8))
65#define MVPP2_PRS_MAX_LOOP_REG(port) (0x100c + ((port) & 4))
66#define MVPP2_PRS_MAX_LOOP_MASK(port) (0xff << (((port) % 4) * 8))
67#define MVPP2_PRS_MAX_LOOP_VAL(port, val) ((val) << (((port) % 4) * 8))
68#define MVPP2_PRS_TCAM_IDX_REG 0x1100
69#define MVPP2_PRS_TCAM_DATA_REG(idx) (0x1104 + (idx) * 4)
70#define MVPP2_PRS_TCAM_INV_MASK BIT(31)
71#define MVPP2_PRS_SRAM_IDX_REG 0x1200
72#define MVPP2_PRS_SRAM_DATA_REG(idx) (0x1204 + (idx) * 4)
73#define MVPP2_PRS_TCAM_CTRL_REG 0x1230
74#define MVPP2_PRS_TCAM_EN_MASK BIT(0)
75
76/* Classifier Registers */
77#define MVPP2_CLS_MODE_REG 0x1800
78#define MVPP2_CLS_MODE_ACTIVE_MASK BIT(0)
79#define MVPP2_CLS_PORT_WAY_REG 0x1810
80#define MVPP2_CLS_PORT_WAY_MASK(port) (1 << (port))
81#define MVPP2_CLS_LKP_INDEX_REG 0x1814
82#define MVPP2_CLS_LKP_INDEX_WAY_OFFS 6
83#define MVPP2_CLS_LKP_TBL_REG 0x1818
84#define MVPP2_CLS_LKP_TBL_RXQ_MASK 0xff
85#define MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK BIT(25)
86#define MVPP2_CLS_FLOW_INDEX_REG 0x1820
87#define MVPP2_CLS_FLOW_TBL0_REG 0x1824
88#define MVPP2_CLS_FLOW_TBL1_REG 0x1828
89#define MVPP2_CLS_FLOW_TBL2_REG 0x182c
90#define MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port) (0x1980 + ((port) * 4))
91#define MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS 3
92#define MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK 0x7
93#define MVPP2_CLS_SWFWD_P2HQ_REG(port) (0x19b0 + ((port) * 4))
94#define MVPP2_CLS_SWFWD_PCTRL_REG 0x19d0
95#define MVPP2_CLS_SWFWD_PCTRL_MASK(port) (1 << (port))
96
97/* Descriptor Manager Top Registers */
98#define MVPP2_RXQ_NUM_REG 0x2040
99#define MVPP2_RXQ_DESC_ADDR_REG 0x2044
100#define MVPP2_RXQ_DESC_SIZE_REG 0x2048
101#define MVPP2_RXQ_DESC_SIZE_MASK 0x3ff0
102#define MVPP2_RXQ_STATUS_UPDATE_REG(rxq) (0x3000 + 4 * (rxq))
103#define MVPP2_RXQ_NUM_PROCESSED_OFFSET 0
104#define MVPP2_RXQ_NUM_NEW_OFFSET 16
105#define MVPP2_RXQ_STATUS_REG(rxq) (0x3400 + 4 * (rxq))
106#define MVPP2_RXQ_OCCUPIED_MASK 0x3fff
107#define MVPP2_RXQ_NON_OCCUPIED_OFFSET 16
108#define MVPP2_RXQ_NON_OCCUPIED_MASK 0x3fff0000
109#define MVPP2_RXQ_THRESH_REG 0x204c
110#define MVPP2_OCCUPIED_THRESH_OFFSET 0
111#define MVPP2_OCCUPIED_THRESH_MASK 0x3fff
112#define MVPP2_RXQ_INDEX_REG 0x2050
113#define MVPP2_TXQ_NUM_REG 0x2080
114#define MVPP2_TXQ_DESC_ADDR_REG 0x2084
115#define MVPP2_TXQ_DESC_SIZE_REG 0x2088
116#define MVPP2_TXQ_DESC_SIZE_MASK 0x3ff0
117#define MVPP2_AGGR_TXQ_UPDATE_REG 0x2090
118#define MVPP2_TXQ_THRESH_REG 0x2094
119#define MVPP2_TRANSMITTED_THRESH_OFFSET 16
120#define MVPP2_TRANSMITTED_THRESH_MASK 0x3fff0000
121#define MVPP2_TXQ_INDEX_REG 0x2098
122#define MVPP2_TXQ_PREF_BUF_REG 0x209c
123#define MVPP2_PREF_BUF_PTR(desc) ((desc) & 0xfff)
124#define MVPP2_PREF_BUF_SIZE_4 (BIT(12) | BIT(13))
125#define MVPP2_PREF_BUF_SIZE_16 (BIT(12) | BIT(14))
126#define MVPP2_PREF_BUF_THRESH(val) ((val) << 17)
127#define MVPP2_TXQ_DRAIN_EN_MASK BIT(31)
128#define MVPP2_TXQ_PENDING_REG 0x20a0
129#define MVPP2_TXQ_PENDING_MASK 0x3fff
130#define MVPP2_TXQ_INT_STATUS_REG 0x20a4
131#define MVPP2_TXQ_SENT_REG(txq) (0x3c00 + 4 * (txq))
132#define MVPP2_TRANSMITTED_COUNT_OFFSET 16
133#define MVPP2_TRANSMITTED_COUNT_MASK 0x3fff0000
134#define MVPP2_TXQ_RSVD_REQ_REG 0x20b0
135#define MVPP2_TXQ_RSVD_REQ_Q_OFFSET 16
136#define MVPP2_TXQ_RSVD_RSLT_REG 0x20b4
137#define MVPP2_TXQ_RSVD_RSLT_MASK 0x3fff
138#define MVPP2_TXQ_RSVD_CLR_REG 0x20b8
139#define MVPP2_TXQ_RSVD_CLR_OFFSET 16
140#define MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu) (0x2100 + 4 * (cpu))
141#define MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu) (0x2140 + 4 * (cpu))
142#define MVPP2_AGGR_TXQ_DESC_SIZE_MASK 0x3ff0
143#define MVPP2_AGGR_TXQ_STATUS_REG(cpu) (0x2180 + 4 * (cpu))
144#define MVPP2_AGGR_TXQ_PENDING_MASK 0x3fff
145#define MVPP2_AGGR_TXQ_INDEX_REG(cpu) (0x21c0 + 4 * (cpu))
146
147/* MBUS bridge registers */
148#define MVPP2_WIN_BASE(w) (0x4000 + ((w) << 2))
149#define MVPP2_WIN_SIZE(w) (0x4020 + ((w) << 2))
150#define MVPP2_WIN_REMAP(w) (0x4040 + ((w) << 2))
151#define MVPP2_BASE_ADDR_ENABLE 0x4060
152
153/* Interrupt Cause and Mask registers */
154#define MVPP2_ISR_RX_THRESHOLD_REG(rxq) (0x5200 + 4 * (rxq))
155#define MVPP2_ISR_RXQ_GROUP_REG(rxq) (0x5400 + 4 * (rxq))
156#define MVPP2_ISR_ENABLE_REG(port) (0x5420 + 4 * (port))
157#define MVPP2_ISR_ENABLE_INTERRUPT(mask) ((mask) & 0xffff)
158#define MVPP2_ISR_DISABLE_INTERRUPT(mask) (((mask) << 16) & 0xffff0000)
159#define MVPP2_ISR_RX_TX_CAUSE_REG(port) (0x5480 + 4 * (port))
160#define MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
161#define MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK 0xff0000
162#define MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK BIT(24)
163#define MVPP2_CAUSE_FCS_ERR_MASK BIT(25)
164#define MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK BIT(26)
165#define MVPP2_CAUSE_TX_EXCEPTION_SUM_MASK BIT(29)
166#define MVPP2_CAUSE_RX_EXCEPTION_SUM_MASK BIT(30)
167#define MVPP2_CAUSE_MISC_SUM_MASK BIT(31)
168#define MVPP2_ISR_RX_TX_MASK_REG(port) (0x54a0 + 4 * (port))
169#define MVPP2_ISR_PON_RX_TX_MASK_REG 0x54bc
170#define MVPP2_PON_CAUSE_RXQ_OCCUP_DESC_ALL_MASK 0xffff
171#define MVPP2_PON_CAUSE_TXP_OCCUP_DESC_ALL_MASK 0x3fc00000
172#define MVPP2_PON_CAUSE_MISC_SUM_MASK BIT(31)
173#define MVPP2_ISR_MISC_CAUSE_REG 0x55b0
174
175/* Buffer Manager registers */
176#define MVPP2_BM_POOL_BASE_REG(pool) (0x6000 + ((pool) * 4))
177#define MVPP2_BM_POOL_BASE_ADDR_MASK 0xfffff80
178#define MVPP2_BM_POOL_SIZE_REG(pool) (0x6040 + ((pool) * 4))
179#define MVPP2_BM_POOL_SIZE_MASK 0xfff0
180#define MVPP2_BM_POOL_READ_PTR_REG(pool) (0x6080 + ((pool) * 4))
181#define MVPP2_BM_POOL_GET_READ_PTR_MASK 0xfff0
182#define MVPP2_BM_POOL_PTRS_NUM_REG(pool) (0x60c0 + ((pool) * 4))
183#define MVPP2_BM_POOL_PTRS_NUM_MASK 0xfff0
184#define MVPP2_BM_BPPI_READ_PTR_REG(pool) (0x6100 + ((pool) * 4))
185#define MVPP2_BM_BPPI_PTRS_NUM_REG(pool) (0x6140 + ((pool) * 4))
186#define MVPP2_BM_BPPI_PTR_NUM_MASK 0x7ff
187#define MVPP2_BM_BPPI_PREFETCH_FULL_MASK BIT(16)
188#define MVPP2_BM_POOL_CTRL_REG(pool) (0x6200 + ((pool) * 4))
189#define MVPP2_BM_START_MASK BIT(0)
190#define MVPP2_BM_STOP_MASK BIT(1)
191#define MVPP2_BM_STATE_MASK BIT(4)
192#define MVPP2_BM_LOW_THRESH_OFFS 8
193#define MVPP2_BM_LOW_THRESH_MASK 0x7f00
194#define MVPP2_BM_LOW_THRESH_VALUE(val) ((val) << \
195 MVPP2_BM_LOW_THRESH_OFFS)
196#define MVPP2_BM_HIGH_THRESH_OFFS 16
197#define MVPP2_BM_HIGH_THRESH_MASK 0x7f0000
198#define MVPP2_BM_HIGH_THRESH_VALUE(val) ((val) << \
199 MVPP2_BM_HIGH_THRESH_OFFS)
200#define MVPP2_BM_INTR_CAUSE_REG(pool) (0x6240 + ((pool) * 4))
201#define MVPP2_BM_RELEASED_DELAY_MASK BIT(0)
202#define MVPP2_BM_ALLOC_FAILED_MASK BIT(1)
203#define MVPP2_BM_BPPE_EMPTY_MASK BIT(2)
204#define MVPP2_BM_BPPE_FULL_MASK BIT(3)
205#define MVPP2_BM_AVAILABLE_BP_LOW_MASK BIT(4)
206#define MVPP2_BM_INTR_MASK_REG(pool) (0x6280 + ((pool) * 4))
207#define MVPP2_BM_PHY_ALLOC_REG(pool) (0x6400 + ((pool) * 4))
208#define MVPP2_BM_PHY_ALLOC_GRNTD_MASK BIT(0)
209#define MVPP2_BM_VIRT_ALLOC_REG 0x6440
210#define MVPP2_BM_PHY_RLS_REG(pool) (0x6480 + ((pool) * 4))
211#define MVPP2_BM_PHY_RLS_MC_BUFF_MASK BIT(0)
212#define MVPP2_BM_PHY_RLS_PRIO_EN_MASK BIT(1)
213#define MVPP2_BM_PHY_RLS_GRNTD_MASK BIT(2)
214#define MVPP2_BM_VIRT_RLS_REG 0x64c0
215#define MVPP2_BM_MC_RLS_REG 0x64c4
216#define MVPP2_BM_MC_ID_MASK 0xfff
217#define MVPP2_BM_FORCE_RELEASE_MASK BIT(12)
218
219/* TX Scheduler registers */
220#define MVPP2_TXP_SCHED_PORT_INDEX_REG 0x8000
221#define MVPP2_TXP_SCHED_Q_CMD_REG 0x8004
222#define MVPP2_TXP_SCHED_ENQ_MASK 0xff
223#define MVPP2_TXP_SCHED_DISQ_OFFSET 8
224#define MVPP2_TXP_SCHED_CMD_1_REG 0x8010
225#define MVPP2_TXP_SCHED_PERIOD_REG 0x8018
226#define MVPP2_TXP_SCHED_MTU_REG 0x801c
227#define MVPP2_TXP_MTU_MAX 0x7FFFF
228#define MVPP2_TXP_SCHED_REFILL_REG 0x8020
229#define MVPP2_TXP_REFILL_TOKENS_ALL_MASK 0x7ffff
230#define MVPP2_TXP_REFILL_PERIOD_ALL_MASK 0x3ff00000
231#define MVPP2_TXP_REFILL_PERIOD_MASK(v) ((v) << 20)
232#define MVPP2_TXP_SCHED_TOKEN_SIZE_REG 0x8024
233#define MVPP2_TXP_TOKEN_SIZE_MAX 0xffffffff
234#define MVPP2_TXQ_SCHED_REFILL_REG(q) (0x8040 + ((q) << 2))
235#define MVPP2_TXQ_REFILL_TOKENS_ALL_MASK 0x7ffff
236#define MVPP2_TXQ_REFILL_PERIOD_ALL_MASK 0x3ff00000
237#define MVPP2_TXQ_REFILL_PERIOD_MASK(v) ((v) << 20)
238#define MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(q) (0x8060 + ((q) << 2))
239#define MVPP2_TXQ_TOKEN_SIZE_MAX 0x7fffffff
240#define MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(q) (0x8080 + ((q) << 2))
241#define MVPP2_TXQ_TOKEN_CNTR_MAX 0xffffffff
242
243/* TX general registers */
244#define MVPP2_TX_SNOOP_REG 0x8800
245#define MVPP2_TX_PORT_FLUSH_REG 0x8810
246#define MVPP2_TX_PORT_FLUSH_MASK(port) (1 << (port))
247
248/* LMS registers */
249#define MVPP2_SRC_ADDR_MIDDLE 0x24
250#define MVPP2_SRC_ADDR_HIGH 0x28
251#define MVPP2_MIB_COUNTERS_BASE(port) (0x1000 + ((port) >> 1) * \
252 0x400 + (port) * 0x400)
253#define MVPP2_MIB_LATE_COLLISION 0x7c
254#define MVPP2_ISR_SUM_MASK_REG 0x220c
255#define MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG 0x305c
256#define MVPP2_EXT_GLOBAL_CTRL_DEFAULT 0x27
257
258/* Per-port registers */
259#define MVPP2_GMAC_CTRL_0_REG 0x0
260#define MVPP2_GMAC_PORT_EN_MASK BIT(0)
261#define MVPP2_GMAC_MAX_RX_SIZE_OFFS 2
262#define MVPP2_GMAC_MAX_RX_SIZE_MASK 0x7ffc
263#define MVPP2_GMAC_MIB_CNTR_EN_MASK BIT(15)
264#define MVPP2_GMAC_CTRL_1_REG 0x4
265#define MVPP2_GMAC_PERIODIC_XON_EN_MASK BIT(0)
266#define MVPP2_GMAC_GMII_LB_EN_MASK BIT(5)
267#define MVPP2_GMAC_PCS_LB_EN_BIT 6
268#define MVPP2_GMAC_PCS_LB_EN_MASK BIT(6)
269#define MVPP2_GMAC_SA_LOW_OFFS 7
270#define MVPP2_GMAC_CTRL_2_REG 0x8
271#define MVPP2_GMAC_INBAND_AN_MASK BIT(0)
272#define MVPP2_GMAC_PCS_ENABLE_MASK BIT(3)
273#define MVPP2_GMAC_PORT_RGMII_MASK BIT(4)
274#define MVPP2_GMAC_PORT_RESET_MASK BIT(6)
275#define MVPP2_GMAC_AUTONEG_CONFIG 0xc
276#define MVPP2_GMAC_FORCE_LINK_DOWN BIT(0)
277#define MVPP2_GMAC_FORCE_LINK_PASS BIT(1)
278#define MVPP2_GMAC_CONFIG_MII_SPEED BIT(5)
279#define MVPP2_GMAC_CONFIG_GMII_SPEED BIT(6)
280#define MVPP2_GMAC_AN_SPEED_EN BIT(7)
281#define MVPP2_GMAC_CONFIG_FULL_DUPLEX BIT(12)
282#define MVPP2_GMAC_AN_DUPLEX_EN BIT(13)
283#define MVPP2_GMAC_PORT_FIFO_CFG_1_REG 0x1c
284#define MVPP2_GMAC_TX_FIFO_MIN_TH_OFFS 6
285#define MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK 0x1fc0
286#define MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(v) (((v) << 6) & \
287 MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK)
288
289#define MVPP2_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
290
291/* Descriptor ring Macros */
292#define MVPP2_QUEUE_NEXT_DESC(q, index) \
293 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
294
295/* Various constants */
296
297/* Coalescing */
298#define MVPP2_TXDONE_COAL_PKTS_THRESH 15
299#define MVPP2_RX_COAL_PKTS 32
300#define MVPP2_RX_COAL_USEC 100
301
302/* The two bytes Marvell header. Either contains a special value used
303 * by Marvell switches when a specific hardware mode is enabled (not
304 * supported by this driver) or is filled automatically by zeroes on
305 * the RX side. Those two bytes being at the front of the Ethernet
306 * header, they allow to have the IP header aligned on a 4 bytes
307 * boundary automatically: the hardware skips those two bytes on its
308 * own.
309 */
310#define MVPP2_MH_SIZE 2
311#define MVPP2_ETH_TYPE_LEN 2
312#define MVPP2_PPPOE_HDR_SIZE 8
313#define MVPP2_VLAN_TAG_LEN 4
314
315/* Lbtd 802.3 type */
316#define MVPP2_IP_LBDT_TYPE 0xfffa
317
318#define MVPP2_CPU_D_CACHE_LINE_SIZE 32
319#define MVPP2_TX_CSUM_MAX_SIZE 9800
320
321/* Timeout constants */
322#define MVPP2_TX_DISABLE_TIMEOUT_MSEC 1000
323#define MVPP2_TX_PENDING_TIMEOUT_MSEC 1000
324
325#define MVPP2_TX_MTU_MAX 0x7ffff
326
327/* Maximum number of T-CONTs of PON port */
328#define MVPP2_MAX_TCONT 16
329
330/* Maximum number of supported ports */
331#define MVPP2_MAX_PORTS 4
332
333/* Maximum number of TXQs used by single port */
334#define MVPP2_MAX_TXQ 8
335
336/* Maximum number of RXQs used by single port */
337#define MVPP2_MAX_RXQ 8
338
339/* Dfault number of RXQs in use */
340#define MVPP2_DEFAULT_RXQ 4
341
342/* Total number of RXQs available to all ports */
343#define MVPP2_RXQ_TOTAL_NUM (MVPP2_MAX_PORTS * MVPP2_MAX_RXQ)
344
345/* Max number of Rx descriptors */
346#define MVPP2_MAX_RXD 128
347
348/* Max number of Tx descriptors */
349#define MVPP2_MAX_TXD 1024
350
351/* Amount of Tx descriptors that can be reserved at once by CPU */
352#define MVPP2_CPU_DESC_CHUNK 64
353
354/* Max number of Tx descriptors in each aggregated queue */
355#define MVPP2_AGGR_TXQ_SIZE 256
356
357/* Descriptor aligned size */
358#define MVPP2_DESC_ALIGNED_SIZE 32
359
360/* Descriptor alignment mask */
361#define MVPP2_TX_DESC_ALIGN (MVPP2_DESC_ALIGNED_SIZE - 1)
362
363/* RX FIFO constants */
364#define MVPP2_RX_FIFO_PORT_DATA_SIZE 0x2000
365#define MVPP2_RX_FIFO_PORT_ATTR_SIZE 0x80
366#define MVPP2_RX_FIFO_PORT_MIN_PKT 0x80
367
368/* RX buffer constants */
369#define MVPP2_SKB_SHINFO_SIZE \
370 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
371
372#define MVPP2_RX_PKT_SIZE(mtu) \
373 ALIGN((mtu) + MVPP2_MH_SIZE + MVPP2_VLAN_TAG_LEN + \
374 ETH_HLEN + ETH_FCS_LEN, MVPP2_CPU_D_CACHE_LINE_SIZE)
375
376#define MVPP2_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
377#define MVPP2_RX_TOTAL_SIZE(buf_size) ((buf_size) + MVPP2_SKB_SHINFO_SIZE)
378#define MVPP2_RX_MAX_PKT_SIZE(total_size) \
379 ((total_size) - NET_SKB_PAD - MVPP2_SKB_SHINFO_SIZE)
380
381#define MVPP2_BIT_TO_BYTE(bit) ((bit) / 8)
382
383/* IPv6 max L3 address size */
384#define MVPP2_MAX_L3_ADDR_SIZE 16
385
386/* Port flags */
387#define MVPP2_F_LOOPBACK BIT(0)
388
389/* Marvell tag types */
390enum mvpp2_tag_type {
391 MVPP2_TAG_TYPE_NONE = 0,
392 MVPP2_TAG_TYPE_MH = 1,
393 MVPP2_TAG_TYPE_DSA = 2,
394 MVPP2_TAG_TYPE_EDSA = 3,
395 MVPP2_TAG_TYPE_VLAN = 4,
396 MVPP2_TAG_TYPE_LAST = 5
397};
398
399/* Parser constants */
400#define MVPP2_PRS_TCAM_SRAM_SIZE 256
401#define MVPP2_PRS_TCAM_WORDS 6
402#define MVPP2_PRS_SRAM_WORDS 4
403#define MVPP2_PRS_FLOW_ID_SIZE 64
404#define MVPP2_PRS_FLOW_ID_MASK 0x3f
405#define MVPP2_PRS_TCAM_ENTRY_INVALID 1
406#define MVPP2_PRS_TCAM_DSA_TAGGED_BIT BIT(5)
407#define MVPP2_PRS_IPV4_HEAD 0x40
408#define MVPP2_PRS_IPV4_HEAD_MASK 0xf0
409#define MVPP2_PRS_IPV4_MC 0xe0
410#define MVPP2_PRS_IPV4_MC_MASK 0xf0
411#define MVPP2_PRS_IPV4_BC_MASK 0xff
412#define MVPP2_PRS_IPV4_IHL 0x5
413#define MVPP2_PRS_IPV4_IHL_MASK 0xf
414#define MVPP2_PRS_IPV6_MC 0xff
415#define MVPP2_PRS_IPV6_MC_MASK 0xff
416#define MVPP2_PRS_IPV6_HOP_MASK 0xff
417#define MVPP2_PRS_TCAM_PROTO_MASK 0xff
418#define MVPP2_PRS_TCAM_PROTO_MASK_L 0x3f
419#define MVPP2_PRS_DBL_VLANS_MAX 100
420
421/* Tcam structure:
422 * - lookup ID - 4 bits
423 * - port ID - 1 byte
424 * - additional information - 1 byte
425 * - header data - 8 bytes
426 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(5)->(0).
427 */
428#define MVPP2_PRS_AI_BITS 8
429#define MVPP2_PRS_PORT_MASK 0xff
430#define MVPP2_PRS_LU_MASK 0xf
431#define MVPP2_PRS_TCAM_DATA_BYTE(offs) \
432 (((offs) - ((offs) % 2)) * 2 + ((offs) % 2))
433#define MVPP2_PRS_TCAM_DATA_BYTE_EN(offs) \
434 (((offs) * 2) - ((offs) % 2) + 2)
435#define MVPP2_PRS_TCAM_AI_BYTE 16
436#define MVPP2_PRS_TCAM_PORT_BYTE 17
437#define MVPP2_PRS_TCAM_LU_BYTE 20
438#define MVPP2_PRS_TCAM_EN_OFFS(offs) ((offs) + 2)
439#define MVPP2_PRS_TCAM_INV_WORD 5
440/* Tcam entries ID */
441#define MVPP2_PE_DROP_ALL 0
442#define MVPP2_PE_FIRST_FREE_TID 1
443#define MVPP2_PE_LAST_FREE_TID (MVPP2_PRS_TCAM_SRAM_SIZE - 31)
444#define MVPP2_PE_IP6_EXT_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 30)
445#define MVPP2_PE_MAC_MC_IP6 (MVPP2_PRS_TCAM_SRAM_SIZE - 29)
446#define MVPP2_PE_IP6_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 28)
447#define MVPP2_PE_IP4_ADDR_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 27)
448#define MVPP2_PE_LAST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 26)
449#define MVPP2_PE_FIRST_DEFAULT_FLOW (MVPP2_PRS_TCAM_SRAM_SIZE - 19)
450#define MVPP2_PE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 18)
451#define MVPP2_PE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 17)
452#define MVPP2_PE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 16)
453#define MVPP2_PE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 15)
454#define MVPP2_PE_ETYPE_EDSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 14)
455#define MVPP2_PE_ETYPE_EDSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 13)
456#define MVPP2_PE_ETYPE_DSA_TAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 12)
457#define MVPP2_PE_ETYPE_DSA_UNTAGGED (MVPP2_PRS_TCAM_SRAM_SIZE - 11)
458#define MVPP2_PE_MH_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 10)
459#define MVPP2_PE_DSA_DEFAULT (MVPP2_PRS_TCAM_SRAM_SIZE - 9)
460#define MVPP2_PE_IP6_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 8)
461#define MVPP2_PE_IP4_PROTO_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 7)
462#define MVPP2_PE_ETH_TYPE_UN (MVPP2_PRS_TCAM_SRAM_SIZE - 6)
463#define MVPP2_PE_VLAN_DBL (MVPP2_PRS_TCAM_SRAM_SIZE - 5)
464#define MVPP2_PE_VLAN_NONE (MVPP2_PRS_TCAM_SRAM_SIZE - 4)
465#define MVPP2_PE_MAC_MC_ALL (MVPP2_PRS_TCAM_SRAM_SIZE - 3)
466#define MVPP2_PE_MAC_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 2)
467#define MVPP2_PE_MAC_NON_PROMISCUOUS (MVPP2_PRS_TCAM_SRAM_SIZE - 1)
468
469/* Sram structure
470 * The fields are represented by MVPP2_PRS_TCAM_DATA_REG(3)->(0).
471 */
472#define MVPP2_PRS_SRAM_RI_OFFS 0
473#define MVPP2_PRS_SRAM_RI_WORD 0
474#define MVPP2_PRS_SRAM_RI_CTRL_OFFS 32
475#define MVPP2_PRS_SRAM_RI_CTRL_WORD 1
476#define MVPP2_PRS_SRAM_RI_CTRL_BITS 32
477#define MVPP2_PRS_SRAM_SHIFT_OFFS 64
478#define MVPP2_PRS_SRAM_SHIFT_SIGN_BIT 72
479#define MVPP2_PRS_SRAM_UDF_OFFS 73
480#define MVPP2_PRS_SRAM_UDF_BITS 8
481#define MVPP2_PRS_SRAM_UDF_MASK 0xff
482#define MVPP2_PRS_SRAM_UDF_SIGN_BIT 81
483#define MVPP2_PRS_SRAM_UDF_TYPE_OFFS 82
484#define MVPP2_PRS_SRAM_UDF_TYPE_MASK 0x7
485#define MVPP2_PRS_SRAM_UDF_TYPE_L3 1
486#define MVPP2_PRS_SRAM_UDF_TYPE_L4 4
487#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS 85
488#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK 0x3
489#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD 1
490#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP4_ADD 2
491#define MVPP2_PRS_SRAM_OP_SEL_SHIFT_IP6_ADD 3
492#define MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS 87
493#define MVPP2_PRS_SRAM_OP_SEL_UDF_BITS 2
494#define MVPP2_PRS_SRAM_OP_SEL_UDF_MASK 0x3
495#define MVPP2_PRS_SRAM_OP_SEL_UDF_ADD 0
496#define MVPP2_PRS_SRAM_OP_SEL_UDF_IP4_ADD 2
497#define MVPP2_PRS_SRAM_OP_SEL_UDF_IP6_ADD 3
498#define MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS 89
499#define MVPP2_PRS_SRAM_AI_OFFS 90
500#define MVPP2_PRS_SRAM_AI_CTRL_OFFS 98
501#define MVPP2_PRS_SRAM_AI_CTRL_BITS 8
502#define MVPP2_PRS_SRAM_AI_MASK 0xff
503#define MVPP2_PRS_SRAM_NEXT_LU_OFFS 106
504#define MVPP2_PRS_SRAM_NEXT_LU_MASK 0xf
505#define MVPP2_PRS_SRAM_LU_DONE_BIT 110
506#define MVPP2_PRS_SRAM_LU_GEN_BIT 111
507
508/* Sram result info bits assignment */
509#define MVPP2_PRS_RI_MAC_ME_MASK 0x1
510#define MVPP2_PRS_RI_DSA_MASK 0x2
511#define MVPP2_PRS_RI_VLAN_MASK 0xc
512#define MVPP2_PRS_RI_VLAN_NONE ~(BIT(2) | BIT(3))
513#define MVPP2_PRS_RI_VLAN_SINGLE BIT(2)
514#define MVPP2_PRS_RI_VLAN_DOUBLE BIT(3)
515#define MVPP2_PRS_RI_VLAN_TRIPLE (BIT(2) | BIT(3))
516#define MVPP2_PRS_RI_CPU_CODE_MASK 0x70
517#define MVPP2_PRS_RI_CPU_CODE_RX_SPEC BIT(4)
518#define MVPP2_PRS_RI_L2_CAST_MASK 0x600
519#define MVPP2_PRS_RI_L2_UCAST ~(BIT(9) | BIT(10))
520#define MVPP2_PRS_RI_L2_MCAST BIT(9)
521#define MVPP2_PRS_RI_L2_BCAST BIT(10)
522#define MVPP2_PRS_RI_PPPOE_MASK 0x800
523#define MVPP2_PRS_RI_L3_PROTO_MASK 0x7000
524#define MVPP2_PRS_RI_L3_UN ~(BIT(12) | BIT(13) | BIT(14))
525#define MVPP2_PRS_RI_L3_IP4 BIT(12)
526#define MVPP2_PRS_RI_L3_IP4_OPT BIT(13)
527#define MVPP2_PRS_RI_L3_IP4_OTHER (BIT(12) | BIT(13))
528#define MVPP2_PRS_RI_L3_IP6 BIT(14)
529#define MVPP2_PRS_RI_L3_IP6_EXT (BIT(12) | BIT(14))
530#define MVPP2_PRS_RI_L3_ARP (BIT(13) | BIT(14))
531#define MVPP2_PRS_RI_L3_ADDR_MASK 0x18000
532#define MVPP2_PRS_RI_L3_UCAST ~(BIT(15) | BIT(16))
533#define MVPP2_PRS_RI_L3_MCAST BIT(15)
534#define MVPP2_PRS_RI_L3_BCAST (BIT(15) | BIT(16))
535#define MVPP2_PRS_RI_IP_FRAG_MASK 0x20000
536#define MVPP2_PRS_RI_UDF3_MASK 0x300000
537#define MVPP2_PRS_RI_UDF3_RX_SPECIAL BIT(21)
538#define MVPP2_PRS_RI_L4_PROTO_MASK 0x1c00000
539#define MVPP2_PRS_RI_L4_TCP BIT(22)
540#define MVPP2_PRS_RI_L4_UDP BIT(23)
541#define MVPP2_PRS_RI_L4_OTHER (BIT(22) | BIT(23))
542#define MVPP2_PRS_RI_UDF7_MASK 0x60000000
543#define MVPP2_PRS_RI_UDF7_IP6_LITE BIT(29)
544#define MVPP2_PRS_RI_DROP_MASK 0x80000000
545
546/* Sram additional info bits assignment */
547#define MVPP2_PRS_IPV4_DIP_AI_BIT BIT(0)
548#define MVPP2_PRS_IPV6_NO_EXT_AI_BIT BIT(0)
549#define MVPP2_PRS_IPV6_EXT_AI_BIT BIT(1)
550#define MVPP2_PRS_IPV6_EXT_AH_AI_BIT BIT(2)
551#define MVPP2_PRS_IPV6_EXT_AH_LEN_AI_BIT BIT(3)
552#define MVPP2_PRS_IPV6_EXT_AH_L4_AI_BIT BIT(4)
553#define MVPP2_PRS_SINGLE_VLAN_AI 0
554#define MVPP2_PRS_DBL_VLAN_AI_BIT BIT(7)
555
556/* DSA/EDSA type */
557#define MVPP2_PRS_TAGGED true
558#define MVPP2_PRS_UNTAGGED false
559#define MVPP2_PRS_EDSA true
560#define MVPP2_PRS_DSA false
561
562/* MAC entries, shadow udf */
563enum mvpp2_prs_udf {
564 MVPP2_PRS_UDF_MAC_DEF,
565 MVPP2_PRS_UDF_MAC_RANGE,
566 MVPP2_PRS_UDF_L2_DEF,
567 MVPP2_PRS_UDF_L2_DEF_COPY,
568 MVPP2_PRS_UDF_L2_USER,
569};
570
571/* Lookup ID */
572enum mvpp2_prs_lookup {
573 MVPP2_PRS_LU_MH,
574 MVPP2_PRS_LU_MAC,
575 MVPP2_PRS_LU_DSA,
576 MVPP2_PRS_LU_VLAN,
577 MVPP2_PRS_LU_L2,
578 MVPP2_PRS_LU_PPPOE,
579 MVPP2_PRS_LU_IP4,
580 MVPP2_PRS_LU_IP6,
581 MVPP2_PRS_LU_FLOWS,
582 MVPP2_PRS_LU_LAST,
583};
584
585/* L3 cast enum */
586enum mvpp2_prs_l3_cast {
587 MVPP2_PRS_L3_UNI_CAST,
588 MVPP2_PRS_L3_MULTI_CAST,
589 MVPP2_PRS_L3_BROAD_CAST
590};
591
592/* Classifier constants */
593#define MVPP2_CLS_FLOWS_TBL_SIZE 512
594#define MVPP2_CLS_FLOWS_TBL_DATA_WORDS 3
595#define MVPP2_CLS_LKP_TBL_SIZE 64
596
597/* BM constants */
598#define MVPP2_BM_POOLS_NUM 8
599#define MVPP2_BM_LONG_BUF_NUM 1024
600#define MVPP2_BM_SHORT_BUF_NUM 2048
601#define MVPP2_BM_POOL_SIZE_MAX (16*1024 - MVPP2_BM_POOL_PTR_ALIGN/4)
602#define MVPP2_BM_POOL_PTR_ALIGN 128
603#define MVPP2_BM_SWF_LONG_POOL(port) ((port > 2) ? 2 : port)
604#define MVPP2_BM_SWF_SHORT_POOL 3
605
606/* BM cookie (32 bits) definition */
607#define MVPP2_BM_COOKIE_POOL_OFFS 8
608#define MVPP2_BM_COOKIE_CPU_OFFS 24
609
610/* BM short pool packet size
611 * These value assure that for SWF the total number
612 * of bytes allocated for each buffer will be 512
613 */
614#define MVPP2_BM_SHORT_PKT_SIZE MVPP2_RX_MAX_PKT_SIZE(512)
615
616enum mvpp2_bm_type {
617 MVPP2_BM_FREE,
618 MVPP2_BM_SWF_LONG,
619 MVPP2_BM_SWF_SHORT
620};
621
622/* Definitions */
623
624/* Shared Packet Processor resources */
625struct mvpp2 {
626 /* Shared registers' base addresses */
627 void __iomem *base;
628 void __iomem *lms_base;
629
630 /* Common clocks */
631 struct clk *pp_clk;
632 struct clk *gop_clk;
633
634 /* List of pointers to port structures */
635 struct mvpp2_port **port_list;
636
637 /* Aggregated TXQs */
638 struct mvpp2_tx_queue *aggr_txqs;
639
640 /* BM pools */
641 struct mvpp2_bm_pool *bm_pools;
642
643 /* PRS shadow table */
644 struct mvpp2_prs_shadow *prs_shadow;
645 /* PRS auxiliary table for double vlan entries control */
646 bool *prs_double_vlans;
647
648 /* Tclk value */
649 u32 tclk;
650};
651
652struct mvpp2_pcpu_stats {
653 struct u64_stats_sync syncp;
654 u64 rx_packets;
655 u64 rx_bytes;
656 u64 tx_packets;
657 u64 tx_bytes;
658};
659
660struct mvpp2_port {
661 u8 id;
662
663 int irq;
664
665 struct mvpp2 *priv;
666
667 /* Per-port registers' base address */
668 void __iomem *base;
669
670 struct mvpp2_rx_queue **rxqs;
671 struct mvpp2_tx_queue **txqs;
672 struct net_device *dev;
673
674 int pkt_size;
675
676 u32 pending_cause_rx;
677 struct napi_struct napi;
678
679 /* Flags */
680 unsigned long flags;
681
682 u16 tx_ring_size;
683 u16 rx_ring_size;
684 struct mvpp2_pcpu_stats __percpu *stats;
685
686 struct phy_device *phy_dev;
687 phy_interface_t phy_interface;
688 struct device_node *phy_node;
689 unsigned int link;
690 unsigned int duplex;
691 unsigned int speed;
692
693 struct mvpp2_bm_pool *pool_long;
694 struct mvpp2_bm_pool *pool_short;
695
696 /* Index of first port's physical RXQ */
697 u8 first_rxq;
698};
699
700/* The mvpp2_tx_desc and mvpp2_rx_desc structures describe the
701 * layout of the transmit and reception DMA descriptors, and their
702 * layout is therefore defined by the hardware design
703 */
704
705#define MVPP2_TXD_L3_OFF_SHIFT 0
706#define MVPP2_TXD_IP_HLEN_SHIFT 8
707#define MVPP2_TXD_L4_CSUM_FRAG BIT(13)
708#define MVPP2_TXD_L4_CSUM_NOT BIT(14)
709#define MVPP2_TXD_IP_CSUM_DISABLE BIT(15)
710#define MVPP2_TXD_PADDING_DISABLE BIT(23)
711#define MVPP2_TXD_L4_UDP BIT(24)
712#define MVPP2_TXD_L3_IP6 BIT(26)
713#define MVPP2_TXD_L_DESC BIT(28)
714#define MVPP2_TXD_F_DESC BIT(29)
715
716#define MVPP2_RXD_ERR_SUMMARY BIT(15)
717#define MVPP2_RXD_ERR_CODE_MASK (BIT(13) | BIT(14))
718#define MVPP2_RXD_ERR_CRC 0x0
719#define MVPP2_RXD_ERR_OVERRUN BIT(13)
720#define MVPP2_RXD_ERR_RESOURCE (BIT(13) | BIT(14))
721#define MVPP2_RXD_BM_POOL_ID_OFFS 16
722#define MVPP2_RXD_BM_POOL_ID_MASK (BIT(16) | BIT(17) | BIT(18))
723#define MVPP2_RXD_HWF_SYNC BIT(21)
724#define MVPP2_RXD_L4_CSUM_OK BIT(22)
725#define MVPP2_RXD_IP4_HEADER_ERR BIT(24)
726#define MVPP2_RXD_L4_TCP BIT(25)
727#define MVPP2_RXD_L4_UDP BIT(26)
728#define MVPP2_RXD_L3_IP4 BIT(28)
729#define MVPP2_RXD_L3_IP6 BIT(30)
730#define MVPP2_RXD_BUF_HDR BIT(31)
731
732struct mvpp2_tx_desc {
733 u32 command; /* Options used by HW for packet transmitting.*/
734 u8 packet_offset; /* the offset from the buffer beginning */
735 u8 phys_txq; /* destination queue ID */
736 u16 data_size; /* data size of transmitted packet in bytes */
737 u32 buf_phys_addr; /* physical addr of transmitted buffer */
738 u32 buf_cookie; /* cookie for access to TX buffer in tx path */
739 u32 reserved1[3]; /* hw_cmd (for future use, BM, PON, PNC) */
740 u32 reserved2; /* reserved (for future use) */
741};
742
743struct mvpp2_rx_desc {
744 u32 status; /* info about received packet */
745 u16 reserved1; /* parser_info (for future use, PnC) */
746 u16 data_size; /* size of received packet in bytes */
747 u32 buf_phys_addr; /* physical address of the buffer */
748 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
749 u16 reserved2; /* gem_port_id (for future use, PON) */
750 u16 reserved3; /* csum_l4 (for future use, PnC) */
751 u8 reserved4; /* bm_qset (for future use, BM) */
752 u8 reserved5;
753 u16 reserved6; /* classify_info (for future use, PnC) */
754 u32 reserved7; /* flow_id (for future use, PnC) */
755 u32 reserved8;
756};
757
758/* Per-CPU Tx queue control */
759struct mvpp2_txq_pcpu {
760 int cpu;
761
762 /* Number of Tx DMA descriptors in the descriptor ring */
763 int size;
764
765 /* Number of currently used Tx DMA descriptor in the
766 * descriptor ring
767 */
768 int count;
769
770 /* Number of Tx DMA descriptors reserved for each CPU */
771 int reserved_num;
772
773 /* Array of transmitted skb */
774 struct sk_buff **tx_skb;
775
776 /* Index of last TX DMA descriptor that was inserted */
777 int txq_put_index;
778
779 /* Index of the TX DMA descriptor to be cleaned up */
780 int txq_get_index;
781};
782
783struct mvpp2_tx_queue {
784 /* Physical number of this Tx queue */
785 u8 id;
786
787 /* Logical number of this Tx queue */
788 u8 log_id;
789
790 /* Number of Tx DMA descriptors in the descriptor ring */
791 int size;
792
793 /* Number of currently used Tx DMA descriptor in the descriptor ring */
794 int count;
795
796 /* Per-CPU control of physical Tx queues */
797 struct mvpp2_txq_pcpu __percpu *pcpu;
798
799 /* Array of transmitted skb */
800 struct sk_buff **tx_skb;
801
802 u32 done_pkts_coal;
803
804 /* Virtual address of thex Tx DMA descriptors array */
805 struct mvpp2_tx_desc *descs;
806
807 /* DMA address of the Tx DMA descriptors array */
808 dma_addr_t descs_phys;
809
810 /* Index of the last Tx DMA descriptor */
811 int last_desc;
812
813 /* Index of the next Tx DMA descriptor to process */
814 int next_desc_to_proc;
815};
816
817struct mvpp2_rx_queue {
818 /* RX queue number, in the range 0-31 for physical RXQs */
819 u8 id;
820
821 /* Num of rx descriptors in the rx descriptor ring */
822 int size;
823
824 u32 pkts_coal;
825 u32 time_coal;
826
827 /* Virtual address of the RX DMA descriptors array */
828 struct mvpp2_rx_desc *descs;
829
830 /* DMA address of the RX DMA descriptors array */
831 dma_addr_t descs_phys;
832
833 /* Index of the last RX DMA descriptor */
834 int last_desc;
835
836 /* Index of the next RX DMA descriptor to process */
837 int next_desc_to_proc;
838
839 /* ID of port to which physical RXQ is mapped */
840 int port;
841
842 /* Port's logic RXQ number to which physical RXQ is mapped */
843 int logic_rxq;
844};
845
846union mvpp2_prs_tcam_entry {
847 u32 word[MVPP2_PRS_TCAM_WORDS];
848 u8 byte[MVPP2_PRS_TCAM_WORDS * 4];
849};
850
851union mvpp2_prs_sram_entry {
852 u32 word[MVPP2_PRS_SRAM_WORDS];
853 u8 byte[MVPP2_PRS_SRAM_WORDS * 4];
854};
855
856struct mvpp2_prs_entry {
857 u32 index;
858 union mvpp2_prs_tcam_entry tcam;
859 union mvpp2_prs_sram_entry sram;
860};
861
862struct mvpp2_prs_shadow {
863 bool valid;
864 bool finish;
865
866 /* Lookup ID */
867 int lu;
868
869 /* User defined offset */
870 int udf;
871
872 /* Result info */
873 u32 ri;
874 u32 ri_mask;
875};
876
877struct mvpp2_cls_flow_entry {
878 u32 index;
879 u32 data[MVPP2_CLS_FLOWS_TBL_DATA_WORDS];
880};
881
882struct mvpp2_cls_lookup_entry {
883 u32 lkpid;
884 u32 way;
885 u32 data;
886};
887
888struct mvpp2_bm_pool {
889 /* Pool number in the range 0-7 */
890 int id;
891 enum mvpp2_bm_type type;
892
893 /* Buffer Pointers Pool External (BPPE) size */
894 int size;
895 /* Number of buffers for this pool */
896 int buf_num;
897 /* Pool buffer size */
898 int buf_size;
899 /* Packet size */
900 int pkt_size;
901
902 /* BPPE virtual base address */
903 u32 *virt_addr;
904 /* BPPE physical base address */
905 dma_addr_t phys_addr;
906
907 /* Ports using BM pool */
908 u32 port_map;
909
910 /* Occupied buffers indicator */
911 atomic_t in_use;
912 int in_use_thresh;
913
914 spinlock_t lock;
915};
916
917struct mvpp2_buff_hdr {
918 u32 next_buff_phys_addr;
919 u32 next_buff_virt_addr;
920 u16 byte_count;
921 u16 info;
922 u8 reserved1; /* bm_qset (for future use, BM) */
923};
924
925/* Buffer header info bits */
926#define MVPP2_B_HDR_INFO_MC_ID_MASK 0xfff
927#define MVPP2_B_HDR_INFO_MC_ID(info) ((info) & MVPP2_B_HDR_INFO_MC_ID_MASK)
928#define MVPP2_B_HDR_INFO_LAST_OFFS 12
929#define MVPP2_B_HDR_INFO_LAST_MASK BIT(12)
930#define MVPP2_B_HDR_INFO_IS_LAST(info) \
931 ((info & MVPP2_B_HDR_INFO_LAST_MASK) >> MVPP2_B_HDR_INFO_LAST_OFFS)
932
933/* Static declaractions */
934
935/* Number of RXQs used by single port */
936static int rxq_number = MVPP2_DEFAULT_RXQ;
937/* Number of TXQs used by single port */
938static int txq_number = MVPP2_MAX_TXQ;
939
940#define MVPP2_DRIVER_NAME "mvpp2"
941#define MVPP2_DRIVER_VERSION "1.0"
942
943/* Utility/helper methods */
944
945static void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data)
946{
947 writel(data, priv->base + offset);
948}
949
950static u32 mvpp2_read(struct mvpp2 *priv, u32 offset)
951{
952 return readl(priv->base + offset);
953}
954
955static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu)
956{
957 txq_pcpu->txq_get_index++;
958 if (txq_pcpu->txq_get_index == txq_pcpu->size)
959 txq_pcpu->txq_get_index = 0;
960}
961
962static void mvpp2_txq_inc_put(struct mvpp2_txq_pcpu *txq_pcpu,
963 struct sk_buff *skb)
964{
965 txq_pcpu->tx_skb[txq_pcpu->txq_put_index] = skb;
966 txq_pcpu->txq_put_index++;
967 if (txq_pcpu->txq_put_index == txq_pcpu->size)
968 txq_pcpu->txq_put_index = 0;
969}
970
971/* Get number of physical egress port */
972static inline int mvpp2_egress_port(struct mvpp2_port *port)
973{
974 return MVPP2_MAX_TCONT + port->id;
975}
976
977/* Get number of physical TXQ */
978static inline int mvpp2_txq_phys(int port, int txq)
979{
980 return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq;
981}
982
983/* Parser configuration routines */
984
985/* Update parser tcam and sram hw entries */
986static int mvpp2_prs_hw_write(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
987{
988 int i;
989
990 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
991 return -EINVAL;
992
993 /* Clear entry invalidation bit */
994 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] &= ~MVPP2_PRS_TCAM_INV_MASK;
995
996 /* Write tcam index - indirect access */
997 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
998 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
999 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), pe->tcam.word[i]);
1000
1001 /* Write sram index - indirect access */
1002 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1003 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1004 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), pe->sram.word[i]);
1005
1006 return 0;
1007}
1008
1009/* Read tcam entry from hw */
1010static int mvpp2_prs_hw_read(struct mvpp2 *priv, struct mvpp2_prs_entry *pe)
1011{
1012 int i;
1013
1014 if (pe->index > MVPP2_PRS_TCAM_SRAM_SIZE - 1)
1015 return -EINVAL;
1016
1017 /* Write tcam index - indirect access */
1018 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, pe->index);
1019
1020 pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] = mvpp2_read(priv,
1021 MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD));
1022 if (pe->tcam.word[MVPP2_PRS_TCAM_INV_WORD] & MVPP2_PRS_TCAM_INV_MASK)
1023 return MVPP2_PRS_TCAM_ENTRY_INVALID;
1024
1025 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
1026 pe->tcam.word[i] = mvpp2_read(priv, MVPP2_PRS_TCAM_DATA_REG(i));
1027
1028 /* Write sram index - indirect access */
1029 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, pe->index);
1030 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
1031 pe->sram.word[i] = mvpp2_read(priv, MVPP2_PRS_SRAM_DATA_REG(i));
1032
1033 return 0;
1034}
1035
1036/* Invalidate tcam hw entry */
1037static void mvpp2_prs_hw_inv(struct mvpp2 *priv, int index)
1038{
1039 /* Write index - indirect access */
1040 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
1041 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(MVPP2_PRS_TCAM_INV_WORD),
1042 MVPP2_PRS_TCAM_INV_MASK);
1043}
1044
1045/* Enable shadow table entry and set its lookup ID */
1046static void mvpp2_prs_shadow_set(struct mvpp2 *priv, int index, int lu)
1047{
1048 priv->prs_shadow[index].valid = true;
1049 priv->prs_shadow[index].lu = lu;
1050}
1051
1052/* Update ri fields in shadow table entry */
1053static void mvpp2_prs_shadow_ri_set(struct mvpp2 *priv, int index,
1054 unsigned int ri, unsigned int ri_mask)
1055{
1056 priv->prs_shadow[index].ri_mask = ri_mask;
1057 priv->prs_shadow[index].ri = ri;
1058}
1059
1060/* Update lookup field in tcam sw entry */
1061static void mvpp2_prs_tcam_lu_set(struct mvpp2_prs_entry *pe, unsigned int lu)
1062{
1063 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_LU_BYTE);
1064
1065 pe->tcam.byte[MVPP2_PRS_TCAM_LU_BYTE] = lu;
1066 pe->tcam.byte[enable_off] = MVPP2_PRS_LU_MASK;
1067}
1068
1069/* Update mask for single port in tcam sw entry */
1070static void mvpp2_prs_tcam_port_set(struct mvpp2_prs_entry *pe,
1071 unsigned int port, bool add)
1072{
1073 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1074
1075 if (add)
1076 pe->tcam.byte[enable_off] &= ~(1 << port);
1077 else
1078 pe->tcam.byte[enable_off] |= 1 << port;
1079}
1080
1081/* Update port map in tcam sw entry */
1082static void mvpp2_prs_tcam_port_map_set(struct mvpp2_prs_entry *pe,
1083 unsigned int ports)
1084{
1085 unsigned char port_mask = MVPP2_PRS_PORT_MASK;
1086 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1087
1088 pe->tcam.byte[MVPP2_PRS_TCAM_PORT_BYTE] = 0;
1089 pe->tcam.byte[enable_off] &= ~port_mask;
1090 pe->tcam.byte[enable_off] |= ~ports & MVPP2_PRS_PORT_MASK;
1091}
1092
1093/* Obtain port map from tcam sw entry */
1094static unsigned int mvpp2_prs_tcam_port_map_get(struct mvpp2_prs_entry *pe)
1095{
1096 int enable_off = MVPP2_PRS_TCAM_EN_OFFS(MVPP2_PRS_TCAM_PORT_BYTE);
1097
1098 return ~(pe->tcam.byte[enable_off]) & MVPP2_PRS_PORT_MASK;
1099}
1100
1101/* Set byte of data and its enable bits in tcam sw entry */
1102static void mvpp2_prs_tcam_data_byte_set(struct mvpp2_prs_entry *pe,
1103 unsigned int offs, unsigned char byte,
1104 unsigned char enable)
1105{
1106 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)] = byte;
1107 pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)] = enable;
1108}
1109
1110/* Get byte of data and its enable bits from tcam sw entry */
1111static void mvpp2_prs_tcam_data_byte_get(struct mvpp2_prs_entry *pe,
1112 unsigned int offs, unsigned char *byte,
1113 unsigned char *enable)
1114{
1115 *byte = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(offs)];
1116 *enable = pe->tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(offs)];
1117}
1118
1119/* Compare tcam data bytes with a pattern */
1120static bool mvpp2_prs_tcam_data_cmp(struct mvpp2_prs_entry *pe, int offs,
1121 u16 data)
1122{
1123 int off = MVPP2_PRS_TCAM_DATA_BYTE(offs);
1124 u16 tcam_data;
1125
1126 tcam_data = (8 << pe->tcam.byte[off + 1]) | pe->tcam.byte[off];
1127 if (tcam_data != data)
1128 return false;
1129 return true;
1130}
1131
1132/* Update ai bits in tcam sw entry */
1133static void mvpp2_prs_tcam_ai_update(struct mvpp2_prs_entry *pe,
1134 unsigned int bits, unsigned int enable)
1135{
1136 int i, ai_idx = MVPP2_PRS_TCAM_AI_BYTE;
1137
1138 for (i = 0; i < MVPP2_PRS_AI_BITS; i++) {
1139
1140 if (!(enable & BIT(i)))
1141 continue;
1142
1143 if (bits & BIT(i))
1144 pe->tcam.byte[ai_idx] |= 1 << i;
1145 else
1146 pe->tcam.byte[ai_idx] &= ~(1 << i);
1147 }
1148
1149 pe->tcam.byte[MVPP2_PRS_TCAM_EN_OFFS(ai_idx)] |= enable;
1150}
1151
1152/* Get ai bits from tcam sw entry */
1153static int mvpp2_prs_tcam_ai_get(struct mvpp2_prs_entry *pe)
1154{
1155 return pe->tcam.byte[MVPP2_PRS_TCAM_AI_BYTE];
1156}
1157
1158/* Set ethertype in tcam sw entry */
1159static void mvpp2_prs_match_etype(struct mvpp2_prs_entry *pe, int offset,
1160 unsigned short ethertype)
1161{
1162 mvpp2_prs_tcam_data_byte_set(pe, offset + 0, ethertype >> 8, 0xff);
1163 mvpp2_prs_tcam_data_byte_set(pe, offset + 1, ethertype & 0xff, 0xff);
1164}
1165
1166/* Set bits in sram sw entry */
1167static void mvpp2_prs_sram_bits_set(struct mvpp2_prs_entry *pe, int bit_num,
1168 int val)
1169{
1170 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] |= (val << (bit_num % 8));
1171}
1172
1173/* Clear bits in sram sw entry */
1174static void mvpp2_prs_sram_bits_clear(struct mvpp2_prs_entry *pe, int bit_num,
1175 int val)
1176{
1177 pe->sram.byte[MVPP2_BIT_TO_BYTE(bit_num)] &= ~(val << (bit_num % 8));
1178}
1179
1180/* Update ri bits in sram sw entry */
1181static void mvpp2_prs_sram_ri_update(struct mvpp2_prs_entry *pe,
1182 unsigned int bits, unsigned int mask)
1183{
1184 unsigned int i;
1185
1186 for (i = 0; i < MVPP2_PRS_SRAM_RI_CTRL_BITS; i++) {
1187 int ri_off = MVPP2_PRS_SRAM_RI_OFFS;
1188
1189 if (!(mask & BIT(i)))
1190 continue;
1191
1192 if (bits & BIT(i))
1193 mvpp2_prs_sram_bits_set(pe, ri_off + i, 1);
1194 else
1195 mvpp2_prs_sram_bits_clear(pe, ri_off + i, 1);
1196
1197 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_RI_CTRL_OFFS + i, 1);
1198 }
1199}
1200
1201/* Obtain ri bits from sram sw entry */
1202static int mvpp2_prs_sram_ri_get(struct mvpp2_prs_entry *pe)
1203{
1204 return pe->sram.word[MVPP2_PRS_SRAM_RI_WORD];
1205}
1206
1207/* Update ai bits in sram sw entry */
1208static void mvpp2_prs_sram_ai_update(struct mvpp2_prs_entry *pe,
1209 unsigned int bits, unsigned int mask)
1210{
1211 unsigned int i;
1212 int ai_off = MVPP2_PRS_SRAM_AI_OFFS;
1213
1214 for (i = 0; i < MVPP2_PRS_SRAM_AI_CTRL_BITS; i++) {
1215
1216 if (!(mask & BIT(i)))
1217 continue;
1218
1219 if (bits & BIT(i))
1220 mvpp2_prs_sram_bits_set(pe, ai_off + i, 1);
1221 else
1222 mvpp2_prs_sram_bits_clear(pe, ai_off + i, 1);
1223
1224 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_AI_CTRL_OFFS + i, 1);
1225 }
1226}
1227
1228/* Read ai bits from sram sw entry */
1229static int mvpp2_prs_sram_ai_get(struct mvpp2_prs_entry *pe)
1230{
1231 u8 bits;
1232 int ai_off = MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_AI_OFFS);
1233 int ai_en_off = ai_off + 1;
1234 int ai_shift = MVPP2_PRS_SRAM_AI_OFFS % 8;
1235
1236 bits = (pe->sram.byte[ai_off] >> ai_shift) |
1237 (pe->sram.byte[ai_en_off] << (8 - ai_shift));
1238
1239 return bits;
1240}
1241
1242/* In sram sw entry set lookup ID field of the tcam key to be used in the next
1243 * lookup interation
1244 */
1245static void mvpp2_prs_sram_next_lu_set(struct mvpp2_prs_entry *pe,
1246 unsigned int lu)
1247{
1248 int sram_next_off = MVPP2_PRS_SRAM_NEXT_LU_OFFS;
1249
1250 mvpp2_prs_sram_bits_clear(pe, sram_next_off,
1251 MVPP2_PRS_SRAM_NEXT_LU_MASK);
1252 mvpp2_prs_sram_bits_set(pe, sram_next_off, lu);
1253}
1254
1255/* In the sram sw entry set sign and value of the next lookup offset
1256 * and the offset value generated to the classifier
1257 */
1258static void mvpp2_prs_sram_shift_set(struct mvpp2_prs_entry *pe, int shift,
1259 unsigned int op)
1260{
1261 /* Set sign */
1262 if (shift < 0) {
1263 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1264 shift = 0 - shift;
1265 } else {
1266 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_SHIFT_SIGN_BIT, 1);
1267 }
1268
1269 /* Set value */
1270 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_SHIFT_OFFS)] =
1271 (unsigned char)shift;
1272
1273 /* Reset and set operation */
1274 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS,
1275 MVPP2_PRS_SRAM_OP_SEL_SHIFT_MASK);
1276 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_SHIFT_OFFS, op);
1277
1278 /* Set base offset as current */
1279 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1280}
1281
1282/* In the sram sw entry set sign and value of the user defined offset
1283 * generated to the classifier
1284 */
1285static void mvpp2_prs_sram_offset_set(struct mvpp2_prs_entry *pe,
1286 unsigned int type, int offset,
1287 unsigned int op)
1288{
1289 /* Set sign */
1290 if (offset < 0) {
1291 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1292 offset = 0 - offset;
1293 } else {
1294 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_SIGN_BIT, 1);
1295 }
1296
1297 /* Set value */
1298 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_OFFS,
1299 MVPP2_PRS_SRAM_UDF_MASK);
1300 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_OFFS, offset);
1301 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1302 MVPP2_PRS_SRAM_UDF_BITS)] &=
1303 ~(MVPP2_PRS_SRAM_UDF_MASK >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1304 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_UDF_OFFS +
1305 MVPP2_PRS_SRAM_UDF_BITS)] |=
1306 (offset >> (8 - (MVPP2_PRS_SRAM_UDF_OFFS % 8)));
1307
1308 /* Set offset type */
1309 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS,
1310 MVPP2_PRS_SRAM_UDF_TYPE_MASK);
1311 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_UDF_TYPE_OFFS, type);
1312
1313 /* Set offset operation */
1314 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS,
1315 MVPP2_PRS_SRAM_OP_SEL_UDF_MASK);
1316 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS, op);
1317
1318 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1319 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] &=
1320 ~(MVPP2_PRS_SRAM_OP_SEL_UDF_MASK >>
1321 (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1322
1323 pe->sram.byte[MVPP2_BIT_TO_BYTE(MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS +
1324 MVPP2_PRS_SRAM_OP_SEL_UDF_BITS)] |=
1325 (op >> (8 - (MVPP2_PRS_SRAM_OP_SEL_UDF_OFFS % 8)));
1326
1327 /* Set base offset as current */
1328 mvpp2_prs_sram_bits_clear(pe, MVPP2_PRS_SRAM_OP_SEL_BASE_OFFS, 1);
1329}
1330
1331/* Find parser flow entry */
1332static struct mvpp2_prs_entry *mvpp2_prs_flow_find(struct mvpp2 *priv, int flow)
1333{
1334 struct mvpp2_prs_entry *pe;
1335 int tid;
1336
1337 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1338 if (!pe)
1339 return NULL;
1340 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
1341
1342 /* Go through the all entires with MVPP2_PRS_LU_FLOWS */
1343 for (tid = MVPP2_PRS_TCAM_SRAM_SIZE - 1; tid >= 0; tid--) {
1344 u8 bits;
1345
1346 if (!priv->prs_shadow[tid].valid ||
1347 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_FLOWS)
1348 continue;
1349
1350 pe->index = tid;
1351 mvpp2_prs_hw_read(priv, pe);
1352 bits = mvpp2_prs_sram_ai_get(pe);
1353
1354 /* Sram store classification lookup ID in AI bits [5:0] */
1355 if ((bits & MVPP2_PRS_FLOW_ID_MASK) == flow)
1356 return pe;
1357 }
1358 kfree(pe);
1359
1360 return NULL;
1361}
1362
1363/* Return first free tcam index, seeking from start to end */
1364static int mvpp2_prs_tcam_first_free(struct mvpp2 *priv, unsigned char start,
1365 unsigned char end)
1366{
1367 int tid;
1368
1369 if (start > end)
1370 swap(start, end);
1371
1372 if (end >= MVPP2_PRS_TCAM_SRAM_SIZE)
1373 end = MVPP2_PRS_TCAM_SRAM_SIZE - 1;
1374
1375 for (tid = start; tid <= end; tid++) {
1376 if (!priv->prs_shadow[tid].valid)
1377 return tid;
1378 }
1379
1380 return -EINVAL;
1381}
1382
1383/* Enable/disable dropping all mac da's */
1384static void mvpp2_prs_mac_drop_all_set(struct mvpp2 *priv, int port, bool add)
1385{
1386 struct mvpp2_prs_entry pe;
1387
1388 if (priv->prs_shadow[MVPP2_PE_DROP_ALL].valid) {
1389 /* Entry exist - update port only */
1390 pe.index = MVPP2_PE_DROP_ALL;
1391 mvpp2_prs_hw_read(priv, &pe);
1392 } else {
1393 /* Entry doesn't exist - create new */
1394 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1395 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1396 pe.index = MVPP2_PE_DROP_ALL;
1397
1398 /* Non-promiscuous mode for all ports - DROP unknown packets */
1399 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
1400 MVPP2_PRS_RI_DROP_MASK);
1401
1402 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1403 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1404
1405 /* Update shadow table */
1406 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1407
1408 /* Mask all ports */
1409 mvpp2_prs_tcam_port_map_set(&pe, 0);
1410 }
1411
1412 /* Update port mask */
1413 mvpp2_prs_tcam_port_set(&pe, port, add);
1414
1415 mvpp2_prs_hw_write(priv, &pe);
1416}
1417
1418/* Set port to promiscuous mode */
1419static void mvpp2_prs_mac_promisc_set(struct mvpp2 *priv, int port, bool add)
1420{
1421 struct mvpp2_prs_entry pe;
1422
1423 /* Promiscous mode - Accept unknown packets */
1424
1425 if (priv->prs_shadow[MVPP2_PE_MAC_PROMISCUOUS].valid) {
1426 /* Entry exist - update port only */
1427 pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1428 mvpp2_prs_hw_read(priv, &pe);
1429 } else {
1430 /* Entry doesn't exist - create new */
1431 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1432 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1433 pe.index = MVPP2_PE_MAC_PROMISCUOUS;
1434
1435 /* Continue - set next lookup */
1436 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1437
1438 /* Set result info bits */
1439 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_UCAST,
1440 MVPP2_PRS_RI_L2_CAST_MASK);
1441
1442 /* Shift to ethertype */
1443 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1444 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1445
1446 /* Mask all ports */
1447 mvpp2_prs_tcam_port_map_set(&pe, 0);
1448
1449 /* Update shadow table */
1450 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1451 }
1452
1453 /* Update port mask */
1454 mvpp2_prs_tcam_port_set(&pe, port, add);
1455
1456 mvpp2_prs_hw_write(priv, &pe);
1457}
1458
1459/* Accept multicast */
1460static void mvpp2_prs_mac_multi_set(struct mvpp2 *priv, int port, int index,
1461 bool add)
1462{
1463 struct mvpp2_prs_entry pe;
1464 unsigned char da_mc;
1465
1466 /* Ethernet multicast address first byte is
1467 * 0x01 for IPv4 and 0x33 for IPv6
1468 */
1469 da_mc = (index == MVPP2_PE_MAC_MC_ALL) ? 0x01 : 0x33;
1470
1471 if (priv->prs_shadow[index].valid) {
1472 /* Entry exist - update port only */
1473 pe.index = index;
1474 mvpp2_prs_hw_read(priv, &pe);
1475 } else {
1476 /* Entry doesn't exist - create new */
1477 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1478 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
1479 pe.index = index;
1480
1481 /* Continue - set next lookup */
1482 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_DSA);
1483
1484 /* Set result info bits */
1485 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L2_MCAST,
1486 MVPP2_PRS_RI_L2_CAST_MASK);
1487
1488 /* Update tcam entry data first byte */
1489 mvpp2_prs_tcam_data_byte_set(&pe, 0, da_mc, 0xff);
1490
1491 /* Shift to ethertype */
1492 mvpp2_prs_sram_shift_set(&pe, 2 * ETH_ALEN,
1493 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1494
1495 /* Mask all ports */
1496 mvpp2_prs_tcam_port_map_set(&pe, 0);
1497
1498 /* Update shadow table */
1499 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
1500 }
1501
1502 /* Update port mask */
1503 mvpp2_prs_tcam_port_set(&pe, port, add);
1504
1505 mvpp2_prs_hw_write(priv, &pe);
1506}
1507
1508/* Set entry for dsa packets */
1509static void mvpp2_prs_dsa_tag_set(struct mvpp2 *priv, int port, bool add,
1510 bool tagged, bool extend)
1511{
1512 struct mvpp2_prs_entry pe;
1513 int tid, shift;
1514
1515 if (extend) {
1516 tid = tagged ? MVPP2_PE_EDSA_TAGGED : MVPP2_PE_EDSA_UNTAGGED;
1517 shift = 8;
1518 } else {
1519 tid = tagged ? MVPP2_PE_DSA_TAGGED : MVPP2_PE_DSA_UNTAGGED;
1520 shift = 4;
1521 }
1522
1523 if (priv->prs_shadow[tid].valid) {
1524 /* Entry exist - update port only */
1525 pe.index = tid;
1526 mvpp2_prs_hw_read(priv, &pe);
1527 } else {
1528 /* Entry doesn't exist - create new */
1529 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1530 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
1531 pe.index = tid;
1532
1533 /* Shift 4 bytes if DSA tag or 8 bytes in case of EDSA tag*/
1534 mvpp2_prs_sram_shift_set(&pe, shift,
1535 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1536
1537 /* Update shadow table */
1538 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
1539
1540 if (tagged) {
1541 /* Set tagged bit in DSA tag */
1542 mvpp2_prs_tcam_data_byte_set(&pe, 0,
1543 MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
1544 MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
1545 /* Clear all ai bits for next iteration */
1546 mvpp2_prs_sram_ai_update(&pe, 0,
1547 MVPP2_PRS_SRAM_AI_MASK);
1548 /* If packet is tagged continue check vlans */
1549 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
1550 } else {
1551 /* Set result info bits to 'no vlans' */
1552 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
1553 MVPP2_PRS_RI_VLAN_MASK);
1554 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
1555 }
1556
1557 /* Mask all ports */
1558 mvpp2_prs_tcam_port_map_set(&pe, 0);
1559 }
1560
1561 /* Update port mask */
1562 mvpp2_prs_tcam_port_set(&pe, port, add);
1563
1564 mvpp2_prs_hw_write(priv, &pe);
1565}
1566
1567/* Set entry for dsa ethertype */
1568static void mvpp2_prs_dsa_tag_ethertype_set(struct mvpp2 *priv, int port,
1569 bool add, bool tagged, bool extend)
1570{
1571 struct mvpp2_prs_entry pe;
1572 int tid, shift, port_mask;
1573
1574 if (extend) {
1575 tid = tagged ? MVPP2_PE_ETYPE_EDSA_TAGGED :
1576 MVPP2_PE_ETYPE_EDSA_UNTAGGED;
1577 port_mask = 0;
1578 shift = 8;
1579 } else {
1580 tid = tagged ? MVPP2_PE_ETYPE_DSA_TAGGED :
1581 MVPP2_PE_ETYPE_DSA_UNTAGGED;
1582 port_mask = MVPP2_PRS_PORT_MASK;
1583 shift = 4;
1584 }
1585
1586 if (priv->prs_shadow[tid].valid) {
1587 /* Entry exist - update port only */
1588 pe.index = tid;
1589 mvpp2_prs_hw_read(priv, &pe);
1590 } else {
1591 /* Entry doesn't exist - create new */
1592 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1593 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
1594 pe.index = tid;
1595
1596 /* Set ethertype */
1597 mvpp2_prs_match_etype(&pe, 0, ETH_P_EDSA);
1598 mvpp2_prs_match_etype(&pe, 2, 0);
1599
1600 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DSA_MASK,
1601 MVPP2_PRS_RI_DSA_MASK);
1602 /* Shift ethertype + 2 byte reserved + tag*/
1603 mvpp2_prs_sram_shift_set(&pe, 2 + MVPP2_ETH_TYPE_LEN + shift,
1604 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1605
1606 /* Update shadow table */
1607 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_DSA);
1608
1609 if (tagged) {
1610 /* Set tagged bit in DSA tag */
1611 mvpp2_prs_tcam_data_byte_set(&pe,
1612 MVPP2_ETH_TYPE_LEN + 2 + 3,
1613 MVPP2_PRS_TCAM_DSA_TAGGED_BIT,
1614 MVPP2_PRS_TCAM_DSA_TAGGED_BIT);
1615 /* Clear all ai bits for next iteration */
1616 mvpp2_prs_sram_ai_update(&pe, 0,
1617 MVPP2_PRS_SRAM_AI_MASK);
1618 /* If packet is tagged continue check vlans */
1619 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
1620 } else {
1621 /* Set result info bits to 'no vlans' */
1622 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
1623 MVPP2_PRS_RI_VLAN_MASK);
1624 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
1625 }
1626 /* Mask/unmask all ports, depending on dsa type */
1627 mvpp2_prs_tcam_port_map_set(&pe, port_mask);
1628 }
1629
1630 /* Update port mask */
1631 mvpp2_prs_tcam_port_set(&pe, port, add);
1632
1633 mvpp2_prs_hw_write(priv, &pe);
1634}
1635
1636/* Search for existing single/triple vlan entry */
1637static struct mvpp2_prs_entry *mvpp2_prs_vlan_find(struct mvpp2 *priv,
1638 unsigned short tpid, int ai)
1639{
1640 struct mvpp2_prs_entry *pe;
1641 int tid;
1642
1643 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1644 if (!pe)
1645 return NULL;
1646 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1647
1648 /* Go through the all entries with MVPP2_PRS_LU_VLAN */
1649 for (tid = MVPP2_PE_FIRST_FREE_TID;
1650 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
1651 unsigned int ri_bits, ai_bits;
1652 bool match;
1653
1654 if (!priv->prs_shadow[tid].valid ||
1655 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
1656 continue;
1657
1658 pe->index = tid;
1659
1660 mvpp2_prs_hw_read(priv, pe);
1661 match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid));
1662 if (!match)
1663 continue;
1664
1665 /* Get vlan type */
1666 ri_bits = mvpp2_prs_sram_ri_get(pe);
1667 ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
1668
1669 /* Get current ai value from tcam */
1670 ai_bits = mvpp2_prs_tcam_ai_get(pe);
1671 /* Clear double vlan bit */
1672 ai_bits &= ~MVPP2_PRS_DBL_VLAN_AI_BIT;
1673
1674 if (ai != ai_bits)
1675 continue;
1676
1677 if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
1678 ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
1679 return pe;
1680 }
1681 kfree(pe);
1682
1683 return NULL;
1684}
1685
1686/* Add/update single/triple vlan entry */
1687static int mvpp2_prs_vlan_add(struct mvpp2 *priv, unsigned short tpid, int ai,
1688 unsigned int port_map)
1689{
1690 struct mvpp2_prs_entry *pe;
1691 int tid_aux, tid;
1692
1693 pe = mvpp2_prs_vlan_find(priv, tpid, ai);
1694
1695 if (!pe) {
1696 /* Create new tcam entry */
1697 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_LAST_FREE_TID,
1698 MVPP2_PE_FIRST_FREE_TID);
1699 if (tid < 0)
1700 return tid;
1701
1702 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1703 if (!pe)
1704 return -ENOMEM;
1705
1706 /* Get last double vlan tid */
1707 for (tid_aux = MVPP2_PE_LAST_FREE_TID;
1708 tid_aux >= MVPP2_PE_FIRST_FREE_TID; tid_aux--) {
1709 unsigned int ri_bits;
1710
1711 if (!priv->prs_shadow[tid_aux].valid ||
1712 priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
1713 continue;
1714
1715 pe->index = tid_aux;
1716 mvpp2_prs_hw_read(priv, pe);
1717 ri_bits = mvpp2_prs_sram_ri_get(pe);
1718 if ((ri_bits & MVPP2_PRS_RI_VLAN_MASK) ==
1719 MVPP2_PRS_RI_VLAN_DOUBLE)
1720 break;
1721 }
1722
1723 if (tid <= tid_aux)
1724 return -EINVAL;
1725
1726 memset(pe, 0 , sizeof(struct mvpp2_prs_entry));
1727 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1728 pe->index = tid;
1729
1730 mvpp2_prs_match_etype(pe, 0, tpid);
1731
1732 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_L2);
1733 /* Shift 4 bytes - skip 1 vlan tag */
1734 mvpp2_prs_sram_shift_set(pe, MVPP2_VLAN_TAG_LEN,
1735 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1736 /* Clear all ai bits for next iteration */
1737 mvpp2_prs_sram_ai_update(pe, 0, MVPP2_PRS_SRAM_AI_MASK);
1738
1739 if (ai == MVPP2_PRS_SINGLE_VLAN_AI) {
1740 mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_SINGLE,
1741 MVPP2_PRS_RI_VLAN_MASK);
1742 } else {
1743 ai |= MVPP2_PRS_DBL_VLAN_AI_BIT;
1744 mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_TRIPLE,
1745 MVPP2_PRS_RI_VLAN_MASK);
1746 }
1747 mvpp2_prs_tcam_ai_update(pe, ai, MVPP2_PRS_SRAM_AI_MASK);
1748
1749 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
1750 }
1751 /* Update ports' mask */
1752 mvpp2_prs_tcam_port_map_set(pe, port_map);
1753
1754 mvpp2_prs_hw_write(priv, pe);
1755
1756 kfree(pe);
1757
1758 return 0;
1759}
1760
1761/* Get first free double vlan ai number */
1762static int mvpp2_prs_double_vlan_ai_free_get(struct mvpp2 *priv)
1763{
1764 int i;
1765
1766 for (i = 1; i < MVPP2_PRS_DBL_VLANS_MAX; i++) {
1767 if (!priv->prs_double_vlans[i])
1768 return i;
1769 }
1770
1771 return -EINVAL;
1772}
1773
1774/* Search for existing double vlan entry */
1775static struct mvpp2_prs_entry *mvpp2_prs_double_vlan_find(struct mvpp2 *priv,
1776 unsigned short tpid1,
1777 unsigned short tpid2)
1778{
1779 struct mvpp2_prs_entry *pe;
1780 int tid;
1781
1782 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1783 if (!pe)
1784 return NULL;
1785 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1786
1787 /* Go through the all entries with MVPP2_PRS_LU_VLAN */
1788 for (tid = MVPP2_PE_FIRST_FREE_TID;
1789 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
1790 unsigned int ri_mask;
1791 bool match;
1792
1793 if (!priv->prs_shadow[tid].valid ||
1794 priv->prs_shadow[tid].lu != MVPP2_PRS_LU_VLAN)
1795 continue;
1796
1797 pe->index = tid;
1798 mvpp2_prs_hw_read(priv, pe);
1799
1800 match = mvpp2_prs_tcam_data_cmp(pe, 0, swab16(tpid1))
1801 && mvpp2_prs_tcam_data_cmp(pe, 4, swab16(tpid2));
1802
1803 if (!match)
1804 continue;
1805
1806 ri_mask = mvpp2_prs_sram_ri_get(pe) & MVPP2_PRS_RI_VLAN_MASK;
1807 if (ri_mask == MVPP2_PRS_RI_VLAN_DOUBLE)
1808 return pe;
1809 }
1810 kfree(pe);
1811
1812 return NULL;
1813}
1814
1815/* Add or update double vlan entry */
1816static int mvpp2_prs_double_vlan_add(struct mvpp2 *priv, unsigned short tpid1,
1817 unsigned short tpid2,
1818 unsigned int port_map)
1819{
1820 struct mvpp2_prs_entry *pe;
1821 int tid_aux, tid, ai;
1822
1823 pe = mvpp2_prs_double_vlan_find(priv, tpid1, tpid2);
1824
1825 if (!pe) {
1826 /* Create new tcam entry */
1827 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1828 MVPP2_PE_LAST_FREE_TID);
1829 if (tid < 0)
1830 return tid;
1831
1832 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1833 if (!pe)
1834 return -ENOMEM;
1835
1836 /* Set ai value for new double vlan entry */
1837 ai = mvpp2_prs_double_vlan_ai_free_get(priv);
1838 if (ai < 0)
1839 return ai;
1840
1841 /* Get first single/triple vlan tid */
1842 for (tid_aux = MVPP2_PE_FIRST_FREE_TID;
1843 tid_aux <= MVPP2_PE_LAST_FREE_TID; tid_aux++) {
1844 unsigned int ri_bits;
1845
1846 if (!priv->prs_shadow[tid_aux].valid ||
1847 priv->prs_shadow[tid_aux].lu != MVPP2_PRS_LU_VLAN)
1848 continue;
1849
1850 pe->index = tid_aux;
1851 mvpp2_prs_hw_read(priv, pe);
1852 ri_bits = mvpp2_prs_sram_ri_get(pe);
1853 ri_bits &= MVPP2_PRS_RI_VLAN_MASK;
1854 if (ri_bits == MVPP2_PRS_RI_VLAN_SINGLE ||
1855 ri_bits == MVPP2_PRS_RI_VLAN_TRIPLE)
1856 break;
1857 }
1858
1859 if (tid >= tid_aux)
1860 return -ERANGE;
1861
1862 memset(pe, 0, sizeof(struct mvpp2_prs_entry));
1863 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_VLAN);
1864 pe->index = tid;
1865
1866 priv->prs_double_vlans[ai] = true;
1867
1868 mvpp2_prs_match_etype(pe, 0, tpid1);
1869 mvpp2_prs_match_etype(pe, 4, tpid2);
1870
1871 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_VLAN);
1872 /* Shift 8 bytes - skip 2 vlan tags */
1873 mvpp2_prs_sram_shift_set(pe, 2 * MVPP2_VLAN_TAG_LEN,
1874 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1875 mvpp2_prs_sram_ri_update(pe, MVPP2_PRS_RI_VLAN_DOUBLE,
1876 MVPP2_PRS_RI_VLAN_MASK);
1877 mvpp2_prs_sram_ai_update(pe, ai | MVPP2_PRS_DBL_VLAN_AI_BIT,
1878 MVPP2_PRS_SRAM_AI_MASK);
1879
1880 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_VLAN);
1881 }
1882
1883 /* Update ports' mask */
1884 mvpp2_prs_tcam_port_map_set(pe, port_map);
1885 mvpp2_prs_hw_write(priv, pe);
1886
1887 kfree(pe);
1888 return 0;
1889}
1890
1891/* IPv4 header parsing for fragmentation and L4 offset */
1892static int mvpp2_prs_ip4_proto(struct mvpp2 *priv, unsigned short proto,
1893 unsigned int ri, unsigned int ri_mask)
1894{
1895 struct mvpp2_prs_entry pe;
1896 int tid;
1897
1898 if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
1899 (proto != IPPROTO_IGMP))
1900 return -EINVAL;
1901
1902 /* Fragmented packet */
1903 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1904 MVPP2_PE_LAST_FREE_TID);
1905 if (tid < 0)
1906 return tid;
1907
1908 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1909 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
1910 pe.index = tid;
1911
1912 /* Set next lu to IPv4 */
1913 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
1914 mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
1915 /* Set L4 offset */
1916 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
1917 sizeof(struct iphdr) - 4,
1918 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
1919 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
1920 MVPP2_PRS_IPV4_DIP_AI_BIT);
1921 mvpp2_prs_sram_ri_update(&pe, ri | MVPP2_PRS_RI_IP_FRAG_MASK,
1922 ri_mask | MVPP2_PRS_RI_IP_FRAG_MASK);
1923
1924 mvpp2_prs_tcam_data_byte_set(&pe, 5, proto, MVPP2_PRS_TCAM_PROTO_MASK);
1925 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
1926 /* Unmask all ports */
1927 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1928
1929 /* Update shadow table and hw entry */
1930 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
1931 mvpp2_prs_hw_write(priv, &pe);
1932
1933 /* Not fragmented packet */
1934 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1935 MVPP2_PE_LAST_FREE_TID);
1936 if (tid < 0)
1937 return tid;
1938
1939 pe.index = tid;
1940 /* Clear ri before updating */
1941 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
1942 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
1943 mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
1944
1945 mvpp2_prs_tcam_data_byte_set(&pe, 2, 0x00, MVPP2_PRS_TCAM_PROTO_MASK_L);
1946 mvpp2_prs_tcam_data_byte_set(&pe, 3, 0x00, MVPP2_PRS_TCAM_PROTO_MASK);
1947
1948 /* Update shadow table and hw entry */
1949 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
1950 mvpp2_prs_hw_write(priv, &pe);
1951
1952 return 0;
1953}
1954
1955/* IPv4 L3 multicast or broadcast */
1956static int mvpp2_prs_ip4_cast(struct mvpp2 *priv, unsigned short l3_cast)
1957{
1958 struct mvpp2_prs_entry pe;
1959 int mask, tid;
1960
1961 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
1962 MVPP2_PE_LAST_FREE_TID);
1963 if (tid < 0)
1964 return tid;
1965
1966 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
1967 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
1968 pe.index = tid;
1969
1970 switch (l3_cast) {
1971 case MVPP2_PRS_L3_MULTI_CAST:
1972 mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV4_MC,
1973 MVPP2_PRS_IPV4_MC_MASK);
1974 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
1975 MVPP2_PRS_RI_L3_ADDR_MASK);
1976 break;
1977 case MVPP2_PRS_L3_BROAD_CAST:
1978 mask = MVPP2_PRS_IPV4_BC_MASK;
1979 mvpp2_prs_tcam_data_byte_set(&pe, 0, mask, mask);
1980 mvpp2_prs_tcam_data_byte_set(&pe, 1, mask, mask);
1981 mvpp2_prs_tcam_data_byte_set(&pe, 2, mask, mask);
1982 mvpp2_prs_tcam_data_byte_set(&pe, 3, mask, mask);
1983 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_BCAST,
1984 MVPP2_PRS_RI_L3_ADDR_MASK);
1985 break;
1986 default:
1987 return -EINVAL;
1988 }
1989
1990 /* Finished: go to flowid generation */
1991 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
1992 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
1993
1994 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
1995 MVPP2_PRS_IPV4_DIP_AI_BIT);
1996 /* Unmask all ports */
1997 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
1998
1999 /* Update shadow table and hw entry */
2000 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2001 mvpp2_prs_hw_write(priv, &pe);
2002
2003 return 0;
2004}
2005
2006/* Set entries for protocols over IPv6 */
2007static int mvpp2_prs_ip6_proto(struct mvpp2 *priv, unsigned short proto,
2008 unsigned int ri, unsigned int ri_mask)
2009{
2010 struct mvpp2_prs_entry pe;
2011 int tid;
2012
2013 if ((proto != IPPROTO_TCP) && (proto != IPPROTO_UDP) &&
2014 (proto != IPPROTO_ICMPV6) && (proto != IPPROTO_IPIP))
2015 return -EINVAL;
2016
2017 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2018 MVPP2_PE_LAST_FREE_TID);
2019 if (tid < 0)
2020 return tid;
2021
2022 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2023 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2024 pe.index = tid;
2025
2026 /* Finished: go to flowid generation */
2027 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2028 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2029 mvpp2_prs_sram_ri_update(&pe, ri, ri_mask);
2030 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2031 sizeof(struct ipv6hdr) - 6,
2032 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2033
2034 mvpp2_prs_tcam_data_byte_set(&pe, 0, proto, MVPP2_PRS_TCAM_PROTO_MASK);
2035 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2036 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2037 /* Unmask all ports */
2038 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2039
2040 /* Write HW */
2041 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2042 mvpp2_prs_hw_write(priv, &pe);
2043
2044 return 0;
2045}
2046
2047/* IPv6 L3 multicast entry */
2048static int mvpp2_prs_ip6_cast(struct mvpp2 *priv, unsigned short l3_cast)
2049{
2050 struct mvpp2_prs_entry pe;
2051 int tid;
2052
2053 if (l3_cast != MVPP2_PRS_L3_MULTI_CAST)
2054 return -EINVAL;
2055
2056 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2057 MVPP2_PE_LAST_FREE_TID);
2058 if (tid < 0)
2059 return tid;
2060
2061 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2062 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2063 pe.index = tid;
2064
2065 /* Finished: go to flowid generation */
2066 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2067 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_MCAST,
2068 MVPP2_PRS_RI_L3_ADDR_MASK);
2069 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2070 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2071 /* Shift back to IPv6 NH */
2072 mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2073
2074 mvpp2_prs_tcam_data_byte_set(&pe, 0, MVPP2_PRS_IPV6_MC,
2075 MVPP2_PRS_IPV6_MC_MASK);
2076 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2077 /* Unmask all ports */
2078 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2079
2080 /* Update shadow table and hw entry */
2081 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2082 mvpp2_prs_hw_write(priv, &pe);
2083
2084 return 0;
2085}
2086
2087/* Parser per-port initialization */
2088static void mvpp2_prs_hw_port_init(struct mvpp2 *priv, int port, int lu_first,
2089 int lu_max, int offset)
2090{
2091 u32 val;
2092
2093 /* Set lookup ID */
2094 val = mvpp2_read(priv, MVPP2_PRS_INIT_LOOKUP_REG);
2095 val &= ~MVPP2_PRS_PORT_LU_MASK(port);
2096 val |= MVPP2_PRS_PORT_LU_VAL(port, lu_first);
2097 mvpp2_write(priv, MVPP2_PRS_INIT_LOOKUP_REG, val);
2098
2099 /* Set maximum number of loops for packet received from port */
2100 val = mvpp2_read(priv, MVPP2_PRS_MAX_LOOP_REG(port));
2101 val &= ~MVPP2_PRS_MAX_LOOP_MASK(port);
2102 val |= MVPP2_PRS_MAX_LOOP_VAL(port, lu_max);
2103 mvpp2_write(priv, MVPP2_PRS_MAX_LOOP_REG(port), val);
2104
2105 /* Set initial offset for packet header extraction for the first
2106 * searching loop
2107 */
2108 val = mvpp2_read(priv, MVPP2_PRS_INIT_OFFS_REG(port));
2109 val &= ~MVPP2_PRS_INIT_OFF_MASK(port);
2110 val |= MVPP2_PRS_INIT_OFF_VAL(port, offset);
2111 mvpp2_write(priv, MVPP2_PRS_INIT_OFFS_REG(port), val);
2112}
2113
2114/* Default flow entries initialization for all ports */
2115static void mvpp2_prs_def_flow_init(struct mvpp2 *priv)
2116{
2117 struct mvpp2_prs_entry pe;
2118 int port;
2119
2120 for (port = 0; port < MVPP2_MAX_PORTS; port++) {
2121 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2122 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2123 pe.index = MVPP2_PE_FIRST_DEFAULT_FLOW - port;
2124
2125 /* Mask all ports */
2126 mvpp2_prs_tcam_port_map_set(&pe, 0);
2127
2128 /* Set flow ID*/
2129 mvpp2_prs_sram_ai_update(&pe, port, MVPP2_PRS_FLOW_ID_MASK);
2130 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
2131
2132 /* Update shadow table and hw entry */
2133 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_FLOWS);
2134 mvpp2_prs_hw_write(priv, &pe);
2135 }
2136}
2137
2138/* Set default entry for Marvell Header field */
2139static void mvpp2_prs_mh_init(struct mvpp2 *priv)
2140{
2141 struct mvpp2_prs_entry pe;
2142
2143 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2144
2145 pe.index = MVPP2_PE_MH_DEFAULT;
2146 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MH);
2147 mvpp2_prs_sram_shift_set(&pe, MVPP2_MH_SIZE,
2148 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2149 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_MAC);
2150
2151 /* Unmask all ports */
2152 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2153
2154 /* Update shadow table and hw entry */
2155 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MH);
2156 mvpp2_prs_hw_write(priv, &pe);
2157}
2158
2159/* Set default entires (place holder) for promiscuous, non-promiscuous and
2160 * multicast MAC addresses
2161 */
2162static void mvpp2_prs_mac_init(struct mvpp2 *priv)
2163{
2164 struct mvpp2_prs_entry pe;
2165
2166 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2167
2168 /* Non-promiscuous mode for all ports - DROP unknown packets */
2169 pe.index = MVPP2_PE_MAC_NON_PROMISCUOUS;
2170 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_MAC);
2171
2172 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_DROP_MASK,
2173 MVPP2_PRS_RI_DROP_MASK);
2174 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2175 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2176
2177 /* Unmask all ports */
2178 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2179
2180 /* Update shadow table and hw entry */
2181 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
2182 mvpp2_prs_hw_write(priv, &pe);
2183
2184 /* place holders only - no ports */
2185 mvpp2_prs_mac_drop_all_set(priv, 0, false);
2186 mvpp2_prs_mac_promisc_set(priv, 0, false);
2187 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_ALL, 0, false);
2188 mvpp2_prs_mac_multi_set(priv, MVPP2_PE_MAC_MC_IP6, 0, false);
2189}
2190
2191/* Set default entries for various types of dsa packets */
2192static void mvpp2_prs_dsa_init(struct mvpp2 *priv)
2193{
2194 struct mvpp2_prs_entry pe;
2195
2196 /* None tagged EDSA entry - place holder */
2197 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
2198 MVPP2_PRS_EDSA);
2199
2200 /* Tagged EDSA entry - place holder */
2201 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
2202
2203 /* None tagged DSA entry - place holder */
2204 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_UNTAGGED,
2205 MVPP2_PRS_DSA);
2206
2207 /* Tagged DSA entry - place holder */
2208 mvpp2_prs_dsa_tag_set(priv, 0, false, MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
2209
2210 /* None tagged EDSA ethertype entry - place holder*/
2211 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
2212 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
2213
2214 /* Tagged EDSA ethertype entry - place holder*/
2215 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, false,
2216 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
2217
2218 /* None tagged DSA ethertype entry */
2219 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
2220 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
2221
2222 /* Tagged DSA ethertype entry */
2223 mvpp2_prs_dsa_tag_ethertype_set(priv, 0, true,
2224 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
2225
2226 /* Set default entry, in case DSA or EDSA tag not found */
2227 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2228 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_DSA);
2229 pe.index = MVPP2_PE_DSA_DEFAULT;
2230 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2231
2232 /* Shift 0 bytes */
2233 mvpp2_prs_sram_shift_set(&pe, 0, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2234 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_MAC);
2235
2236 /* Clear all sram ai bits for next iteration */
2237 mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
2238
2239 /* Unmask all ports */
2240 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2241
2242 mvpp2_prs_hw_write(priv, &pe);
2243}
2244
2245/* Match basic ethertypes */
2246static int mvpp2_prs_etype_init(struct mvpp2 *priv)
2247{
2248 struct mvpp2_prs_entry pe;
2249 int tid;
2250
2251 /* Ethertype: PPPoE */
2252 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2253 MVPP2_PE_LAST_FREE_TID);
2254 if (tid < 0)
2255 return tid;
2256
2257 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2258 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2259 pe.index = tid;
2260
2261 mvpp2_prs_match_etype(&pe, 0, ETH_P_PPP_SES);
2262
2263 mvpp2_prs_sram_shift_set(&pe, MVPP2_PPPOE_HDR_SIZE,
2264 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2265 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2266 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_PPPOE_MASK,
2267 MVPP2_PRS_RI_PPPOE_MASK);
2268
2269 /* Update shadow table and hw entry */
2270 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2271 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2272 priv->prs_shadow[pe.index].finish = false;
2273 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_PPPOE_MASK,
2274 MVPP2_PRS_RI_PPPOE_MASK);
2275 mvpp2_prs_hw_write(priv, &pe);
2276
2277 /* Ethertype: ARP */
2278 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2279 MVPP2_PE_LAST_FREE_TID);
2280 if (tid < 0)
2281 return tid;
2282
2283 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2284 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2285 pe.index = tid;
2286
2287 mvpp2_prs_match_etype(&pe, 0, ETH_P_ARP);
2288
2289 /* Generate flow in the next iteration*/
2290 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2291 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2292 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_ARP,
2293 MVPP2_PRS_RI_L3_PROTO_MASK);
2294 /* Set L3 offset */
2295 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2296 MVPP2_ETH_TYPE_LEN,
2297 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2298
2299 /* Update shadow table and hw entry */
2300 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2301 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2302 priv->prs_shadow[pe.index].finish = true;
2303 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_ARP,
2304 MVPP2_PRS_RI_L3_PROTO_MASK);
2305 mvpp2_prs_hw_write(priv, &pe);
2306
2307 /* Ethertype: LBTD */
2308 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2309 MVPP2_PE_LAST_FREE_TID);
2310 if (tid < 0)
2311 return tid;
2312
2313 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2314 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2315 pe.index = tid;
2316
2317 mvpp2_prs_match_etype(&pe, 0, MVPP2_IP_LBDT_TYPE);
2318
2319 /* Generate flow in the next iteration*/
2320 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2321 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2322 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2323 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2324 MVPP2_PRS_RI_CPU_CODE_MASK |
2325 MVPP2_PRS_RI_UDF3_MASK);
2326 /* Set L3 offset */
2327 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2328 MVPP2_ETH_TYPE_LEN,
2329 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2330
2331 /* Update shadow table and hw entry */
2332 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2333 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2334 priv->prs_shadow[pe.index].finish = true;
2335 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2336 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2337 MVPP2_PRS_RI_CPU_CODE_MASK |
2338 MVPP2_PRS_RI_UDF3_MASK);
2339 mvpp2_prs_hw_write(priv, &pe);
2340
2341 /* Ethertype: IPv4 without options */
2342 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2343 MVPP2_PE_LAST_FREE_TID);
2344 if (tid < 0)
2345 return tid;
2346
2347 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2348 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2349 pe.index = tid;
2350
2351 mvpp2_prs_match_etype(&pe, 0, ETH_P_IP);
2352 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2353 MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2354 MVPP2_PRS_IPV4_HEAD_MASK |
2355 MVPP2_PRS_IPV4_IHL_MASK);
2356
2357 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2358 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2359 MVPP2_PRS_RI_L3_PROTO_MASK);
2360 /* Skip eth_type + 4 bytes of IP header */
2361 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2362 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2363 /* Set L3 offset */
2364 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2365 MVPP2_ETH_TYPE_LEN,
2366 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2367
2368 /* Update shadow table and hw entry */
2369 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2370 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2371 priv->prs_shadow[pe.index].finish = false;
2372 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4,
2373 MVPP2_PRS_RI_L3_PROTO_MASK);
2374 mvpp2_prs_hw_write(priv, &pe);
2375
2376 /* Ethertype: IPv4 with options */
2377 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2378 MVPP2_PE_LAST_FREE_TID);
2379 if (tid < 0)
2380 return tid;
2381
2382 pe.index = tid;
2383
2384 /* Clear tcam data before updating */
2385 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE(MVPP2_ETH_TYPE_LEN)] = 0x0;
2386 pe.tcam.byte[MVPP2_PRS_TCAM_DATA_BYTE_EN(MVPP2_ETH_TYPE_LEN)] = 0x0;
2387
2388 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2389 MVPP2_PRS_IPV4_HEAD,
2390 MVPP2_PRS_IPV4_HEAD_MASK);
2391
2392 /* Clear ri before updating */
2393 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2394 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2395 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2396 MVPP2_PRS_RI_L3_PROTO_MASK);
2397
2398 /* Update shadow table and hw entry */
2399 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2400 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2401 priv->prs_shadow[pe.index].finish = false;
2402 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP4_OPT,
2403 MVPP2_PRS_RI_L3_PROTO_MASK);
2404 mvpp2_prs_hw_write(priv, &pe);
2405
2406 /* Ethertype: IPv6 without options */
2407 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2408 MVPP2_PE_LAST_FREE_TID);
2409 if (tid < 0)
2410 return tid;
2411
2412 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2413 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2414 pe.index = tid;
2415
2416 mvpp2_prs_match_etype(&pe, 0, ETH_P_IPV6);
2417
2418 /* Skip DIP of IPV6 header */
2419 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 8 +
2420 MVPP2_MAX_L3_ADDR_SIZE,
2421 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2422 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2423 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2424 MVPP2_PRS_RI_L3_PROTO_MASK);
2425 /* Set L3 offset */
2426 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2427 MVPP2_ETH_TYPE_LEN,
2428 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2429
2430 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2431 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2432 priv->prs_shadow[pe.index].finish = false;
2433 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_IP6,
2434 MVPP2_PRS_RI_L3_PROTO_MASK);
2435 mvpp2_prs_hw_write(priv, &pe);
2436
2437 /* Default entry for MVPP2_PRS_LU_L2 - Unknown ethtype */
2438 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2439 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_L2);
2440 pe.index = MVPP2_PE_ETH_TYPE_UN;
2441
2442 /* Unmask all ports */
2443 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2444
2445 /* Generate flow in the next iteration*/
2446 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2447 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2448 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2449 MVPP2_PRS_RI_L3_PROTO_MASK);
2450 /* Set L3 offset even it's unknown L3 */
2451 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2452 MVPP2_ETH_TYPE_LEN,
2453 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2454
2455 /* Update shadow table and hw entry */
2456 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_L2);
2457 priv->prs_shadow[pe.index].udf = MVPP2_PRS_UDF_L2_DEF;
2458 priv->prs_shadow[pe.index].finish = true;
2459 mvpp2_prs_shadow_ri_set(priv, pe.index, MVPP2_PRS_RI_L3_UN,
2460 MVPP2_PRS_RI_L3_PROTO_MASK);
2461 mvpp2_prs_hw_write(priv, &pe);
2462
2463 return 0;
2464}
2465
2466/* Configure vlan entries and detect up to 2 successive VLAN tags.
2467 * Possible options:
2468 * 0x8100, 0x88A8
2469 * 0x8100, 0x8100
2470 * 0x8100
2471 * 0x88A8
2472 */
2473static int mvpp2_prs_vlan_init(struct platform_device *pdev, struct mvpp2 *priv)
2474{
2475 struct mvpp2_prs_entry pe;
2476 int err;
2477
2478 priv->prs_double_vlans = devm_kcalloc(&pdev->dev, sizeof(bool),
2479 MVPP2_PRS_DBL_VLANS_MAX,
2480 GFP_KERNEL);
2481 if (!priv->prs_double_vlans)
2482 return -ENOMEM;
2483
2484 /* Double VLAN: 0x8100, 0x88A8 */
2485 err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021AD,
2486 MVPP2_PRS_PORT_MASK);
2487 if (err)
2488 return err;
2489
2490 /* Double VLAN: 0x8100, 0x8100 */
2491 err = mvpp2_prs_double_vlan_add(priv, ETH_P_8021Q, ETH_P_8021Q,
2492 MVPP2_PRS_PORT_MASK);
2493 if (err)
2494 return err;
2495
2496 /* Single VLAN: 0x88a8 */
2497 err = mvpp2_prs_vlan_add(priv, ETH_P_8021AD, MVPP2_PRS_SINGLE_VLAN_AI,
2498 MVPP2_PRS_PORT_MASK);
2499 if (err)
2500 return err;
2501
2502 /* Single VLAN: 0x8100 */
2503 err = mvpp2_prs_vlan_add(priv, ETH_P_8021Q, MVPP2_PRS_SINGLE_VLAN_AI,
2504 MVPP2_PRS_PORT_MASK);
2505 if (err)
2506 return err;
2507
2508 /* Set default double vlan entry */
2509 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2510 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2511 pe.index = MVPP2_PE_VLAN_DBL;
2512
2513 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
2514 /* Clear ai for next iterations */
2515 mvpp2_prs_sram_ai_update(&pe, 0, MVPP2_PRS_SRAM_AI_MASK);
2516 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_DOUBLE,
2517 MVPP2_PRS_RI_VLAN_MASK);
2518
2519 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_DBL_VLAN_AI_BIT,
2520 MVPP2_PRS_DBL_VLAN_AI_BIT);
2521 /* Unmask all ports */
2522 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2523
2524 /* Update shadow table and hw entry */
2525 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
2526 mvpp2_prs_hw_write(priv, &pe);
2527
2528 /* Set default vlan none entry */
2529 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2530 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_VLAN);
2531 pe.index = MVPP2_PE_VLAN_NONE;
2532
2533 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_L2);
2534 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_VLAN_NONE,
2535 MVPP2_PRS_RI_VLAN_MASK);
2536
2537 /* Unmask all ports */
2538 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2539
2540 /* Update shadow table and hw entry */
2541 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_VLAN);
2542 mvpp2_prs_hw_write(priv, &pe);
2543
2544 return 0;
2545}
2546
2547/* Set entries for PPPoE ethertype */
2548static int mvpp2_prs_pppoe_init(struct mvpp2 *priv)
2549{
2550 struct mvpp2_prs_entry pe;
2551 int tid;
2552
2553 /* IPv4 over PPPoE with options */
2554 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2555 MVPP2_PE_LAST_FREE_TID);
2556 if (tid < 0)
2557 return tid;
2558
2559 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2560 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2561 pe.index = tid;
2562
2563 mvpp2_prs_match_etype(&pe, 0, PPP_IP);
2564
2565 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2566 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4_OPT,
2567 MVPP2_PRS_RI_L3_PROTO_MASK);
2568 /* Skip eth_type + 4 bytes of IP header */
2569 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2570 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2571 /* Set L3 offset */
2572 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2573 MVPP2_ETH_TYPE_LEN,
2574 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2575
2576 /* Update shadow table and hw entry */
2577 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2578 mvpp2_prs_hw_write(priv, &pe);
2579
2580 /* IPv4 over PPPoE without options */
2581 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2582 MVPP2_PE_LAST_FREE_TID);
2583 if (tid < 0)
2584 return tid;
2585
2586 pe.index = tid;
2587
2588 mvpp2_prs_tcam_data_byte_set(&pe, MVPP2_ETH_TYPE_LEN,
2589 MVPP2_PRS_IPV4_HEAD | MVPP2_PRS_IPV4_IHL,
2590 MVPP2_PRS_IPV4_HEAD_MASK |
2591 MVPP2_PRS_IPV4_IHL_MASK);
2592
2593 /* Clear ri before updating */
2594 pe.sram.word[MVPP2_PRS_SRAM_RI_WORD] = 0x0;
2595 pe.sram.word[MVPP2_PRS_SRAM_RI_CTRL_WORD] = 0x0;
2596 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP4,
2597 MVPP2_PRS_RI_L3_PROTO_MASK);
2598
2599 /* Update shadow table and hw entry */
2600 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2601 mvpp2_prs_hw_write(priv, &pe);
2602
2603 /* IPv6 over PPPoE */
2604 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2605 MVPP2_PE_LAST_FREE_TID);
2606 if (tid < 0)
2607 return tid;
2608
2609 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2610 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2611 pe.index = tid;
2612
2613 mvpp2_prs_match_etype(&pe, 0, PPP_IPV6);
2614
2615 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2616 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_IP6,
2617 MVPP2_PRS_RI_L3_PROTO_MASK);
2618 /* Skip eth_type + 4 bytes of IPv6 header */
2619 mvpp2_prs_sram_shift_set(&pe, MVPP2_ETH_TYPE_LEN + 4,
2620 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2621 /* Set L3 offset */
2622 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2623 MVPP2_ETH_TYPE_LEN,
2624 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2625
2626 /* Update shadow table and hw entry */
2627 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2628 mvpp2_prs_hw_write(priv, &pe);
2629
2630 /* Non-IP over PPPoE */
2631 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2632 MVPP2_PE_LAST_FREE_TID);
2633 if (tid < 0)
2634 return tid;
2635
2636 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2637 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_PPPOE);
2638 pe.index = tid;
2639
2640 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN,
2641 MVPP2_PRS_RI_L3_PROTO_MASK);
2642
2643 /* Finished: go to flowid generation */
2644 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2645 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2646 /* Set L3 offset even if it's unknown L3 */
2647 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L3,
2648 MVPP2_ETH_TYPE_LEN,
2649 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2650
2651 /* Update shadow table and hw entry */
2652 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_PPPOE);
2653 mvpp2_prs_hw_write(priv, &pe);
2654
2655 return 0;
2656}
2657
2658/* Initialize entries for IPv4 */
2659static int mvpp2_prs_ip4_init(struct mvpp2 *priv)
2660{
2661 struct mvpp2_prs_entry pe;
2662 int err;
2663
2664 /* Set entries for TCP, UDP and IGMP over IPv4 */
2665 err = mvpp2_prs_ip4_proto(priv, IPPROTO_TCP, MVPP2_PRS_RI_L4_TCP,
2666 MVPP2_PRS_RI_L4_PROTO_MASK);
2667 if (err)
2668 return err;
2669
2670 err = mvpp2_prs_ip4_proto(priv, IPPROTO_UDP, MVPP2_PRS_RI_L4_UDP,
2671 MVPP2_PRS_RI_L4_PROTO_MASK);
2672 if (err)
2673 return err;
2674
2675 err = mvpp2_prs_ip4_proto(priv, IPPROTO_IGMP,
2676 MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2677 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2678 MVPP2_PRS_RI_CPU_CODE_MASK |
2679 MVPP2_PRS_RI_UDF3_MASK);
2680 if (err)
2681 return err;
2682
2683 /* IPv4 Broadcast */
2684 err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_BROAD_CAST);
2685 if (err)
2686 return err;
2687
2688 /* IPv4 Multicast */
2689 err = mvpp2_prs_ip4_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
2690 if (err)
2691 return err;
2692
2693 /* Default IPv4 entry for unknown protocols */
2694 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2695 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
2696 pe.index = MVPP2_PE_IP4_PROTO_UN;
2697
2698 /* Set next lu to IPv4 */
2699 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP4);
2700 mvpp2_prs_sram_shift_set(&pe, 12, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2701 /* Set L4 offset */
2702 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2703 sizeof(struct iphdr) - 4,
2704 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2705 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2706 MVPP2_PRS_IPV4_DIP_AI_BIT);
2707 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2708 MVPP2_PRS_RI_L4_PROTO_MASK);
2709
2710 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV4_DIP_AI_BIT);
2711 /* Unmask all ports */
2712 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2713
2714 /* Update shadow table and hw entry */
2715 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2716 mvpp2_prs_hw_write(priv, &pe);
2717
2718 /* Default IPv4 entry for unicast address */
2719 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2720 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP4);
2721 pe.index = MVPP2_PE_IP4_ADDR_UN;
2722
2723 /* Finished: go to flowid generation */
2724 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2725 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2726 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
2727 MVPP2_PRS_RI_L3_ADDR_MASK);
2728
2729 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV4_DIP_AI_BIT,
2730 MVPP2_PRS_IPV4_DIP_AI_BIT);
2731 /* Unmask all ports */
2732 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2733
2734 /* Update shadow table and hw entry */
2735 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2736 mvpp2_prs_hw_write(priv, &pe);
2737
2738 return 0;
2739}
2740
2741/* Initialize entries for IPv6 */
2742static int mvpp2_prs_ip6_init(struct mvpp2 *priv)
2743{
2744 struct mvpp2_prs_entry pe;
2745 int tid, err;
2746
2747 /* Set entries for TCP, UDP and ICMP over IPv6 */
2748 err = mvpp2_prs_ip6_proto(priv, IPPROTO_TCP,
2749 MVPP2_PRS_RI_L4_TCP,
2750 MVPP2_PRS_RI_L4_PROTO_MASK);
2751 if (err)
2752 return err;
2753
2754 err = mvpp2_prs_ip6_proto(priv, IPPROTO_UDP,
2755 MVPP2_PRS_RI_L4_UDP,
2756 MVPP2_PRS_RI_L4_PROTO_MASK);
2757 if (err)
2758 return err;
2759
2760 err = mvpp2_prs_ip6_proto(priv, IPPROTO_ICMPV6,
2761 MVPP2_PRS_RI_CPU_CODE_RX_SPEC |
2762 MVPP2_PRS_RI_UDF3_RX_SPECIAL,
2763 MVPP2_PRS_RI_CPU_CODE_MASK |
2764 MVPP2_PRS_RI_UDF3_MASK);
2765 if (err)
2766 return err;
2767
2768 /* IPv4 is the last header. This is similar case as 6-TCP or 17-UDP */
2769 /* Result Info: UDF7=1, DS lite */
2770 err = mvpp2_prs_ip6_proto(priv, IPPROTO_IPIP,
2771 MVPP2_PRS_RI_UDF7_IP6_LITE,
2772 MVPP2_PRS_RI_UDF7_MASK);
2773 if (err)
2774 return err;
2775
2776 /* IPv6 multicast */
2777 err = mvpp2_prs_ip6_cast(priv, MVPP2_PRS_L3_MULTI_CAST);
2778 if (err)
2779 return err;
2780
2781 /* Entry for checking hop limit */
2782 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
2783 MVPP2_PE_LAST_FREE_TID);
2784 if (tid < 0)
2785 return tid;
2786
2787 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2788 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2789 pe.index = tid;
2790
2791 /* Finished: go to flowid generation */
2792 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2793 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2794 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UN |
2795 MVPP2_PRS_RI_DROP_MASK,
2796 MVPP2_PRS_RI_L3_PROTO_MASK |
2797 MVPP2_PRS_RI_DROP_MASK);
2798
2799 mvpp2_prs_tcam_data_byte_set(&pe, 1, 0x00, MVPP2_PRS_IPV6_HOP_MASK);
2800 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2801 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2802
2803 /* Update shadow table and hw entry */
2804 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2805 mvpp2_prs_hw_write(priv, &pe);
2806
2807 /* Default IPv6 entry for unknown protocols */
2808 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2809 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2810 pe.index = MVPP2_PE_IP6_PROTO_UN;
2811
2812 /* Finished: go to flowid generation */
2813 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2814 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2815 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2816 MVPP2_PRS_RI_L4_PROTO_MASK);
2817 /* Set L4 offset relatively to our current place */
2818 mvpp2_prs_sram_offset_set(&pe, MVPP2_PRS_SRAM_UDF_TYPE_L4,
2819 sizeof(struct ipv6hdr) - 4,
2820 MVPP2_PRS_SRAM_OP_SEL_UDF_ADD);
2821
2822 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2823 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2824 /* Unmask all ports */
2825 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2826
2827 /* Update shadow table and hw entry */
2828 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2829 mvpp2_prs_hw_write(priv, &pe);
2830
2831 /* Default IPv6 entry for unknown ext protocols */
2832 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2833 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2834 pe.index = MVPP2_PE_IP6_EXT_PROTO_UN;
2835
2836 /* Finished: go to flowid generation */
2837 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_FLOWS);
2838 mvpp2_prs_sram_bits_set(&pe, MVPP2_PRS_SRAM_LU_GEN_BIT, 1);
2839 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L4_OTHER,
2840 MVPP2_PRS_RI_L4_PROTO_MASK);
2841
2842 mvpp2_prs_tcam_ai_update(&pe, MVPP2_PRS_IPV6_EXT_AI_BIT,
2843 MVPP2_PRS_IPV6_EXT_AI_BIT);
2844 /* Unmask all ports */
2845 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2846
2847 /* Update shadow table and hw entry */
2848 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP4);
2849 mvpp2_prs_hw_write(priv, &pe);
2850
2851 /* Default IPv6 entry for unicast address */
2852 memset(&pe, 0, sizeof(struct mvpp2_prs_entry));
2853 mvpp2_prs_tcam_lu_set(&pe, MVPP2_PRS_LU_IP6);
2854 pe.index = MVPP2_PE_IP6_ADDR_UN;
2855
2856 /* Finished: go to IPv6 again */
2857 mvpp2_prs_sram_next_lu_set(&pe, MVPP2_PRS_LU_IP6);
2858 mvpp2_prs_sram_ri_update(&pe, MVPP2_PRS_RI_L3_UCAST,
2859 MVPP2_PRS_RI_L3_ADDR_MASK);
2860 mvpp2_prs_sram_ai_update(&pe, MVPP2_PRS_IPV6_NO_EXT_AI_BIT,
2861 MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2862 /* Shift back to IPV6 NH */
2863 mvpp2_prs_sram_shift_set(&pe, -18, MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
2864
2865 mvpp2_prs_tcam_ai_update(&pe, 0, MVPP2_PRS_IPV6_NO_EXT_AI_BIT);
2866 /* Unmask all ports */
2867 mvpp2_prs_tcam_port_map_set(&pe, MVPP2_PRS_PORT_MASK);
2868
2869 /* Update shadow table and hw entry */
2870 mvpp2_prs_shadow_set(priv, pe.index, MVPP2_PRS_LU_IP6);
2871 mvpp2_prs_hw_write(priv, &pe);
2872
2873 return 0;
2874}
2875
2876/* Parser default initialization */
2877static int mvpp2_prs_default_init(struct platform_device *pdev,
2878 struct mvpp2 *priv)
2879{
2880 int err, index, i;
2881
2882 /* Enable tcam table */
2883 mvpp2_write(priv, MVPP2_PRS_TCAM_CTRL_REG, MVPP2_PRS_TCAM_EN_MASK);
2884
2885 /* Clear all tcam and sram entries */
2886 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++) {
2887 mvpp2_write(priv, MVPP2_PRS_TCAM_IDX_REG, index);
2888 for (i = 0; i < MVPP2_PRS_TCAM_WORDS; i++)
2889 mvpp2_write(priv, MVPP2_PRS_TCAM_DATA_REG(i), 0);
2890
2891 mvpp2_write(priv, MVPP2_PRS_SRAM_IDX_REG, index);
2892 for (i = 0; i < MVPP2_PRS_SRAM_WORDS; i++)
2893 mvpp2_write(priv, MVPP2_PRS_SRAM_DATA_REG(i), 0);
2894 }
2895
2896 /* Invalidate all tcam entries */
2897 for (index = 0; index < MVPP2_PRS_TCAM_SRAM_SIZE; index++)
2898 mvpp2_prs_hw_inv(priv, index);
2899
2900 priv->prs_shadow = devm_kcalloc(&pdev->dev, MVPP2_PRS_TCAM_SRAM_SIZE,
2901 sizeof(struct mvpp2_prs_shadow),
2902 GFP_KERNEL);
2903 if (!priv->prs_shadow)
2904 return -ENOMEM;
2905
2906 /* Always start from lookup = 0 */
2907 for (index = 0; index < MVPP2_MAX_PORTS; index++)
2908 mvpp2_prs_hw_port_init(priv, index, MVPP2_PRS_LU_MH,
2909 MVPP2_PRS_PORT_LU_MAX, 0);
2910
2911 mvpp2_prs_def_flow_init(priv);
2912
2913 mvpp2_prs_mh_init(priv);
2914
2915 mvpp2_prs_mac_init(priv);
2916
2917 mvpp2_prs_dsa_init(priv);
2918
2919 err = mvpp2_prs_etype_init(priv);
2920 if (err)
2921 return err;
2922
2923 err = mvpp2_prs_vlan_init(pdev, priv);
2924 if (err)
2925 return err;
2926
2927 err = mvpp2_prs_pppoe_init(priv);
2928 if (err)
2929 return err;
2930
2931 err = mvpp2_prs_ip6_init(priv);
2932 if (err)
2933 return err;
2934
2935 err = mvpp2_prs_ip4_init(priv);
2936 if (err)
2937 return err;
2938
2939 return 0;
2940}
2941
2942/* Compare MAC DA with tcam entry data */
2943static bool mvpp2_prs_mac_range_equals(struct mvpp2_prs_entry *pe,
2944 const u8 *da, unsigned char *mask)
2945{
2946 unsigned char tcam_byte, tcam_mask;
2947 int index;
2948
2949 for (index = 0; index < ETH_ALEN; index++) {
2950 mvpp2_prs_tcam_data_byte_get(pe, index, &tcam_byte, &tcam_mask);
2951 if (tcam_mask != mask[index])
2952 return false;
2953
2954 if ((tcam_mask & tcam_byte) != (da[index] & mask[index]))
2955 return false;
2956 }
2957
2958 return true;
2959}
2960
2961/* Find tcam entry with matched pair <MAC DA, port> */
2962static struct mvpp2_prs_entry *
2963mvpp2_prs_mac_da_range_find(struct mvpp2 *priv, int pmap, const u8 *da,
2964 unsigned char *mask, int udf_type)
2965{
2966 struct mvpp2_prs_entry *pe;
2967 int tid;
2968
2969 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2970 if (!pe)
2971 return NULL;
2972 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
2973
2974 /* Go through the all entires with MVPP2_PRS_LU_MAC */
2975 for (tid = MVPP2_PE_FIRST_FREE_TID;
2976 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
2977 unsigned int entry_pmap;
2978
2979 if (!priv->prs_shadow[tid].valid ||
2980 (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
2981 (priv->prs_shadow[tid].udf != udf_type))
2982 continue;
2983
2984 pe->index = tid;
2985 mvpp2_prs_hw_read(priv, pe);
2986 entry_pmap = mvpp2_prs_tcam_port_map_get(pe);
2987
2988 if (mvpp2_prs_mac_range_equals(pe, da, mask) &&
2989 entry_pmap == pmap)
2990 return pe;
2991 }
2992 kfree(pe);
2993
2994 return NULL;
2995}
2996
2997/* Update parser's mac da entry */
2998static int mvpp2_prs_mac_da_accept(struct mvpp2 *priv, int port,
2999 const u8 *da, bool add)
3000{
3001 struct mvpp2_prs_entry *pe;
3002 unsigned int pmap, len, ri;
3003 unsigned char mask[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
3004 int tid;
3005
3006 /* Scan TCAM and see if entry with this <MAC DA, port> already exist */
3007 pe = mvpp2_prs_mac_da_range_find(priv, (1 << port), da, mask,
3008 MVPP2_PRS_UDF_MAC_DEF);
3009
3010 /* No such entry */
3011 if (!pe) {
3012 if (!add)
3013 return 0;
3014
3015 /* Create new TCAM entry */
3016 /* Find first range mac entry*/
3017 for (tid = MVPP2_PE_FIRST_FREE_TID;
3018 tid <= MVPP2_PE_LAST_FREE_TID; tid++)
3019 if (priv->prs_shadow[tid].valid &&
3020 (priv->prs_shadow[tid].lu == MVPP2_PRS_LU_MAC) &&
3021 (priv->prs_shadow[tid].udf ==
3022 MVPP2_PRS_UDF_MAC_RANGE))
3023 break;
3024
3025 /* Go through the all entries from first to last */
3026 tid = mvpp2_prs_tcam_first_free(priv, MVPP2_PE_FIRST_FREE_TID,
3027 tid - 1);
3028 if (tid < 0)
3029 return tid;
3030
3031 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3032 if (!pe)
3033 return -1;
3034 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_MAC);
3035 pe->index = tid;
3036
3037 /* Mask all ports */
3038 mvpp2_prs_tcam_port_map_set(pe, 0);
3039 }
3040
3041 /* Update port mask */
3042 mvpp2_prs_tcam_port_set(pe, port, add);
3043
3044 /* Invalidate the entry if no ports are left enabled */
3045 pmap = mvpp2_prs_tcam_port_map_get(pe);
3046 if (pmap == 0) {
3047 if (add) {
3048 kfree(pe);
3049 return -1;
3050 }
3051 mvpp2_prs_hw_inv(priv, pe->index);
3052 priv->prs_shadow[pe->index].valid = false;
3053 kfree(pe);
3054 return 0;
3055 }
3056
3057 /* Continue - set next lookup */
3058 mvpp2_prs_sram_next_lu_set(pe, MVPP2_PRS_LU_DSA);
3059
3060 /* Set match on DA */
3061 len = ETH_ALEN;
3062 while (len--)
3063 mvpp2_prs_tcam_data_byte_set(pe, len, da[len], 0xff);
3064
3065 /* Set result info bits */
3066 if (is_broadcast_ether_addr(da))
3067 ri = MVPP2_PRS_RI_L2_BCAST;
3068 else if (is_multicast_ether_addr(da))
3069 ri = MVPP2_PRS_RI_L2_MCAST;
3070 else
3071 ri = MVPP2_PRS_RI_L2_UCAST | MVPP2_PRS_RI_MAC_ME_MASK;
3072
3073 mvpp2_prs_sram_ri_update(pe, ri, MVPP2_PRS_RI_L2_CAST_MASK |
3074 MVPP2_PRS_RI_MAC_ME_MASK);
3075 mvpp2_prs_shadow_ri_set(priv, pe->index, ri, MVPP2_PRS_RI_L2_CAST_MASK |
3076 MVPP2_PRS_RI_MAC_ME_MASK);
3077
3078 /* Shift to ethertype */
3079 mvpp2_prs_sram_shift_set(pe, 2 * ETH_ALEN,
3080 MVPP2_PRS_SRAM_OP_SEL_SHIFT_ADD);
3081
3082 /* Update shadow table and hw entry */
3083 priv->prs_shadow[pe->index].udf = MVPP2_PRS_UDF_MAC_DEF;
3084 mvpp2_prs_shadow_set(priv, pe->index, MVPP2_PRS_LU_MAC);
3085 mvpp2_prs_hw_write(priv, pe);
3086
3087 kfree(pe);
3088
3089 return 0;
3090}
3091
3092static int mvpp2_prs_update_mac_da(struct net_device *dev, const u8 *da)
3093{
3094 struct mvpp2_port *port = netdev_priv(dev);
3095 int err;
3096
3097 /* Remove old parser entry */
3098 err = mvpp2_prs_mac_da_accept(port->priv, port->id, dev->dev_addr,
3099 false);
3100 if (err)
3101 return err;
3102
3103 /* Add new parser entry */
3104 err = mvpp2_prs_mac_da_accept(port->priv, port->id, da, true);
3105 if (err)
3106 return err;
3107
3108 /* Set addr in the device */
3109 ether_addr_copy(dev->dev_addr, da);
3110
3111 return 0;
3112}
3113
3114/* Delete all port's multicast simple (not range) entries */
3115static void mvpp2_prs_mcast_del_all(struct mvpp2 *priv, int port)
3116{
3117 struct mvpp2_prs_entry pe;
3118 int index, tid;
3119
3120 for (tid = MVPP2_PE_FIRST_FREE_TID;
3121 tid <= MVPP2_PE_LAST_FREE_TID; tid++) {
3122 unsigned char da[ETH_ALEN], da_mask[ETH_ALEN];
3123
3124 if (!priv->prs_shadow[tid].valid ||
3125 (priv->prs_shadow[tid].lu != MVPP2_PRS_LU_MAC) ||
3126 (priv->prs_shadow[tid].udf != MVPP2_PRS_UDF_MAC_DEF))
3127 continue;
3128
3129 /* Only simple mac entries */
3130 pe.index = tid;
3131 mvpp2_prs_hw_read(priv, &pe);
3132
3133 /* Read mac addr from entry */
3134 for (index = 0; index < ETH_ALEN; index++)
3135 mvpp2_prs_tcam_data_byte_get(&pe, index, &da[index],
3136 &da_mask[index]);
3137
3138 if (is_multicast_ether_addr(da) && !is_broadcast_ether_addr(da))
3139 /* Delete this entry */
3140 mvpp2_prs_mac_da_accept(priv, port, da, false);
3141 }
3142}
3143
3144static int mvpp2_prs_tag_mode_set(struct mvpp2 *priv, int port, int type)
3145{
3146 switch (type) {
3147 case MVPP2_TAG_TYPE_EDSA:
3148 /* Add port to EDSA entries */
3149 mvpp2_prs_dsa_tag_set(priv, port, true,
3150 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3151 mvpp2_prs_dsa_tag_set(priv, port, true,
3152 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3153 /* Remove port from DSA entries */
3154 mvpp2_prs_dsa_tag_set(priv, port, false,
3155 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3156 mvpp2_prs_dsa_tag_set(priv, port, false,
3157 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3158 break;
3159
3160 case MVPP2_TAG_TYPE_DSA:
3161 /* Add port to DSA entries */
3162 mvpp2_prs_dsa_tag_set(priv, port, true,
3163 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3164 mvpp2_prs_dsa_tag_set(priv, port, true,
3165 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3166 /* Remove port from EDSA entries */
3167 mvpp2_prs_dsa_tag_set(priv, port, false,
3168 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3169 mvpp2_prs_dsa_tag_set(priv, port, false,
3170 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3171 break;
3172
3173 case MVPP2_TAG_TYPE_MH:
3174 case MVPP2_TAG_TYPE_NONE:
3175 /* Remove port form EDSA and DSA entries */
3176 mvpp2_prs_dsa_tag_set(priv, port, false,
3177 MVPP2_PRS_TAGGED, MVPP2_PRS_DSA);
3178 mvpp2_prs_dsa_tag_set(priv, port, false,
3179 MVPP2_PRS_UNTAGGED, MVPP2_PRS_DSA);
3180 mvpp2_prs_dsa_tag_set(priv, port, false,
3181 MVPP2_PRS_TAGGED, MVPP2_PRS_EDSA);
3182 mvpp2_prs_dsa_tag_set(priv, port, false,
3183 MVPP2_PRS_UNTAGGED, MVPP2_PRS_EDSA);
3184 break;
3185
3186 default:
3187 if ((type < 0) || (type > MVPP2_TAG_TYPE_EDSA))
3188 return -EINVAL;
3189 }
3190
3191 return 0;
3192}
3193
3194/* Set prs flow for the port */
3195static int mvpp2_prs_def_flow(struct mvpp2_port *port)
3196{
3197 struct mvpp2_prs_entry *pe;
3198 int tid;
3199
3200 pe = mvpp2_prs_flow_find(port->priv, port->id);
3201
3202 /* Such entry not exist */
3203 if (!pe) {
3204 /* Go through the all entires from last to first */
3205 tid = mvpp2_prs_tcam_first_free(port->priv,
3206 MVPP2_PE_LAST_FREE_TID,
3207 MVPP2_PE_FIRST_FREE_TID);
3208 if (tid < 0)
3209 return tid;
3210
3211 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
3212 if (!pe)
3213 return -ENOMEM;
3214
3215 mvpp2_prs_tcam_lu_set(pe, MVPP2_PRS_LU_FLOWS);
3216 pe->index = tid;
3217
3218 /* Set flow ID*/
3219 mvpp2_prs_sram_ai_update(pe, port->id, MVPP2_PRS_FLOW_ID_MASK);
3220 mvpp2_prs_sram_bits_set(pe, MVPP2_PRS_SRAM_LU_DONE_BIT, 1);
3221
3222 /* Update shadow table */
3223 mvpp2_prs_shadow_set(port->priv, pe->index, MVPP2_PRS_LU_FLOWS);
3224 }
3225
3226 mvpp2_prs_tcam_port_map_set(pe, (1 << port->id));
3227 mvpp2_prs_hw_write(port->priv, pe);
3228 kfree(pe);
3229
3230 return 0;
3231}
3232
3233/* Classifier configuration routines */
3234
3235/* Update classification flow table registers */
3236static void mvpp2_cls_flow_write(struct mvpp2 *priv,
3237 struct mvpp2_cls_flow_entry *fe)
3238{
3239 mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
3240 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]);
3241 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]);
3242 mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]);
3243}
3244
3245/* Update classification lookup table register */
3246static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
3247 struct mvpp2_cls_lookup_entry *le)
3248{
3249 u32 val;
3250
3251 val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
3252 mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
3253 mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
3254}
3255
3256/* Classifier default initialization */
3257static void mvpp2_cls_init(struct mvpp2 *priv)
3258{
3259 struct mvpp2_cls_lookup_entry le;
3260 struct mvpp2_cls_flow_entry fe;
3261 int index;
3262
3263 /* Enable classifier */
3264 mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
3265
3266 /* Clear classifier flow table */
3267 memset(&fe.data, 0, MVPP2_CLS_FLOWS_TBL_DATA_WORDS);
3268 for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
3269 fe.index = index;
3270 mvpp2_cls_flow_write(priv, &fe);
3271 }
3272
3273 /* Clear classifier lookup table */
3274 le.data = 0;
3275 for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
3276 le.lkpid = index;
3277 le.way = 0;
3278 mvpp2_cls_lookup_write(priv, &le);
3279
3280 le.way = 1;
3281 mvpp2_cls_lookup_write(priv, &le);
3282 }
3283}
3284
3285static void mvpp2_cls_port_config(struct mvpp2_port *port)
3286{
3287 struct mvpp2_cls_lookup_entry le;
3288 u32 val;
3289
3290 /* Set way for the port */
3291 val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
3292 val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
3293 mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
3294
3295 /* Pick the entry to be accessed in lookup ID decoding table
3296 * according to the way and lkpid.
3297 */
3298 le.lkpid = port->id;
3299 le.way = 0;
3300 le.data = 0;
3301
3302 /* Set initial CPU queue for receiving packets */
3303 le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
3304 le.data |= port->first_rxq;
3305
3306 /* Disable classification engines */
3307 le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
3308
3309 /* Update lookup ID table entry */
3310 mvpp2_cls_lookup_write(port->priv, &le);
3311}
3312
3313/* Set CPU queue number for oversize packets */
3314static void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
3315{
3316 u32 val;
3317
3318 mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
3319 port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
3320
3321 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
3322 (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
3323
3324 val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
3325 val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
3326 mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
3327}
3328
3329/* Buffer Manager configuration routines */
3330
3331/* Create pool */
3332static int mvpp2_bm_pool_create(struct platform_device *pdev,
3333 struct mvpp2 *priv,
3334 struct mvpp2_bm_pool *bm_pool, int size)
3335{
3336 int size_bytes;
3337 u32 val;
3338
3339 size_bytes = sizeof(u32) * size;
3340 bm_pool->virt_addr = dma_alloc_coherent(&pdev->dev, size_bytes,
3341 &bm_pool->phys_addr,
3342 GFP_KERNEL);
3343 if (!bm_pool->virt_addr)
3344 return -ENOMEM;
3345
3346 if (!IS_ALIGNED((u32)bm_pool->virt_addr, MVPP2_BM_POOL_PTR_ALIGN)) {
3347 dma_free_coherent(&pdev->dev, size_bytes, bm_pool->virt_addr,
3348 bm_pool->phys_addr);
3349 dev_err(&pdev->dev, "BM pool %d is not %d bytes aligned\n",
3350 bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN);
3351 return -ENOMEM;
3352 }
3353
3354 mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id),
3355 bm_pool->phys_addr);
3356 mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size);
3357
3358 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
3359 val |= MVPP2_BM_START_MASK;
3360 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
3361
3362 bm_pool->type = MVPP2_BM_FREE;
3363 bm_pool->size = size;
3364 bm_pool->pkt_size = 0;
3365 bm_pool->buf_num = 0;
3366 atomic_set(&bm_pool->in_use, 0);
3367 spin_lock_init(&bm_pool->lock);
3368
3369 return 0;
3370}
3371
3372/* Set pool buffer size */
3373static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv,
3374 struct mvpp2_bm_pool *bm_pool,
3375 int buf_size)
3376{
3377 u32 val;
3378
3379 bm_pool->buf_size = buf_size;
3380
3381 val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET);
3382 mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val);
3383}
3384
3385/* Free "num" buffers from the pool */
3386static int mvpp2_bm_bufs_free(struct mvpp2 *priv,
3387 struct mvpp2_bm_pool *bm_pool, int num)
3388{
3389 int i;
3390
3391 if (num >= bm_pool->buf_num)
3392 /* Free all buffers from the pool */
3393 num = bm_pool->buf_num;
3394
3395 for (i = 0; i < num; i++) {
3396 u32 vaddr;
3397
3398 /* Get buffer virtual adress (indirect access) */
3399 mvpp2_read(priv, MVPP2_BM_PHY_ALLOC_REG(bm_pool->id));
3400 vaddr = mvpp2_read(priv, MVPP2_BM_VIRT_ALLOC_REG);
3401 if (!vaddr)
3402 break;
3403 dev_kfree_skb_any((struct sk_buff *)vaddr);
3404 }
3405
3406 /* Update BM driver with number of buffers removed from pool */
3407 bm_pool->buf_num -= i;
3408 return i;
3409}
3410
3411/* Cleanup pool */
3412static int mvpp2_bm_pool_destroy(struct platform_device *pdev,
3413 struct mvpp2 *priv,
3414 struct mvpp2_bm_pool *bm_pool)
3415{
3416 int num;
3417 u32 val;
3418
3419 num = mvpp2_bm_bufs_free(priv, bm_pool, bm_pool->buf_num);
3420 if (num != bm_pool->buf_num) {
3421 WARN(1, "cannot free all buffers in pool %d\n", bm_pool->id);
3422 return 0;
3423 }
3424
3425 val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id));
3426 val |= MVPP2_BM_STOP_MASK;
3427 mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val);
3428
3429 dma_free_coherent(&pdev->dev, sizeof(u32) * bm_pool->size,
3430 bm_pool->virt_addr,
3431 bm_pool->phys_addr);
3432 return 0;
3433}
3434
3435static int mvpp2_bm_pools_init(struct platform_device *pdev,
3436 struct mvpp2 *priv)
3437{
3438 int i, err, size;
3439 struct mvpp2_bm_pool *bm_pool;
3440
3441 /* Create all pools with maximum size */
3442 size = MVPP2_BM_POOL_SIZE_MAX;
3443 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
3444 bm_pool = &priv->bm_pools[i];
3445 bm_pool->id = i;
3446 err = mvpp2_bm_pool_create(pdev, priv, bm_pool, size);
3447 if (err)
3448 goto err_unroll_pools;
3449 mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0);
3450 }
3451 return 0;
3452
3453err_unroll_pools:
3454 dev_err(&pdev->dev, "failed to create BM pool %d, size %d\n", i, size);
3455 for (i = i - 1; i >= 0; i--)
3456 mvpp2_bm_pool_destroy(pdev, priv, &priv->bm_pools[i]);
3457 return err;
3458}
3459
3460static int mvpp2_bm_init(struct platform_device *pdev, struct mvpp2 *priv)
3461{
3462 int i, err;
3463
3464 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
3465 /* Mask BM all interrupts */
3466 mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0);
3467 /* Clear BM cause register */
3468 mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0);
3469 }
3470
3471 /* Allocate and initialize BM pools */
3472 priv->bm_pools = devm_kcalloc(&pdev->dev, MVPP2_BM_POOLS_NUM,
3473 sizeof(struct mvpp2_bm_pool), GFP_KERNEL);
3474 if (!priv->bm_pools)
3475 return -ENOMEM;
3476
3477 err = mvpp2_bm_pools_init(pdev, priv);
3478 if (err < 0)
3479 return err;
3480 return 0;
3481}
3482
3483/* Attach long pool to rxq */
3484static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port,
3485 int lrxq, int long_pool)
3486{
3487 u32 val;
3488 int prxq;
3489
3490 /* Get queue physical ID */
3491 prxq = port->rxqs[lrxq]->id;
3492
3493 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3494 val &= ~MVPP2_RXQ_POOL_LONG_MASK;
3495 val |= ((long_pool << MVPP2_RXQ_POOL_LONG_OFFS) &
3496 MVPP2_RXQ_POOL_LONG_MASK);
3497
3498 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3499}
3500
3501/* Attach short pool to rxq */
3502static void mvpp2_rxq_short_pool_set(struct mvpp2_port *port,
3503 int lrxq, int short_pool)
3504{
3505 u32 val;
3506 int prxq;
3507
3508 /* Get queue physical ID */
3509 prxq = port->rxqs[lrxq]->id;
3510
3511 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
3512 val &= ~MVPP2_RXQ_POOL_SHORT_MASK;
3513 val |= ((short_pool << MVPP2_RXQ_POOL_SHORT_OFFS) &
3514 MVPP2_RXQ_POOL_SHORT_MASK);
3515
3516 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
3517}
3518
3519/* Allocate skb for BM pool */
3520static struct sk_buff *mvpp2_skb_alloc(struct mvpp2_port *port,
3521 struct mvpp2_bm_pool *bm_pool,
3522 dma_addr_t *buf_phys_addr,
3523 gfp_t gfp_mask)
3524{
3525 struct sk_buff *skb;
3526 dma_addr_t phys_addr;
3527
3528 skb = __dev_alloc_skb(bm_pool->pkt_size, gfp_mask);
3529 if (!skb)
3530 return NULL;
3531
3532 phys_addr = dma_map_single(port->dev->dev.parent, skb->head,
3533 MVPP2_RX_BUF_SIZE(bm_pool->pkt_size),
3534 DMA_FROM_DEVICE);
3535 if (unlikely(dma_mapping_error(port->dev->dev.parent, phys_addr))) {
3536 dev_kfree_skb_any(skb);
3537 return NULL;
3538 }
3539 *buf_phys_addr = phys_addr;
3540
3541 return skb;
3542}
3543
3544/* Set pool number in a BM cookie */
3545static inline u32 mvpp2_bm_cookie_pool_set(u32 cookie, int pool)
3546{
3547 u32 bm;
3548
3549 bm = cookie & ~(0xFF << MVPP2_BM_COOKIE_POOL_OFFS);
3550 bm |= ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS);
3551
3552 return bm;
3553}
3554
3555/* Get pool number from a BM cookie */
3556static inline int mvpp2_bm_cookie_pool_get(u32 cookie)
3557{
3558 return (cookie >> MVPP2_BM_COOKIE_POOL_OFFS) & 0xFF;
3559}
3560
3561/* Release buffer to BM */
3562static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool,
3563 u32 buf_phys_addr, u32 buf_virt_addr)
3564{
3565 mvpp2_write(port->priv, MVPP2_BM_VIRT_RLS_REG, buf_virt_addr);
3566 mvpp2_write(port->priv, MVPP2_BM_PHY_RLS_REG(pool), buf_phys_addr);
3567}
3568
3569/* Release multicast buffer */
3570static void mvpp2_bm_pool_mc_put(struct mvpp2_port *port, int pool,
3571 u32 buf_phys_addr, u32 buf_virt_addr,
3572 int mc_id)
3573{
3574 u32 val = 0;
3575
3576 val |= (mc_id & MVPP2_BM_MC_ID_MASK);
3577 mvpp2_write(port->priv, MVPP2_BM_MC_RLS_REG, val);
3578
3579 mvpp2_bm_pool_put(port, pool,
3580 buf_phys_addr | MVPP2_BM_PHY_RLS_MC_BUFF_MASK,
3581 buf_virt_addr);
3582}
3583
3584/* Refill BM pool */
3585static void mvpp2_pool_refill(struct mvpp2_port *port, u32 bm,
3586 u32 phys_addr, u32 cookie)
3587{
3588 int pool = mvpp2_bm_cookie_pool_get(bm);
3589
3590 mvpp2_bm_pool_put(port, pool, phys_addr, cookie);
3591}
3592
3593/* Allocate buffers for the pool */
3594static int mvpp2_bm_bufs_add(struct mvpp2_port *port,
3595 struct mvpp2_bm_pool *bm_pool, int buf_num)
3596{
3597 struct sk_buff *skb;
3598 int i, buf_size, total_size;
3599 u32 bm;
3600 dma_addr_t phys_addr;
3601
3602 buf_size = MVPP2_RX_BUF_SIZE(bm_pool->pkt_size);
3603 total_size = MVPP2_RX_TOTAL_SIZE(buf_size);
3604
3605 if (buf_num < 0 ||
3606 (buf_num + bm_pool->buf_num > bm_pool->size)) {
3607 netdev_err(port->dev,
3608 "cannot allocate %d buffers for pool %d\n",
3609 buf_num, bm_pool->id);
3610 return 0;
3611 }
3612
3613 bm = mvpp2_bm_cookie_pool_set(0, bm_pool->id);
3614 for (i = 0; i < buf_num; i++) {
3615 skb = mvpp2_skb_alloc(port, bm_pool, &phys_addr, GFP_KERNEL);
3616 if (!skb)
3617 break;
3618
3619 mvpp2_pool_refill(port, bm, (u32)phys_addr, (u32)skb);
3620 }
3621
3622 /* Update BM driver with number of buffers added to pool */
3623 bm_pool->buf_num += i;
3624 bm_pool->in_use_thresh = bm_pool->buf_num / 4;
3625
3626 netdev_dbg(port->dev,
3627 "%s pool %d: pkt_size=%4d, buf_size=%4d, total_size=%4d\n",
3628 bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
3629 bm_pool->id, bm_pool->pkt_size, buf_size, total_size);
3630
3631 netdev_dbg(port->dev,
3632 "%s pool %d: %d of %d buffers added\n",
3633 bm_pool->type == MVPP2_BM_SWF_SHORT ? "short" : " long",
3634 bm_pool->id, i, buf_num);
3635 return i;
3636}
3637
3638/* Notify the driver that BM pool is being used as specific type and return the
3639 * pool pointer on success
3640 */
3641static struct mvpp2_bm_pool *
3642mvpp2_bm_pool_use(struct mvpp2_port *port, int pool, enum mvpp2_bm_type type,
3643 int pkt_size)
3644{
3645 unsigned long flags = 0;
3646 struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool];
3647 int num;
3648
3649 if (new_pool->type != MVPP2_BM_FREE && new_pool->type != type) {
3650 netdev_err(port->dev, "mixing pool types is forbidden\n");
3651 return NULL;
3652 }
3653
3654 spin_lock_irqsave(&new_pool->lock, flags);
3655
3656 if (new_pool->type == MVPP2_BM_FREE)
3657 new_pool->type = type;
3658
3659 /* Allocate buffers in case BM pool is used as long pool, but packet
3660 * size doesn't match MTU or BM pool hasn't being used yet
3661 */
3662 if (((type == MVPP2_BM_SWF_LONG) && (pkt_size > new_pool->pkt_size)) ||
3663 (new_pool->pkt_size == 0)) {
3664 int pkts_num;
3665
3666 /* Set default buffer number or free all the buffers in case
3667 * the pool is not empty
3668 */
3669 pkts_num = new_pool->buf_num;
3670 if (pkts_num == 0)
3671 pkts_num = type == MVPP2_BM_SWF_LONG ?
3672 MVPP2_BM_LONG_BUF_NUM :
3673 MVPP2_BM_SHORT_BUF_NUM;
3674 else
3675 mvpp2_bm_bufs_free(port->priv, new_pool, pkts_num);
3676
3677 new_pool->pkt_size = pkt_size;
3678
3679 /* Allocate buffers for this pool */
3680 num = mvpp2_bm_bufs_add(port, new_pool, pkts_num);
3681 if (num != pkts_num) {
3682 WARN(1, "pool %d: %d of %d allocated\n",
3683 new_pool->id, num, pkts_num);
3684 /* We need to undo the bufs_add() allocations */
3685 spin_unlock_irqrestore(&new_pool->lock, flags);
3686 return NULL;
3687 }
3688 }
3689
3690 mvpp2_bm_pool_bufsize_set(port->priv, new_pool,
3691 MVPP2_RX_BUF_SIZE(new_pool->pkt_size));
3692
3693 spin_unlock_irqrestore(&new_pool->lock, flags);
3694
3695 return new_pool;
3696}
3697
3698/* Initialize pools for swf */
3699static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port)
3700{
3701 unsigned long flags = 0;
3702 int rxq;
3703
3704 if (!port->pool_long) {
3705 port->pool_long =
3706 mvpp2_bm_pool_use(port, MVPP2_BM_SWF_LONG_POOL(port->id),
3707 MVPP2_BM_SWF_LONG,
3708 port->pkt_size);
3709 if (!port->pool_long)
3710 return -ENOMEM;
3711
3712 spin_lock_irqsave(&port->pool_long->lock, flags);
3713 port->pool_long->port_map |= (1 << port->id);
3714 spin_unlock_irqrestore(&port->pool_long->lock, flags);
3715
3716 for (rxq = 0; rxq < rxq_number; rxq++)
3717 mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id);
3718 }
3719
3720 if (!port->pool_short) {
3721 port->pool_short =
3722 mvpp2_bm_pool_use(port, MVPP2_BM_SWF_SHORT_POOL,
3723 MVPP2_BM_SWF_SHORT,
3724 MVPP2_BM_SHORT_PKT_SIZE);
3725 if (!port->pool_short)
3726 return -ENOMEM;
3727
3728 spin_lock_irqsave(&port->pool_short->lock, flags);
3729 port->pool_short->port_map |= (1 << port->id);
3730 spin_unlock_irqrestore(&port->pool_short->lock, flags);
3731
3732 for (rxq = 0; rxq < rxq_number; rxq++)
3733 mvpp2_rxq_short_pool_set(port, rxq,
3734 port->pool_short->id);
3735 }
3736
3737 return 0;
3738}
3739
3740static int mvpp2_bm_update_mtu(struct net_device *dev, int mtu)
3741{
3742 struct mvpp2_port *port = netdev_priv(dev);
3743 struct mvpp2_bm_pool *port_pool = port->pool_long;
3744 int num, pkts_num = port_pool->buf_num;
3745 int pkt_size = MVPP2_RX_PKT_SIZE(mtu);
3746
3747 /* Update BM pool with new buffer size */
3748 num = mvpp2_bm_bufs_free(port->priv, port_pool, pkts_num);
3749 if (num != pkts_num) {
3750 WARN(1, "cannot free all buffers in pool %d\n", port_pool->id);
3751 return -EIO;
3752 }
3753
3754 port_pool->pkt_size = pkt_size;
3755 num = mvpp2_bm_bufs_add(port, port_pool, pkts_num);
3756 if (num != pkts_num) {
3757 WARN(1, "pool %d: %d of %d allocated\n",
3758 port_pool->id, num, pkts_num);
3759 return -EIO;
3760 }
3761
3762 mvpp2_bm_pool_bufsize_set(port->priv, port_pool,
3763 MVPP2_RX_BUF_SIZE(port_pool->pkt_size));
3764 dev->mtu = mtu;
3765 netdev_update_features(dev);
3766 return 0;
3767}
3768
3769static inline void mvpp2_interrupts_enable(struct mvpp2_port *port)
3770{
3771 int cpu, cpu_mask = 0;
3772
3773 for_each_present_cpu(cpu)
3774 cpu_mask |= 1 << cpu;
3775 mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
3776 MVPP2_ISR_ENABLE_INTERRUPT(cpu_mask));
3777}
3778
3779static inline void mvpp2_interrupts_disable(struct mvpp2_port *port)
3780{
3781 int cpu, cpu_mask = 0;
3782
3783 for_each_present_cpu(cpu)
3784 cpu_mask |= 1 << cpu;
3785 mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id),
3786 MVPP2_ISR_DISABLE_INTERRUPT(cpu_mask));
3787}
3788
3789/* Mask the current CPU's Rx/Tx interrupts */
3790static void mvpp2_interrupts_mask(void *arg)
3791{
3792 struct mvpp2_port *port = arg;
3793
3794 mvpp2_write(port->priv, MVPP2_ISR_RX_TX_MASK_REG(port->id), 0);
3795}
3796
3797/* Unmask the current CPU's Rx/Tx interrupts */
3798static void mvpp2_interrupts_unmask(void *arg)
3799{
3800 struct mvpp2_port *port = arg;
3801
3802 mvpp2_write(port->priv, MVPP2_ISR_RX_TX_MASK_REG(port->id),
3803 (MVPP2_CAUSE_MISC_SUM_MASK |
3804 MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK |
3805 MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK));
3806}
3807
3808/* Port configuration routines */
3809
3810static void mvpp2_port_mii_set(struct mvpp2_port *port)
3811{
3812 u32 reg, val = 0;
3813
3814 if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
3815 val = MVPP2_GMAC_PCS_ENABLE_MASK |
3816 MVPP2_GMAC_INBAND_AN_MASK;
3817 else if (port->phy_interface == PHY_INTERFACE_MODE_RGMII)
3818 val = MVPP2_GMAC_PORT_RGMII_MASK;
3819
3820 reg = readl(port->base + MVPP2_GMAC_CTRL_2_REG);
3821 writel(reg | val, port->base + MVPP2_GMAC_CTRL_2_REG);
3822}
3823
3824static void mvpp2_port_enable(struct mvpp2_port *port)
3825{
3826 u32 val;
3827
3828 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3829 val |= MVPP2_GMAC_PORT_EN_MASK;
3830 val |= MVPP2_GMAC_MIB_CNTR_EN_MASK;
3831 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3832}
3833
3834static void mvpp2_port_disable(struct mvpp2_port *port)
3835{
3836 u32 val;
3837
3838 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3839 val &= ~(MVPP2_GMAC_PORT_EN_MASK);
3840 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3841}
3842
3843/* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */
3844static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port)
3845{
3846 u32 val;
3847
3848 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) &
3849 ~MVPP2_GMAC_PERIODIC_XON_EN_MASK;
3850 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
3851}
3852
3853/* Configure loopback port */
3854static void mvpp2_port_loopback_set(struct mvpp2_port *port)
3855{
3856 u32 val;
3857
3858 val = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
3859
3860 if (port->speed == 1000)
3861 val |= MVPP2_GMAC_GMII_LB_EN_MASK;
3862 else
3863 val &= ~MVPP2_GMAC_GMII_LB_EN_MASK;
3864
3865 if (port->phy_interface == PHY_INTERFACE_MODE_SGMII)
3866 val |= MVPP2_GMAC_PCS_LB_EN_MASK;
3867 else
3868 val &= ~MVPP2_GMAC_PCS_LB_EN_MASK;
3869
3870 writel(val, port->base + MVPP2_GMAC_CTRL_1_REG);
3871}
3872
3873static void mvpp2_port_reset(struct mvpp2_port *port)
3874{
3875 u32 val;
3876
3877 val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
3878 ~MVPP2_GMAC_PORT_RESET_MASK;
3879 writel(val, port->base + MVPP2_GMAC_CTRL_2_REG);
3880
3881 while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) &
3882 MVPP2_GMAC_PORT_RESET_MASK)
3883 continue;
3884}
3885
3886/* Change maximum receive size of the port */
3887static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port)
3888{
3889 u32 val;
3890
3891 val = readl(port->base + MVPP2_GMAC_CTRL_0_REG);
3892 val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK;
3893 val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) <<
3894 MVPP2_GMAC_MAX_RX_SIZE_OFFS);
3895 writel(val, port->base + MVPP2_GMAC_CTRL_0_REG);
3896}
3897
3898/* Set defaults to the MVPP2 port */
3899static void mvpp2_defaults_set(struct mvpp2_port *port)
3900{
3901 int tx_port_num, val, queue, ptxq, lrxq;
3902
3903 /* Configure port to loopback if needed */
3904 if (port->flags & MVPP2_F_LOOPBACK)
3905 mvpp2_port_loopback_set(port);
3906
3907 /* Update TX FIFO MIN Threshold */
3908 val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3909 val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK;
3910 /* Min. TX threshold must be less than minimal packet length */
3911 val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2);
3912 writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG);
3913
3914 /* Disable Legacy WRR, Disable EJP, Release from reset */
3915 tx_port_num = mvpp2_egress_port(port);
3916 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG,
3917 tx_port_num);
3918 mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0);
3919
3920 /* Close bandwidth for all queues */
3921 for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) {
3922 ptxq = mvpp2_txq_phys(port->id, queue);
3923 mvpp2_write(port->priv,
3924 MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(ptxq), 0);
3925 }
3926
3927 /* Set refill period to 1 usec, refill tokens
3928 * and bucket size to maximum
3929 */
3930 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG,
3931 port->priv->tclk / USEC_PER_SEC);
3932 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG);
3933 val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK;
3934 val |= MVPP2_TXP_REFILL_PERIOD_MASK(1);
3935 val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK;
3936 mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val);
3937 val = MVPP2_TXP_TOKEN_SIZE_MAX;
3938 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
3939
3940 /* Set MaximumLowLatencyPacketSize value to 256 */
3941 mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id),
3942 MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK |
3943 MVPP2_RX_LOW_LATENCY_PKT_SIZE(256));
3944
3945 /* Enable Rx cache snoop */
3946 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3947 queue = port->rxqs[lrxq]->id;
3948 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3949 val |= MVPP2_SNOOP_PKT_SIZE_MASK |
3950 MVPP2_SNOOP_BUF_HDR_MASK;
3951 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3952 }
3953
3954 /* At default, mask all interrupts to all present cpus */
3955 mvpp2_interrupts_disable(port);
3956}
3957
3958/* Enable/disable receiving packets */
3959static void mvpp2_ingress_enable(struct mvpp2_port *port)
3960{
3961 u32 val;
3962 int lrxq, queue;
3963
3964 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3965 queue = port->rxqs[lrxq]->id;
3966 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3967 val &= ~MVPP2_RXQ_DISABLE_MASK;
3968 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3969 }
3970}
3971
3972static void mvpp2_ingress_disable(struct mvpp2_port *port)
3973{
3974 u32 val;
3975 int lrxq, queue;
3976
3977 for (lrxq = 0; lrxq < rxq_number; lrxq++) {
3978 queue = port->rxqs[lrxq]->id;
3979 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue));
3980 val |= MVPP2_RXQ_DISABLE_MASK;
3981 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val);
3982 }
3983}
3984
3985/* Enable transmit via physical egress queue
3986 * - HW starts take descriptors from DRAM
3987 */
3988static void mvpp2_egress_enable(struct mvpp2_port *port)
3989{
3990 u32 qmap;
3991 int queue;
3992 int tx_port_num = mvpp2_egress_port(port);
3993
3994 /* Enable all initialized TXs. */
3995 qmap = 0;
3996 for (queue = 0; queue < txq_number; queue++) {
3997 struct mvpp2_tx_queue *txq = port->txqs[queue];
3998
3999 if (txq->descs != NULL)
4000 qmap |= (1 << queue);
4001 }
4002
4003 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4004 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap);
4005}
4006
4007/* Disable transmit via physical egress queue
4008 * - HW doesn't take descriptors from DRAM
4009 */
4010static void mvpp2_egress_disable(struct mvpp2_port *port)
4011{
4012 u32 reg_data;
4013 int delay;
4014 int tx_port_num = mvpp2_egress_port(port);
4015
4016 /* Issue stop command for active channels only */
4017 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4018 reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) &
4019 MVPP2_TXP_SCHED_ENQ_MASK;
4020 if (reg_data != 0)
4021 mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG,
4022 (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET));
4023
4024 /* Wait for all Tx activity to terminate. */
4025 delay = 0;
4026 do {
4027 if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) {
4028 netdev_warn(port->dev,
4029 "Tx stop timed out, status=0x%08x\n",
4030 reg_data);
4031 break;
4032 }
4033 mdelay(1);
4034 delay++;
4035
4036 /* Check port TX Command register that all
4037 * Tx queues are stopped
4038 */
4039 reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG);
4040 } while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK);
4041}
4042
4043/* Rx descriptors helper methods */
4044
4045/* Get number of Rx descriptors occupied by received packets */
4046static inline int
4047mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id)
4048{
4049 u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id));
4050
4051 return val & MVPP2_RXQ_OCCUPIED_MASK;
4052}
4053
4054/* Update Rx queue status with the number of occupied and available
4055 * Rx descriptor slots.
4056 */
4057static inline void
4058mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id,
4059 int used_count, int free_count)
4060{
4061 /* Decrement the number of used descriptors and increment count
4062 * increment the number of free descriptors.
4063 */
4064 u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET);
4065
4066 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val);
4067}
4068
4069/* Get pointer to next RX descriptor to be processed by SW */
4070static inline struct mvpp2_rx_desc *
4071mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq)
4072{
4073 int rx_desc = rxq->next_desc_to_proc;
4074
4075 rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc);
4076 prefetch(rxq->descs + rxq->next_desc_to_proc);
4077 return rxq->descs + rx_desc;
4078}
4079
4080/* Set rx queue offset */
4081static void mvpp2_rxq_offset_set(struct mvpp2_port *port,
4082 int prxq, int offset)
4083{
4084 u32 val;
4085
4086 /* Convert offset from bytes to units of 32 bytes */
4087 offset = offset >> 5;
4088
4089 val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq));
4090 val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK;
4091
4092 /* Offset is in */
4093 val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) &
4094 MVPP2_RXQ_PACKET_OFFSET_MASK);
4095
4096 mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val);
4097}
4098
4099/* Obtain BM cookie information from descriptor */
4100static u32 mvpp2_bm_cookie_build(struct mvpp2_rx_desc *rx_desc)
4101{
4102 int pool = (rx_desc->status & MVPP2_RXD_BM_POOL_ID_MASK) >>
4103 MVPP2_RXD_BM_POOL_ID_OFFS;
4104 int cpu = smp_processor_id();
4105
4106 return ((pool & 0xFF) << MVPP2_BM_COOKIE_POOL_OFFS) |
4107 ((cpu & 0xFF) << MVPP2_BM_COOKIE_CPU_OFFS);
4108}
4109
4110/* Tx descriptors helper methods */
4111
4112/* Get number of Tx descriptors waiting to be transmitted by HW */
4113static int mvpp2_txq_pend_desc_num_get(struct mvpp2_port *port,
4114 struct mvpp2_tx_queue *txq)
4115{
4116 u32 val;
4117
4118 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4119 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
4120
4121 return val & MVPP2_TXQ_PENDING_MASK;
4122}
4123
4124/* Get pointer to next Tx descriptor to be processed (send) by HW */
4125static struct mvpp2_tx_desc *
4126mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq)
4127{
4128 int tx_desc = txq->next_desc_to_proc;
4129
4130 txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc);
4131 return txq->descs + tx_desc;
4132}
4133
4134/* Update HW with number of aggregated Tx descriptors to be sent */
4135static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending)
4136{
4137 /* aggregated access - relevant TXQ number is written in TX desc */
4138 mvpp2_write(port->priv, MVPP2_AGGR_TXQ_UPDATE_REG, pending);
4139}
4140
4141
4142/* Check if there are enough free descriptors in aggregated txq.
4143 * If not, update the number of occupied descriptors and repeat the check.
4144 */
4145static int mvpp2_aggr_desc_num_check(struct mvpp2 *priv,
4146 struct mvpp2_tx_queue *aggr_txq, int num)
4147{
4148 if ((aggr_txq->count + num) > aggr_txq->size) {
4149 /* Update number of occupied aggregated Tx descriptors */
4150 int cpu = smp_processor_id();
4151 u32 val = mvpp2_read(priv, MVPP2_AGGR_TXQ_STATUS_REG(cpu));
4152
4153 aggr_txq->count = val & MVPP2_AGGR_TXQ_PENDING_MASK;
4154 }
4155
4156 if ((aggr_txq->count + num) > aggr_txq->size)
4157 return -ENOMEM;
4158
4159 return 0;
4160}
4161
4162/* Reserved Tx descriptors allocation request */
4163static int mvpp2_txq_alloc_reserved_desc(struct mvpp2 *priv,
4164 struct mvpp2_tx_queue *txq, int num)
4165{
4166 u32 val;
4167
4168 val = (txq->id << MVPP2_TXQ_RSVD_REQ_Q_OFFSET) | num;
4169 mvpp2_write(priv, MVPP2_TXQ_RSVD_REQ_REG, val);
4170
4171 val = mvpp2_read(priv, MVPP2_TXQ_RSVD_RSLT_REG);
4172
4173 return val & MVPP2_TXQ_RSVD_RSLT_MASK;
4174}
4175
4176/* Check if there are enough reserved descriptors for transmission.
4177 * If not, request chunk of reserved descriptors and check again.
4178 */
4179static int mvpp2_txq_reserved_desc_num_proc(struct mvpp2 *priv,
4180 struct mvpp2_tx_queue *txq,
4181 struct mvpp2_txq_pcpu *txq_pcpu,
4182 int num)
4183{
4184 int req, cpu, desc_count;
4185
4186 if (txq_pcpu->reserved_num >= num)
4187 return 0;
4188
4189 /* Not enough descriptors reserved! Update the reserved descriptor
4190 * count and check again.
4191 */
4192
4193 desc_count = 0;
4194 /* Compute total of used descriptors */
4195 for_each_present_cpu(cpu) {
4196 struct mvpp2_txq_pcpu *txq_pcpu_aux;
4197
4198 txq_pcpu_aux = per_cpu_ptr(txq->pcpu, cpu);
4199 desc_count += txq_pcpu_aux->count;
4200 desc_count += txq_pcpu_aux->reserved_num;
4201 }
4202
4203 req = max(MVPP2_CPU_DESC_CHUNK, num - txq_pcpu->reserved_num);
4204 desc_count += req;
4205
4206 if (desc_count >
4207 (txq->size - (num_present_cpus() * MVPP2_CPU_DESC_CHUNK)))
4208 return -ENOMEM;
4209
4210 txq_pcpu->reserved_num += mvpp2_txq_alloc_reserved_desc(priv, txq, req);
4211
4212 /* OK, the descriptor cound has been updated: check again. */
4213 if (txq_pcpu->reserved_num < num)
4214 return -ENOMEM;
4215 return 0;
4216}
4217
4218/* Release the last allocated Tx descriptor. Useful to handle DMA
4219 * mapping failures in the Tx path.
4220 */
4221static void mvpp2_txq_desc_put(struct mvpp2_tx_queue *txq)
4222{
4223 if (txq->next_desc_to_proc == 0)
4224 txq->next_desc_to_proc = txq->last_desc - 1;
4225 else
4226 txq->next_desc_to_proc--;
4227}
4228
4229/* Set Tx descriptors fields relevant for CSUM calculation */
4230static u32 mvpp2_txq_desc_csum(int l3_offs, int l3_proto,
4231 int ip_hdr_len, int l4_proto)
4232{
4233 u32 command;
4234
4235 /* fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
4236 * G_L4_chk, L4_type required only for checksum calculation
4237 */
4238 command = (l3_offs << MVPP2_TXD_L3_OFF_SHIFT);
4239 command |= (ip_hdr_len << MVPP2_TXD_IP_HLEN_SHIFT);
4240 command |= MVPP2_TXD_IP_CSUM_DISABLE;
4241
4242 if (l3_proto == swab16(ETH_P_IP)) {
4243 command &= ~MVPP2_TXD_IP_CSUM_DISABLE; /* enable IPv4 csum */
4244 command &= ~MVPP2_TXD_L3_IP6; /* enable IPv4 */
4245 } else {
4246 command |= MVPP2_TXD_L3_IP6; /* enable IPv6 */
4247 }
4248
4249 if (l4_proto == IPPROTO_TCP) {
4250 command &= ~MVPP2_TXD_L4_UDP; /* enable TCP */
4251 command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */
4252 } else if (l4_proto == IPPROTO_UDP) {
4253 command |= MVPP2_TXD_L4_UDP; /* enable UDP */
4254 command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */
4255 } else {
4256 command |= MVPP2_TXD_L4_CSUM_NOT;
4257 }
4258
4259 return command;
4260}
4261
4262/* Get number of sent descriptors and decrement counter.
4263 * The number of sent descriptors is returned.
4264 * Per-CPU access
4265 */
4266static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port,
4267 struct mvpp2_tx_queue *txq)
4268{
4269 u32 val;
4270
4271 /* Reading status reg resets transmitted descriptor counter */
4272 val = mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(txq->id));
4273
4274 return (val & MVPP2_TRANSMITTED_COUNT_MASK) >>
4275 MVPP2_TRANSMITTED_COUNT_OFFSET;
4276}
4277
4278static void mvpp2_txq_sent_counter_clear(void *arg)
4279{
4280 struct mvpp2_port *port = arg;
4281 int queue;
4282
4283 for (queue = 0; queue < txq_number; queue++) {
4284 int id = port->txqs[queue]->id;
4285
4286 mvpp2_read(port->priv, MVPP2_TXQ_SENT_REG(id));
4287 }
4288}
4289
4290/* Set max sizes for Tx queues */
4291static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port)
4292{
4293 u32 val, size, mtu;
4294 int txq, tx_port_num;
4295
4296 mtu = port->pkt_size * 8;
4297 if (mtu > MVPP2_TXP_MTU_MAX)
4298 mtu = MVPP2_TXP_MTU_MAX;
4299
4300 /* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */
4301 mtu = 3 * mtu;
4302
4303 /* Indirect access to registers */
4304 tx_port_num = mvpp2_egress_port(port);
4305 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4306
4307 /* Set MTU */
4308 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG);
4309 val &= ~MVPP2_TXP_MTU_MAX;
4310 val |= mtu;
4311 mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val);
4312
4313 /* TXP token size and all TXQs token size must be larger that MTU */
4314 val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG);
4315 size = val & MVPP2_TXP_TOKEN_SIZE_MAX;
4316 if (size < mtu) {
4317 size = mtu;
4318 val &= ~MVPP2_TXP_TOKEN_SIZE_MAX;
4319 val |= size;
4320 mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val);
4321 }
4322
4323 for (txq = 0; txq < txq_number; txq++) {
4324 val = mvpp2_read(port->priv,
4325 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq));
4326 size = val & MVPP2_TXQ_TOKEN_SIZE_MAX;
4327
4328 if (size < mtu) {
4329 size = mtu;
4330 val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX;
4331 val |= size;
4332 mvpp2_write(port->priv,
4333 MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq),
4334 val);
4335 }
4336 }
4337}
4338
4339/* Set the number of packets that will be received before Rx interrupt
4340 * will be generated by HW.
4341 */
4342static void mvpp2_rx_pkts_coal_set(struct mvpp2_port *port,
4343 struct mvpp2_rx_queue *rxq, u32 pkts)
4344{
4345 u32 val;
4346
4347 val = (pkts & MVPP2_OCCUPIED_THRESH_MASK);
4348 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4349 mvpp2_write(port->priv, MVPP2_RXQ_THRESH_REG, val);
4350
4351 rxq->pkts_coal = pkts;
4352}
4353
4354/* Set the time delay in usec before Rx interrupt */
4355static void mvpp2_rx_time_coal_set(struct mvpp2_port *port,
4356 struct mvpp2_rx_queue *rxq, u32 usec)
4357{
4358 u32 val;
4359
4360 val = (port->priv->tclk / USEC_PER_SEC) * usec;
4361 mvpp2_write(port->priv, MVPP2_ISR_RX_THRESHOLD_REG(rxq->id), val);
4362
4363 rxq->time_coal = usec;
4364}
4365
4366/* Set threshold for TX_DONE pkts coalescing */
4367static void mvpp2_tx_done_pkts_coal_set(void *arg)
4368{
4369 struct mvpp2_port *port = arg;
4370 int queue;
4371 u32 val;
4372
4373 for (queue = 0; queue < txq_number; queue++) {
4374 struct mvpp2_tx_queue *txq = port->txqs[queue];
4375
4376 val = (txq->done_pkts_coal << MVPP2_TRANSMITTED_THRESH_OFFSET) &
4377 MVPP2_TRANSMITTED_THRESH_MASK;
4378 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4379 mvpp2_write(port->priv, MVPP2_TXQ_THRESH_REG, val);
4380 }
4381}
4382
4383/* Free Tx queue skbuffs */
4384static void mvpp2_txq_bufs_free(struct mvpp2_port *port,
4385 struct mvpp2_tx_queue *txq,
4386 struct mvpp2_txq_pcpu *txq_pcpu, int num)
4387{
4388 int i;
4389
4390 for (i = 0; i < num; i++) {
4391 struct mvpp2_tx_desc *tx_desc = txq->descs +
4392 txq_pcpu->txq_get_index;
4393 struct sk_buff *skb = txq_pcpu->tx_skb[txq_pcpu->txq_get_index];
4394
4395 mvpp2_txq_inc_get(txq_pcpu);
4396
4397 if (!skb)
4398 continue;
4399
4400 dma_unmap_single(port->dev->dev.parent, tx_desc->buf_phys_addr,
4401 tx_desc->data_size, DMA_TO_DEVICE);
4402 dev_kfree_skb_any(skb);
4403 }
4404}
4405
4406static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port,
4407 u32 cause)
4408{
4409 int queue = fls(cause) - 1;
4410
4411 return port->rxqs[queue];
4412}
4413
4414static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port,
4415 u32 cause)
4416{
4417 int queue = fls(cause >> 16) - 1;
4418
4419 return port->txqs[queue];
4420}
4421
4422/* Handle end of transmission */
4423static void mvpp2_txq_done(struct mvpp2_port *port, struct mvpp2_tx_queue *txq,
4424 struct mvpp2_txq_pcpu *txq_pcpu)
4425{
4426 struct netdev_queue *nq = netdev_get_tx_queue(port->dev, txq->log_id);
4427 int tx_done;
4428
4429 if (txq_pcpu->cpu != smp_processor_id())
4430 netdev_err(port->dev, "wrong cpu on the end of Tx processing\n");
4431
4432 tx_done = mvpp2_txq_sent_desc_proc(port, txq);
4433 if (!tx_done)
4434 return;
4435 mvpp2_txq_bufs_free(port, txq, txq_pcpu, tx_done);
4436
4437 txq_pcpu->count -= tx_done;
4438
4439 if (netif_tx_queue_stopped(nq))
4440 if (txq_pcpu->size - txq_pcpu->count >= MAX_SKB_FRAGS + 1)
4441 netif_tx_wake_queue(nq);
4442}
4443
4444/* Rx/Tx queue initialization/cleanup methods */
4445
4446/* Allocate and initialize descriptors for aggr TXQ */
4447static int mvpp2_aggr_txq_init(struct platform_device *pdev,
4448 struct mvpp2_tx_queue *aggr_txq,
4449 int desc_num, int cpu,
4450 struct mvpp2 *priv)
4451{
4452 /* Allocate memory for TX descriptors */
4453 aggr_txq->descs = dma_alloc_coherent(&pdev->dev,
4454 desc_num * MVPP2_DESC_ALIGNED_SIZE,
4455 &aggr_txq->descs_phys, GFP_KERNEL);
4456 if (!aggr_txq->descs)
4457 return -ENOMEM;
4458
4459 /* Make sure descriptor address is cache line size aligned */
4460 BUG_ON(aggr_txq->descs !=
4461 PTR_ALIGN(aggr_txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4462
4463 aggr_txq->last_desc = aggr_txq->size - 1;
4464
4465 /* Aggr TXQ no reset WA */
4466 aggr_txq->next_desc_to_proc = mvpp2_read(priv,
4467 MVPP2_AGGR_TXQ_INDEX_REG(cpu));
4468
4469 /* Set Tx descriptors queue starting address */
4470 /* indirect access */
4471 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(cpu),
4472 aggr_txq->descs_phys);
4473 mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(cpu), desc_num);
4474
4475 return 0;
4476}
4477
4478/* Create a specified Rx queue */
4479static int mvpp2_rxq_init(struct mvpp2_port *port,
4480 struct mvpp2_rx_queue *rxq)
4481
4482{
4483 rxq->size = port->rx_ring_size;
4484
4485 /* Allocate memory for RX descriptors */
4486 rxq->descs = dma_alloc_coherent(port->dev->dev.parent,
4487 rxq->size * MVPP2_DESC_ALIGNED_SIZE,
4488 &rxq->descs_phys, GFP_KERNEL);
4489 if (!rxq->descs)
4490 return -ENOMEM;
4491
4492 BUG_ON(rxq->descs !=
4493 PTR_ALIGN(rxq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4494
4495 rxq->last_desc = rxq->size - 1;
4496
4497 /* Zero occupied and non-occupied counters - direct access */
4498 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4499
4500 /* Set Rx descriptors queue starting address - indirect access */
4501 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4502 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, rxq->descs_phys);
4503 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, rxq->size);
4504 mvpp2_write(port->priv, MVPP2_RXQ_INDEX_REG, 0);
4505
4506 /* Set Offset */
4507 mvpp2_rxq_offset_set(port, rxq->id, NET_SKB_PAD);
4508
4509 /* Set coalescing pkts and time */
4510 mvpp2_rx_pkts_coal_set(port, rxq, rxq->pkts_coal);
4511 mvpp2_rx_time_coal_set(port, rxq, rxq->time_coal);
4512
4513 /* Add number of descriptors ready for receiving packets */
4514 mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size);
4515
4516 return 0;
4517}
4518
4519/* Push packets received by the RXQ to BM pool */
4520static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port,
4521 struct mvpp2_rx_queue *rxq)
4522{
4523 int rx_received, i;
4524
4525 rx_received = mvpp2_rxq_received(port, rxq->id);
4526 if (!rx_received)
4527 return;
4528
4529 for (i = 0; i < rx_received; i++) {
4530 struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
4531 u32 bm = mvpp2_bm_cookie_build(rx_desc);
4532
4533 mvpp2_pool_refill(port, bm, rx_desc->buf_phys_addr,
4534 rx_desc->buf_cookie);
4535 }
4536 mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received);
4537}
4538
4539/* Cleanup Rx queue */
4540static void mvpp2_rxq_deinit(struct mvpp2_port *port,
4541 struct mvpp2_rx_queue *rxq)
4542{
4543 mvpp2_rxq_drop_pkts(port, rxq);
4544
4545 if (rxq->descs)
4546 dma_free_coherent(port->dev->dev.parent,
4547 rxq->size * MVPP2_DESC_ALIGNED_SIZE,
4548 rxq->descs,
4549 rxq->descs_phys);
4550
4551 rxq->descs = NULL;
4552 rxq->last_desc = 0;
4553 rxq->next_desc_to_proc = 0;
4554 rxq->descs_phys = 0;
4555
4556 /* Clear Rx descriptors queue starting address and size;
4557 * free descriptor number
4558 */
4559 mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0);
4560 mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id);
4561 mvpp2_write(port->priv, MVPP2_RXQ_DESC_ADDR_REG, 0);
4562 mvpp2_write(port->priv, MVPP2_RXQ_DESC_SIZE_REG, 0);
4563}
4564
4565/* Create and initialize a Tx queue */
4566static int mvpp2_txq_init(struct mvpp2_port *port,
4567 struct mvpp2_tx_queue *txq)
4568{
4569 u32 val;
4570 int cpu, desc, desc_per_txq, tx_port_num;
4571 struct mvpp2_txq_pcpu *txq_pcpu;
4572
4573 txq->size = port->tx_ring_size;
4574
4575 /* Allocate memory for Tx descriptors */
4576 txq->descs = dma_alloc_coherent(port->dev->dev.parent,
4577 txq->size * MVPP2_DESC_ALIGNED_SIZE,
4578 &txq->descs_phys, GFP_KERNEL);
4579 if (!txq->descs)
4580 return -ENOMEM;
4581
4582 /* Make sure descriptor address is cache line size aligned */
4583 BUG_ON(txq->descs !=
4584 PTR_ALIGN(txq->descs, MVPP2_CPU_D_CACHE_LINE_SIZE));
4585
4586 txq->last_desc = txq->size - 1;
4587
4588 /* Set Tx descriptors queue starting address - indirect access */
4589 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4590 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_phys);
4591 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, txq->size &
4592 MVPP2_TXQ_DESC_SIZE_MASK);
4593 mvpp2_write(port->priv, MVPP2_TXQ_INDEX_REG, 0);
4594 mvpp2_write(port->priv, MVPP2_TXQ_RSVD_CLR_REG,
4595 txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET);
4596 val = mvpp2_read(port->priv, MVPP2_TXQ_PENDING_REG);
4597 val &= ~MVPP2_TXQ_PENDING_MASK;
4598 mvpp2_write(port->priv, MVPP2_TXQ_PENDING_REG, val);
4599
4600 /* Calculate base address in prefetch buffer. We reserve 16 descriptors
4601 * for each existing TXQ.
4602 * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT
4603 * GBE ports assumed to be continious from 0 to MVPP2_MAX_PORTS
4604 */
4605 desc_per_txq = 16;
4606 desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) +
4607 (txq->log_id * desc_per_txq);
4608
4609 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG,
4610 MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 |
4611 MVPP2_PREF_BUF_THRESH(desc_per_txq/2));
4612
4613 /* WRR / EJP configuration - indirect access */
4614 tx_port_num = mvpp2_egress_port(port);
4615 mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num);
4616
4617 val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id));
4618 val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK;
4619 val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1);
4620 val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK;
4621 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val);
4622
4623 val = MVPP2_TXQ_TOKEN_SIZE_MAX;
4624 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id),
4625 val);
4626
4627 for_each_present_cpu(cpu) {
4628 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4629 txq_pcpu->size = txq->size;
4630 txq_pcpu->tx_skb = kmalloc(txq_pcpu->size *
4631 sizeof(*txq_pcpu->tx_skb),
4632 GFP_KERNEL);
4633 if (!txq_pcpu->tx_skb) {
4634 dma_free_coherent(port->dev->dev.parent,
4635 txq->size * MVPP2_DESC_ALIGNED_SIZE,
4636 txq->descs, txq->descs_phys);
4637 return -ENOMEM;
4638 }
4639
4640 txq_pcpu->count = 0;
4641 txq_pcpu->reserved_num = 0;
4642 txq_pcpu->txq_put_index = 0;
4643 txq_pcpu->txq_get_index = 0;
4644 }
4645
4646 return 0;
4647}
4648
4649/* Free allocated TXQ resources */
4650static void mvpp2_txq_deinit(struct mvpp2_port *port,
4651 struct mvpp2_tx_queue *txq)
4652{
4653 struct mvpp2_txq_pcpu *txq_pcpu;
4654 int cpu;
4655
4656 for_each_present_cpu(cpu) {
4657 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4658 kfree(txq_pcpu->tx_skb);
4659 }
4660
4661 if (txq->descs)
4662 dma_free_coherent(port->dev->dev.parent,
4663 txq->size * MVPP2_DESC_ALIGNED_SIZE,
4664 txq->descs, txq->descs_phys);
4665
4666 txq->descs = NULL;
4667 txq->last_desc = 0;
4668 txq->next_desc_to_proc = 0;
4669 txq->descs_phys = 0;
4670
4671 /* Set minimum bandwidth for disabled TXQs */
4672 mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->id), 0);
4673
4674 /* Set Tx descriptors queue starting address and size */
4675 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4676 mvpp2_write(port->priv, MVPP2_TXQ_DESC_ADDR_REG, 0);
4677 mvpp2_write(port->priv, MVPP2_TXQ_DESC_SIZE_REG, 0);
4678}
4679
4680/* Cleanup Tx ports */
4681static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq)
4682{
4683 struct mvpp2_txq_pcpu *txq_pcpu;
4684 int delay, pending, cpu;
4685 u32 val;
4686
4687 mvpp2_write(port->priv, MVPP2_TXQ_NUM_REG, txq->id);
4688 val = mvpp2_read(port->priv, MVPP2_TXQ_PREF_BUF_REG);
4689 val |= MVPP2_TXQ_DRAIN_EN_MASK;
4690 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4691
4692 /* The napi queue has been stopped so wait for all packets
4693 * to be transmitted.
4694 */
4695 delay = 0;
4696 do {
4697 if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) {
4698 netdev_warn(port->dev,
4699 "port %d: cleaning queue %d timed out\n",
4700 port->id, txq->log_id);
4701 break;
4702 }
4703 mdelay(1);
4704 delay++;
4705
4706 pending = mvpp2_txq_pend_desc_num_get(port, txq);
4707 } while (pending);
4708
4709 val &= ~MVPP2_TXQ_DRAIN_EN_MASK;
4710 mvpp2_write(port->priv, MVPP2_TXQ_PREF_BUF_REG, val);
4711
4712 for_each_present_cpu(cpu) {
4713 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
4714
4715 /* Release all packets */
4716 mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count);
4717
4718 /* Reset queue */
4719 txq_pcpu->count = 0;
4720 txq_pcpu->txq_put_index = 0;
4721 txq_pcpu->txq_get_index = 0;
4722 }
4723}
4724
4725/* Cleanup all Tx queues */
4726static void mvpp2_cleanup_txqs(struct mvpp2_port *port)
4727{
4728 struct mvpp2_tx_queue *txq;
4729 int queue;
4730 u32 val;
4731
4732 val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG);
4733
4734 /* Reset Tx ports and delete Tx queues */
4735 val |= MVPP2_TX_PORT_FLUSH_MASK(port->id);
4736 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4737
4738 for (queue = 0; queue < txq_number; queue++) {
4739 txq = port->txqs[queue];
4740 mvpp2_txq_clean(port, txq);
4741 mvpp2_txq_deinit(port, txq);
4742 }
4743
4744 on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
4745
4746 val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id);
4747 mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val);
4748}
4749
4750/* Cleanup all Rx queues */
4751static void mvpp2_cleanup_rxqs(struct mvpp2_port *port)
4752{
4753 int queue;
4754
4755 for (queue = 0; queue < rxq_number; queue++)
4756 mvpp2_rxq_deinit(port, port->rxqs[queue]);
4757}
4758
4759/* Init all Rx queues for port */
4760static int mvpp2_setup_rxqs(struct mvpp2_port *port)
4761{
4762 int queue, err;
4763
4764 for (queue = 0; queue < rxq_number; queue++) {
4765 err = mvpp2_rxq_init(port, port->rxqs[queue]);
4766 if (err)
4767 goto err_cleanup;
4768 }
4769 return 0;
4770
4771err_cleanup:
4772 mvpp2_cleanup_rxqs(port);
4773 return err;
4774}
4775
4776/* Init all tx queues for port */
4777static int mvpp2_setup_txqs(struct mvpp2_port *port)
4778{
4779 struct mvpp2_tx_queue *txq;
4780 int queue, err;
4781
4782 for (queue = 0; queue < txq_number; queue++) {
4783 txq = port->txqs[queue];
4784 err = mvpp2_txq_init(port, txq);
4785 if (err)
4786 goto err_cleanup;
4787 }
4788
4789 on_each_cpu(mvpp2_tx_done_pkts_coal_set, port, 1);
4790 on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1);
4791 return 0;
4792
4793err_cleanup:
4794 mvpp2_cleanup_txqs(port);
4795 return err;
4796}
4797
4798/* The callback for per-port interrupt */
4799static irqreturn_t mvpp2_isr(int irq, void *dev_id)
4800{
4801 struct mvpp2_port *port = (struct mvpp2_port *)dev_id;
4802
4803 mvpp2_interrupts_disable(port);
4804
4805 napi_schedule(&port->napi);
4806
4807 return IRQ_HANDLED;
4808}
4809
4810/* Adjust link */
4811static void mvpp2_link_event(struct net_device *dev)
4812{
4813 struct mvpp2_port *port = netdev_priv(dev);
4814 struct phy_device *phydev = port->phy_dev;
4815 int status_change = 0;
4816 u32 val;
4817
4818 if (phydev->link) {
4819 if ((port->speed != phydev->speed) ||
4820 (port->duplex != phydev->duplex)) {
4821 u32 val;
4822
4823 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4824 val &= ~(MVPP2_GMAC_CONFIG_MII_SPEED |
4825 MVPP2_GMAC_CONFIG_GMII_SPEED |
4826 MVPP2_GMAC_CONFIG_FULL_DUPLEX |
4827 MVPP2_GMAC_AN_SPEED_EN |
4828 MVPP2_GMAC_AN_DUPLEX_EN);
4829
4830 if (phydev->duplex)
4831 val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX;
4832
4833 if (phydev->speed == SPEED_1000)
4834 val |= MVPP2_GMAC_CONFIG_GMII_SPEED;
4835 else
4836 val |= MVPP2_GMAC_CONFIG_MII_SPEED;
4837
4838 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4839
4840 port->duplex = phydev->duplex;
4841 port->speed = phydev->speed;
4842 }
4843 }
4844
4845 if (phydev->link != port->link) {
4846 if (!phydev->link) {
4847 port->duplex = -1;
4848 port->speed = 0;
4849 }
4850
4851 port->link = phydev->link;
4852 status_change = 1;
4853 }
4854
4855 if (status_change) {
4856 if (phydev->link) {
4857 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4858 val |= (MVPP2_GMAC_FORCE_LINK_PASS |
4859 MVPP2_GMAC_FORCE_LINK_DOWN);
4860 writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG);
4861 mvpp2_egress_enable(port);
4862 mvpp2_ingress_enable(port);
4863 } else {
4864 mvpp2_ingress_disable(port);
4865 mvpp2_egress_disable(port);
4866 }
4867 phy_print_status(phydev);
4868 }
4869}
4870
4871/* Main RX/TX processing routines */
4872
4873/* Display more error info */
4874static void mvpp2_rx_error(struct mvpp2_port *port,
4875 struct mvpp2_rx_desc *rx_desc)
4876{
4877 u32 status = rx_desc->status;
4878
4879 switch (status & MVPP2_RXD_ERR_CODE_MASK) {
4880 case MVPP2_RXD_ERR_CRC:
4881 netdev_err(port->dev, "bad rx status %08x (crc error), size=%d\n",
4882 status, rx_desc->data_size);
4883 break;
4884 case MVPP2_RXD_ERR_OVERRUN:
4885 netdev_err(port->dev, "bad rx status %08x (overrun error), size=%d\n",
4886 status, rx_desc->data_size);
4887 break;
4888 case MVPP2_RXD_ERR_RESOURCE:
4889 netdev_err(port->dev, "bad rx status %08x (resource error), size=%d\n",
4890 status, rx_desc->data_size);
4891 break;
4892 }
4893}
4894
4895/* Handle RX checksum offload */
4896static void mvpp2_rx_csum(struct mvpp2_port *port, u32 status,
4897 struct sk_buff *skb)
4898{
4899 if (((status & MVPP2_RXD_L3_IP4) &&
4900 !(status & MVPP2_RXD_IP4_HEADER_ERR)) ||
4901 (status & MVPP2_RXD_L3_IP6))
4902 if (((status & MVPP2_RXD_L4_UDP) ||
4903 (status & MVPP2_RXD_L4_TCP)) &&
4904 (status & MVPP2_RXD_L4_CSUM_OK)) {
4905 skb->csum = 0;
4906 skb->ip_summed = CHECKSUM_UNNECESSARY;
4907 return;
4908 }
4909
4910 skb->ip_summed = CHECKSUM_NONE;
4911}
4912
4913/* Reuse skb if possible, or allocate a new skb and add it to BM pool */
4914static int mvpp2_rx_refill(struct mvpp2_port *port,
4915 struct mvpp2_bm_pool *bm_pool,
4916 u32 bm, int is_recycle)
4917{
4918 struct sk_buff *skb;
4919 dma_addr_t phys_addr;
4920
4921 if (is_recycle &&
4922 (atomic_read(&bm_pool->in_use) < bm_pool->in_use_thresh))
4923 return 0;
4924
4925 /* No recycle or too many buffers are in use, so allocate a new skb */
4926 skb = mvpp2_skb_alloc(port, bm_pool, &phys_addr, GFP_ATOMIC);
4927 if (!skb)
4928 return -ENOMEM;
4929
4930 mvpp2_pool_refill(port, bm, (u32)phys_addr, (u32)skb);
4931 atomic_dec(&bm_pool->in_use);
4932 return 0;
4933}
4934
4935/* Handle tx checksum */
4936static u32 mvpp2_skb_tx_csum(struct mvpp2_port *port, struct sk_buff *skb)
4937{
4938 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4939 int ip_hdr_len = 0;
4940 u8 l4_proto;
4941
4942 if (skb->protocol == htons(ETH_P_IP)) {
4943 struct iphdr *ip4h = ip_hdr(skb);
4944
4945 /* Calculate IPv4 checksum and L4 checksum */
4946 ip_hdr_len = ip4h->ihl;
4947 l4_proto = ip4h->protocol;
4948 } else if (skb->protocol == htons(ETH_P_IPV6)) {
4949 struct ipv6hdr *ip6h = ipv6_hdr(skb);
4950
4951 /* Read l4_protocol from one of IPv6 extra headers */
4952 if (skb_network_header_len(skb) > 0)
4953 ip_hdr_len = (skb_network_header_len(skb) >> 2);
4954 l4_proto = ip6h->nexthdr;
4955 } else {
4956 return MVPP2_TXD_L4_CSUM_NOT;
4957 }
4958
4959 return mvpp2_txq_desc_csum(skb_network_offset(skb),
4960 skb->protocol, ip_hdr_len, l4_proto);
4961 }
4962
4963 return MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE;
4964}
4965
4966static void mvpp2_buff_hdr_rx(struct mvpp2_port *port,
4967 struct mvpp2_rx_desc *rx_desc)
4968{
4969 struct mvpp2_buff_hdr *buff_hdr;
4970 struct sk_buff *skb;
4971 u32 rx_status = rx_desc->status;
4972 u32 buff_phys_addr;
4973 u32 buff_virt_addr;
4974 u32 buff_phys_addr_next;
4975 u32 buff_virt_addr_next;
4976 int mc_id;
4977 int pool_id;
4978
4979 pool_id = (rx_status & MVPP2_RXD_BM_POOL_ID_MASK) >>
4980 MVPP2_RXD_BM_POOL_ID_OFFS;
4981 buff_phys_addr = rx_desc->buf_phys_addr;
4982 buff_virt_addr = rx_desc->buf_cookie;
4983
4984 do {
4985 skb = (struct sk_buff *)buff_virt_addr;
4986 buff_hdr = (struct mvpp2_buff_hdr *)skb->head;
4987
4988 mc_id = MVPP2_B_HDR_INFO_MC_ID(buff_hdr->info);
4989
4990 buff_phys_addr_next = buff_hdr->next_buff_phys_addr;
4991 buff_virt_addr_next = buff_hdr->next_buff_virt_addr;
4992
4993 /* Release buffer */
4994 mvpp2_bm_pool_mc_put(port, pool_id, buff_phys_addr,
4995 buff_virt_addr, mc_id);
4996
4997 buff_phys_addr = buff_phys_addr_next;
4998 buff_virt_addr = buff_virt_addr_next;
4999
5000 } while (!MVPP2_B_HDR_INFO_IS_LAST(buff_hdr->info));
5001}
5002
5003/* Main rx processing */
5004static int mvpp2_rx(struct mvpp2_port *port, int rx_todo,
5005 struct mvpp2_rx_queue *rxq)
5006{
5007 struct net_device *dev = port->dev;
5008 int rx_received, rx_filled, i;
5009 u32 rcvd_pkts = 0;
5010 u32 rcvd_bytes = 0;
5011
5012 /* Get number of received packets and clamp the to-do */
5013 rx_received = mvpp2_rxq_received(port, rxq->id);
5014 if (rx_todo > rx_received)
5015 rx_todo = rx_received;
5016
5017 rx_filled = 0;
5018 for (i = 0; i < rx_todo; i++) {
5019 struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq);
5020 struct mvpp2_bm_pool *bm_pool;
5021 struct sk_buff *skb;
5022 u32 bm, rx_status;
5023 int pool, rx_bytes, err;
5024
5025 rx_filled++;
5026 rx_status = rx_desc->status;
5027 rx_bytes = rx_desc->data_size - MVPP2_MH_SIZE;
5028
5029 bm = mvpp2_bm_cookie_build(rx_desc);
5030 pool = mvpp2_bm_cookie_pool_get(bm);
5031 bm_pool = &port->priv->bm_pools[pool];
5032 /* Check if buffer header is used */
5033 if (rx_status & MVPP2_RXD_BUF_HDR) {
5034 mvpp2_buff_hdr_rx(port, rx_desc);
5035 continue;
5036 }
5037
5038 /* In case of an error, release the requested buffer pointer
5039 * to the Buffer Manager. This request process is controlled
5040 * by the hardware, and the information about the buffer is
5041 * comprised by the RX descriptor.
5042 */
5043 if (rx_status & MVPP2_RXD_ERR_SUMMARY) {
5044 dev->stats.rx_errors++;
5045 mvpp2_rx_error(port, rx_desc);
5046 mvpp2_pool_refill(port, bm, rx_desc->buf_phys_addr,
5047 rx_desc->buf_cookie);
5048 continue;
5049 }
5050
5051 skb = (struct sk_buff *)rx_desc->buf_cookie;
5052
5053 rcvd_pkts++;
5054 rcvd_bytes += rx_bytes;
5055 atomic_inc(&bm_pool->in_use);
5056
5057 skb_reserve(skb, MVPP2_MH_SIZE);
5058 skb_put(skb, rx_bytes);
5059 skb->protocol = eth_type_trans(skb, dev);
5060 mvpp2_rx_csum(port, rx_status, skb);
5061
5062 napi_gro_receive(&port->napi, skb);
5063
5064 err = mvpp2_rx_refill(port, bm_pool, bm, 0);
5065 if (err) {
5066 netdev_err(port->dev, "failed to refill BM pools\n");
5067 rx_filled--;
5068 }
5069 }
5070
5071 if (rcvd_pkts) {
5072 struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
5073
5074 u64_stats_update_begin(&stats->syncp);
5075 stats->rx_packets += rcvd_pkts;
5076 stats->rx_bytes += rcvd_bytes;
5077 u64_stats_update_end(&stats->syncp);
5078 }
5079
5080 /* Update Rx queue management counters */
5081 wmb();
5082 mvpp2_rxq_status_update(port, rxq->id, rx_todo, rx_filled);
5083
5084 return rx_todo;
5085}
5086
5087static inline void
5088tx_desc_unmap_put(struct device *dev, struct mvpp2_tx_queue *txq,
5089 struct mvpp2_tx_desc *desc)
5090{
5091 dma_unmap_single(dev, desc->buf_phys_addr,
5092 desc->data_size, DMA_TO_DEVICE);
5093 mvpp2_txq_desc_put(txq);
5094}
5095
5096/* Handle tx fragmentation processing */
5097static int mvpp2_tx_frag_process(struct mvpp2_port *port, struct sk_buff *skb,
5098 struct mvpp2_tx_queue *aggr_txq,
5099 struct mvpp2_tx_queue *txq)
5100{
5101 struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu);
5102 struct mvpp2_tx_desc *tx_desc;
5103 int i;
5104 dma_addr_t buf_phys_addr;
5105
5106 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
5107 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
5108 void *addr = page_address(frag->page.p) + frag->page_offset;
5109
5110 tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5111 tx_desc->phys_txq = txq->id;
5112 tx_desc->data_size = frag->size;
5113
5114 buf_phys_addr = dma_map_single(port->dev->dev.parent, addr,
5115 tx_desc->data_size,
5116 DMA_TO_DEVICE);
5117 if (dma_mapping_error(port->dev->dev.parent, buf_phys_addr)) {
5118 mvpp2_txq_desc_put(txq);
5119 goto error;
5120 }
5121
5122 tx_desc->packet_offset = buf_phys_addr & MVPP2_TX_DESC_ALIGN;
5123 tx_desc->buf_phys_addr = buf_phys_addr & (~MVPP2_TX_DESC_ALIGN);
5124
5125 if (i == (skb_shinfo(skb)->nr_frags - 1)) {
5126 /* Last descriptor */
5127 tx_desc->command = MVPP2_TXD_L_DESC;
5128 mvpp2_txq_inc_put(txq_pcpu, skb);
5129 } else {
5130 /* Descriptor in the middle: Not First, Not Last */
5131 tx_desc->command = 0;
5132 mvpp2_txq_inc_put(txq_pcpu, NULL);
5133 }
5134 }
5135
5136 return 0;
5137
5138error:
5139 /* Release all descriptors that were used to map fragments of
5140 * this packet, as well as the corresponding DMA mappings
5141 */
5142 for (i = i - 1; i >= 0; i--) {
5143 tx_desc = txq->descs + i;
5144 tx_desc_unmap_put(port->dev->dev.parent, txq, tx_desc);
5145 }
5146
5147 return -ENOMEM;
5148}
5149
5150/* Main tx processing */
5151static int mvpp2_tx(struct sk_buff *skb, struct net_device *dev)
5152{
5153 struct mvpp2_port *port = netdev_priv(dev);
5154 struct mvpp2_tx_queue *txq, *aggr_txq;
5155 struct mvpp2_txq_pcpu *txq_pcpu;
5156 struct mvpp2_tx_desc *tx_desc;
5157 dma_addr_t buf_phys_addr;
5158 int frags = 0;
5159 u16 txq_id;
5160 u32 tx_cmd;
5161
5162 txq_id = skb_get_queue_mapping(skb);
5163 txq = port->txqs[txq_id];
5164 txq_pcpu = this_cpu_ptr(txq->pcpu);
5165 aggr_txq = &port->priv->aggr_txqs[smp_processor_id()];
5166
5167 frags = skb_shinfo(skb)->nr_frags + 1;
5168
5169 /* Check number of available descriptors */
5170 if (mvpp2_aggr_desc_num_check(port->priv, aggr_txq, frags) ||
5171 mvpp2_txq_reserved_desc_num_proc(port->priv, txq,
5172 txq_pcpu, frags)) {
5173 frags = 0;
5174 goto out;
5175 }
5176
5177 /* Get a descriptor for the first part of the packet */
5178 tx_desc = mvpp2_txq_next_desc_get(aggr_txq);
5179 tx_desc->phys_txq = txq->id;
5180 tx_desc->data_size = skb_headlen(skb);
5181
5182 buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
5183 tx_desc->data_size, DMA_TO_DEVICE);
5184 if (unlikely(dma_mapping_error(dev->dev.parent, buf_phys_addr))) {
5185 mvpp2_txq_desc_put(txq);
5186 frags = 0;
5187 goto out;
5188 }
5189 tx_desc->packet_offset = buf_phys_addr & MVPP2_TX_DESC_ALIGN;
5190 tx_desc->buf_phys_addr = buf_phys_addr & ~MVPP2_TX_DESC_ALIGN;
5191
5192 tx_cmd = mvpp2_skb_tx_csum(port, skb);
5193
5194 if (frags == 1) {
5195 /* First and Last descriptor */
5196 tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC;
5197 tx_desc->command = tx_cmd;
5198 mvpp2_txq_inc_put(txq_pcpu, skb);
5199 } else {
5200 /* First but not Last */
5201 tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_PADDING_DISABLE;
5202 tx_desc->command = tx_cmd;
5203 mvpp2_txq_inc_put(txq_pcpu, NULL);
5204
5205 /* Continue with other skb fragments */
5206 if (mvpp2_tx_frag_process(port, skb, aggr_txq, txq)) {
5207 tx_desc_unmap_put(port->dev->dev.parent, txq, tx_desc);
5208 frags = 0;
5209 goto out;
5210 }
5211 }
5212
5213 txq_pcpu->reserved_num -= frags;
5214 txq_pcpu->count += frags;
5215 aggr_txq->count += frags;
5216
5217 /* Enable transmit */
5218 wmb();
5219 mvpp2_aggr_txq_pend_desc_add(port, frags);
5220
5221 if (txq_pcpu->size - txq_pcpu->count < MAX_SKB_FRAGS + 1) {
5222 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
5223
5224 netif_tx_stop_queue(nq);
5225 }
5226out:
5227 if (frags > 0) {
5228 struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats);
5229
5230 u64_stats_update_begin(&stats->syncp);
5231 stats->tx_packets++;
5232 stats->tx_bytes += skb->len;
5233 u64_stats_update_end(&stats->syncp);
5234 } else {
5235 dev->stats.tx_dropped++;
5236 dev_kfree_skb_any(skb);
5237 }
5238
5239 return NETDEV_TX_OK;
5240}
5241
5242static inline void mvpp2_cause_error(struct net_device *dev, int cause)
5243{
5244 if (cause & MVPP2_CAUSE_FCS_ERR_MASK)
5245 netdev_err(dev, "FCS error\n");
5246 if (cause & MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK)
5247 netdev_err(dev, "rx fifo overrun error\n");
5248 if (cause & MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK)
5249 netdev_err(dev, "tx fifo underrun error\n");
5250}
5251
5252static void mvpp2_txq_done_percpu(void *arg)
5253{
5254 struct mvpp2_port *port = arg;
5255 u32 cause_rx_tx, cause_tx, cause_misc;
5256
5257 /* Rx/Tx cause register
5258 *
5259 * Bits 0-15: each bit indicates received packets on the Rx queue
5260 * (bit 0 is for Rx queue 0).
5261 *
5262 * Bits 16-23: each bit indicates transmitted packets on the Tx queue
5263 * (bit 16 is for Tx queue 0).
5264 *
5265 * Each CPU has its own Rx/Tx cause register
5266 */
5267 cause_rx_tx = mvpp2_read(port->priv,
5268 MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
5269 cause_tx = cause_rx_tx & MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK;
5270 cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK;
5271
5272 if (cause_misc) {
5273 mvpp2_cause_error(port->dev, cause_misc);
5274
5275 /* Clear the cause register */
5276 mvpp2_write(port->priv, MVPP2_ISR_MISC_CAUSE_REG, 0);
5277 mvpp2_write(port->priv, MVPP2_ISR_RX_TX_CAUSE_REG(port->id),
5278 cause_rx_tx & ~MVPP2_CAUSE_MISC_SUM_MASK);
5279 }
5280
5281 /* Release TX descriptors */
5282 if (cause_tx) {
5283 struct mvpp2_tx_queue *txq = mvpp2_get_tx_queue(port, cause_tx);
5284 struct mvpp2_txq_pcpu *txq_pcpu = this_cpu_ptr(txq->pcpu);
5285
5286 if (txq_pcpu->count)
5287 mvpp2_txq_done(port, txq, txq_pcpu);
5288 }
5289}
5290
5291static int mvpp2_poll(struct napi_struct *napi, int budget)
5292{
5293 u32 cause_rx_tx, cause_rx;
5294 int rx_done = 0;
5295 struct mvpp2_port *port = netdev_priv(napi->dev);
5296
5297 on_each_cpu(mvpp2_txq_done_percpu, port, 1);
5298
5299 cause_rx_tx = mvpp2_read(port->priv,
5300 MVPP2_ISR_RX_TX_CAUSE_REG(port->id));
5301 cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK;
5302
5303 /* Process RX packets */
5304 cause_rx |= port->pending_cause_rx;
5305 while (cause_rx && budget > 0) {
5306 int count;
5307 struct mvpp2_rx_queue *rxq;
5308
5309 rxq = mvpp2_get_rx_queue(port, cause_rx);
5310 if (!rxq)
5311 break;
5312
5313 count = mvpp2_rx(port, budget, rxq);
5314 rx_done += count;
5315 budget -= count;
5316 if (budget > 0) {
5317 /* Clear the bit associated to this Rx queue
5318 * so that next iteration will continue from
5319 * the next Rx queue.
5320 */
5321 cause_rx &= ~(1 << rxq->logic_rxq);
5322 }
5323 }
5324
5325 if (budget > 0) {
5326 cause_rx = 0;
5327 napi_complete(napi);
5328
5329 mvpp2_interrupts_enable(port);
5330 }
5331 port->pending_cause_rx = cause_rx;
5332 return rx_done;
5333}
5334
5335/* Set hw internals when starting port */
5336static void mvpp2_start_dev(struct mvpp2_port *port)
5337{
5338 mvpp2_gmac_max_rx_size_set(port);
5339 mvpp2_txp_max_tx_size_set(port);
5340
5341 napi_enable(&port->napi);
5342
5343 /* Enable interrupts on all CPUs */
5344 mvpp2_interrupts_enable(port);
5345
5346 mvpp2_port_enable(port);
5347 phy_start(port->phy_dev);
5348 netif_tx_start_all_queues(port->dev);
5349}
5350
5351/* Set hw internals when stopping port */
5352static void mvpp2_stop_dev(struct mvpp2_port *port)
5353{
5354 /* Stop new packets from arriving to RXQs */
5355 mvpp2_ingress_disable(port);
5356
5357 mdelay(10);
5358
5359 /* Disable interrupts on all CPUs */
5360 mvpp2_interrupts_disable(port);
5361
5362 napi_disable(&port->napi);
5363
5364 netif_carrier_off(port->dev);
5365 netif_tx_stop_all_queues(port->dev);
5366
5367 mvpp2_egress_disable(port);
5368 mvpp2_port_disable(port);
5369 phy_stop(port->phy_dev);
5370}
5371
5372/* Return positive if MTU is valid */
5373static inline int mvpp2_check_mtu_valid(struct net_device *dev, int mtu)
5374{
5375 if (mtu < 68) {
5376 netdev_err(dev, "cannot change mtu to less than 68\n");
5377 return -EINVAL;
5378 }
5379
5380 /* 9676 == 9700 - 20 and rounding to 8 */
5381 if (mtu > 9676) {
5382 netdev_info(dev, "illegal MTU value %d, round to 9676\n", mtu);
5383 mtu = 9676;
5384 }
5385
5386 if (!IS_ALIGNED(MVPP2_RX_PKT_SIZE(mtu), 8)) {
5387 netdev_info(dev, "illegal MTU value %d, round to %d\n", mtu,
5388 ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8));
5389 mtu = ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8);
5390 }
5391
5392 return mtu;
5393}
5394
5395static int mvpp2_check_ringparam_valid(struct net_device *dev,
5396 struct ethtool_ringparam *ring)
5397{
5398 u16 new_rx_pending = ring->rx_pending;
5399 u16 new_tx_pending = ring->tx_pending;
5400
5401 if (ring->rx_pending == 0 || ring->tx_pending == 0)
5402 return -EINVAL;
5403
5404 if (ring->rx_pending > MVPP2_MAX_RXD)
5405 new_rx_pending = MVPP2_MAX_RXD;
5406 else if (!IS_ALIGNED(ring->rx_pending, 16))
5407 new_rx_pending = ALIGN(ring->rx_pending, 16);
5408
5409 if (ring->tx_pending > MVPP2_MAX_TXD)
5410 new_tx_pending = MVPP2_MAX_TXD;
5411 else if (!IS_ALIGNED(ring->tx_pending, 32))
5412 new_tx_pending = ALIGN(ring->tx_pending, 32);
5413
5414 if (ring->rx_pending != new_rx_pending) {
5415 netdev_info(dev, "illegal Rx ring size value %d, round to %d\n",
5416 ring->rx_pending, new_rx_pending);
5417 ring->rx_pending = new_rx_pending;
5418 }
5419
5420 if (ring->tx_pending != new_tx_pending) {
5421 netdev_info(dev, "illegal Tx ring size value %d, round to %d\n",
5422 ring->tx_pending, new_tx_pending);
5423 ring->tx_pending = new_tx_pending;
5424 }
5425
5426 return 0;
5427}
5428
5429static void mvpp2_get_mac_address(struct mvpp2_port *port, unsigned char *addr)
5430{
5431 u32 mac_addr_l, mac_addr_m, mac_addr_h;
5432
5433 mac_addr_l = readl(port->base + MVPP2_GMAC_CTRL_1_REG);
5434 mac_addr_m = readl(port->priv->lms_base + MVPP2_SRC_ADDR_MIDDLE);
5435 mac_addr_h = readl(port->priv->lms_base + MVPP2_SRC_ADDR_HIGH);
5436 addr[0] = (mac_addr_h >> 24) & 0xFF;
5437 addr[1] = (mac_addr_h >> 16) & 0xFF;
5438 addr[2] = (mac_addr_h >> 8) & 0xFF;
5439 addr[3] = mac_addr_h & 0xFF;
5440 addr[4] = mac_addr_m & 0xFF;
5441 addr[5] = (mac_addr_l >> MVPP2_GMAC_SA_LOW_OFFS) & 0xFF;
5442}
5443
5444static int mvpp2_phy_connect(struct mvpp2_port *port)
5445{
5446 struct phy_device *phy_dev;
5447
5448 phy_dev = of_phy_connect(port->dev, port->phy_node, mvpp2_link_event, 0,
5449 port->phy_interface);
5450 if (!phy_dev) {
5451 netdev_err(port->dev, "cannot connect to phy\n");
5452 return -ENODEV;
5453 }
5454 phy_dev->supported &= PHY_GBIT_FEATURES;
5455 phy_dev->advertising = phy_dev->supported;
5456
5457 port->phy_dev = phy_dev;
5458 port->link = 0;
5459 port->duplex = 0;
5460 port->speed = 0;
5461
5462 return 0;
5463}
5464
5465static void mvpp2_phy_disconnect(struct mvpp2_port *port)
5466{
5467 phy_disconnect(port->phy_dev);
5468 port->phy_dev = NULL;
5469}
5470
5471static int mvpp2_open(struct net_device *dev)
5472{
5473 struct mvpp2_port *port = netdev_priv(dev);
5474 unsigned char mac_bcast[ETH_ALEN] = {
5475 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
5476 int err;
5477
5478 err = mvpp2_prs_mac_da_accept(port->priv, port->id, mac_bcast, true);
5479 if (err) {
5480 netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n");
5481 return err;
5482 }
5483 err = mvpp2_prs_mac_da_accept(port->priv, port->id,
5484 dev->dev_addr, true);
5485 if (err) {
5486 netdev_err(dev, "mvpp2_prs_mac_da_accept MC failed\n");
5487 return err;
5488 }
5489 err = mvpp2_prs_tag_mode_set(port->priv, port->id, MVPP2_TAG_TYPE_MH);
5490 if (err) {
5491 netdev_err(dev, "mvpp2_prs_tag_mode_set failed\n");
5492 return err;
5493 }
5494 err = mvpp2_prs_def_flow(port);
5495 if (err) {
5496 netdev_err(dev, "mvpp2_prs_def_flow failed\n");
5497 return err;
5498 }
5499
5500 /* Allocate the Rx/Tx queues */
5501 err = mvpp2_setup_rxqs(port);
5502 if (err) {
5503 netdev_err(port->dev, "cannot allocate Rx queues\n");
5504 return err;
5505 }
5506
5507 err = mvpp2_setup_txqs(port);
5508 if (err) {
5509 netdev_err(port->dev, "cannot allocate Tx queues\n");
5510 goto err_cleanup_rxqs;
5511 }
5512
5513 err = request_irq(port->irq, mvpp2_isr, 0, dev->name, port);
5514 if (err) {
5515 netdev_err(port->dev, "cannot request IRQ %d\n", port->irq);
5516 goto err_cleanup_txqs;
5517 }
5518
5519 /* In default link is down */
5520 netif_carrier_off(port->dev);
5521
5522 err = mvpp2_phy_connect(port);
5523 if (err < 0)
5524 goto err_free_irq;
5525
5526 /* Unmask interrupts on all CPUs */
5527 on_each_cpu(mvpp2_interrupts_unmask, port, 1);
5528
5529 mvpp2_start_dev(port);
5530
5531 return 0;
5532
5533err_free_irq:
5534 free_irq(port->irq, port);
5535err_cleanup_txqs:
5536 mvpp2_cleanup_txqs(port);
5537err_cleanup_rxqs:
5538 mvpp2_cleanup_rxqs(port);
5539 return err;
5540}
5541
5542static int mvpp2_stop(struct net_device *dev)
5543{
5544 struct mvpp2_port *port = netdev_priv(dev);
5545
5546 mvpp2_stop_dev(port);
5547 mvpp2_phy_disconnect(port);
5548
5549 /* Mask interrupts on all CPUs */
5550 on_each_cpu(mvpp2_interrupts_mask, port, 1);
5551
5552 free_irq(port->irq, port);
5553 mvpp2_cleanup_rxqs(port);
5554 mvpp2_cleanup_txqs(port);
5555
5556 return 0;
5557}
5558
5559static void mvpp2_set_rx_mode(struct net_device *dev)
5560{
5561 struct mvpp2_port *port = netdev_priv(dev);
5562 struct mvpp2 *priv = port->priv;
5563 struct netdev_hw_addr *ha;
5564 int id = port->id;
5565 bool allmulti = dev->flags & IFF_ALLMULTI;
5566
5567 mvpp2_prs_mac_promisc_set(priv, id, dev->flags & IFF_PROMISC);
5568 mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_ALL, allmulti);
5569 mvpp2_prs_mac_multi_set(priv, id, MVPP2_PE_MAC_MC_IP6, allmulti);
5570
5571 /* Remove all port->id's mcast enries */
5572 mvpp2_prs_mcast_del_all(priv, id);
5573
5574 if (allmulti && !netdev_mc_empty(dev)) {
5575 netdev_for_each_mc_addr(ha, dev)
5576 mvpp2_prs_mac_da_accept(priv, id, ha->addr, true);
5577 }
5578}
5579
5580static int mvpp2_set_mac_address(struct net_device *dev, void *p)
5581{
5582 struct mvpp2_port *port = netdev_priv(dev);
5583 const struct sockaddr *addr = p;
5584 int err;
5585
5586 if (!is_valid_ether_addr(addr->sa_data)) {
5587 err = -EADDRNOTAVAIL;
5588 goto error;
5589 }
5590
5591 if (!netif_running(dev)) {
5592 err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
5593 if (!err)
5594 return 0;
5595 /* Reconfigure parser to accept the original MAC address */
5596 err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
5597 if (err)
5598 goto error;
5599 }
5600
5601 mvpp2_stop_dev(port);
5602
5603 err = mvpp2_prs_update_mac_da(dev, addr->sa_data);
5604 if (!err)
5605 goto out_start;
5606
5607 /* Reconfigure parser accept the original MAC address */
5608 err = mvpp2_prs_update_mac_da(dev, dev->dev_addr);
5609 if (err)
5610 goto error;
5611out_start:
5612 mvpp2_start_dev(port);
5613 mvpp2_egress_enable(port);
5614 mvpp2_ingress_enable(port);
5615 return 0;
5616
5617error:
5618 netdev_err(dev, "fail to change MAC address\n");
5619 return err;
5620}
5621
5622static int mvpp2_change_mtu(struct net_device *dev, int mtu)
5623{
5624 struct mvpp2_port *port = netdev_priv(dev);
5625 int err;
5626
5627 mtu = mvpp2_check_mtu_valid(dev, mtu);
5628 if (mtu < 0) {
5629 err = mtu;
5630 goto error;
5631 }
5632
5633 if (!netif_running(dev)) {
5634 err = mvpp2_bm_update_mtu(dev, mtu);
5635 if (!err) {
5636 port->pkt_size = MVPP2_RX_PKT_SIZE(mtu);
5637 return 0;
5638 }
5639
5640 /* Reconfigure BM to the original MTU */
5641 err = mvpp2_bm_update_mtu(dev, dev->mtu);
5642 if (err)
5643 goto error;
5644 }
5645
5646 mvpp2_stop_dev(port);
5647
5648 err = mvpp2_bm_update_mtu(dev, mtu);
5649 if (!err) {
5650 port->pkt_size = MVPP2_RX_PKT_SIZE(mtu);
5651 goto out_start;
5652 }
5653
5654 /* Reconfigure BM to the original MTU */
5655 err = mvpp2_bm_update_mtu(dev, dev->mtu);
5656 if (err)
5657 goto error;
5658
5659out_start:
5660 mvpp2_start_dev(port);
5661 mvpp2_egress_enable(port);
5662 mvpp2_ingress_enable(port);
5663
5664 return 0;
5665
5666error:
5667 netdev_err(dev, "fail to change MTU\n");
5668 return err;
5669}
5670
5671static struct rtnl_link_stats64 *
5672mvpp2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
5673{
5674 struct mvpp2_port *port = netdev_priv(dev);
5675 unsigned int start;
5676 int cpu;
5677
5678 for_each_possible_cpu(cpu) {
5679 struct mvpp2_pcpu_stats *cpu_stats;
5680 u64 rx_packets;
5681 u64 rx_bytes;
5682 u64 tx_packets;
5683 u64 tx_bytes;
5684
5685 cpu_stats = per_cpu_ptr(port->stats, cpu);
5686 do {
5687 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
5688 rx_packets = cpu_stats->rx_packets;
5689 rx_bytes = cpu_stats->rx_bytes;
5690 tx_packets = cpu_stats->tx_packets;
5691 tx_bytes = cpu_stats->tx_bytes;
5692 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
5693
5694 stats->rx_packets += rx_packets;
5695 stats->rx_bytes += rx_bytes;
5696 stats->tx_packets += tx_packets;
5697 stats->tx_bytes += tx_bytes;
5698 }
5699
5700 stats->rx_errors = dev->stats.rx_errors;
5701 stats->rx_dropped = dev->stats.rx_dropped;
5702 stats->tx_dropped = dev->stats.tx_dropped;
5703
5704 return stats;
5705}
5706
5707/* Ethtool methods */
5708
5709/* Get settings (phy address, speed) for ethtools */
5710static int mvpp2_ethtool_get_settings(struct net_device *dev,
5711 struct ethtool_cmd *cmd)
5712{
5713 struct mvpp2_port *port = netdev_priv(dev);
5714
5715 if (!port->phy_dev)
5716 return -ENODEV;
5717 return phy_ethtool_gset(port->phy_dev, cmd);
5718}
5719
5720/* Set settings (phy address, speed) for ethtools */
5721static int mvpp2_ethtool_set_settings(struct net_device *dev,
5722 struct ethtool_cmd *cmd)
5723{
5724 struct mvpp2_port *port = netdev_priv(dev);
5725
5726 if (!port->phy_dev)
5727 return -ENODEV;
5728 return phy_ethtool_sset(port->phy_dev, cmd);
5729}
5730
5731/* Set interrupt coalescing for ethtools */
5732static int mvpp2_ethtool_set_coalesce(struct net_device *dev,
5733 struct ethtool_coalesce *c)
5734{
5735 struct mvpp2_port *port = netdev_priv(dev);
5736 int queue;
5737
5738 for (queue = 0; queue < rxq_number; queue++) {
5739 struct mvpp2_rx_queue *rxq = port->rxqs[queue];
5740
5741 rxq->time_coal = c->rx_coalesce_usecs;
5742 rxq->pkts_coal = c->rx_max_coalesced_frames;
5743 mvpp2_rx_pkts_coal_set(port, rxq, rxq->pkts_coal);
5744 mvpp2_rx_time_coal_set(port, rxq, rxq->time_coal);
5745 }
5746
5747 for (queue = 0; queue < txq_number; queue++) {
5748 struct mvpp2_tx_queue *txq = port->txqs[queue];
5749
5750 txq->done_pkts_coal = c->tx_max_coalesced_frames;
5751 }
5752
5753 on_each_cpu(mvpp2_tx_done_pkts_coal_set, port, 1);
5754 return 0;
5755}
5756
5757/* get coalescing for ethtools */
5758static int mvpp2_ethtool_get_coalesce(struct net_device *dev,
5759 struct ethtool_coalesce *c)
5760{
5761 struct mvpp2_port *port = netdev_priv(dev);
5762
5763 c->rx_coalesce_usecs = port->rxqs[0]->time_coal;
5764 c->rx_max_coalesced_frames = port->rxqs[0]->pkts_coal;
5765 c->tx_max_coalesced_frames = port->txqs[0]->done_pkts_coal;
5766 return 0;
5767}
5768
5769static void mvpp2_ethtool_get_drvinfo(struct net_device *dev,
5770 struct ethtool_drvinfo *drvinfo)
5771{
5772 strlcpy(drvinfo->driver, MVPP2_DRIVER_NAME,
5773 sizeof(drvinfo->driver));
5774 strlcpy(drvinfo->version, MVPP2_DRIVER_VERSION,
5775 sizeof(drvinfo->version));
5776 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
5777 sizeof(drvinfo->bus_info));
5778}
5779
5780static void mvpp2_ethtool_get_ringparam(struct net_device *dev,
5781 struct ethtool_ringparam *ring)
5782{
5783 struct mvpp2_port *port = netdev_priv(dev);
5784
5785 ring->rx_max_pending = MVPP2_MAX_RXD;
5786 ring->tx_max_pending = MVPP2_MAX_TXD;
5787 ring->rx_pending = port->rx_ring_size;
5788 ring->tx_pending = port->tx_ring_size;
5789}
5790
5791static int mvpp2_ethtool_set_ringparam(struct net_device *dev,
5792 struct ethtool_ringparam *ring)
5793{
5794 struct mvpp2_port *port = netdev_priv(dev);
5795 u16 prev_rx_ring_size = port->rx_ring_size;
5796 u16 prev_tx_ring_size = port->tx_ring_size;
5797 int err;
5798
5799 err = mvpp2_check_ringparam_valid(dev, ring);
5800 if (err)
5801 return err;
5802
5803 if (!netif_running(dev)) {
5804 port->rx_ring_size = ring->rx_pending;
5805 port->tx_ring_size = ring->tx_pending;
5806 return 0;
5807 }
5808
5809 /* The interface is running, so we have to force a
5810 * reallocation of the queues
5811 */
5812 mvpp2_stop_dev(port);
5813 mvpp2_cleanup_rxqs(port);
5814 mvpp2_cleanup_txqs(port);
5815
5816 port->rx_ring_size = ring->rx_pending;
5817 port->tx_ring_size = ring->tx_pending;
5818
5819 err = mvpp2_setup_rxqs(port);
5820 if (err) {
5821 /* Reallocate Rx queues with the original ring size */
5822 port->rx_ring_size = prev_rx_ring_size;
5823 ring->rx_pending = prev_rx_ring_size;
5824 err = mvpp2_setup_rxqs(port);
5825 if (err)
5826 goto err_out;
5827 }
5828 err = mvpp2_setup_txqs(port);
5829 if (err) {
5830 /* Reallocate Tx queues with the original ring size */
5831 port->tx_ring_size = prev_tx_ring_size;
5832 ring->tx_pending = prev_tx_ring_size;
5833 err = mvpp2_setup_txqs(port);
5834 if (err)
5835 goto err_clean_rxqs;
5836 }
5837
5838 mvpp2_start_dev(port);
5839 mvpp2_egress_enable(port);
5840 mvpp2_ingress_enable(port);
5841
5842 return 0;
5843
5844err_clean_rxqs:
5845 mvpp2_cleanup_rxqs(port);
5846err_out:
5847 netdev_err(dev, "fail to change ring parameters");
5848 return err;
5849}
5850
5851/* Device ops */
5852
5853static const struct net_device_ops mvpp2_netdev_ops = {
5854 .ndo_open = mvpp2_open,
5855 .ndo_stop = mvpp2_stop,
5856 .ndo_start_xmit = mvpp2_tx,
5857 .ndo_set_rx_mode = mvpp2_set_rx_mode,
5858 .ndo_set_mac_address = mvpp2_set_mac_address,
5859 .ndo_change_mtu = mvpp2_change_mtu,
5860 .ndo_get_stats64 = mvpp2_get_stats64,
5861};
5862
5863static const struct ethtool_ops mvpp2_eth_tool_ops = {
5864 .get_link = ethtool_op_get_link,
5865 .get_settings = mvpp2_ethtool_get_settings,
5866 .set_settings = mvpp2_ethtool_set_settings,
5867 .set_coalesce = mvpp2_ethtool_set_coalesce,
5868 .get_coalesce = mvpp2_ethtool_get_coalesce,
5869 .get_drvinfo = mvpp2_ethtool_get_drvinfo,
5870 .get_ringparam = mvpp2_ethtool_get_ringparam,
5871 .set_ringparam = mvpp2_ethtool_set_ringparam,
5872};
5873
5874/* Driver initialization */
5875
5876static void mvpp2_port_power_up(struct mvpp2_port *port)
5877{
5878 mvpp2_port_mii_set(port);
5879 mvpp2_port_periodic_xon_disable(port);
5880 mvpp2_port_reset(port);
5881}
5882
5883/* Initialize port HW */
5884static int mvpp2_port_init(struct mvpp2_port *port)
5885{
5886 struct device *dev = port->dev->dev.parent;
5887 struct mvpp2 *priv = port->priv;
5888 struct mvpp2_txq_pcpu *txq_pcpu;
5889 int queue, cpu, err;
5890
5891 if (port->first_rxq + rxq_number > MVPP2_RXQ_TOTAL_NUM)
5892 return -EINVAL;
5893
5894 /* Disable port */
5895 mvpp2_egress_disable(port);
5896 mvpp2_port_disable(port);
5897
5898 port->txqs = devm_kcalloc(dev, txq_number, sizeof(*port->txqs),
5899 GFP_KERNEL);
5900 if (!port->txqs)
5901 return -ENOMEM;
5902
5903 /* Associate physical Tx queues to this port and initialize.
5904 * The mapping is predefined.
5905 */
5906 for (queue = 0; queue < txq_number; queue++) {
5907 int queue_phy_id = mvpp2_txq_phys(port->id, queue);
5908 struct mvpp2_tx_queue *txq;
5909
5910 txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL);
5911 if (!txq)
5912 return -ENOMEM;
5913
5914 txq->pcpu = alloc_percpu(struct mvpp2_txq_pcpu);
5915 if (!txq->pcpu) {
5916 err = -ENOMEM;
5917 goto err_free_percpu;
5918 }
5919
5920 txq->id = queue_phy_id;
5921 txq->log_id = queue;
5922 txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH;
5923 for_each_present_cpu(cpu) {
5924 txq_pcpu = per_cpu_ptr(txq->pcpu, cpu);
5925 txq_pcpu->cpu = cpu;
5926 }
5927
5928 port->txqs[queue] = txq;
5929 }
5930
5931 port->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*port->rxqs),
5932 GFP_KERNEL);
5933 if (!port->rxqs) {
5934 err = -ENOMEM;
5935 goto err_free_percpu;
5936 }
5937
5938 /* Allocate and initialize Rx queue for this port */
5939 for (queue = 0; queue < rxq_number; queue++) {
5940 struct mvpp2_rx_queue *rxq;
5941
5942 /* Map physical Rx queue to port's logical Rx queue */
5943 rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL);
5944 if (!rxq)
5945 goto err_free_percpu;
5946 /* Map this Rx queue to a physical queue */
5947 rxq->id = port->first_rxq + queue;
5948 rxq->port = port->id;
5949 rxq->logic_rxq = queue;
5950
5951 port->rxqs[queue] = rxq;
5952 }
5953
5954 /* Configure Rx queue group interrupt for this port */
5955 mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(port->id), rxq_number);
5956
5957 /* Create Rx descriptor rings */
5958 for (queue = 0; queue < rxq_number; queue++) {
5959 struct mvpp2_rx_queue *rxq = port->rxqs[queue];
5960
5961 rxq->size = port->rx_ring_size;
5962 rxq->pkts_coal = MVPP2_RX_COAL_PKTS;
5963 rxq->time_coal = MVPP2_RX_COAL_USEC;
5964 }
5965
5966 mvpp2_ingress_disable(port);
5967
5968 /* Port default configuration */
5969 mvpp2_defaults_set(port);
5970
5971 /* Port's classifier configuration */
5972 mvpp2_cls_oversize_rxq_set(port);
5973 mvpp2_cls_port_config(port);
5974
5975 /* Provide an initial Rx packet size */
5976 port->pkt_size = MVPP2_RX_PKT_SIZE(port->dev->mtu);
5977
5978 /* Initialize pools for swf */
5979 err = mvpp2_swf_bm_pool_init(port);
5980 if (err)
5981 goto err_free_percpu;
5982
5983 return 0;
5984
5985err_free_percpu:
5986 for (queue = 0; queue < txq_number; queue++) {
5987 if (!port->txqs[queue])
5988 continue;
5989 free_percpu(port->txqs[queue]->pcpu);
5990 }
5991 return err;
5992}
5993
5994/* Ports initialization */
5995static int mvpp2_port_probe(struct platform_device *pdev,
5996 struct device_node *port_node,
5997 struct mvpp2 *priv,
5998 int *next_first_rxq)
5999{
6000 struct device_node *phy_node;
6001 struct mvpp2_port *port;
6002 struct net_device *dev;
6003 struct resource *res;
6004 const char *dt_mac_addr;
6005 const char *mac_from;
6006 char hw_mac_addr[ETH_ALEN];
6007 u32 id;
6008 int features;
6009 int phy_mode;
6010 int priv_common_regs_num = 2;
6011 int err, i;
6012
6013 dev = alloc_etherdev_mqs(sizeof(struct mvpp2_port), txq_number,
6014 rxq_number);
6015 if (!dev)
6016 return -ENOMEM;
6017
6018 phy_node = of_parse_phandle(port_node, "phy", 0);
6019 if (!phy_node) {
6020 dev_err(&pdev->dev, "missing phy\n");
6021 err = -ENODEV;
6022 goto err_free_netdev;
6023 }
6024
6025 phy_mode = of_get_phy_mode(port_node);
6026 if (phy_mode < 0) {
6027 dev_err(&pdev->dev, "incorrect phy mode\n");
6028 err = phy_mode;
6029 goto err_free_netdev;
6030 }
6031
6032 if (of_property_read_u32(port_node, "port-id", &id)) {
6033 err = -EINVAL;
6034 dev_err(&pdev->dev, "missing port-id value\n");
6035 goto err_free_netdev;
6036 }
6037
6038 dev->tx_queue_len = MVPP2_MAX_TXD;
6039 dev->watchdog_timeo = 5 * HZ;
6040 dev->netdev_ops = &mvpp2_netdev_ops;
6041 dev->ethtool_ops = &mvpp2_eth_tool_ops;
6042
6043 port = netdev_priv(dev);
6044
6045 port->irq = irq_of_parse_and_map(port_node, 0);
6046 if (port->irq <= 0) {
6047 err = -EINVAL;
6048 goto err_free_netdev;
6049 }
6050
6051 if (of_property_read_bool(port_node, "marvell,loopback"))
6052 port->flags |= MVPP2_F_LOOPBACK;
6053
6054 port->priv = priv;
6055 port->id = id;
6056 port->first_rxq = *next_first_rxq;
6057 port->phy_node = phy_node;
6058 port->phy_interface = phy_mode;
6059
6060 res = platform_get_resource(pdev, IORESOURCE_MEM,
6061 priv_common_regs_num + id);
6062 port->base = devm_ioremap_resource(&pdev->dev, res);
6063 if (IS_ERR(port->base)) {
6064 err = PTR_ERR(port->base);
6065 dev_err(&pdev->dev, "cannot obtain port base address\n");
6066 goto err_free_irq;
6067 }
6068
6069 /* Alloc per-cpu stats */
6070 port->stats = netdev_alloc_pcpu_stats(struct mvpp2_pcpu_stats);
6071 if (!port->stats) {
6072 err = -ENOMEM;
6073 goto err_free_irq;
6074 }
6075
6076 dt_mac_addr = of_get_mac_address(port_node);
6077 if (dt_mac_addr && is_valid_ether_addr(dt_mac_addr)) {
6078 mac_from = "device tree";
6079 ether_addr_copy(dev->dev_addr, dt_mac_addr);
6080 } else {
6081 mvpp2_get_mac_address(port, hw_mac_addr);
6082 if (is_valid_ether_addr(hw_mac_addr)) {
6083 mac_from = "hardware";
6084 ether_addr_copy(dev->dev_addr, hw_mac_addr);
6085 } else {
6086 mac_from = "random";
6087 eth_hw_addr_random(dev);
6088 }
6089 }
6090
6091 port->tx_ring_size = MVPP2_MAX_TXD;
6092 port->rx_ring_size = MVPP2_MAX_RXD;
6093 port->dev = dev;
6094 SET_NETDEV_DEV(dev, &pdev->dev);
6095
6096 err = mvpp2_port_init(port);
6097 if (err < 0) {
6098 dev_err(&pdev->dev, "failed to init port %d\n", id);
6099 goto err_free_stats;
6100 }
6101 mvpp2_port_power_up(port);
6102
6103 netif_napi_add(dev, &port->napi, mvpp2_poll, NAPI_POLL_WEIGHT);
6104 features = NETIF_F_SG | NETIF_F_IP_CSUM;
6105 dev->features = features | NETIF_F_RXCSUM;
6106 dev->hw_features |= features | NETIF_F_RXCSUM | NETIF_F_GRO;
6107 dev->vlan_features |= features;
6108
6109 err = register_netdev(dev);
6110 if (err < 0) {
6111 dev_err(&pdev->dev, "failed to register netdev\n");
6112 goto err_free_txq_pcpu;
6113 }
6114 netdev_info(dev, "Using %s mac address %pM\n", mac_from, dev->dev_addr);
6115
6116 /* Increment the first Rx queue number to be used by the next port */
6117 *next_first_rxq += rxq_number;
6118 priv->port_list[id] = port;
6119 return 0;
6120
6121err_free_txq_pcpu:
6122 for (i = 0; i < txq_number; i++)
6123 free_percpu(port->txqs[i]->pcpu);
6124err_free_stats:
6125 free_percpu(port->stats);
6126err_free_irq:
6127 irq_dispose_mapping(port->irq);
6128err_free_netdev:
6129 free_netdev(dev);
6130 return err;
6131}
6132
6133/* Ports removal routine */
6134static void mvpp2_port_remove(struct mvpp2_port *port)
6135{
6136 int i;
6137
6138 unregister_netdev(port->dev);
6139 free_percpu(port->stats);
6140 for (i = 0; i < txq_number; i++)
6141 free_percpu(port->txqs[i]->pcpu);
6142 irq_dispose_mapping(port->irq);
6143 free_netdev(port->dev);
6144}
6145
6146/* Initialize decoding windows */
6147static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram,
6148 struct mvpp2 *priv)
6149{
6150 u32 win_enable;
6151 int i;
6152
6153 for (i = 0; i < 6; i++) {
6154 mvpp2_write(priv, MVPP2_WIN_BASE(i), 0);
6155 mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0);
6156
6157 if (i < 4)
6158 mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0);
6159 }
6160
6161 win_enable = 0;
6162
6163 for (i = 0; i < dram->num_cs; i++) {
6164 const struct mbus_dram_window *cs = dram->cs + i;
6165
6166 mvpp2_write(priv, MVPP2_WIN_BASE(i),
6167 (cs->base & 0xffff0000) | (cs->mbus_attr << 8) |
6168 dram->mbus_dram_target_id);
6169
6170 mvpp2_write(priv, MVPP2_WIN_SIZE(i),
6171 (cs->size - 1) & 0xffff0000);
6172
6173 win_enable |= (1 << i);
6174 }
6175
6176 mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable);
6177}
6178
6179/* Initialize Rx FIFO's */
6180static void mvpp2_rx_fifo_init(struct mvpp2 *priv)
6181{
6182 int port;
6183
6184 for (port = 0; port < MVPP2_MAX_PORTS; port++) {
6185 mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port),
6186 MVPP2_RX_FIFO_PORT_DATA_SIZE);
6187 mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port),
6188 MVPP2_RX_FIFO_PORT_ATTR_SIZE);
6189 }
6190
6191 mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG,
6192 MVPP2_RX_FIFO_PORT_MIN_PKT);
6193 mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1);
6194}
6195
6196/* Initialize network controller common part HW */
6197static int mvpp2_init(struct platform_device *pdev, struct mvpp2 *priv)
6198{
6199 const struct mbus_dram_target_info *dram_target_info;
6200 int err, i;
6201
6202 /* Checks for hardware constraints */
6203 if (rxq_number % 4 || (rxq_number > MVPP2_MAX_RXQ) ||
6204 (txq_number > MVPP2_MAX_TXQ)) {
6205 dev_err(&pdev->dev, "invalid queue size parameter\n");
6206 return -EINVAL;
6207 }
6208
6209 /* MBUS windows configuration */
6210 dram_target_info = mv_mbus_dram_info();
6211 if (dram_target_info)
6212 mvpp2_conf_mbus_windows(dram_target_info, priv);
6213
6214 /* Allocate and initialize aggregated TXQs */
6215 priv->aggr_txqs = devm_kcalloc(&pdev->dev, num_present_cpus(),
6216 sizeof(struct mvpp2_tx_queue),
6217 GFP_KERNEL);
6218 if (!priv->aggr_txqs)
6219 return -ENOMEM;
6220
6221 for_each_present_cpu(i) {
6222 priv->aggr_txqs[i].id = i;
6223 priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE;
6224 err = mvpp2_aggr_txq_init(pdev, &priv->aggr_txqs[i],
6225 MVPP2_AGGR_TXQ_SIZE, i, priv);
6226 if (err < 0)
6227 return err;
6228 }
6229
6230 /* Rx Fifo Init */
6231 mvpp2_rx_fifo_init(priv);
6232
6233 /* Reset Rx queue group interrupt configuration */
6234 for (i = 0; i < MVPP2_MAX_PORTS; i++)
6235 mvpp2_write(priv, MVPP2_ISR_RXQ_GROUP_REG(i), rxq_number);
6236
6237 writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT,
6238 priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG);
6239
6240 /* Allow cache snoop when transmiting packets */
6241 mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1);
6242
6243 /* Buffer Manager initialization */
6244 err = mvpp2_bm_init(pdev, priv);
6245 if (err < 0)
6246 return err;
6247
6248 /* Parser default initialization */
6249 err = mvpp2_prs_default_init(pdev, priv);
6250 if (err < 0)
6251 return err;
6252
6253 /* Classifier default initialization */
6254 mvpp2_cls_init(priv);
6255
6256 return 0;
6257}
6258
6259static int mvpp2_probe(struct platform_device *pdev)
6260{
6261 struct device_node *dn = pdev->dev.of_node;
6262 struct device_node *port_node;
6263 struct mvpp2 *priv;
6264 struct resource *res;
6265 int port_count, first_rxq;
6266 int err;
6267
6268 priv = devm_kzalloc(&pdev->dev, sizeof(struct mvpp2), GFP_KERNEL);
6269 if (!priv)
6270 return -ENOMEM;
6271
6272 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
6273 priv->base = devm_ioremap_resource(&pdev->dev, res);
6274 if (IS_ERR(priv->base))
6275 return PTR_ERR(priv->base);
6276
6277 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
6278 priv->lms_base = devm_ioremap_resource(&pdev->dev, res);
6279 if (IS_ERR(priv->lms_base))
6280 return PTR_ERR(priv->lms_base);
6281
6282 priv->pp_clk = devm_clk_get(&pdev->dev, "pp_clk");
6283 if (IS_ERR(priv->pp_clk))
6284 return PTR_ERR(priv->pp_clk);
6285 err = clk_prepare_enable(priv->pp_clk);
6286 if (err < 0)
6287 return err;
6288
6289 priv->gop_clk = devm_clk_get(&pdev->dev, "gop_clk");
6290 if (IS_ERR(priv->gop_clk)) {
6291 err = PTR_ERR(priv->gop_clk);
6292 goto err_pp_clk;
6293 }
6294 err = clk_prepare_enable(priv->gop_clk);
6295 if (err < 0)
6296 goto err_pp_clk;
6297
6298 /* Get system's tclk rate */
6299 priv->tclk = clk_get_rate(priv->pp_clk);
6300
6301 /* Initialize network controller */
6302 err = mvpp2_init(pdev, priv);
6303 if (err < 0) {
6304 dev_err(&pdev->dev, "failed to initialize controller\n");
6305 goto err_gop_clk;
6306 }
6307
6308 port_count = of_get_available_child_count(dn);
6309 if (port_count == 0) {
6310 dev_err(&pdev->dev, "no ports enabled\n");
6311 goto err_gop_clk;
6312 }
6313
6314 priv->port_list = devm_kcalloc(&pdev->dev, port_count,
6315 sizeof(struct mvpp2_port *),
6316 GFP_KERNEL);
6317 if (!priv->port_list) {
6318 err = -ENOMEM;
6319 goto err_gop_clk;
6320 }
6321
6322 /* Initialize ports */
6323 first_rxq = 0;
6324 for_each_available_child_of_node(dn, port_node) {
6325 err = mvpp2_port_probe(pdev, port_node, priv, &first_rxq);
6326 if (err < 0)
6327 goto err_gop_clk;
6328 }
6329
6330 platform_set_drvdata(pdev, priv);
6331 return 0;
6332
6333err_gop_clk:
6334 clk_disable_unprepare(priv->gop_clk);
6335err_pp_clk:
6336 clk_disable_unprepare(priv->pp_clk);
6337 return err;
6338}
6339
6340static int mvpp2_remove(struct platform_device *pdev)
6341{
6342 struct mvpp2 *priv = platform_get_drvdata(pdev);
6343 struct device_node *dn = pdev->dev.of_node;
6344 struct device_node *port_node;
6345 int i = 0;
6346
6347 for_each_available_child_of_node(dn, port_node) {
6348 if (priv->port_list[i])
6349 mvpp2_port_remove(priv->port_list[i]);
6350 i++;
6351 }
6352
6353 for (i = 0; i < MVPP2_BM_POOLS_NUM; i++) {
6354 struct mvpp2_bm_pool *bm_pool = &priv->bm_pools[i];
6355
6356 mvpp2_bm_pool_destroy(pdev, priv, bm_pool);
6357 }
6358
6359 for_each_present_cpu(i) {
6360 struct mvpp2_tx_queue *aggr_txq = &priv->aggr_txqs[i];
6361
6362 dma_free_coherent(&pdev->dev,
6363 MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE,
6364 aggr_txq->descs,
6365 aggr_txq->descs_phys);
6366 }
6367
6368 clk_disable_unprepare(priv->pp_clk);
6369 clk_disable_unprepare(priv->gop_clk);
6370
6371 return 0;
6372}
6373
6374static const struct of_device_id mvpp2_match[] = {
6375 { .compatible = "marvell,armada-375-pp2" },
6376 { }
6377};
6378MODULE_DEVICE_TABLE(of, mvpp2_match);
6379
6380static struct platform_driver mvpp2_driver = {
6381 .probe = mvpp2_probe,
6382 .remove = mvpp2_remove,
6383 .driver = {
6384 .name = MVPP2_DRIVER_NAME,
6385 .of_match_table = mvpp2_match,
6386 },
6387};
6388
6389module_platform_driver(mvpp2_driver);
6390
6391MODULE_DESCRIPTION("Marvell PPv2 Ethernet Driver - www.marvell.com");
6392MODULE_AUTHOR("Marcin Wojtas <mw@semihalf.com>");
6393MODULE_LICENSE("GPLv2");