blob: 3e1d2221252180ca302cca3e068f113c515b0a2a [file] [log] [blame]
Markus Stockhausen50ba29a2015-02-24 20:36:45 +01001/*
2 * Glue code for SHA-1 implementation for SPE instructions (PPC)
3 *
4 * Based on generic implementation.
5 *
6 * Copyright (c) 2015 Markus Stockhausen <stockhausen@collogia.de>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 */
14
15#include <crypto/internal/hash.h>
16#include <linux/init.h>
17#include <linux/module.h>
18#include <linux/mm.h>
19#include <linux/cryptohash.h>
20#include <linux/types.h>
21#include <crypto/sha.h>
22#include <asm/byteorder.h>
23#include <asm/switch_to.h>
24#include <linux/hardirq.h>
25
26/*
27 * MAX_BYTES defines the number of bytes that are allowed to be processed
28 * between preempt_disable() and preempt_enable(). SHA1 takes ~1000
29 * operations per 64 bytes. e500 cores can issue two arithmetic instructions
30 * per clock cycle using one 32/64 bit unit (SU1) and one 32 bit unit (SU2).
31 * Thus 2KB of input data will need an estimated maximum of 18,000 cycles.
32 * Headroom for cache misses included. Even with the low end model clocked
33 * at 667 MHz this equals to a critical time window of less than 27us.
34 *
35 */
36#define MAX_BYTES 2048
37
38extern void ppc_spe_sha1_transform(u32 *state, const u8 *src, u32 blocks);
39
40static void spe_begin(void)
41{
42 /* We just start SPE operations and will save SPE registers later. */
43 preempt_disable();
44 enable_kernel_spe();
45}
46
47static void spe_end(void)
48{
49 /* reenable preemption */
50 preempt_enable();
51}
52
53static inline void ppc_sha1_clear_context(struct sha1_state *sctx)
54{
55 int count = sizeof(struct sha1_state) >> 2;
56 u32 *ptr = (u32 *)sctx;
57
58 /* make sure we can clear the fast way */
59 BUILD_BUG_ON(sizeof(struct sha1_state) % 4);
60 do { *ptr++ = 0; } while (--count);
61}
62
63static int ppc_spe_sha1_init(struct shash_desc *desc)
64{
65 struct sha1_state *sctx = shash_desc_ctx(desc);
66
67 sctx->state[0] = SHA1_H0;
68 sctx->state[1] = SHA1_H1;
69 sctx->state[2] = SHA1_H2;
70 sctx->state[3] = SHA1_H3;
71 sctx->state[4] = SHA1_H4;
72 sctx->count = 0;
73
74 return 0;
75}
76
77static int ppc_spe_sha1_update(struct shash_desc *desc, const u8 *data,
78 unsigned int len)
79{
80 struct sha1_state *sctx = shash_desc_ctx(desc);
81 const unsigned int offset = sctx->count & 0x3f;
82 const unsigned int avail = 64 - offset;
83 unsigned int bytes;
84 const u8 *src = data;
85
86 if (avail > len) {
87 sctx->count += len;
88 memcpy((char *)sctx->buffer + offset, src, len);
89 return 0;
90 }
91
92 sctx->count += len;
93
94 if (offset) {
95 memcpy((char *)sctx->buffer + offset, src, avail);
96
97 spe_begin();
98 ppc_spe_sha1_transform(sctx->state, (const u8 *)sctx->buffer, 1);
99 spe_end();
100
101 len -= avail;
102 src += avail;
103 }
104
105 while (len > 63) {
106 bytes = (len > MAX_BYTES) ? MAX_BYTES : len;
107 bytes = bytes & ~0x3f;
108
109 spe_begin();
110 ppc_spe_sha1_transform(sctx->state, src, bytes >> 6);
111 spe_end();
112
113 src += bytes;
114 len -= bytes;
115 };
116
117 memcpy((char *)sctx->buffer, src, len);
118 return 0;
119}
120
121static int ppc_spe_sha1_final(struct shash_desc *desc, u8 *out)
122{
123 struct sha1_state *sctx = shash_desc_ctx(desc);
124 const unsigned int offset = sctx->count & 0x3f;
125 char *p = (char *)sctx->buffer + offset;
126 int padlen;
127 __be64 *pbits = (__be64 *)(((char *)&sctx->buffer) + 56);
128 __be32 *dst = (__be32 *)out;
129
130 padlen = 55 - offset;
131 *p++ = 0x80;
132
133 spe_begin();
134
135 if (padlen < 0) {
136 memset(p, 0x00, padlen + sizeof (u64));
137 ppc_spe_sha1_transform(sctx->state, sctx->buffer, 1);
138 p = (char *)sctx->buffer;
139 padlen = 56;
140 }
141
142 memset(p, 0, padlen);
143 *pbits = cpu_to_be64(sctx->count << 3);
144 ppc_spe_sha1_transform(sctx->state, sctx->buffer, 1);
145
146 spe_end();
147
148 dst[0] = cpu_to_be32(sctx->state[0]);
149 dst[1] = cpu_to_be32(sctx->state[1]);
150 dst[2] = cpu_to_be32(sctx->state[2]);
151 dst[3] = cpu_to_be32(sctx->state[3]);
152 dst[4] = cpu_to_be32(sctx->state[4]);
153
154 ppc_sha1_clear_context(sctx);
155 return 0;
156}
157
158static int ppc_spe_sha1_export(struct shash_desc *desc, void *out)
159{
160 struct sha1_state *sctx = shash_desc_ctx(desc);
161
162 memcpy(out, sctx, sizeof(*sctx));
163 return 0;
164}
165
166static int ppc_spe_sha1_import(struct shash_desc *desc, const void *in)
167{
168 struct sha1_state *sctx = shash_desc_ctx(desc);
169
170 memcpy(sctx, in, sizeof(*sctx));
171 return 0;
172}
173
174static struct shash_alg alg = {
175 .digestsize = SHA1_DIGEST_SIZE,
176 .init = ppc_spe_sha1_init,
177 .update = ppc_spe_sha1_update,
178 .final = ppc_spe_sha1_final,
179 .export = ppc_spe_sha1_export,
180 .import = ppc_spe_sha1_import,
181 .descsize = sizeof(struct sha1_state),
182 .statesize = sizeof(struct sha1_state),
183 .base = {
184 .cra_name = "sha1",
185 .cra_driver_name= "sha1-ppc-spe",
186 .cra_priority = 300,
187 .cra_flags = CRYPTO_ALG_TYPE_SHASH,
188 .cra_blocksize = SHA1_BLOCK_SIZE,
189 .cra_module = THIS_MODULE,
190 }
191};
192
193static int __init ppc_spe_sha1_mod_init(void)
194{
195 return crypto_register_shash(&alg);
196}
197
198static void __exit ppc_spe_sha1_mod_fini(void)
199{
200 crypto_unregister_shash(&alg);
201}
202
203module_init(ppc_spe_sha1_mod_init);
204module_exit(ppc_spe_sha1_mod_fini);
205
206MODULE_LICENSE("GPL");
207MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm, SPE optimized");
208
209MODULE_ALIAS_CRYPTO("sha1");
210MODULE_ALIAS_CRYPTO("sha1-ppc-spe");