blob: 14dd696ddeb1e98177cbc3b9a9883d3218ca592f [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/arch/arm/vfp/vfpsingle.c
3 *
4 * This code is derived in part from John R. Housers softfloat library, which
5 * carries the following notice:
6 *
7 * ===========================================================================
8 * This C source file is part of the SoftFloat IEC/IEEE Floating-point
9 * Arithmetic Package, Release 2.
10 *
11 * Written by John R. Hauser. This work was made possible in part by the
12 * International Computer Science Institute, located at Suite 600, 1947 Center
13 * Street, Berkeley, California 94704. Funding was partially provided by the
14 * National Science Foundation under grant MIP-9311980. The original version
15 * of this code was written as part of a project to build a fixed-point vector
16 * processor in collaboration with the University of California at Berkeley,
17 * overseen by Profs. Nelson Morgan and John Wawrzynek. More information
18 * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
19 * arithmetic/softfloat.html'.
20 *
21 * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
22 * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
23 * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
24 * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
25 * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
26 *
27 * Derivative works are acceptable, even for commercial purposes, so long as
28 * (1) they include prominent notice that the work is derivative, and (2) they
29 * include prominent notice akin to these three paragraphs for those parts of
30 * this code that are retained.
31 * ===========================================================================
32 */
33#include <linux/kernel.h>
34#include <linux/bitops.h>
Russell King438a7612005-06-29 23:01:02 +010035
36#include <asm/div64.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070037#include <asm/ptrace.h>
38#include <asm/vfp.h>
39
40#include "vfpinstr.h"
41#include "vfp.h"
42
43static struct vfp_single vfp_single_default_qnan = {
44 .exponent = 255,
45 .sign = 0,
46 .significand = VFP_SINGLE_SIGNIFICAND_QNAN,
47};
48
49static void vfp_single_dump(const char *str, struct vfp_single *s)
50{
51 pr_debug("VFP: %s: sign=%d exponent=%d significand=%08x\n",
52 str, s->sign != 0, s->exponent, s->significand);
53}
54
55static void vfp_single_normalise_denormal(struct vfp_single *vs)
56{
57 int bits = 31 - fls(vs->significand);
58
59 vfp_single_dump("normalise_denormal: in", vs);
60
61 if (bits) {
62 vs->exponent -= bits - 1;
63 vs->significand <<= bits;
64 }
65
66 vfp_single_dump("normalise_denormal: out", vs);
67}
68
69#ifndef DEBUG
70#define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
71u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions)
72#else
73u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func)
74#endif
75{
76 u32 significand, incr, rmode;
77 int exponent, shift, underflow;
78
79 vfp_single_dump("pack: in", vs);
80
81 /*
82 * Infinities and NaNs are a special case.
83 */
84 if (vs->exponent == 255 && (vs->significand == 0 || exceptions))
85 goto pack;
86
87 /*
88 * Special-case zero.
89 */
90 if (vs->significand == 0) {
91 vs->exponent = 0;
92 goto pack;
93 }
94
95 exponent = vs->exponent;
96 significand = vs->significand;
97
98 /*
99 * Normalise first. Note that we shift the significand up to
100 * bit 31, so we have VFP_SINGLE_LOW_BITS + 1 below the least
101 * significant bit.
102 */
103 shift = 32 - fls(significand);
104 if (shift < 32 && shift) {
105 exponent -= shift;
106 significand <<= shift;
107 }
108
109#ifdef DEBUG
110 vs->exponent = exponent;
111 vs->significand = significand;
112 vfp_single_dump("pack: normalised", vs);
113#endif
114
115 /*
116 * Tiny number?
117 */
118 underflow = exponent < 0;
119 if (underflow) {
120 significand = vfp_shiftright32jamming(significand, -exponent);
121 exponent = 0;
122#ifdef DEBUG
123 vs->exponent = exponent;
124 vs->significand = significand;
125 vfp_single_dump("pack: tiny number", vs);
126#endif
127 if (!(significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1)))
128 underflow = 0;
129 }
130
131 /*
132 * Select rounding increment.
133 */
134 incr = 0;
135 rmode = fpscr & FPSCR_RMODE_MASK;
136
137 if (rmode == FPSCR_ROUND_NEAREST) {
138 incr = 1 << VFP_SINGLE_LOW_BITS;
139 if ((significand & (1 << (VFP_SINGLE_LOW_BITS + 1))) == 0)
140 incr -= 1;
141 } else if (rmode == FPSCR_ROUND_TOZERO) {
142 incr = 0;
143 } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vs->sign != 0))
144 incr = (1 << (VFP_SINGLE_LOW_BITS + 1)) - 1;
145
146 pr_debug("VFP: rounding increment = 0x%08x\n", incr);
147
148 /*
149 * Is our rounding going to overflow?
150 */
151 if ((significand + incr) < significand) {
152 exponent += 1;
153 significand = (significand >> 1) | (significand & 1);
154 incr >>= 1;
155#ifdef DEBUG
156 vs->exponent = exponent;
157 vs->significand = significand;
158 vfp_single_dump("pack: overflow", vs);
159#endif
160 }
161
162 /*
163 * If any of the low bits (which will be shifted out of the
164 * number) are non-zero, the result is inexact.
165 */
166 if (significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1))
167 exceptions |= FPSCR_IXC;
168
169 /*
170 * Do our rounding.
171 */
172 significand += incr;
173
174 /*
175 * Infinity?
176 */
177 if (exponent >= 254) {
178 exceptions |= FPSCR_OFC | FPSCR_IXC;
179 if (incr == 0) {
180 vs->exponent = 253;
181 vs->significand = 0x7fffffff;
182 } else {
183 vs->exponent = 255; /* infinity */
184 vs->significand = 0;
185 }
186 } else {
187 if (significand >> (VFP_SINGLE_LOW_BITS + 1) == 0)
188 exponent = 0;
189 if (exponent || significand > 0x80000000)
190 underflow = 0;
191 if (underflow)
192 exceptions |= FPSCR_UFC;
193 vs->exponent = exponent;
194 vs->significand = significand >> 1;
195 }
196
197 pack:
198 vfp_single_dump("pack: final", vs);
199 {
200 s32 d = vfp_single_pack(vs);
201 pr_debug("VFP: %s: d(s%d)=%08x exceptions=%08x\n", func,
202 sd, d, exceptions);
203 vfp_put_float(sd, d);
204 }
205
206 return exceptions & ~VFP_NAN_FLAG;
207}
208
209/*
210 * Propagate the NaN, setting exceptions if it is signalling.
211 * 'n' is always a NaN. 'm' may be a number, NaN or infinity.
212 */
213static u32
214vfp_propagate_nan(struct vfp_single *vsd, struct vfp_single *vsn,
215 struct vfp_single *vsm, u32 fpscr)
216{
217 struct vfp_single *nan;
218 int tn, tm = 0;
219
220 tn = vfp_single_type(vsn);
221
222 if (vsm)
223 tm = vfp_single_type(vsm);
224
225 if (fpscr & FPSCR_DEFAULT_NAN)
226 /*
227 * Default NaN mode - always returns a quiet NaN
228 */
229 nan = &vfp_single_default_qnan;
230 else {
231 /*
232 * Contemporary mode - select the first signalling
233 * NAN, or if neither are signalling, the first
234 * quiet NAN.
235 */
236 if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
237 nan = vsn;
238 else
239 nan = vsm;
240 /*
241 * Make the NaN quiet.
242 */
243 nan->significand |= VFP_SINGLE_SIGNIFICAND_QNAN;
244 }
245
246 *vsd = *nan;
247
248 /*
249 * If one was a signalling NAN, raise invalid operation.
250 */
251 return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;
252}
253
254
255/*
256 * Extended operations
257 */
258static u32 vfp_single_fabs(int sd, int unused, s32 m, u32 fpscr)
259{
260 vfp_put_float(sd, vfp_single_packed_abs(m));
261 return 0;
262}
263
264static u32 vfp_single_fcpy(int sd, int unused, s32 m, u32 fpscr)
265{
266 vfp_put_float(sd, m);
267 return 0;
268}
269
270static u32 vfp_single_fneg(int sd, int unused, s32 m, u32 fpscr)
271{
272 vfp_put_float(sd, vfp_single_packed_negate(m));
273 return 0;
274}
275
276static const u16 sqrt_oddadjust[] = {
277 0x0004, 0x0022, 0x005d, 0x00b1, 0x011d, 0x019f, 0x0236, 0x02e0,
278 0x039c, 0x0468, 0x0545, 0x0631, 0x072b, 0x0832, 0x0946, 0x0a67
279};
280
281static const u16 sqrt_evenadjust[] = {
282 0x0a2d, 0x08af, 0x075a, 0x0629, 0x051a, 0x0429, 0x0356, 0x029e,
283 0x0200, 0x0179, 0x0109, 0x00af, 0x0068, 0x0034, 0x0012, 0x0002
284};
285
286u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand)
287{
288 int index;
289 u32 z, a;
290
291 if ((significand & 0xc0000000) != 0x40000000) {
292 printk(KERN_WARNING "VFP: estimate_sqrt: invalid significand\n");
293 }
294
295 a = significand << 1;
296 index = (a >> 27) & 15;
297 if (exponent & 1) {
298 z = 0x4000 + (a >> 17) - sqrt_oddadjust[index];
299 z = ((a / z) << 14) + (z << 15);
300 a >>= 1;
301 } else {
302 z = 0x8000 + (a >> 17) - sqrt_evenadjust[index];
303 z = a / z + z;
304 z = (z >= 0x20000) ? 0xffff8000 : (z << 15);
305 if (z <= a)
306 return (s32)a >> 1;
307 }
Russell King438a7612005-06-29 23:01:02 +0100308 {
309 u64 v = (u64)a << 31;
310 do_div(v, z);
311 return v + (z >> 1);
312 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700313}
314
315static u32 vfp_single_fsqrt(int sd, int unused, s32 m, u32 fpscr)
316{
317 struct vfp_single vsm, vsd;
318 int ret, tm;
319
320 vfp_single_unpack(&vsm, m);
321 tm = vfp_single_type(&vsm);
322 if (tm & (VFP_NAN|VFP_INFINITY)) {
323 struct vfp_single *vsp = &vsd;
324
325 if (tm & VFP_NAN)
326 ret = vfp_propagate_nan(vsp, &vsm, NULL, fpscr);
327 else if (vsm.sign == 0) {
328 sqrt_copy:
329 vsp = &vsm;
330 ret = 0;
331 } else {
332 sqrt_invalid:
333 vsp = &vfp_single_default_qnan;
334 ret = FPSCR_IOC;
335 }
336 vfp_put_float(sd, vfp_single_pack(vsp));
337 return ret;
338 }
339
340 /*
341 * sqrt(+/- 0) == +/- 0
342 */
343 if (tm & VFP_ZERO)
344 goto sqrt_copy;
345
346 /*
347 * Normalise a denormalised number
348 */
349 if (tm & VFP_DENORMAL)
350 vfp_single_normalise_denormal(&vsm);
351
352 /*
353 * sqrt(<0) = invalid
354 */
355 if (vsm.sign)
356 goto sqrt_invalid;
357
358 vfp_single_dump("sqrt", &vsm);
359
360 /*
361 * Estimate the square root.
362 */
363 vsd.sign = 0;
364 vsd.exponent = ((vsm.exponent - 127) >> 1) + 127;
365 vsd.significand = vfp_estimate_sqrt_significand(vsm.exponent, vsm.significand) + 2;
366
367 vfp_single_dump("sqrt estimate", &vsd);
368
369 /*
370 * And now adjust.
371 */
372 if ((vsd.significand & VFP_SINGLE_LOW_BITS_MASK) <= 5) {
373 if (vsd.significand < 2) {
374 vsd.significand = 0xffffffff;
375 } else {
376 u64 term;
377 s64 rem;
378 vsm.significand <<= !(vsm.exponent & 1);
379 term = (u64)vsd.significand * vsd.significand;
380 rem = ((u64)vsm.significand << 32) - term;
381
382 pr_debug("VFP: term=%016llx rem=%016llx\n", term, rem);
383
384 while (rem < 0) {
385 vsd.significand -= 1;
386 rem += ((u64)vsd.significand << 1) | 1;
387 }
388 vsd.significand |= rem != 0;
389 }
390 }
391 vsd.significand = vfp_shiftright32jamming(vsd.significand, 1);
392
393 return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fsqrt");
394}
395
396/*
397 * Equal := ZC
398 * Less than := N
399 * Greater than := C
400 * Unordered := CV
401 */
402static u32 vfp_compare(int sd, int signal_on_qnan, s32 m, u32 fpscr)
403{
404 s32 d;
405 u32 ret = 0;
406
407 d = vfp_get_float(sd);
408 if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) {
409 ret |= FPSCR_C | FPSCR_V;
410 if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
411 /*
412 * Signalling NaN, or signalling on quiet NaN
413 */
414 ret |= FPSCR_IOC;
415 }
416
417 if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) {
418 ret |= FPSCR_C | FPSCR_V;
419 if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
420 /*
421 * Signalling NaN, or signalling on quiet NaN
422 */
423 ret |= FPSCR_IOC;
424 }
425
426 if (ret == 0) {
427 if (d == m || vfp_single_packed_abs(d | m) == 0) {
428 /*
429 * equal
430 */
431 ret |= FPSCR_Z | FPSCR_C;
432 } else if (vfp_single_packed_sign(d ^ m)) {
433 /*
434 * different signs
435 */
436 if (vfp_single_packed_sign(d))
437 /*
438 * d is negative, so d < m
439 */
440 ret |= FPSCR_N;
441 else
442 /*
443 * d is positive, so d > m
444 */
445 ret |= FPSCR_C;
446 } else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) {
447 /*
448 * d < m
449 */
450 ret |= FPSCR_N;
451 } else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) {
452 /*
453 * d > m
454 */
455 ret |= FPSCR_C;
456 }
457 }
458 return ret;
459}
460
461static u32 vfp_single_fcmp(int sd, int unused, s32 m, u32 fpscr)
462{
463 return vfp_compare(sd, 0, m, fpscr);
464}
465
466static u32 vfp_single_fcmpe(int sd, int unused, s32 m, u32 fpscr)
467{
468 return vfp_compare(sd, 1, m, fpscr);
469}
470
471static u32 vfp_single_fcmpz(int sd, int unused, s32 m, u32 fpscr)
472{
473 return vfp_compare(sd, 0, 0, fpscr);
474}
475
476static u32 vfp_single_fcmpez(int sd, int unused, s32 m, u32 fpscr)
477{
478 return vfp_compare(sd, 1, 0, fpscr);
479}
480
481static u32 vfp_single_fcvtd(int dd, int unused, s32 m, u32 fpscr)
482{
483 struct vfp_single vsm;
484 struct vfp_double vdd;
485 int tm;
486 u32 exceptions = 0;
487
488 vfp_single_unpack(&vsm, m);
489
490 tm = vfp_single_type(&vsm);
491
492 /*
493 * If we have a signalling NaN, signal invalid operation.
494 */
495 if (tm == VFP_SNAN)
496 exceptions = FPSCR_IOC;
497
498 if (tm & VFP_DENORMAL)
499 vfp_single_normalise_denormal(&vsm);
500
501 vdd.sign = vsm.sign;
502 vdd.significand = (u64)vsm.significand << 32;
503
504 /*
505 * If we have an infinity or NaN, the exponent must be 2047.
506 */
507 if (tm & (VFP_INFINITY|VFP_NAN)) {
508 vdd.exponent = 2047;
509 if (tm & VFP_NAN)
510 vdd.significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
511 goto pack_nan;
512 } else if (tm & VFP_ZERO)
513 vdd.exponent = 0;
514 else
515 vdd.exponent = vsm.exponent + (1023 - 127);
516
517 /*
518 * Technically, if bit 0 of dd is set, this is an invalid
519 * instruction. However, we ignore this for efficiency.
520 */
521 return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fcvtd");
522
523 pack_nan:
524 vfp_put_double(dd, vfp_double_pack(&vdd));
525 return exceptions;
526}
527
528static u32 vfp_single_fuito(int sd, int unused, s32 m, u32 fpscr)
529{
530 struct vfp_single vs;
531
532 vs.sign = 0;
533 vs.exponent = 127 + 31 - 1;
534 vs.significand = (u32)m;
535
536 return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fuito");
537}
538
539static u32 vfp_single_fsito(int sd, int unused, s32 m, u32 fpscr)
540{
541 struct vfp_single vs;
542
543 vs.sign = (m & 0x80000000) >> 16;
544 vs.exponent = 127 + 31 - 1;
545 vs.significand = vs.sign ? -m : m;
546
547 return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fsito");
548}
549
550static u32 vfp_single_ftoui(int sd, int unused, s32 m, u32 fpscr)
551{
552 struct vfp_single vsm;
553 u32 d, exceptions = 0;
554 int rmode = fpscr & FPSCR_RMODE_MASK;
555 int tm;
556
557 vfp_single_unpack(&vsm, m);
558 vfp_single_dump("VSM", &vsm);
559
560 /*
561 * Do we have a denormalised number?
562 */
563 tm = vfp_single_type(&vsm);
564 if (tm & VFP_DENORMAL)
565 exceptions |= FPSCR_IDC;
566
567 if (tm & VFP_NAN)
568 vsm.sign = 0;
569
570 if (vsm.exponent >= 127 + 32) {
571 d = vsm.sign ? 0 : 0xffffffff;
572 exceptions = FPSCR_IOC;
573 } else if (vsm.exponent >= 127 - 1) {
574 int shift = 127 + 31 - vsm.exponent;
575 u32 rem, incr = 0;
576
577 /*
578 * 2^0 <= m < 2^32-2^8
579 */
580 d = (vsm.significand << 1) >> shift;
581 rem = vsm.significand << (33 - shift);
582
583 if (rmode == FPSCR_ROUND_NEAREST) {
584 incr = 0x80000000;
585 if ((d & 1) == 0)
586 incr -= 1;
587 } else if (rmode == FPSCR_ROUND_TOZERO) {
588 incr = 0;
589 } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
590 incr = ~0;
591 }
592
593 if ((rem + incr) < rem) {
594 if (d < 0xffffffff)
595 d += 1;
596 else
597 exceptions |= FPSCR_IOC;
598 }
599
600 if (d && vsm.sign) {
601 d = 0;
602 exceptions |= FPSCR_IOC;
603 } else if (rem)
604 exceptions |= FPSCR_IXC;
605 } else {
606 d = 0;
607 if (vsm.exponent | vsm.significand) {
608 exceptions |= FPSCR_IXC;
609 if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
610 d = 1;
611 else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) {
612 d = 0;
613 exceptions |= FPSCR_IOC;
614 }
615 }
616 }
617
618 pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
619
620 vfp_put_float(sd, d);
621
622 return exceptions;
623}
624
625static u32 vfp_single_ftouiz(int sd, int unused, s32 m, u32 fpscr)
626{
627 return vfp_single_ftoui(sd, unused, m, FPSCR_ROUND_TOZERO);
628}
629
630static u32 vfp_single_ftosi(int sd, int unused, s32 m, u32 fpscr)
631{
632 struct vfp_single vsm;
633 u32 d, exceptions = 0;
634 int rmode = fpscr & FPSCR_RMODE_MASK;
635
636 vfp_single_unpack(&vsm, m);
637 vfp_single_dump("VSM", &vsm);
638
639 /*
640 * Do we have a denormalised number?
641 */
642 if (vfp_single_type(&vsm) & VFP_DENORMAL)
643 exceptions |= FPSCR_IDC;
644
645 if (vsm.exponent >= 127 + 32) {
646 /*
647 * m >= 2^31-2^7: invalid
648 */
649 d = 0x7fffffff;
650 if (vsm.sign)
651 d = ~d;
652 exceptions |= FPSCR_IOC;
653 } else if (vsm.exponent >= 127 - 1) {
654 int shift = 127 + 31 - vsm.exponent;
655 u32 rem, incr = 0;
656
657 /* 2^0 <= m <= 2^31-2^7 */
658 d = (vsm.significand << 1) >> shift;
659 rem = vsm.significand << (33 - shift);
660
661 if (rmode == FPSCR_ROUND_NEAREST) {
662 incr = 0x80000000;
663 if ((d & 1) == 0)
664 incr -= 1;
665 } else if (rmode == FPSCR_ROUND_TOZERO) {
666 incr = 0;
667 } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
668 incr = ~0;
669 }
670
671 if ((rem + incr) < rem && d < 0xffffffff)
672 d += 1;
673 if (d > 0x7fffffff + (vsm.sign != 0)) {
674 d = 0x7fffffff + (vsm.sign != 0);
675 exceptions |= FPSCR_IOC;
676 } else if (rem)
677 exceptions |= FPSCR_IXC;
678
679 if (vsm.sign)
680 d = -d;
681 } else {
682 d = 0;
683 if (vsm.exponent | vsm.significand) {
684 exceptions |= FPSCR_IXC;
685 if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
686 d = 1;
687 else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign)
688 d = -1;
689 }
690 }
691
692 pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
693
694 vfp_put_float(sd, (s32)d);
695
696 return exceptions;
697}
698
699static u32 vfp_single_ftosiz(int sd, int unused, s32 m, u32 fpscr)
700{
701 return vfp_single_ftosi(sd, unused, m, FPSCR_ROUND_TOZERO);
702}
703
704static u32 (* const fop_extfns[32])(int sd, int unused, s32 m, u32 fpscr) = {
705 [FEXT_TO_IDX(FEXT_FCPY)] = vfp_single_fcpy,
706 [FEXT_TO_IDX(FEXT_FABS)] = vfp_single_fabs,
707 [FEXT_TO_IDX(FEXT_FNEG)] = vfp_single_fneg,
708 [FEXT_TO_IDX(FEXT_FSQRT)] = vfp_single_fsqrt,
709 [FEXT_TO_IDX(FEXT_FCMP)] = vfp_single_fcmp,
710 [FEXT_TO_IDX(FEXT_FCMPE)] = vfp_single_fcmpe,
711 [FEXT_TO_IDX(FEXT_FCMPZ)] = vfp_single_fcmpz,
712 [FEXT_TO_IDX(FEXT_FCMPEZ)] = vfp_single_fcmpez,
713 [FEXT_TO_IDX(FEXT_FCVT)] = vfp_single_fcvtd,
714 [FEXT_TO_IDX(FEXT_FUITO)] = vfp_single_fuito,
715 [FEXT_TO_IDX(FEXT_FSITO)] = vfp_single_fsito,
716 [FEXT_TO_IDX(FEXT_FTOUI)] = vfp_single_ftoui,
717 [FEXT_TO_IDX(FEXT_FTOUIZ)] = vfp_single_ftouiz,
718 [FEXT_TO_IDX(FEXT_FTOSI)] = vfp_single_ftosi,
719 [FEXT_TO_IDX(FEXT_FTOSIZ)] = vfp_single_ftosiz,
720};
721
722
723
724
725
726static u32
727vfp_single_fadd_nonnumber(struct vfp_single *vsd, struct vfp_single *vsn,
728 struct vfp_single *vsm, u32 fpscr)
729{
730 struct vfp_single *vsp;
731 u32 exceptions = 0;
732 int tn, tm;
733
734 tn = vfp_single_type(vsn);
735 tm = vfp_single_type(vsm);
736
737 if (tn & tm & VFP_INFINITY) {
738 /*
739 * Two infinities. Are they different signs?
740 */
741 if (vsn->sign ^ vsm->sign) {
742 /*
743 * different signs -> invalid
744 */
745 exceptions = FPSCR_IOC;
746 vsp = &vfp_single_default_qnan;
747 } else {
748 /*
749 * same signs -> valid
750 */
751 vsp = vsn;
752 }
753 } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {
754 /*
755 * One infinity and one number -> infinity
756 */
757 vsp = vsn;
758 } else {
759 /*
760 * 'n' is a NaN of some type
761 */
762 return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
763 }
764 *vsd = *vsp;
765 return exceptions;
766}
767
768static u32
769vfp_single_add(struct vfp_single *vsd, struct vfp_single *vsn,
770 struct vfp_single *vsm, u32 fpscr)
771{
772 u32 exp_diff, m_sig;
773
774 if (vsn->significand & 0x80000000 ||
775 vsm->significand & 0x80000000) {
776 pr_info("VFP: bad FP values in %s\n", __func__);
777 vfp_single_dump("VSN", vsn);
778 vfp_single_dump("VSM", vsm);
779 }
780
781 /*
782 * Ensure that 'n' is the largest magnitude number. Note that
783 * if 'n' and 'm' have equal exponents, we do not swap them.
784 * This ensures that NaN propagation works correctly.
785 */
786 if (vsn->exponent < vsm->exponent) {
787 struct vfp_single *t = vsn;
788 vsn = vsm;
789 vsm = t;
790 }
791
792 /*
793 * Is 'n' an infinity or a NaN? Note that 'm' may be a number,
794 * infinity or a NaN here.
795 */
796 if (vsn->exponent == 255)
797 return vfp_single_fadd_nonnumber(vsd, vsn, vsm, fpscr);
798
799 /*
800 * We have two proper numbers, where 'vsn' is the larger magnitude.
801 *
802 * Copy 'n' to 'd' before doing the arithmetic.
803 */
804 *vsd = *vsn;
805
806 /*
807 * Align both numbers.
808 */
809 exp_diff = vsn->exponent - vsm->exponent;
810 m_sig = vfp_shiftright32jamming(vsm->significand, exp_diff);
811
812 /*
813 * If the signs are different, we are really subtracting.
814 */
815 if (vsn->sign ^ vsm->sign) {
816 m_sig = vsn->significand - m_sig;
817 if ((s32)m_sig < 0) {
818 vsd->sign = vfp_sign_negate(vsd->sign);
819 m_sig = -m_sig;
820 } else if (m_sig == 0) {
821 vsd->sign = (fpscr & FPSCR_RMODE_MASK) ==
822 FPSCR_ROUND_MINUSINF ? 0x8000 : 0;
823 }
824 } else {
825 m_sig = vsn->significand + m_sig;
826 }
827 vsd->significand = m_sig;
828
829 return 0;
830}
831
832static u32
833vfp_single_multiply(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr)
834{
835 vfp_single_dump("VSN", vsn);
836 vfp_single_dump("VSM", vsm);
837
838 /*
839 * Ensure that 'n' is the largest magnitude number. Note that
840 * if 'n' and 'm' have equal exponents, we do not swap them.
841 * This ensures that NaN propagation works correctly.
842 */
843 if (vsn->exponent < vsm->exponent) {
844 struct vfp_single *t = vsn;
845 vsn = vsm;
846 vsm = t;
847 pr_debug("VFP: swapping M <-> N\n");
848 }
849
850 vsd->sign = vsn->sign ^ vsm->sign;
851
852 /*
853 * If 'n' is an infinity or NaN, handle it. 'm' may be anything.
854 */
855 if (vsn->exponent == 255) {
856 if (vsn->significand || (vsm->exponent == 255 && vsm->significand))
857 return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
858 if ((vsm->exponent | vsm->significand) == 0) {
859 *vsd = vfp_single_default_qnan;
860 return FPSCR_IOC;
861 }
862 vsd->exponent = vsn->exponent;
863 vsd->significand = 0;
864 return 0;
865 }
866
867 /*
868 * If 'm' is zero, the result is always zero. In this case,
869 * 'n' may be zero or a number, but it doesn't matter which.
870 */
871 if ((vsm->exponent | vsm->significand) == 0) {
872 vsd->exponent = 0;
873 vsd->significand = 0;
874 return 0;
875 }
876
877 /*
878 * We add 2 to the destination exponent for the same reason as
879 * the addition case - though this time we have +1 from each
880 * input operand.
881 */
882 vsd->exponent = vsn->exponent + vsm->exponent - 127 + 2;
883 vsd->significand = vfp_hi64to32jamming((u64)vsn->significand * vsm->significand);
884
885 vfp_single_dump("VSD", vsd);
886 return 0;
887}
888
889#define NEG_MULTIPLY (1 << 0)
890#define NEG_SUBTRACT (1 << 1)
891
892static u32
893vfp_single_multiply_accumulate(int sd, int sn, s32 m, u32 fpscr, u32 negate, char *func)
894{
895 struct vfp_single vsd, vsp, vsn, vsm;
896 u32 exceptions;
897 s32 v;
898
899 v = vfp_get_float(sn);
900 pr_debug("VFP: s%u = %08x\n", sn, v);
901 vfp_single_unpack(&vsn, v);
902 if (vsn.exponent == 0 && vsn.significand)
903 vfp_single_normalise_denormal(&vsn);
904
905 vfp_single_unpack(&vsm, m);
906 if (vsm.exponent == 0 && vsm.significand)
907 vfp_single_normalise_denormal(&vsm);
908
909 exceptions = vfp_single_multiply(&vsp, &vsn, &vsm, fpscr);
910 if (negate & NEG_MULTIPLY)
911 vsp.sign = vfp_sign_negate(vsp.sign);
912
913 v = vfp_get_float(sd);
914 pr_debug("VFP: s%u = %08x\n", sd, v);
915 vfp_single_unpack(&vsn, v);
916 if (negate & NEG_SUBTRACT)
917 vsn.sign = vfp_sign_negate(vsn.sign);
918
919 exceptions |= vfp_single_add(&vsd, &vsn, &vsp, fpscr);
920
921 return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, func);
922}
923
924/*
925 * Standard operations
926 */
927
928/*
929 * sd = sd + (sn * sm)
930 */
931static u32 vfp_single_fmac(int sd, int sn, s32 m, u32 fpscr)
932{
933 return vfp_single_multiply_accumulate(sd, sn, m, fpscr, 0, "fmac");
934}
935
936/*
937 * sd = sd - (sn * sm)
938 */
939static u32 vfp_single_fnmac(int sd, int sn, s32 m, u32 fpscr)
940{
941 return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_MULTIPLY, "fnmac");
942}
943
944/*
945 * sd = -sd + (sn * sm)
946 */
947static u32 vfp_single_fmsc(int sd, int sn, s32 m, u32 fpscr)
948{
949 return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT, "fmsc");
950}
951
952/*
953 * sd = -sd - (sn * sm)
954 */
955static u32 vfp_single_fnmsc(int sd, int sn, s32 m, u32 fpscr)
956{
957 return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc");
958}
959
960/*
961 * sd = sn * sm
962 */
963static u32 vfp_single_fmul(int sd, int sn, s32 m, u32 fpscr)
964{
965 struct vfp_single vsd, vsn, vsm;
966 u32 exceptions;
967 s32 n = vfp_get_float(sn);
968
969 pr_debug("VFP: s%u = %08x\n", sn, n);
970
971 vfp_single_unpack(&vsn, n);
972 if (vsn.exponent == 0 && vsn.significand)
973 vfp_single_normalise_denormal(&vsn);
974
975 vfp_single_unpack(&vsm, m);
976 if (vsm.exponent == 0 && vsm.significand)
977 vfp_single_normalise_denormal(&vsm);
978
979 exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
980 return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fmul");
981}
982
983/*
984 * sd = -(sn * sm)
985 */
986static u32 vfp_single_fnmul(int sd, int sn, s32 m, u32 fpscr)
987{
988 struct vfp_single vsd, vsn, vsm;
989 u32 exceptions;
990 s32 n = vfp_get_float(sn);
991
992 pr_debug("VFP: s%u = %08x\n", sn, n);
993
994 vfp_single_unpack(&vsn, n);
995 if (vsn.exponent == 0 && vsn.significand)
996 vfp_single_normalise_denormal(&vsn);
997
998 vfp_single_unpack(&vsm, m);
999 if (vsm.exponent == 0 && vsm.significand)
1000 vfp_single_normalise_denormal(&vsm);
1001
1002 exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
1003 vsd.sign = vfp_sign_negate(vsd.sign);
1004 return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fnmul");
1005}
1006
1007/*
1008 * sd = sn + sm
1009 */
1010static u32 vfp_single_fadd(int sd, int sn, s32 m, u32 fpscr)
1011{
1012 struct vfp_single vsd, vsn, vsm;
1013 u32 exceptions;
1014 s32 n = vfp_get_float(sn);
1015
1016 pr_debug("VFP: s%u = %08x\n", sn, n);
1017
1018 /*
1019 * Unpack and normalise denormals.
1020 */
1021 vfp_single_unpack(&vsn, n);
1022 if (vsn.exponent == 0 && vsn.significand)
1023 vfp_single_normalise_denormal(&vsn);
1024
1025 vfp_single_unpack(&vsm, m);
1026 if (vsm.exponent == 0 && vsm.significand)
1027 vfp_single_normalise_denormal(&vsm);
1028
1029 exceptions = vfp_single_add(&vsd, &vsn, &vsm, fpscr);
1030
1031 return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fadd");
1032}
1033
1034/*
1035 * sd = sn - sm
1036 */
1037static u32 vfp_single_fsub(int sd, int sn, s32 m, u32 fpscr)
1038{
1039 /*
1040 * Subtraction is addition with one sign inverted.
1041 */
1042 return vfp_single_fadd(sd, sn, vfp_single_packed_negate(m), fpscr);
1043}
1044
1045/*
1046 * sd = sn / sm
1047 */
1048static u32 vfp_single_fdiv(int sd, int sn, s32 m, u32 fpscr)
1049{
1050 struct vfp_single vsd, vsn, vsm;
1051 u32 exceptions = 0;
1052 s32 n = vfp_get_float(sn);
1053 int tm, tn;
1054
1055 pr_debug("VFP: s%u = %08x\n", sn, n);
1056
1057 vfp_single_unpack(&vsn, n);
1058 vfp_single_unpack(&vsm, m);
1059
1060 vsd.sign = vsn.sign ^ vsm.sign;
1061
1062 tn = vfp_single_type(&vsn);
1063 tm = vfp_single_type(&vsm);
1064
1065 /*
1066 * Is n a NAN?
1067 */
1068 if (tn & VFP_NAN)
1069 goto vsn_nan;
1070
1071 /*
1072 * Is m a NAN?
1073 */
1074 if (tm & VFP_NAN)
1075 goto vsm_nan;
1076
1077 /*
1078 * If n and m are infinity, the result is invalid
1079 * If n and m are zero, the result is invalid
1080 */
1081 if (tm & tn & (VFP_INFINITY|VFP_ZERO))
1082 goto invalid;
1083
1084 /*
1085 * If n is infinity, the result is infinity
1086 */
1087 if (tn & VFP_INFINITY)
1088 goto infinity;
1089
1090 /*
1091 * If m is zero, raise div0 exception
1092 */
1093 if (tm & VFP_ZERO)
1094 goto divzero;
1095
1096 /*
1097 * If m is infinity, or n is zero, the result is zero
1098 */
1099 if (tm & VFP_INFINITY || tn & VFP_ZERO)
1100 goto zero;
1101
1102 if (tn & VFP_DENORMAL)
1103 vfp_single_normalise_denormal(&vsn);
1104 if (tm & VFP_DENORMAL)
1105 vfp_single_normalise_denormal(&vsm);
1106
1107 /*
1108 * Ok, we have two numbers, we can perform division.
1109 */
1110 vsd.exponent = vsn.exponent - vsm.exponent + 127 - 1;
1111 vsm.significand <<= 1;
1112 if (vsm.significand <= (2 * vsn.significand)) {
1113 vsn.significand >>= 1;
1114 vsd.exponent++;
1115 }
Russell King438a7612005-06-29 23:01:02 +01001116 {
1117 u64 significand = (u64)vsn.significand << 32;
1118 do_div(significand, vsm.significand);
1119 vsd.significand = significand;
1120 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001121 if ((vsd.significand & 0x3f) == 0)
1122 vsd.significand |= ((u64)vsm.significand * vsd.significand != (u64)vsn.significand << 32);
1123
1124 return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fdiv");
1125
1126 vsn_nan:
1127 exceptions = vfp_propagate_nan(&vsd, &vsn, &vsm, fpscr);
1128 pack:
1129 vfp_put_float(sd, vfp_single_pack(&vsd));
1130 return exceptions;
1131
1132 vsm_nan:
1133 exceptions = vfp_propagate_nan(&vsd, &vsm, &vsn, fpscr);
1134 goto pack;
1135
1136 zero:
1137 vsd.exponent = 0;
1138 vsd.significand = 0;
1139 goto pack;
1140
1141 divzero:
1142 exceptions = FPSCR_DZC;
1143 infinity:
1144 vsd.exponent = 255;
1145 vsd.significand = 0;
1146 goto pack;
1147
1148 invalid:
1149 vfp_put_float(sd, vfp_single_pack(&vfp_single_default_qnan));
1150 return FPSCR_IOC;
1151}
1152
1153static u32 (* const fop_fns[16])(int sd, int sn, s32 m, u32 fpscr) = {
1154 [FOP_TO_IDX(FOP_FMAC)] = vfp_single_fmac,
1155 [FOP_TO_IDX(FOP_FNMAC)] = vfp_single_fnmac,
1156 [FOP_TO_IDX(FOP_FMSC)] = vfp_single_fmsc,
1157 [FOP_TO_IDX(FOP_FNMSC)] = vfp_single_fnmsc,
1158 [FOP_TO_IDX(FOP_FMUL)] = vfp_single_fmul,
1159 [FOP_TO_IDX(FOP_FNMUL)] = vfp_single_fnmul,
1160 [FOP_TO_IDX(FOP_FADD)] = vfp_single_fadd,
1161 [FOP_TO_IDX(FOP_FSUB)] = vfp_single_fsub,
1162 [FOP_TO_IDX(FOP_FDIV)] = vfp_single_fdiv,
1163};
1164
1165#define FREG_BANK(x) ((x) & 0x18)
1166#define FREG_IDX(x) ((x) & 7)
1167
1168u32 vfp_single_cpdo(u32 inst, u32 fpscr)
1169{
1170 u32 op = inst & FOP_MASK;
1171 u32 exceptions = 0;
1172 unsigned int sd = vfp_get_sd(inst);
1173 unsigned int sn = vfp_get_sn(inst);
1174 unsigned int sm = vfp_get_sm(inst);
1175 unsigned int vecitr, veclen, vecstride;
1176 u32 (*fop)(int, int, s32, u32);
1177
1178 veclen = fpscr & FPSCR_LENGTH_MASK;
1179 vecstride = 1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK);
1180
1181 /*
1182 * If destination bank is zero, vector length is always '1'.
1183 * ARM DDI0100F C5.1.3, C5.3.2.
1184 */
1185 if (FREG_BANK(sd) == 0)
1186 veclen = 0;
1187
1188 pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride,
1189 (veclen >> FPSCR_LENGTH_BIT) + 1);
1190
1191 fop = (op == FOP_EXT) ? fop_extfns[sn] : fop_fns[FOP_TO_IDX(op)];
1192 if (!fop)
1193 goto invalid;
1194
1195 for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) {
1196 s32 m = vfp_get_float(sm);
1197 u32 except;
1198
1199 if (op == FOP_EXT)
1200 pr_debug("VFP: itr%d (s%u) = op[%u] (s%u=%08x)\n",
1201 vecitr >> FPSCR_LENGTH_BIT, sd, sn, sm, m);
1202 else
1203 pr_debug("VFP: itr%d (s%u) = (s%u) op[%u] (s%u=%08x)\n",
1204 vecitr >> FPSCR_LENGTH_BIT, sd, sn,
1205 FOP_TO_IDX(op), sm, m);
1206
1207 except = fop(sd, sn, m, fpscr);
1208 pr_debug("VFP: itr%d: exceptions=%08x\n",
1209 vecitr >> FPSCR_LENGTH_BIT, except);
1210
1211 exceptions |= except;
1212
1213 /*
1214 * This ensures that comparisons only operate on scalars;
1215 * comparisons always return with one FPSCR status bit set.
1216 */
1217 if (except & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
1218 break;
1219
1220 /*
1221 * CHECK: It appears to be undefined whether we stop when
1222 * we encounter an exception. We continue.
1223 */
1224
1225 sd = FREG_BANK(sd) + ((FREG_IDX(sd) + vecstride) & 7);
1226 sn = FREG_BANK(sn) + ((FREG_IDX(sn) + vecstride) & 7);
1227 if (FREG_BANK(sm) != 0)
1228 sm = FREG_BANK(sm) + ((FREG_IDX(sm) + vecstride) & 7);
1229 }
1230 return exceptions;
1231
1232 invalid:
1233 return (u32)-1;
1234}