blob: cad30b8a1d71cb7b573879ae21814c49758419a3 [file] [log] [blame]
Mika Westerberg011f23a2010-05-06 04:47:04 +00001/*
2 * Driver for Cirrus Logic EP93xx SPI controller.
3 *
Mika Westerberg626a96d2011-05-29 13:10:06 +03004 * Copyright (C) 2010-2011 Mika Westerberg
Mika Westerberg011f23a2010-05-06 04:47:04 +00005 *
6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
7 *
8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9 *
10 * For more information about the SPI controller see documentation on Cirrus
11 * Logic web site:
12 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18
19#include <linux/io.h>
20#include <linux/clk.h>
21#include <linux/err.h>
22#include <linux/delay.h>
23#include <linux/device.h>
Mika Westerberg626a96d2011-05-29 13:10:06 +030024#include <linux/dmaengine.h>
Mika Westerberg011f23a2010-05-06 04:47:04 +000025#include <linux/bitops.h>
26#include <linux/interrupt.h>
Mika Westerberg5bdb76132011-10-15 21:40:09 +030027#include <linux/module.h>
Mika Westerberg011f23a2010-05-06 04:47:04 +000028#include <linux/platform_device.h>
29#include <linux/workqueue.h>
30#include <linux/sched.h>
Mika Westerberg626a96d2011-05-29 13:10:06 +030031#include <linux/scatterlist.h>
Mika Westerberg011f23a2010-05-06 04:47:04 +000032#include <linux/spi/spi.h>
33
Arnd Bergmanna3b29242012-08-24 15:12:11 +020034#include <linux/platform_data/dma-ep93xx.h>
35#include <linux/platform_data/spi-ep93xx.h>
Mika Westerberg011f23a2010-05-06 04:47:04 +000036
37#define SSPCR0 0x0000
38#define SSPCR0_MODE_SHIFT 6
39#define SSPCR0_SCR_SHIFT 8
40
41#define SSPCR1 0x0004
42#define SSPCR1_RIE BIT(0)
43#define SSPCR1_TIE BIT(1)
44#define SSPCR1_RORIE BIT(2)
45#define SSPCR1_LBM BIT(3)
46#define SSPCR1_SSE BIT(4)
47#define SSPCR1_MS BIT(5)
48#define SSPCR1_SOD BIT(6)
49
50#define SSPDR 0x0008
51
52#define SSPSR 0x000c
53#define SSPSR_TFE BIT(0)
54#define SSPSR_TNF BIT(1)
55#define SSPSR_RNE BIT(2)
56#define SSPSR_RFF BIT(3)
57#define SSPSR_BSY BIT(4)
58#define SSPCPSR 0x0010
59
60#define SSPIIR 0x0014
61#define SSPIIR_RIS BIT(0)
62#define SSPIIR_TIS BIT(1)
63#define SSPIIR_RORIS BIT(2)
64#define SSPICR SSPIIR
65
66/* timeout in milliseconds */
67#define SPI_TIMEOUT 5
68/* maximum depth of RX/TX FIFO */
69#define SPI_FIFO_SIZE 8
70
71/**
72 * struct ep93xx_spi - EP93xx SPI controller structure
73 * @lock: spinlock that protects concurrent accesses to fields @running,
74 * @current_msg and @msg_queue
75 * @pdev: pointer to platform device
76 * @clk: clock for the controller
77 * @regs_base: pointer to ioremap()'d registers
Mika Westerberg626a96d2011-05-29 13:10:06 +030078 * @sspdr_phys: physical address of the SSPDR register
Mika Westerberg011f23a2010-05-06 04:47:04 +000079 * @min_rate: minimum clock rate (in Hz) supported by the controller
80 * @max_rate: maximum clock rate (in Hz) supported by the controller
81 * @running: is the queue running
82 * @wq: workqueue used by the driver
83 * @msg_work: work that is queued for the driver
84 * @wait: wait here until given transfer is completed
85 * @msg_queue: queue for the messages
86 * @current_msg: message that is currently processed (or %NULL if none)
87 * @tx: current byte in transfer to transmit
88 * @rx: current byte in transfer to receive
89 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
90 * frame decreases this level and sending one frame increases it.
Mika Westerberg626a96d2011-05-29 13:10:06 +030091 * @dma_rx: RX DMA channel
92 * @dma_tx: TX DMA channel
93 * @dma_rx_data: RX parameters passed to the DMA engine
94 * @dma_tx_data: TX parameters passed to the DMA engine
95 * @rx_sgt: sg table for RX transfers
96 * @tx_sgt: sg table for TX transfers
97 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
98 * the client
Mika Westerberg011f23a2010-05-06 04:47:04 +000099 *
100 * This structure holds EP93xx SPI controller specific information. When
101 * @running is %true, driver accepts transfer requests from protocol drivers.
102 * @current_msg is used to hold pointer to the message that is currently
103 * processed. If @current_msg is %NULL, it means that no processing is going
104 * on.
105 *
106 * Most of the fields are only written once and they can be accessed without
107 * taking the @lock. Fields that are accessed concurrently are: @current_msg,
108 * @running, and @msg_queue.
109 */
110struct ep93xx_spi {
111 spinlock_t lock;
112 const struct platform_device *pdev;
113 struct clk *clk;
114 void __iomem *regs_base;
Mika Westerberg626a96d2011-05-29 13:10:06 +0300115 unsigned long sspdr_phys;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000116 unsigned long min_rate;
117 unsigned long max_rate;
118 bool running;
119 struct workqueue_struct *wq;
120 struct work_struct msg_work;
121 struct completion wait;
122 struct list_head msg_queue;
123 struct spi_message *current_msg;
124 size_t tx;
125 size_t rx;
126 size_t fifo_level;
Mika Westerberg626a96d2011-05-29 13:10:06 +0300127 struct dma_chan *dma_rx;
128 struct dma_chan *dma_tx;
129 struct ep93xx_dma_data dma_rx_data;
130 struct ep93xx_dma_data dma_tx_data;
131 struct sg_table rx_sgt;
132 struct sg_table tx_sgt;
133 void *zeropage;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000134};
135
136/**
137 * struct ep93xx_spi_chip - SPI device hardware settings
138 * @spi: back pointer to the SPI device
139 * @rate: max rate in hz this chip supports
140 * @div_cpsr: cpsr (pre-scaler) divider
141 * @div_scr: scr divider
142 * @dss: bits per word (4 - 16 bits)
143 * @ops: private chip operations
144 *
145 * This structure is used to store hardware register specific settings for each
146 * SPI device. Settings are written to hardware by function
147 * ep93xx_spi_chip_setup().
148 */
149struct ep93xx_spi_chip {
150 const struct spi_device *spi;
151 unsigned long rate;
152 u8 div_cpsr;
153 u8 div_scr;
154 u8 dss;
155 struct ep93xx_spi_chip_ops *ops;
156};
157
158/* converts bits per word to CR0.DSS value */
159#define bits_per_word_to_dss(bpw) ((bpw) - 1)
160
161static inline void
162ep93xx_spi_write_u8(const struct ep93xx_spi *espi, u16 reg, u8 value)
163{
164 __raw_writeb(value, espi->regs_base + reg);
165}
166
167static inline u8
168ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
169{
170 return __raw_readb(spi->regs_base + reg);
171}
172
173static inline void
174ep93xx_spi_write_u16(const struct ep93xx_spi *espi, u16 reg, u16 value)
175{
176 __raw_writew(value, espi->regs_base + reg);
177}
178
179static inline u16
180ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
181{
182 return __raw_readw(spi->regs_base + reg);
183}
184
185static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
186{
187 u8 regval;
188 int err;
189
190 err = clk_enable(espi->clk);
191 if (err)
192 return err;
193
194 regval = ep93xx_spi_read_u8(espi, SSPCR1);
195 regval |= SSPCR1_SSE;
196 ep93xx_spi_write_u8(espi, SSPCR1, regval);
197
198 return 0;
199}
200
201static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
202{
203 u8 regval;
204
205 regval = ep93xx_spi_read_u8(espi, SSPCR1);
206 regval &= ~SSPCR1_SSE;
207 ep93xx_spi_write_u8(espi, SSPCR1, regval);
208
209 clk_disable(espi->clk);
210}
211
212static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
213{
214 u8 regval;
215
216 regval = ep93xx_spi_read_u8(espi, SSPCR1);
217 regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
218 ep93xx_spi_write_u8(espi, SSPCR1, regval);
219}
220
221static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
222{
223 u8 regval;
224
225 regval = ep93xx_spi_read_u8(espi, SSPCR1);
226 regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
227 ep93xx_spi_write_u8(espi, SSPCR1, regval);
228}
229
230/**
231 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
232 * @espi: ep93xx SPI controller struct
233 * @chip: divisors are calculated for this chip
234 * @rate: desired SPI output clock rate
235 *
236 * Function calculates cpsr (clock pre-scaler) and scr divisors based on
237 * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If,
238 * for some reason, divisors cannot be calculated nothing is stored and
239 * %-EINVAL is returned.
240 */
241static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
242 struct ep93xx_spi_chip *chip,
243 unsigned long rate)
244{
245 unsigned long spi_clk_rate = clk_get_rate(espi->clk);
246 int cpsr, scr;
247
248 /*
249 * Make sure that max value is between values supported by the
250 * controller. Note that minimum value is already checked in
251 * ep93xx_spi_transfer().
252 */
253 rate = clamp(rate, espi->min_rate, espi->max_rate);
254
255 /*
256 * Calculate divisors so that we can get speed according the
257 * following formula:
258 * rate = spi_clock_rate / (cpsr * (1 + scr))
259 *
260 * cpsr must be even number and starts from 2, scr can be any number
261 * between 0 and 255.
262 */
263 for (cpsr = 2; cpsr <= 254; cpsr += 2) {
264 for (scr = 0; scr <= 255; scr++) {
265 if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
266 chip->div_scr = (u8)scr;
267 chip->div_cpsr = (u8)cpsr;
268 return 0;
269 }
270 }
271 }
272
273 return -EINVAL;
274}
275
276static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
277{
278 struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
279 int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
280
281 if (chip->ops && chip->ops->cs_control)
282 chip->ops->cs_control(spi, value);
283}
284
285/**
286 * ep93xx_spi_setup() - setup an SPI device
287 * @spi: SPI device to setup
288 *
289 * This function sets up SPI device mode, speed etc. Can be called multiple
290 * times for a single device. Returns %0 in case of success, negative error in
291 * case of failure. When this function returns success, the device is
292 * deselected.
293 */
294static int ep93xx_spi_setup(struct spi_device *spi)
295{
296 struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
297 struct ep93xx_spi_chip *chip;
298
Mika Westerberg011f23a2010-05-06 04:47:04 +0000299 chip = spi_get_ctldata(spi);
300 if (!chip) {
301 dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
302 spi->modalias);
303
304 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
305 if (!chip)
306 return -ENOMEM;
307
308 chip->spi = spi;
309 chip->ops = spi->controller_data;
310
311 if (chip->ops && chip->ops->setup) {
312 int ret = chip->ops->setup(spi);
313 if (ret) {
314 kfree(chip);
315 return ret;
316 }
317 }
318
319 spi_set_ctldata(spi, chip);
320 }
321
322 if (spi->max_speed_hz != chip->rate) {
323 int err;
324
325 err = ep93xx_spi_calc_divisors(espi, chip, spi->max_speed_hz);
326 if (err != 0) {
327 spi_set_ctldata(spi, NULL);
328 kfree(chip);
329 return err;
330 }
331 chip->rate = spi->max_speed_hz;
332 }
333
334 chip->dss = bits_per_word_to_dss(spi->bits_per_word);
335
336 ep93xx_spi_cs_control(spi, false);
337 return 0;
338}
339
340/**
341 * ep93xx_spi_transfer() - queue message to be transferred
342 * @spi: target SPI device
343 * @msg: message to be transferred
344 *
345 * This function is called by SPI device drivers when they are going to transfer
346 * a new message. It simply puts the message in the queue and schedules
347 * workqueue to perform the actual transfer later on.
348 *
349 * Returns %0 on success and negative error in case of failure.
350 */
351static int ep93xx_spi_transfer(struct spi_device *spi, struct spi_message *msg)
352{
353 struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
354 struct spi_transfer *t;
355 unsigned long flags;
356
357 if (!msg || !msg->complete)
358 return -EINVAL;
359
360 /* first validate each transfer */
361 list_for_each_entry(t, &msg->transfers, transfer_list) {
Mika Westerberg011f23a2010-05-06 04:47:04 +0000362 if (t->speed_hz && t->speed_hz < espi->min_rate)
363 return -EINVAL;
364 }
365
366 /*
367 * Now that we own the message, let's initialize it so that it is
368 * suitable for us. We use @msg->status to signal whether there was
369 * error in transfer and @msg->state is used to hold pointer to the
370 * current transfer (or %NULL if no active current transfer).
371 */
372 msg->state = NULL;
373 msg->status = 0;
374 msg->actual_length = 0;
375
376 spin_lock_irqsave(&espi->lock, flags);
377 if (!espi->running) {
378 spin_unlock_irqrestore(&espi->lock, flags);
379 return -ESHUTDOWN;
380 }
381 list_add_tail(&msg->queue, &espi->msg_queue);
382 queue_work(espi->wq, &espi->msg_work);
383 spin_unlock_irqrestore(&espi->lock, flags);
384
385 return 0;
386}
387
388/**
389 * ep93xx_spi_cleanup() - cleans up master controller specific state
390 * @spi: SPI device to cleanup
391 *
392 * This function releases master controller specific state for given @spi
393 * device.
394 */
395static void ep93xx_spi_cleanup(struct spi_device *spi)
396{
397 struct ep93xx_spi_chip *chip;
398
399 chip = spi_get_ctldata(spi);
400 if (chip) {
401 if (chip->ops && chip->ops->cleanup)
402 chip->ops->cleanup(spi);
403 spi_set_ctldata(spi, NULL);
404 kfree(chip);
405 }
406}
407
408/**
409 * ep93xx_spi_chip_setup() - configures hardware according to given @chip
410 * @espi: ep93xx SPI controller struct
411 * @chip: chip specific settings
412 *
413 * This function sets up the actual hardware registers with settings given in
414 * @chip. Note that no validation is done so make sure that callers validate
415 * settings before calling this.
416 */
417static void ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
418 const struct ep93xx_spi_chip *chip)
419{
420 u16 cr0;
421
422 cr0 = chip->div_scr << SSPCR0_SCR_SHIFT;
423 cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
424 cr0 |= chip->dss;
425
426 dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
427 chip->spi->mode, chip->div_cpsr, chip->div_scr, chip->dss);
428 dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0);
429
430 ep93xx_spi_write_u8(espi, SSPCPSR, chip->div_cpsr);
431 ep93xx_spi_write_u16(espi, SSPCR0, cr0);
432}
433
434static inline int bits_per_word(const struct ep93xx_spi *espi)
435{
436 struct spi_message *msg = espi->current_msg;
437 struct spi_transfer *t = msg->state;
438
Laxman Dewangan766ed702012-12-18 14:25:43 +0530439 return t->bits_per_word;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000440}
441
442static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
443{
444 if (bits_per_word(espi) > 8) {
445 u16 tx_val = 0;
446
447 if (t->tx_buf)
448 tx_val = ((u16 *)t->tx_buf)[espi->tx];
449 ep93xx_spi_write_u16(espi, SSPDR, tx_val);
450 espi->tx += sizeof(tx_val);
451 } else {
452 u8 tx_val = 0;
453
454 if (t->tx_buf)
455 tx_val = ((u8 *)t->tx_buf)[espi->tx];
456 ep93xx_spi_write_u8(espi, SSPDR, tx_val);
457 espi->tx += sizeof(tx_val);
458 }
459}
460
461static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
462{
463 if (bits_per_word(espi) > 8) {
464 u16 rx_val;
465
466 rx_val = ep93xx_spi_read_u16(espi, SSPDR);
467 if (t->rx_buf)
468 ((u16 *)t->rx_buf)[espi->rx] = rx_val;
469 espi->rx += sizeof(rx_val);
470 } else {
471 u8 rx_val;
472
473 rx_val = ep93xx_spi_read_u8(espi, SSPDR);
474 if (t->rx_buf)
475 ((u8 *)t->rx_buf)[espi->rx] = rx_val;
476 espi->rx += sizeof(rx_val);
477 }
478}
479
480/**
481 * ep93xx_spi_read_write() - perform next RX/TX transfer
482 * @espi: ep93xx SPI controller struct
483 *
484 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
485 * called several times, the whole transfer will be completed. Returns
486 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
487 *
488 * When this function is finished, RX FIFO should be empty and TX FIFO should be
489 * full.
490 */
491static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
492{
493 struct spi_message *msg = espi->current_msg;
494 struct spi_transfer *t = msg->state;
495
496 /* read as long as RX FIFO has frames in it */
497 while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
498 ep93xx_do_read(espi, t);
499 espi->fifo_level--;
500 }
501
502 /* write as long as TX FIFO has room */
503 while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
504 ep93xx_do_write(espi, t);
505 espi->fifo_level++;
506 }
507
Mika Westerberg626a96d2011-05-29 13:10:06 +0300508 if (espi->rx == t->len)
Mika Westerberg011f23a2010-05-06 04:47:04 +0000509 return 0;
Mika Westerberg011f23a2010-05-06 04:47:04 +0000510
511 return -EINPROGRESS;
512}
513
Mika Westerberg626a96d2011-05-29 13:10:06 +0300514static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
515{
516 /*
517 * Now everything is set up for the current transfer. We prime the TX
518 * FIFO, enable interrupts, and wait for the transfer to complete.
519 */
520 if (ep93xx_spi_read_write(espi)) {
521 ep93xx_spi_enable_interrupts(espi);
522 wait_for_completion(&espi->wait);
523 }
524}
525
526/**
527 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
528 * @espi: ep93xx SPI controller struct
529 * @dir: DMA transfer direction
530 *
531 * Function configures the DMA, maps the buffer and prepares the DMA
532 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
533 * in case of failure.
534 */
535static struct dma_async_tx_descriptor *
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700536ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir)
Mika Westerberg626a96d2011-05-29 13:10:06 +0300537{
538 struct spi_transfer *t = espi->current_msg->state;
539 struct dma_async_tx_descriptor *txd;
540 enum dma_slave_buswidth buswidth;
541 struct dma_slave_config conf;
542 struct scatterlist *sg;
543 struct sg_table *sgt;
544 struct dma_chan *chan;
545 const void *buf, *pbuf;
546 size_t len = t->len;
547 int i, ret, nents;
548
549 if (bits_per_word(espi) > 8)
550 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
551 else
552 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
553
554 memset(&conf, 0, sizeof(conf));
555 conf.direction = dir;
556
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700557 if (dir == DMA_DEV_TO_MEM) {
Mika Westerberg626a96d2011-05-29 13:10:06 +0300558 chan = espi->dma_rx;
559 buf = t->rx_buf;
560 sgt = &espi->rx_sgt;
561
562 conf.src_addr = espi->sspdr_phys;
563 conf.src_addr_width = buswidth;
564 } else {
565 chan = espi->dma_tx;
566 buf = t->tx_buf;
567 sgt = &espi->tx_sgt;
568
569 conf.dst_addr = espi->sspdr_phys;
570 conf.dst_addr_width = buswidth;
571 }
572
573 ret = dmaengine_slave_config(chan, &conf);
574 if (ret)
575 return ERR_PTR(ret);
576
577 /*
578 * We need to split the transfer into PAGE_SIZE'd chunks. This is
579 * because we are using @espi->zeropage to provide a zero RX buffer
580 * for the TX transfers and we have only allocated one page for that.
581 *
582 * For performance reasons we allocate a new sg_table only when
583 * needed. Otherwise we will re-use the current one. Eventually the
584 * last sg_table is released in ep93xx_spi_release_dma().
585 */
586
587 nents = DIV_ROUND_UP(len, PAGE_SIZE);
588 if (nents != sgt->nents) {
589 sg_free_table(sgt);
590
591 ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
592 if (ret)
593 return ERR_PTR(ret);
594 }
595
596 pbuf = buf;
597 for_each_sg(sgt->sgl, sg, sgt->nents, i) {
598 size_t bytes = min_t(size_t, len, PAGE_SIZE);
599
600 if (buf) {
601 sg_set_page(sg, virt_to_page(pbuf), bytes,
602 offset_in_page(pbuf));
603 } else {
604 sg_set_page(sg, virt_to_page(espi->zeropage),
605 bytes, 0);
606 }
607
608 pbuf += bytes;
609 len -= bytes;
610 }
611
612 if (WARN_ON(len)) {
613 dev_warn(&espi->pdev->dev, "len = %d expected 0!", len);
614 return ERR_PTR(-EINVAL);
615 }
616
617 nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
618 if (!nents)
619 return ERR_PTR(-ENOMEM);
620
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700621 txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
Mika Westerberg626a96d2011-05-29 13:10:06 +0300622 if (!txd) {
623 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
624 return ERR_PTR(-ENOMEM);
625 }
626 return txd;
627}
628
629/**
630 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
631 * @espi: ep93xx SPI controller struct
632 * @dir: DMA transfer direction
633 *
634 * Function finishes with the DMA transfer. After this, the DMA buffer is
635 * unmapped.
636 */
637static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700638 enum dma_transfer_direction dir)
Mika Westerberg626a96d2011-05-29 13:10:06 +0300639{
640 struct dma_chan *chan;
641 struct sg_table *sgt;
642
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700643 if (dir == DMA_DEV_TO_MEM) {
Mika Westerberg626a96d2011-05-29 13:10:06 +0300644 chan = espi->dma_rx;
645 sgt = &espi->rx_sgt;
646 } else {
647 chan = espi->dma_tx;
648 sgt = &espi->tx_sgt;
649 }
650
651 dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
652}
653
654static void ep93xx_spi_dma_callback(void *callback_param)
655{
656 complete(callback_param);
657}
658
659static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
660{
661 struct spi_message *msg = espi->current_msg;
662 struct dma_async_tx_descriptor *rxd, *txd;
663
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700664 rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM);
Mika Westerberg626a96d2011-05-29 13:10:06 +0300665 if (IS_ERR(rxd)) {
666 dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
667 msg->status = PTR_ERR(rxd);
668 return;
669 }
670
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700671 txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV);
Mika Westerberg626a96d2011-05-29 13:10:06 +0300672 if (IS_ERR(txd)) {
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700673 ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
Mika Westerberg626a96d2011-05-29 13:10:06 +0300674 dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
675 msg->status = PTR_ERR(txd);
676 return;
677 }
678
679 /* We are ready when RX is done */
680 rxd->callback = ep93xx_spi_dma_callback;
681 rxd->callback_param = &espi->wait;
682
683 /* Now submit both descriptors and wait while they finish */
684 dmaengine_submit(rxd);
685 dmaengine_submit(txd);
686
687 dma_async_issue_pending(espi->dma_rx);
688 dma_async_issue_pending(espi->dma_tx);
689
690 wait_for_completion(&espi->wait);
691
H Hartley Sweetend4b9b572012-04-17 18:46:36 -0700692 ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV);
693 ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
Mika Westerberg626a96d2011-05-29 13:10:06 +0300694}
695
Mika Westerberg011f23a2010-05-06 04:47:04 +0000696/**
697 * ep93xx_spi_process_transfer() - processes one SPI transfer
698 * @espi: ep93xx SPI controller struct
699 * @msg: current message
700 * @t: transfer to process
701 *
702 * This function processes one SPI transfer given in @t. Function waits until
703 * transfer is complete (may sleep) and updates @msg->status based on whether
Lucas De Marchi25985ed2011-03-30 22:57:33 -0300704 * transfer was successfully processed or not.
Mika Westerberg011f23a2010-05-06 04:47:04 +0000705 */
706static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
707 struct spi_message *msg,
708 struct spi_transfer *t)
709{
710 struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
711
712 msg->state = t;
713
714 /*
715 * Handle any transfer specific settings if needed. We use
716 * temporary chip settings here and restore original later when
717 * the transfer is finished.
718 */
719 if (t->speed_hz || t->bits_per_word) {
720 struct ep93xx_spi_chip tmp_chip = *chip;
721
722 if (t->speed_hz) {
723 int err;
724
725 err = ep93xx_spi_calc_divisors(espi, &tmp_chip,
726 t->speed_hz);
727 if (err) {
728 dev_err(&espi->pdev->dev,
729 "failed to adjust speed\n");
730 msg->status = err;
731 return;
732 }
733 }
734
735 if (t->bits_per_word)
736 tmp_chip.dss = bits_per_word_to_dss(t->bits_per_word);
737
738 /*
739 * Set up temporary new hw settings for this transfer.
740 */
741 ep93xx_spi_chip_setup(espi, &tmp_chip);
742 }
743
744 espi->rx = 0;
745 espi->tx = 0;
746
747 /*
Mika Westerberg626a96d2011-05-29 13:10:06 +0300748 * There is no point of setting up DMA for the transfers which will
749 * fit into the FIFO and can be transferred with a single interrupt.
750 * So in these cases we will be using PIO and don't bother for DMA.
Mika Westerberg011f23a2010-05-06 04:47:04 +0000751 */
Mika Westerberg626a96d2011-05-29 13:10:06 +0300752 if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
753 ep93xx_spi_dma_transfer(espi);
754 else
755 ep93xx_spi_pio_transfer(espi);
Mika Westerberg011f23a2010-05-06 04:47:04 +0000756
757 /*
758 * In case of error during transmit, we bail out from processing
759 * the message.
760 */
761 if (msg->status)
762 return;
763
Mika Westerberg626a96d2011-05-29 13:10:06 +0300764 msg->actual_length += t->len;
765
Mika Westerberg011f23a2010-05-06 04:47:04 +0000766 /*
767 * After this transfer is finished, perform any possible
768 * post-transfer actions requested by the protocol driver.
769 */
770 if (t->delay_usecs) {
771 set_current_state(TASK_UNINTERRUPTIBLE);
772 schedule_timeout(usecs_to_jiffies(t->delay_usecs));
773 }
774 if (t->cs_change) {
775 if (!list_is_last(&t->transfer_list, &msg->transfers)) {
776 /*
777 * In case protocol driver is asking us to drop the
778 * chipselect briefly, we let the scheduler to handle
779 * any "delay" here.
780 */
781 ep93xx_spi_cs_control(msg->spi, false);
782 cond_resched();
783 ep93xx_spi_cs_control(msg->spi, true);
784 }
785 }
786
787 if (t->speed_hz || t->bits_per_word)
788 ep93xx_spi_chip_setup(espi, chip);
789}
790
791/*
792 * ep93xx_spi_process_message() - process one SPI message
793 * @espi: ep93xx SPI controller struct
794 * @msg: message to process
795 *
796 * This function processes a single SPI message. We go through all transfers in
797 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
798 * asserted during the whole message (unless per transfer cs_change is set).
799 *
800 * @msg->status contains %0 in case of success or negative error code in case of
801 * failure.
802 */
803static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
804 struct spi_message *msg)
805{
806 unsigned long timeout;
807 struct spi_transfer *t;
808 int err;
809
810 /*
811 * Enable the SPI controller and its clock.
812 */
813 err = ep93xx_spi_enable(espi);
814 if (err) {
815 dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
816 msg->status = err;
817 return;
818 }
819
820 /*
821 * Just to be sure: flush any data from RX FIFO.
822 */
823 timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
824 while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
825 if (time_after(jiffies, timeout)) {
826 dev_warn(&espi->pdev->dev,
827 "timeout while flushing RX FIFO\n");
828 msg->status = -ETIMEDOUT;
829 return;
830 }
831 ep93xx_spi_read_u16(espi, SSPDR);
832 }
833
834 /*
835 * We explicitly handle FIFO level. This way we don't have to check TX
836 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
837 */
838 espi->fifo_level = 0;
839
840 /*
841 * Update SPI controller registers according to spi device and assert
842 * the chipselect.
843 */
844 ep93xx_spi_chip_setup(espi, spi_get_ctldata(msg->spi));
845 ep93xx_spi_cs_control(msg->spi, true);
846
847 list_for_each_entry(t, &msg->transfers, transfer_list) {
848 ep93xx_spi_process_transfer(espi, msg, t);
849 if (msg->status)
850 break;
851 }
852
853 /*
854 * Now the whole message is transferred (or failed for some reason). We
855 * deselect the device and disable the SPI controller.
856 */
857 ep93xx_spi_cs_control(msg->spi, false);
858 ep93xx_spi_disable(espi);
859}
860
861#define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work))
862
863/**
864 * ep93xx_spi_work() - EP93xx SPI workqueue worker function
865 * @work: work struct
866 *
867 * Workqueue worker function. This function is called when there are new
868 * SPI messages to be processed. Message is taken out from the queue and then
869 * passed to ep93xx_spi_process_message().
870 *
871 * After message is transferred, protocol driver is notified by calling
872 * @msg->complete(). In case of error, @msg->status is set to negative error
873 * number, otherwise it contains zero (and @msg->actual_length is updated).
874 */
875static void ep93xx_spi_work(struct work_struct *work)
876{
877 struct ep93xx_spi *espi = work_to_espi(work);
878 struct spi_message *msg;
879
880 spin_lock_irq(&espi->lock);
881 if (!espi->running || espi->current_msg ||
882 list_empty(&espi->msg_queue)) {
883 spin_unlock_irq(&espi->lock);
884 return;
885 }
886 msg = list_first_entry(&espi->msg_queue, struct spi_message, queue);
887 list_del_init(&msg->queue);
888 espi->current_msg = msg;
889 spin_unlock_irq(&espi->lock);
890
891 ep93xx_spi_process_message(espi, msg);
892
893 /*
894 * Update the current message and re-schedule ourselves if there are
895 * more messages in the queue.
896 */
897 spin_lock_irq(&espi->lock);
898 espi->current_msg = NULL;
899 if (espi->running && !list_empty(&espi->msg_queue))
900 queue_work(espi->wq, &espi->msg_work);
901 spin_unlock_irq(&espi->lock);
902
903 /* notify the protocol driver that we are done with this message */
904 msg->complete(msg->context);
905}
906
907static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
908{
909 struct ep93xx_spi *espi = dev_id;
910 u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
911
912 /*
913 * If we got ROR (receive overrun) interrupt we know that something is
914 * wrong. Just abort the message.
915 */
916 if (unlikely(irq_status & SSPIIR_RORIS)) {
917 /* clear the overrun interrupt */
918 ep93xx_spi_write_u8(espi, SSPICR, 0);
919 dev_warn(&espi->pdev->dev,
920 "receive overrun, aborting the message\n");
921 espi->current_msg->status = -EIO;
922 } else {
923 /*
924 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
925 * simply execute next data transfer.
926 */
927 if (ep93xx_spi_read_write(espi)) {
928 /*
929 * In normal case, there still is some processing left
930 * for current transfer. Let's wait for the next
931 * interrupt then.
932 */
933 return IRQ_HANDLED;
934 }
935 }
936
937 /*
938 * Current transfer is finished, either with error or with success. In
939 * any case we disable interrupts and notify the worker to handle
940 * any post-processing of the message.
941 */
942 ep93xx_spi_disable_interrupts(espi);
943 complete(&espi->wait);
944 return IRQ_HANDLED;
945}
946
Mika Westerberg626a96d2011-05-29 13:10:06 +0300947static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
948{
949 if (ep93xx_dma_chan_is_m2p(chan))
950 return false;
951
952 chan->private = filter_param;
953 return true;
954}
955
956static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
957{
958 dma_cap_mask_t mask;
959 int ret;
960
961 espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
962 if (!espi->zeropage)
963 return -ENOMEM;
964
965 dma_cap_zero(mask);
966 dma_cap_set(DMA_SLAVE, mask);
967
968 espi->dma_rx_data.port = EP93XX_DMA_SSP;
Vinod Koula485df42011-10-14 10:47:38 +0530969 espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
Mika Westerberg626a96d2011-05-29 13:10:06 +0300970 espi->dma_rx_data.name = "ep93xx-spi-rx";
971
972 espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
973 &espi->dma_rx_data);
974 if (!espi->dma_rx) {
975 ret = -ENODEV;
976 goto fail_free_page;
977 }
978
979 espi->dma_tx_data.port = EP93XX_DMA_SSP;
Vinod Koula485df42011-10-14 10:47:38 +0530980 espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
Mika Westerberg626a96d2011-05-29 13:10:06 +0300981 espi->dma_tx_data.name = "ep93xx-spi-tx";
982
983 espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
984 &espi->dma_tx_data);
985 if (!espi->dma_tx) {
986 ret = -ENODEV;
987 goto fail_release_rx;
988 }
989
990 return 0;
991
992fail_release_rx:
993 dma_release_channel(espi->dma_rx);
994 espi->dma_rx = NULL;
995fail_free_page:
996 free_page((unsigned long)espi->zeropage);
997
998 return ret;
999}
1000
1001static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
1002{
1003 if (espi->dma_rx) {
1004 dma_release_channel(espi->dma_rx);
1005 sg_free_table(&espi->rx_sgt);
1006 }
1007 if (espi->dma_tx) {
1008 dma_release_channel(espi->dma_tx);
1009 sg_free_table(&espi->tx_sgt);
1010 }
1011
1012 if (espi->zeropage)
1013 free_page((unsigned long)espi->zeropage);
1014}
1015
Grant Likelyfd4a3192012-12-07 16:57:14 +00001016static int ep93xx_spi_probe(struct platform_device *pdev)
Mika Westerberg011f23a2010-05-06 04:47:04 +00001017{
1018 struct spi_master *master;
1019 struct ep93xx_spi_info *info;
1020 struct ep93xx_spi *espi;
1021 struct resource *res;
Hannu Heikkinen6d6467e2012-05-09 17:26:26 +03001022 int irq;
Mika Westerberg011f23a2010-05-06 04:47:04 +00001023 int error;
1024
1025 info = pdev->dev.platform_data;
1026
1027 master = spi_alloc_master(&pdev->dev, sizeof(*espi));
1028 if (!master) {
1029 dev_err(&pdev->dev, "failed to allocate spi master\n");
1030 return -ENOMEM;
1031 }
1032
1033 master->setup = ep93xx_spi_setup;
1034 master->transfer = ep93xx_spi_transfer;
1035 master->cleanup = ep93xx_spi_cleanup;
1036 master->bus_num = pdev->id;
1037 master->num_chipselect = info->num_chipselect;
1038 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
Stephen Warren24778be2013-05-21 20:36:35 -06001039 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001040
1041 platform_set_drvdata(pdev, master);
1042
1043 espi = spi_master_get_devdata(master);
1044
1045 espi->clk = clk_get(&pdev->dev, NULL);
1046 if (IS_ERR(espi->clk)) {
1047 dev_err(&pdev->dev, "unable to get spi clock\n");
1048 error = PTR_ERR(espi->clk);
1049 goto fail_release_master;
1050 }
1051
1052 spin_lock_init(&espi->lock);
1053 init_completion(&espi->wait);
1054
1055 /*
1056 * Calculate maximum and minimum supported clock rates
1057 * for the controller.
1058 */
1059 espi->max_rate = clk_get_rate(espi->clk) / 2;
1060 espi->min_rate = clk_get_rate(espi->clk) / (254 * 256);
1061 espi->pdev = pdev;
1062
Hannu Heikkinen6d6467e2012-05-09 17:26:26 +03001063 irq = platform_get_irq(pdev, 0);
1064 if (irq < 0) {
Mika Westerberg011f23a2010-05-06 04:47:04 +00001065 error = -EBUSY;
1066 dev_err(&pdev->dev, "failed to get irq resources\n");
1067 goto fail_put_clock;
1068 }
1069
1070 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1071 if (!res) {
1072 dev_err(&pdev->dev, "unable to get iomem resource\n");
1073 error = -ENODEV;
1074 goto fail_put_clock;
1075 }
1076
Mika Westerberg626a96d2011-05-29 13:10:06 +03001077 espi->sspdr_phys = res->start + SSPDR;
Hannu Heikkinen6d6467e2012-05-09 17:26:26 +03001078
Thierry Redingb0ee5602013-01-21 11:09:18 +01001079 espi->regs_base = devm_ioremap_resource(&pdev->dev, res);
1080 if (IS_ERR(espi->regs_base)) {
1081 error = PTR_ERR(espi->regs_base);
Hannu Heikkinen6d6467e2012-05-09 17:26:26 +03001082 goto fail_put_clock;
Mika Westerberg011f23a2010-05-06 04:47:04 +00001083 }
1084
Hannu Heikkinen6d6467e2012-05-09 17:26:26 +03001085 error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
1086 0, "ep93xx-spi", espi);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001087 if (error) {
1088 dev_err(&pdev->dev, "failed to request irq\n");
Hannu Heikkinen6d6467e2012-05-09 17:26:26 +03001089 goto fail_put_clock;
Mika Westerberg011f23a2010-05-06 04:47:04 +00001090 }
1091
Mika Westerberg626a96d2011-05-29 13:10:06 +03001092 if (info->use_dma && ep93xx_spi_setup_dma(espi))
1093 dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
1094
Mika Westerberg011f23a2010-05-06 04:47:04 +00001095 espi->wq = create_singlethread_workqueue("ep93xx_spid");
1096 if (!espi->wq) {
1097 dev_err(&pdev->dev, "unable to create workqueue\n");
Wei Yongjun27474d22013-05-16 12:08:56 +08001098 error = -ENOMEM;
Mika Westerberg626a96d2011-05-29 13:10:06 +03001099 goto fail_free_dma;
Mika Westerberg011f23a2010-05-06 04:47:04 +00001100 }
1101 INIT_WORK(&espi->msg_work, ep93xx_spi_work);
1102 INIT_LIST_HEAD(&espi->msg_queue);
1103 espi->running = true;
1104
1105 /* make sure that the hardware is disabled */
1106 ep93xx_spi_write_u8(espi, SSPCR1, 0);
1107
1108 error = spi_register_master(master);
1109 if (error) {
1110 dev_err(&pdev->dev, "failed to register SPI master\n");
1111 goto fail_free_queue;
1112 }
1113
1114 dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
Hannu Heikkinen6d6467e2012-05-09 17:26:26 +03001115 (unsigned long)res->start, irq);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001116
1117 return 0;
1118
1119fail_free_queue:
1120 destroy_workqueue(espi->wq);
Mika Westerberg626a96d2011-05-29 13:10:06 +03001121fail_free_dma:
1122 ep93xx_spi_release_dma(espi);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001123fail_put_clock:
1124 clk_put(espi->clk);
1125fail_release_master:
1126 spi_master_put(master);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001127
1128 return error;
1129}
1130
Grant Likelyfd4a3192012-12-07 16:57:14 +00001131static int ep93xx_spi_remove(struct platform_device *pdev)
Mika Westerberg011f23a2010-05-06 04:47:04 +00001132{
1133 struct spi_master *master = platform_get_drvdata(pdev);
1134 struct ep93xx_spi *espi = spi_master_get_devdata(master);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001135
1136 spin_lock_irq(&espi->lock);
1137 espi->running = false;
1138 spin_unlock_irq(&espi->lock);
1139
1140 destroy_workqueue(espi->wq);
1141
1142 /*
1143 * Complete remaining messages with %-ESHUTDOWN status.
1144 */
1145 spin_lock_irq(&espi->lock);
1146 while (!list_empty(&espi->msg_queue)) {
1147 struct spi_message *msg;
1148
1149 msg = list_first_entry(&espi->msg_queue,
1150 struct spi_message, queue);
1151 list_del_init(&msg->queue);
1152 msg->status = -ESHUTDOWN;
1153 spin_unlock_irq(&espi->lock);
1154 msg->complete(msg->context);
1155 spin_lock_irq(&espi->lock);
1156 }
1157 spin_unlock_irq(&espi->lock);
1158
Mika Westerberg626a96d2011-05-29 13:10:06 +03001159 ep93xx_spi_release_dma(espi);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001160 clk_put(espi->clk);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001161
1162 spi_unregister_master(master);
1163 return 0;
1164}
1165
1166static struct platform_driver ep93xx_spi_driver = {
1167 .driver = {
1168 .name = "ep93xx-spi",
1169 .owner = THIS_MODULE,
1170 },
Grant Likely940ab882011-10-05 11:29:49 -06001171 .probe = ep93xx_spi_probe,
Grant Likelyfd4a3192012-12-07 16:57:14 +00001172 .remove = ep93xx_spi_remove,
Mika Westerberg011f23a2010-05-06 04:47:04 +00001173};
Grant Likely940ab882011-10-05 11:29:49 -06001174module_platform_driver(ep93xx_spi_driver);
Mika Westerberg011f23a2010-05-06 04:47:04 +00001175
1176MODULE_DESCRIPTION("EP93xx SPI Controller driver");
1177MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1178MODULE_LICENSE("GPL");
1179MODULE_ALIAS("platform:ep93xx-spi");