blob: 38b2b55688e2b4542d7d9eefb9f3387435b8014e [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/include/asm-arm/pgtable.h
3 *
4 * Copyright (C) 1995-2002 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10#ifndef _ASMARM_PGTABLE_H
11#define _ASMARM_PGTABLE_H
12
13#include <asm-generic/4level-fixup.h>
Russell King002547b2006-06-20 20:46:52 +010014#include <asm/proc-fns.h>
15
16#ifndef CONFIG_MMU
17
18#include "pgtable-nommu.h"
19
20#else
Linus Torvalds1da177e2005-04-16 15:20:36 -070021
22#include <asm/memory.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070023#include <asm/arch/vmalloc.h>
24
25/*
Russell King5c3073e2005-05-03 12:20:29 +010026 * Just any arbitrary offset to the start of the vmalloc VM area: the
27 * current 8MB value just means that there will be a 8MB "hole" after the
28 * physical memory until the kernel virtual memory starts. That means that
29 * any out-of-bounds memory accesses will hopefully be caught.
30 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
31 * area for the same reason. ;)
32 *
33 * Note that platforms may override VMALLOC_START, but they must provide
34 * VMALLOC_END. VMALLOC_END defines the (exclusive) limit of this space,
35 * which may not overlap IO space.
36 */
37#ifndef VMALLOC_START
38#define VMALLOC_OFFSET (8*1024*1024)
39#define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
40#endif
41
42/*
Linus Torvalds1da177e2005-04-16 15:20:36 -070043 * Hardware-wise, we have a two level page table structure, where the first
44 * level has 4096 entries, and the second level has 256 entries. Each entry
45 * is one 32-bit word. Most of the bits in the second level entry are used
46 * by hardware, and there aren't any "accessed" and "dirty" bits.
47 *
48 * Linux on the other hand has a three level page table structure, which can
49 * be wrapped to fit a two level page table structure easily - using the PGD
50 * and PTE only. However, Linux also expects one "PTE" table per page, and
51 * at least a "dirty" bit.
52 *
53 * Therefore, we tweak the implementation slightly - we tell Linux that we
54 * have 2048 entries in the first level, each of which is 8 bytes (iow, two
55 * hardware pointers to the second level.) The second level contains two
56 * hardware PTE tables arranged contiguously, followed by Linux versions
57 * which contain the state information Linux needs. We, therefore, end up
58 * with 512 entries in the "PTE" level.
59 *
60 * This leads to the page tables having the following layout:
61 *
62 * pgd pte
63 * | |
64 * +--------+ +0
65 * | |-----> +------------+ +0
66 * +- - - - + +4 | h/w pt 0 |
67 * | |-----> +------------+ +1024
68 * +--------+ +8 | h/w pt 1 |
69 * | | +------------+ +2048
70 * +- - - - + | Linux pt 0 |
71 * | | +------------+ +3072
72 * +--------+ | Linux pt 1 |
73 * | | +------------+ +4096
74 *
75 * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
76 * PTE_xxx for definitions of bits appearing in the "h/w pt".
77 *
78 * PMD_xxx definitions refer to bits in the first level page table.
79 *
80 * The "dirty" bit is emulated by only granting hardware write permission
81 * iff the page is marked "writable" and "dirty" in the Linux PTE. This
82 * means that a write to a clean page will cause a permission fault, and
83 * the Linux MM layer will mark the page dirty via handle_pte_fault().
84 * For the hardware to notice the permission change, the TLB entry must
85 * be flushed, and ptep_establish() does that for us.
86 *
87 * The "accessed" or "young" bit is emulated by a similar method; we only
88 * allow accesses to the page if the "young" bit is set. Accesses to the
89 * page will cause a fault, and handle_pte_fault() will set the young bit
90 * for us as long as the page is marked present in the corresponding Linux
91 * PTE entry. Again, ptep_establish() will ensure that the TLB is up to
92 * date.
93 *
94 * However, when the "young" bit is cleared, we deny access to the page
95 * by clearing the hardware PTE. Currently Linux does not flush the TLB
96 * for us in this case, which means the TLB will retain the transation
97 * until either the TLB entry is evicted under pressure, or a context
98 * switch which changes the user space mapping occurs.
99 */
100#define PTRS_PER_PTE 512
101#define PTRS_PER_PMD 1
102#define PTRS_PER_PGD 2048
103
104/*
105 * PMD_SHIFT determines the size of the area a second-level page table can map
106 * PGDIR_SHIFT determines what a third-level page table entry can map
107 */
108#define PMD_SHIFT 21
109#define PGDIR_SHIFT 21
110
111#define LIBRARY_TEXT_START 0x0c000000
112
113#ifndef __ASSEMBLY__
114extern void __pte_error(const char *file, int line, unsigned long val);
115extern void __pmd_error(const char *file, int line, unsigned long val);
116extern void __pgd_error(const char *file, int line, unsigned long val);
117
118#define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte))
119#define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd))
120#define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd))
121#endif /* !__ASSEMBLY__ */
122
123#define PMD_SIZE (1UL << PMD_SHIFT)
124#define PMD_MASK (~(PMD_SIZE-1))
125#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
126#define PGDIR_MASK (~(PGDIR_SIZE-1))
127
Hugh Dickins6119be02005-04-19 13:29:21 -0700128/*
129 * This is the lowest virtual address we can permit any user space
130 * mapping to be mapped at. This is particularly important for
131 * non-high vector CPUs.
132 */
133#define FIRST_USER_ADDRESS PAGE_SIZE
134
Linus Torvalds1da177e2005-04-16 15:20:36 -0700135#define FIRST_USER_PGD_NR 1
136#define USER_PTRS_PER_PGD ((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR)
137
138/*
George G. Davis4052ebb2006-09-22 18:36:38 +0100139 * section address mask and size definitions.
140 */
141#define SECTION_SHIFT 20
142#define SECTION_SIZE (1UL << SECTION_SHIFT)
143#define SECTION_MASK (~(SECTION_SIZE-1))
144
145/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700146 * ARMv6 supersection address mask and size definitions.
147 */
148#define SUPERSECTION_SHIFT 24
149#define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT)
150#define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1))
151
152/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700153 * "Linux" PTE definitions.
154 *
155 * We keep two sets of PTEs - the hardware and the linux version.
156 * This allows greater flexibility in the way we map the Linux bits
157 * onto the hardware tables, and allows us to have YOUNG and DIRTY
158 * bits.
159 *
160 * The PTE table pointer refers to the hardware entries; the "Linux"
161 * entries are stored 1024 bytes below.
162 */
163#define L_PTE_PRESENT (1 << 0)
164#define L_PTE_FILE (1 << 1) /* only when !PRESENT */
165#define L_PTE_YOUNG (1 << 1)
166#define L_PTE_BUFFERABLE (1 << 2) /* matches PTE */
167#define L_PTE_CACHEABLE (1 << 3) /* matches PTE */
168#define L_PTE_USER (1 << 4)
169#define L_PTE_WRITE (1 << 5)
170#define L_PTE_EXEC (1 << 6)
171#define L_PTE_DIRTY (1 << 7)
Lennert Buytenhek23759dc2006-04-02 00:07:39 +0100172#define L_PTE_COHERENT (1 << 9) /* I/O coherent (xsc3) */
Russell King6626a702005-08-10 16:18:35 +0100173#define L_PTE_SHARED (1 << 10) /* shared between CPUs (v6) */
174#define L_PTE_ASID (1 << 11) /* non-global (use ASID, v6) */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700175
176#ifndef __ASSEMBLY__
177
Linus Torvalds1da177e2005-04-16 15:20:36 -0700178/*
179 * The following macros handle the cache and bufferable bits...
180 */
181#define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_CACHEABLE | L_PTE_BUFFERABLE
182#define _L_PTE_READ L_PTE_USER | L_PTE_EXEC
183
184extern pgprot_t pgprot_kernel;
185
186#define PAGE_NONE __pgprot(_L_PTE_DEFAULT)
187#define PAGE_COPY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ)
188#define PAGE_SHARED __pgprot(_L_PTE_DEFAULT | _L_PTE_READ | L_PTE_WRITE)
189#define PAGE_READONLY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ)
190#define PAGE_KERNEL pgprot_kernel
191
192#endif /* __ASSEMBLY__ */
193
194/*
195 * The table below defines the page protection levels that we insert into our
196 * Linux page table version. These get translated into the best that the
197 * architecture can perform. Note that on most ARM hardware:
198 * 1) We cannot do execute protection
199 * 2) If we could do execute protection, then read is implied
200 * 3) write implies read permissions
201 */
202#define __P000 PAGE_NONE
203#define __P001 PAGE_READONLY
204#define __P010 PAGE_COPY
205#define __P011 PAGE_COPY
206#define __P100 PAGE_READONLY
207#define __P101 PAGE_READONLY
208#define __P110 PAGE_COPY
209#define __P111 PAGE_COPY
210
211#define __S000 PAGE_NONE
212#define __S001 PAGE_READONLY
213#define __S010 PAGE_SHARED
214#define __S011 PAGE_SHARED
215#define __S100 PAGE_READONLY
216#define __S101 PAGE_READONLY
217#define __S110 PAGE_SHARED
218#define __S111 PAGE_SHARED
219
220#ifndef __ASSEMBLY__
221/*
222 * ZERO_PAGE is a global shared page that is always zero: used
223 * for zero-mapped memory areas etc..
224 */
225extern struct page *empty_zero_page;
226#define ZERO_PAGE(vaddr) (empty_zero_page)
227
228#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
229#define pfn_pte(pfn,prot) (__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)))
230
231#define pte_none(pte) (!pte_val(pte))
232#define pte_clear(mm,addr,ptep) set_pte_at((mm),(addr),(ptep), __pte(0))
233#define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
234#define pte_offset_kernel(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr))
235#define pte_offset_map(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr))
236#define pte_offset_map_nested(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr))
237#define pte_unmap(pte) do { } while (0)
238#define pte_unmap_nested(pte) do { } while (0)
239
240#define set_pte(ptep, pte) cpu_set_pte(ptep,pte)
241#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
242
243/*
244 * The following only work if pte_present() is true.
245 * Undefined behaviour if not..
246 */
247#define pte_present(pte) (pte_val(pte) & L_PTE_PRESENT)
248#define pte_read(pte) (pte_val(pte) & L_PTE_USER)
249#define pte_write(pte) (pte_val(pte) & L_PTE_WRITE)
250#define pte_exec(pte) (pte_val(pte) & L_PTE_EXEC)
251#define pte_dirty(pte) (pte_val(pte) & L_PTE_DIRTY)
252#define pte_young(pte) (pte_val(pte) & L_PTE_YOUNG)
253
254/*
255 * The following only works if pte_present() is not true.
256 */
257#define pte_file(pte) (pte_val(pte) & L_PTE_FILE)
258#define pte_to_pgoff(x) (pte_val(x) >> 2)
259#define pgoff_to_pte(x) __pte(((x) << 2) | L_PTE_FILE)
260
261#define PTE_FILE_MAX_BITS 30
262
263#define PTE_BIT_FUNC(fn,op) \
264static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
265
266/*PTE_BIT_FUNC(rdprotect, &= ~L_PTE_USER);*/
267/*PTE_BIT_FUNC(mkread, |= L_PTE_USER);*/
268PTE_BIT_FUNC(wrprotect, &= ~L_PTE_WRITE);
269PTE_BIT_FUNC(mkwrite, |= L_PTE_WRITE);
270PTE_BIT_FUNC(exprotect, &= ~L_PTE_EXEC);
271PTE_BIT_FUNC(mkexec, |= L_PTE_EXEC);
272PTE_BIT_FUNC(mkclean, &= ~L_PTE_DIRTY);
273PTE_BIT_FUNC(mkdirty, |= L_PTE_DIRTY);
274PTE_BIT_FUNC(mkold, &= ~L_PTE_YOUNG);
275PTE_BIT_FUNC(mkyoung, |= L_PTE_YOUNG);
276
277/*
278 * Mark the prot value as uncacheable and unbufferable.
279 */
280#define pgprot_noncached(prot) __pgprot(pgprot_val(prot) & ~(L_PTE_CACHEABLE | L_PTE_BUFFERABLE))
281#define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~L_PTE_CACHEABLE)
282
283#define pmd_none(pmd) (!pmd_val(pmd))
284#define pmd_present(pmd) (pmd_val(pmd))
285#define pmd_bad(pmd) (pmd_val(pmd) & 2)
286
287#define copy_pmd(pmdpd,pmdps) \
288 do { \
289 pmdpd[0] = pmdps[0]; \
290 pmdpd[1] = pmdps[1]; \
291 flush_pmd_entry(pmdpd); \
292 } while (0)
293
294#define pmd_clear(pmdp) \
295 do { \
296 pmdp[0] = __pmd(0); \
297 pmdp[1] = __pmd(0); \
298 clean_pmd_entry(pmdp); \
299 } while (0)
300
301static inline pte_t *pmd_page_kernel(pmd_t pmd)
302{
303 unsigned long ptr;
304
305 ptr = pmd_val(pmd) & ~(PTRS_PER_PTE * sizeof(void *) - 1);
306 ptr += PTRS_PER_PTE * sizeof(void *);
307
308 return __va(ptr);
309}
310
311#define pmd_page(pmd) virt_to_page(__va(pmd_val(pmd)))
312
313/*
314 * Permanent address of a page. We never have highmem, so this is trivial.
315 */
316#define pages_to_mb(x) ((x) >> (20 - PAGE_SHIFT))
317
318/*
319 * Conversion functions: convert a page and protection to a page entry,
320 * and a page entry and page directory to the page they refer to.
321 */
322#define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
323
324/*
325 * The "pgd_xxx()" functions here are trivial for a folded two-level
326 * setup: the pgd is never bad, and a pmd always exists (as it's folded
327 * into the pgd entry)
328 */
329#define pgd_none(pgd) (0)
330#define pgd_bad(pgd) (0)
331#define pgd_present(pgd) (1)
332#define pgd_clear(pgdp) do { } while (0)
333#define set_pgd(pgd,pgdp) do { } while (0)
334
Linus Torvalds1da177e2005-04-16 15:20:36 -0700335/* to find an entry in a page-table-directory */
336#define pgd_index(addr) ((addr) >> PGDIR_SHIFT)
337
338#define pgd_offset(mm, addr) ((mm)->pgd+pgd_index(addr))
339
340/* to find an entry in a kernel page-table-directory */
341#define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
342
343/* Find an entry in the second-level page table.. */
344#define pmd_offset(dir, addr) ((pmd_t *)(dir))
345
346/* Find an entry in the third-level page table.. */
347#define __pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
348
349static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
350{
351 const unsigned long mask = L_PTE_EXEC | L_PTE_WRITE | L_PTE_USER;
352 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
353 return pte;
354}
355
356extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
357
358/* Encode and decode a swap entry.
359 *
360 * We support up to 32GB of swap on 4k machines
361 */
362#define __swp_type(x) (((x).val >> 2) & 0x7f)
363#define __swp_offset(x) ((x).val >> 9)
364#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((offset) << 9) })
365#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
366#define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
367
368/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
369/* FIXME: this is not correct */
370#define kern_addr_valid(addr) (1)
371
372#include <asm-generic/pgtable.h>
373
374/*
375 * We provide our own arch_get_unmapped_area to cope with VIPT caches.
376 */
377#define HAVE_ARCH_UNMAPPED_AREA
378
379/*
Randy Dunlap33bf5612005-09-13 01:25:50 -0700380 * remap a physical page `pfn' of size `size' with page protection `prot'
Linus Torvalds1da177e2005-04-16 15:20:36 -0700381 * into virtual address `from'
382 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700383#define io_remap_pfn_range(vma,from,pfn,size,prot) \
384 remap_pfn_range(vma, from, pfn, size, prot)
385
386#define MK_IOSPACE_PFN(space, pfn) (pfn)
387#define GET_IOSPACE(pfn) 0
388#define GET_PFN(pfn) (pfn)
389
390#define pgtable_cache_init() do { } while (0)
391
392#endif /* !__ASSEMBLY__ */
393
Russell King002547b2006-06-20 20:46:52 +0100394#endif /* CONFIG_MMU */
395
Linus Torvalds1da177e2005-04-16 15:20:36 -0700396#endif /* _ASMARM_PGTABLE_H */