blob: 16e1ca9cb7e891515aa323b515cd347587029ae9 [file] [log] [blame]
Peter Zijlstra029632f2011-10-25 10:00:11 +02001
2#include <linux/sched.h>
Clark Williamscf4aebc22013-02-07 09:46:59 -06003#include <linux/sched/sysctl.h>
Clark Williams8bd75c72013-02-07 09:47:07 -06004#include <linux/sched/rt.h>
Dario Faggioliaab03e02013-11-28 11:14:43 +01005#include <linux/sched/deadline.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +02006#include <linux/mutex.h>
7#include <linux/spinlock.h>
8#include <linux/stop_machine.h>
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +02009#include <linux/tick.h>
Mel Gormanf809ca92013-10-07 11:28:57 +010010#include <linux/slab.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020011
Peter Zijlstra391e43d2011-11-15 17:14:39 +010012#include "cpupri.h"
Juri Lelli6bfd6d72013-11-07 14:43:47 +010013#include "cpudeadline.h"
Li Zefan60fed782013-03-29 14:36:43 +080014#include "cpuacct.h"
Peter Zijlstra029632f2011-10-25 10:00:11 +020015
Paul Gortmaker45ceebf2013-04-19 15:10:49 -040016struct rq;
Daniel Lezcano442bf3a2014-09-04 11:32:09 -040017struct cpuidle_state;
Paul Gortmaker45ceebf2013-04-19 15:10:49 -040018
Kirill Tkhaida0c1e62014-08-20 13:47:32 +040019/* task_struct::on_rq states: */
20#define TASK_ON_RQ_QUEUED 1
Kirill Tkhaicca26e82014-08-20 13:47:42 +040021#define TASK_ON_RQ_MIGRATING 2
Kirill Tkhaida0c1e62014-08-20 13:47:32 +040022
Peter Zijlstra029632f2011-10-25 10:00:11 +020023extern __read_mostly int scheduler_running;
24
Paul Gortmaker45ceebf2013-04-19 15:10:49 -040025extern unsigned long calc_load_update;
26extern atomic_long_t calc_load_tasks;
27
28extern long calc_load_fold_active(struct rq *this_rq);
29extern void update_cpu_load_active(struct rq *this_rq);
30
Peter Zijlstra029632f2011-10-25 10:00:11 +020031/*
Peter Zijlstra029632f2011-10-25 10:00:11 +020032 * Helpers for converting nanosecond timing to jiffy resolution
33 */
34#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
35
Li Zefancc1f4b12013-03-05 16:06:09 +080036/*
37 * Increase resolution of nice-level calculations for 64-bit architectures.
38 * The extra resolution improves shares distribution and load balancing of
39 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
40 * hierarchies, especially on larger systems. This is not a user-visible change
41 * and does not change the user-interface for setting shares/weights.
42 *
43 * We increase resolution only if we have enough bits to allow this increased
44 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
45 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
46 * increased costs.
47 */
48#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
49# define SCHED_LOAD_RESOLUTION 10
50# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
51# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
52#else
53# define SCHED_LOAD_RESOLUTION 0
54# define scale_load(w) (w)
55# define scale_load_down(w) (w)
56#endif
57
58#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
59#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
60
Peter Zijlstra029632f2011-10-25 10:00:11 +020061#define NICE_0_LOAD SCHED_LOAD_SCALE
62#define NICE_0_SHIFT SCHED_LOAD_SHIFT
63
64/*
Dario Faggioli332ac172013-11-07 14:43:45 +010065 * Single value that decides SCHED_DEADLINE internal math precision.
66 * 10 -> just above 1us
67 * 9 -> just above 0.5us
68 */
69#define DL_SCALE (10)
70
71/*
Peter Zijlstra029632f2011-10-25 10:00:11 +020072 * These are the 'tuning knobs' of the scheduler:
Peter Zijlstra029632f2011-10-25 10:00:11 +020073 */
Peter Zijlstra029632f2011-10-25 10:00:11 +020074
75/*
76 * single value that denotes runtime == period, ie unlimited time.
77 */
78#define RUNTIME_INF ((u64)~0ULL)
79
Dario Faggiolid50dde52013-11-07 14:43:36 +010080static inline int fair_policy(int policy)
81{
82 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
83}
84
Peter Zijlstra029632f2011-10-25 10:00:11 +020085static inline int rt_policy(int policy)
86{
Dario Faggiolid50dde52013-11-07 14:43:36 +010087 return policy == SCHED_FIFO || policy == SCHED_RR;
Peter Zijlstra029632f2011-10-25 10:00:11 +020088}
89
Dario Faggioliaab03e02013-11-28 11:14:43 +010090static inline int dl_policy(int policy)
91{
92 return policy == SCHED_DEADLINE;
93}
94
Peter Zijlstra029632f2011-10-25 10:00:11 +020095static inline int task_has_rt_policy(struct task_struct *p)
96{
97 return rt_policy(p->policy);
98}
99
Dario Faggioliaab03e02013-11-28 11:14:43 +0100100static inline int task_has_dl_policy(struct task_struct *p)
101{
102 return dl_policy(p->policy);
103}
104
Dario Faggioli332ac172013-11-07 14:43:45 +0100105static inline bool dl_time_before(u64 a, u64 b)
Dario Faggioli2d3d8912013-11-07 14:43:44 +0100106{
107 return (s64)(a - b) < 0;
108}
109
110/*
111 * Tells if entity @a should preempt entity @b.
112 */
Dario Faggioli332ac172013-11-07 14:43:45 +0100113static inline bool
114dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
Dario Faggioli2d3d8912013-11-07 14:43:44 +0100115{
116 return dl_time_before(a->deadline, b->deadline);
117}
118
Peter Zijlstra029632f2011-10-25 10:00:11 +0200119/*
120 * This is the priority-queue data structure of the RT scheduling class:
121 */
122struct rt_prio_array {
123 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
124 struct list_head queue[MAX_RT_PRIO];
125};
126
127struct rt_bandwidth {
128 /* nests inside the rq lock: */
129 raw_spinlock_t rt_runtime_lock;
130 ktime_t rt_period;
131 u64 rt_runtime;
132 struct hrtimer rt_period_timer;
133};
Juri Lellia5e7be32014-09-19 10:22:39 +0100134
135void __dl_clear_params(struct task_struct *p);
136
Dario Faggioli332ac172013-11-07 14:43:45 +0100137/*
138 * To keep the bandwidth of -deadline tasks and groups under control
139 * we need some place where:
140 * - store the maximum -deadline bandwidth of the system (the group);
141 * - cache the fraction of that bandwidth that is currently allocated.
142 *
143 * This is all done in the data structure below. It is similar to the
144 * one used for RT-throttling (rt_bandwidth), with the main difference
145 * that, since here we are only interested in admission control, we
146 * do not decrease any runtime while the group "executes", neither we
147 * need a timer to replenish it.
148 *
149 * With respect to SMP, the bandwidth is given on a per-CPU basis,
150 * meaning that:
151 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
152 * - dl_total_bw array contains, in the i-eth element, the currently
153 * allocated bandwidth on the i-eth CPU.
154 * Moreover, groups consume bandwidth on each CPU, while tasks only
155 * consume bandwidth on the CPU they're running on.
156 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
157 * that will be shown the next time the proc or cgroup controls will
158 * be red. It on its turn can be changed by writing on its own
159 * control.
160 */
161struct dl_bandwidth {
162 raw_spinlock_t dl_runtime_lock;
163 u64 dl_runtime;
164 u64 dl_period;
165};
166
167static inline int dl_bandwidth_enabled(void)
168{
Peter Zijlstra17248132013-12-17 12:44:49 +0100169 return sysctl_sched_rt_runtime >= 0;
Dario Faggioli332ac172013-11-07 14:43:45 +0100170}
171
172extern struct dl_bw *dl_bw_of(int i);
173
174struct dl_bw {
175 raw_spinlock_t lock;
176 u64 bw, total_bw;
177};
178
Peter Zijlstra029632f2011-10-25 10:00:11 +0200179extern struct mutex sched_domains_mutex;
180
181#ifdef CONFIG_CGROUP_SCHED
182
183#include <linux/cgroup.h>
184
185struct cfs_rq;
186struct rt_rq;
187
Mike Galbraith35cf4e52012-08-07 05:00:13 +0200188extern struct list_head task_groups;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200189
190struct cfs_bandwidth {
191#ifdef CONFIG_CFS_BANDWIDTH
192 raw_spinlock_t lock;
193 ktime_t period;
194 u64 quota, runtime;
Zhihui Zhang9c58c792014-09-20 21:24:36 -0400195 s64 hierarchical_quota;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200196 u64 runtime_expires;
197
198 int idle, timer_active;
199 struct hrtimer period_timer, slack_timer;
200 struct list_head throttled_cfs_rq;
201
202 /* statistics */
203 int nr_periods, nr_throttled;
204 u64 throttled_time;
205#endif
206};
207
208/* task group related information */
209struct task_group {
210 struct cgroup_subsys_state css;
211
212#ifdef CONFIG_FAIR_GROUP_SCHED
213 /* schedulable entities of this group on each cpu */
214 struct sched_entity **se;
215 /* runqueue "owned" by this group on each cpu */
216 struct cfs_rq **cfs_rq;
217 unsigned long shares;
218
Alex Shifa6bdde2013-06-20 10:18:46 +0800219#ifdef CONFIG_SMP
Alex Shibf5b9862013-06-20 10:18:54 +0800220 atomic_long_t load_avg;
Paul Turnerbb17f652012-10-04 13:18:31 +0200221 atomic_t runnable_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200222#endif
Alex Shifa6bdde2013-06-20 10:18:46 +0800223#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200224
225#ifdef CONFIG_RT_GROUP_SCHED
226 struct sched_rt_entity **rt_se;
227 struct rt_rq **rt_rq;
228
229 struct rt_bandwidth rt_bandwidth;
230#endif
231
232 struct rcu_head rcu;
233 struct list_head list;
234
235 struct task_group *parent;
236 struct list_head siblings;
237 struct list_head children;
238
239#ifdef CONFIG_SCHED_AUTOGROUP
240 struct autogroup *autogroup;
241#endif
242
243 struct cfs_bandwidth cfs_bandwidth;
244};
245
246#ifdef CONFIG_FAIR_GROUP_SCHED
247#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
248
249/*
250 * A weight of 0 or 1 can cause arithmetics problems.
251 * A weight of a cfs_rq is the sum of weights of which entities
252 * are queued on this cfs_rq, so a weight of a entity should not be
253 * too large, so as the shares value of a task group.
254 * (The default weight is 1024 - so there's no practical
255 * limitation from this.)
256 */
257#define MIN_SHARES (1UL << 1)
258#define MAX_SHARES (1UL << 18)
259#endif
260
Peter Zijlstra029632f2011-10-25 10:00:11 +0200261typedef int (*tg_visitor)(struct task_group *, void *);
262
263extern int walk_tg_tree_from(struct task_group *from,
264 tg_visitor down, tg_visitor up, void *data);
265
266/*
267 * Iterate the full tree, calling @down when first entering a node and @up when
268 * leaving it for the final time.
269 *
270 * Caller must hold rcu_lock or sufficient equivalent.
271 */
272static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
273{
274 return walk_tg_tree_from(&root_task_group, down, up, data);
275}
276
277extern int tg_nop(struct task_group *tg, void *data);
278
279extern void free_fair_sched_group(struct task_group *tg);
280extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
281extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
282extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
283 struct sched_entity *se, int cpu,
284 struct sched_entity *parent);
285extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
286extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
287
288extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
Roman Gushchin09dc4ab2014-05-19 15:10:09 +0400289extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200290extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
291
292extern void free_rt_sched_group(struct task_group *tg);
293extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
294extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
295 struct sched_rt_entity *rt_se, int cpu,
296 struct sched_rt_entity *parent);
297
Li Zefan25cc7da2013-03-05 16:07:33 +0800298extern struct task_group *sched_create_group(struct task_group *parent);
299extern void sched_online_group(struct task_group *tg,
300 struct task_group *parent);
301extern void sched_destroy_group(struct task_group *tg);
302extern void sched_offline_group(struct task_group *tg);
303
304extern void sched_move_task(struct task_struct *tsk);
305
306#ifdef CONFIG_FAIR_GROUP_SCHED
307extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
308#endif
309
Peter Zijlstra029632f2011-10-25 10:00:11 +0200310#else /* CONFIG_CGROUP_SCHED */
311
312struct cfs_bandwidth { };
313
314#endif /* CONFIG_CGROUP_SCHED */
315
316/* CFS-related fields in a runqueue */
317struct cfs_rq {
318 struct load_weight load;
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200319 unsigned int nr_running, h_nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200320
321 u64 exec_clock;
322 u64 min_vruntime;
323#ifndef CONFIG_64BIT
324 u64 min_vruntime_copy;
325#endif
326
327 struct rb_root tasks_timeline;
328 struct rb_node *rb_leftmost;
329
Peter Zijlstra029632f2011-10-25 10:00:11 +0200330 /*
331 * 'curr' points to currently running entity on this cfs_rq.
332 * It is set to NULL otherwise (i.e when none are currently running).
333 */
334 struct sched_entity *curr, *next, *last, *skip;
335
336#ifdef CONFIG_SCHED_DEBUG
337 unsigned int nr_spread_over;
338#endif
339
Paul Turner2dac7542012-10-04 13:18:30 +0200340#ifdef CONFIG_SMP
341 /*
342 * CFS Load tracking
343 * Under CFS, load is tracked on a per-entity basis and aggregated up.
344 * This allows for the description of both thread and group usage (in
345 * the FAIR_GROUP_SCHED case).
346 */
Alex Shi72a4cf22013-06-20 10:18:53 +0800347 unsigned long runnable_load_avg, blocked_load_avg;
Alex Shi25099402013-06-20 10:18:55 +0800348 atomic64_t decay_counter;
Paul Turner9ee474f2012-10-04 13:18:30 +0200349 u64 last_decay;
Alex Shi25099402013-06-20 10:18:55 +0800350 atomic_long_t removed_load;
Alex Shi141965c2013-06-26 13:05:39 +0800351
Paul Turnerc566e8e2012-10-04 13:18:30 +0200352#ifdef CONFIG_FAIR_GROUP_SCHED
Alex Shi141965c2013-06-26 13:05:39 +0800353 /* Required to track per-cpu representation of a task_group */
Paul Turnerbb17f652012-10-04 13:18:31 +0200354 u32 tg_runnable_contrib;
Alex Shibf5b9862013-06-20 10:18:54 +0800355 unsigned long tg_load_contrib;
Paul Turner82958362012-10-04 13:18:31 +0200356
357 /*
358 * h_load = weight * f(tg)
359 *
360 * Where f(tg) is the recursive weight fraction assigned to
361 * this group.
362 */
363 unsigned long h_load;
Vladimir Davydov68520792013-07-15 17:49:19 +0400364 u64 last_h_load_update;
365 struct sched_entity *h_load_next;
366#endif /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner82958362012-10-04 13:18:31 +0200367#endif /* CONFIG_SMP */
368
Peter Zijlstra029632f2011-10-25 10:00:11 +0200369#ifdef CONFIG_FAIR_GROUP_SCHED
370 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
371
372 /*
373 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
374 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
375 * (like users, containers etc.)
376 *
377 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
378 * list is used during load balance.
379 */
380 int on_list;
381 struct list_head leaf_cfs_rq_list;
382 struct task_group *tg; /* group that "owns" this runqueue */
383
Peter Zijlstra029632f2011-10-25 10:00:11 +0200384#ifdef CONFIG_CFS_BANDWIDTH
385 int runtime_enabled;
386 u64 runtime_expires;
387 s64 runtime_remaining;
388
Paul Turnerf1b17282012-10-04 13:18:31 +0200389 u64 throttled_clock, throttled_clock_task;
390 u64 throttled_clock_task_time;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200391 int throttled, throttle_count;
392 struct list_head throttled_list;
393#endif /* CONFIG_CFS_BANDWIDTH */
394#endif /* CONFIG_FAIR_GROUP_SCHED */
395};
396
397static inline int rt_bandwidth_enabled(void)
398{
399 return sysctl_sched_rt_runtime >= 0;
400}
401
402/* Real-Time classes' related field in a runqueue: */
403struct rt_rq {
404 struct rt_prio_array active;
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200405 unsigned int rt_nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200406#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
407 struct {
408 int curr; /* highest queued rt task prio */
409#ifdef CONFIG_SMP
410 int next; /* next highest */
411#endif
412 } highest_prio;
413#endif
414#ifdef CONFIG_SMP
415 unsigned long rt_nr_migratory;
416 unsigned long rt_nr_total;
417 int overloaded;
418 struct plist_head pushable_tasks;
419#endif
Kirill Tkhaif4ebcbc2014-03-15 02:15:00 +0400420 int rt_queued;
421
Peter Zijlstra029632f2011-10-25 10:00:11 +0200422 int rt_throttled;
423 u64 rt_time;
424 u64 rt_runtime;
425 /* Nests inside the rq lock: */
426 raw_spinlock_t rt_runtime_lock;
427
428#ifdef CONFIG_RT_GROUP_SCHED
429 unsigned long rt_nr_boosted;
430
431 struct rq *rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200432 struct task_group *tg;
433#endif
434};
435
Dario Faggioliaab03e02013-11-28 11:14:43 +0100436/* Deadline class' related fields in a runqueue */
437struct dl_rq {
438 /* runqueue is an rbtree, ordered by deadline */
439 struct rb_root rb_root;
440 struct rb_node *rb_leftmost;
441
442 unsigned long dl_nr_running;
Juri Lelli1baca4c2013-11-07 14:43:38 +0100443
444#ifdef CONFIG_SMP
445 /*
446 * Deadline values of the currently executing and the
447 * earliest ready task on this rq. Caching these facilitates
448 * the decision wether or not a ready but not running task
449 * should migrate somewhere else.
450 */
451 struct {
452 u64 curr;
453 u64 next;
454 } earliest_dl;
455
456 unsigned long dl_nr_migratory;
Juri Lelli1baca4c2013-11-07 14:43:38 +0100457 int overloaded;
458
459 /*
460 * Tasks on this rq that can be pushed away. They are kept in
461 * an rb-tree, ordered by tasks' deadlines, with caching
462 * of the leftmost (earliest deadline) element.
463 */
464 struct rb_root pushable_dl_tasks_root;
465 struct rb_node *pushable_dl_tasks_leftmost;
Dario Faggioli332ac172013-11-07 14:43:45 +0100466#else
467 struct dl_bw dl_bw;
Juri Lelli1baca4c2013-11-07 14:43:38 +0100468#endif
Dario Faggioliaab03e02013-11-28 11:14:43 +0100469};
470
Peter Zijlstra029632f2011-10-25 10:00:11 +0200471#ifdef CONFIG_SMP
472
473/*
474 * We add the notion of a root-domain which will be used to define per-domain
475 * variables. Each exclusive cpuset essentially defines an island domain by
476 * fully partitioning the member cpus from any other cpuset. Whenever a new
477 * exclusive cpuset is created, we also create and attach a new root-domain
478 * object.
479 *
480 */
481struct root_domain {
482 atomic_t refcount;
483 atomic_t rto_count;
484 struct rcu_head rcu;
485 cpumask_var_t span;
486 cpumask_var_t online;
487
Tim Chen4486edd2014-06-23 12:16:49 -0700488 /* Indicate more than one runnable task for any CPU */
489 bool overload;
490
Peter Zijlstra029632f2011-10-25 10:00:11 +0200491 /*
Juri Lelli1baca4c2013-11-07 14:43:38 +0100492 * The bit corresponding to a CPU gets set here if such CPU has more
493 * than one runnable -deadline task (as it is below for RT tasks).
494 */
495 cpumask_var_t dlo_mask;
496 atomic_t dlo_count;
Dario Faggioli332ac172013-11-07 14:43:45 +0100497 struct dl_bw dl_bw;
Juri Lelli6bfd6d72013-11-07 14:43:47 +0100498 struct cpudl cpudl;
Juri Lelli1baca4c2013-11-07 14:43:38 +0100499
500 /*
Peter Zijlstra029632f2011-10-25 10:00:11 +0200501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
503 */
504 cpumask_var_t rto_mask;
505 struct cpupri cpupri;
506};
507
508extern struct root_domain def_root_domain;
509
510#endif /* CONFIG_SMP */
511
512/*
513 * This is the main, per-CPU runqueue data structure.
514 *
515 * Locking rule: those places that want to lock multiple runqueues
516 * (such as the load balancing or the thread migration code), lock
517 * acquire operations must be ordered by ascending &runqueue.
518 */
519struct rq {
520 /* runqueue lock: */
521 raw_spinlock_t lock;
522
523 /*
524 * nr_running and cpu_load should be in the same cacheline because
525 * remote CPUs use both these fields when doing load calculation.
526 */
Peter Zijlstrac82513e2012-04-26 13:12:27 +0200527 unsigned int nr_running;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +0100528#ifdef CONFIG_NUMA_BALANCING
529 unsigned int nr_numa_running;
530 unsigned int nr_preferred_running;
531#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200532 #define CPU_LOAD_IDX_MAX 5
533 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
534 unsigned long last_load_update_tick;
Frederic Weisbecker3451d022011-08-10 23:21:01 +0200535#ifdef CONFIG_NO_HZ_COMMON
Peter Zijlstra029632f2011-10-25 10:00:11 +0200536 u64 nohz_stamp;
Suresh Siddha1c792db2011-12-01 17:07:32 -0800537 unsigned long nohz_flags;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200538#endif
Frederic Weisbecker265f22a2013-05-03 03:39:05 +0200539#ifdef CONFIG_NO_HZ_FULL
540 unsigned long last_sched_tick;
541#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200542 int skip_clock_update;
543
544 /* capture load from *all* tasks on this cpu: */
545 struct load_weight load;
546 unsigned long nr_load_updates;
547 u64 nr_switches;
548
549 struct cfs_rq cfs;
550 struct rt_rq rt;
Dario Faggioliaab03e02013-11-28 11:14:43 +0100551 struct dl_rq dl;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200552
553#ifdef CONFIG_FAIR_GROUP_SCHED
554 /* list of leaf cfs_rq on this cpu: */
555 struct list_head leaf_cfs_rq_list;
Dietmar Eggemannf5f97392014-02-26 11:19:33 +0000556
557 struct sched_avg avg;
Peter Zijlstraa35b6462012-08-08 21:46:40 +0200558#endif /* CONFIG_FAIR_GROUP_SCHED */
559
Peter Zijlstra029632f2011-10-25 10:00:11 +0200560 /*
561 * This is part of a global counter where only the total sum
562 * over all CPUs matters. A task can increase this counter on
563 * one CPU and if it got migrated afterwards it may decrease
564 * it on another CPU. Always updated under the runqueue lock:
565 */
566 unsigned long nr_uninterruptible;
567
568 struct task_struct *curr, *idle, *stop;
569 unsigned long next_balance;
570 struct mm_struct *prev_mm;
571
572 u64 clock;
573 u64 clock_task;
574
575 atomic_t nr_iowait;
576
577#ifdef CONFIG_SMP
578 struct root_domain *rd;
579 struct sched_domain *sd;
580
Nicolas Pitreced549f2014-05-26 18:19:38 -0400581 unsigned long cpu_capacity;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200582
583 unsigned char idle_balance;
584 /* For active balancing */
585 int post_schedule;
586 int active_balance;
587 int push_cpu;
588 struct cpu_stop_work active_balance_work;
589 /* cpu of this runqueue: */
590 int cpu;
591 int online;
592
Peter Zijlstra367456c2012-02-20 21:49:09 +0100593 struct list_head cfs_tasks;
594
Peter Zijlstra029632f2011-10-25 10:00:11 +0200595 u64 rt_avg;
596 u64 age_stamp;
597 u64 idle_stamp;
598 u64 avg_idle;
Jason Low9bd721c2013-09-13 11:26:52 -0700599
600 /* This is used to determine avg_idle's max value */
601 u64 max_idle_balance_cost;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200602#endif
603
604#ifdef CONFIG_IRQ_TIME_ACCOUNTING
605 u64 prev_irq_time;
606#endif
607#ifdef CONFIG_PARAVIRT
608 u64 prev_steal_time;
609#endif
610#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
611 u64 prev_steal_time_rq;
612#endif
613
614 /* calc_load related fields */
615 unsigned long calc_load_update;
616 long calc_load_active;
617
618#ifdef CONFIG_SCHED_HRTICK
619#ifdef CONFIG_SMP
620 int hrtick_csd_pending;
621 struct call_single_data hrtick_csd;
622#endif
623 struct hrtimer hrtick_timer;
624#endif
625
626#ifdef CONFIG_SCHEDSTATS
627 /* latency stats */
628 struct sched_info rq_sched_info;
629 unsigned long long rq_cpu_time;
630 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
631
632 /* sys_sched_yield() stats */
633 unsigned int yld_count;
634
635 /* schedule() stats */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200636 unsigned int sched_count;
637 unsigned int sched_goidle;
638
639 /* try_to_wake_up() stats */
640 unsigned int ttwu_count;
641 unsigned int ttwu_local;
642#endif
643
644#ifdef CONFIG_SMP
645 struct llist_head wake_list;
646#endif
Daniel Lezcano442bf3a2014-09-04 11:32:09 -0400647
648#ifdef CONFIG_CPU_IDLE
649 /* Must be inspected within a rcu lock section */
650 struct cpuidle_state *idle_state;
651#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200652};
653
654static inline int cpu_of(struct rq *rq)
655{
656#ifdef CONFIG_SMP
657 return rq->cpu;
658#else
659 return 0;
660#endif
661}
662
Pranith Kumar8b06c552014-08-13 13:28:12 -0400663DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
Peter Zijlstra029632f2011-10-25 10:00:11 +0200664
Peter Zijlstra518cd622011-12-07 15:07:31 +0100665#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
666#define this_rq() (&__get_cpu_var(runqueues))
667#define task_rq(p) cpu_rq(task_cpu(p))
668#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
669#define raw_rq() (&__raw_get_cpu_var(runqueues))
670
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200671static inline u64 rq_clock(struct rq *rq)
672{
673 return rq->clock;
674}
675
676static inline u64 rq_clock_task(struct rq *rq)
677{
678 return rq->clock_task;
679}
680
Mel Gormanf809ca92013-10-07 11:28:57 +0100681#ifdef CONFIG_NUMA_BALANCING
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +0100682extern void sched_setnuma(struct task_struct *p, int node);
Mel Gormane6628d52013-10-07 11:29:02 +0100683extern int migrate_task_to(struct task_struct *p, int cpu);
Peter Zijlstraac66f542013-10-07 11:29:16 +0100684extern int migrate_swap(struct task_struct *, struct task_struct *);
Mel Gormanf809ca92013-10-07 11:28:57 +0100685#endif /* CONFIG_NUMA_BALANCING */
686
Peter Zijlstra518cd622011-12-07 15:07:31 +0100687#ifdef CONFIG_SMP
688
Peter Zijlstrae3baac42014-06-04 10:31:18 -0700689extern void sched_ttwu_pending(void);
690
Peter Zijlstra029632f2011-10-25 10:00:11 +0200691#define rcu_dereference_check_sched_domain(p) \
692 rcu_dereference_check((p), \
693 lockdep_is_held(&sched_domains_mutex))
694
695/*
696 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
697 * See detach_destroy_domains: synchronize_sched for details.
698 *
699 * The domain tree of any CPU may only be accessed from within
700 * preempt-disabled sections.
701 */
702#define for_each_domain(cpu, __sd) \
Peter Zijlstra518cd622011-12-07 15:07:31 +0100703 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
704 __sd; __sd = __sd->parent)
Peter Zijlstra029632f2011-10-25 10:00:11 +0200705
Suresh Siddha77e81362011-11-17 11:08:23 -0800706#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
707
Peter Zijlstra518cd622011-12-07 15:07:31 +0100708/**
709 * highest_flag_domain - Return highest sched_domain containing flag.
710 * @cpu: The cpu whose highest level of sched domain is to
711 * be returned.
712 * @flag: The flag to check for the highest sched_domain
713 * for the given cpu.
714 *
715 * Returns the highest sched_domain of a cpu which contains the given flag.
716 */
717static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
718{
719 struct sched_domain *sd, *hsd = NULL;
720
721 for_each_domain(cpu, sd) {
722 if (!(sd->flags & flag))
723 break;
724 hsd = sd;
725 }
726
727 return hsd;
728}
729
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100730static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
731{
732 struct sched_domain *sd;
733
734 for_each_domain(cpu, sd) {
735 if (sd->flags & flag)
736 break;
737 }
738
739 return sd;
740}
741
Peter Zijlstra518cd622011-12-07 15:07:31 +0100742DECLARE_PER_CPU(struct sched_domain *, sd_llc);
Peter Zijlstra7d9ffa82013-07-04 12:56:46 +0800743DECLARE_PER_CPU(int, sd_llc_size);
Peter Zijlstra518cd622011-12-07 15:07:31 +0100744DECLARE_PER_CPU(int, sd_llc_id);
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100745DECLARE_PER_CPU(struct sched_domain *, sd_numa);
Preeti U Murthy37dc6b52013-10-30 08:42:52 +0530746DECLARE_PER_CPU(struct sched_domain *, sd_busy);
747DECLARE_PER_CPU(struct sched_domain *, sd_asym);
Peter Zijlstra518cd622011-12-07 15:07:31 +0100748
Nicolas Pitre63b2ca32014-05-26 18:19:37 -0400749struct sched_group_capacity {
Li Zefan5e6521e2013-03-05 16:06:23 +0800750 atomic_t ref;
751 /*
Nicolas Pitre63b2ca32014-05-26 18:19:37 -0400752 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
753 * for a single CPU.
Li Zefan5e6521e2013-03-05 16:06:23 +0800754 */
Nicolas Pitre63b2ca32014-05-26 18:19:37 -0400755 unsigned int capacity, capacity_orig;
Li Zefan5e6521e2013-03-05 16:06:23 +0800756 unsigned long next_update;
Nicolas Pitre63b2ca32014-05-26 18:19:37 -0400757 int imbalance; /* XXX unrelated to capacity but shared group state */
Li Zefan5e6521e2013-03-05 16:06:23 +0800758 /*
759 * Number of busy cpus in this group.
760 */
761 atomic_t nr_busy_cpus;
762
763 unsigned long cpumask[0]; /* iteration mask */
764};
765
766struct sched_group {
767 struct sched_group *next; /* Must be a circular list */
768 atomic_t ref;
769
770 unsigned int group_weight;
Nicolas Pitre63b2ca32014-05-26 18:19:37 -0400771 struct sched_group_capacity *sgc;
Li Zefan5e6521e2013-03-05 16:06:23 +0800772
773 /*
774 * The CPUs this group covers.
775 *
776 * NOTE: this field is variable length. (Allocated dynamically
777 * by attaching extra space to the end of the structure,
778 * depending on how many CPUs the kernel has booted up with)
779 */
780 unsigned long cpumask[0];
781};
782
783static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
784{
785 return to_cpumask(sg->cpumask);
786}
787
788/*
789 * cpumask masking which cpus in the group are allowed to iterate up the domain
790 * tree.
791 */
792static inline struct cpumask *sched_group_mask(struct sched_group *sg)
793{
Nicolas Pitre63b2ca32014-05-26 18:19:37 -0400794 return to_cpumask(sg->sgc->cpumask);
Li Zefan5e6521e2013-03-05 16:06:23 +0800795}
796
797/**
798 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
799 * @group: The group whose first cpu is to be returned.
800 */
801static inline unsigned int group_first_cpu(struct sched_group *group)
802{
803 return cpumask_first(sched_group_cpus(group));
804}
805
Peter Zijlstrac1174872012-05-31 14:47:33 +0200806extern int group_balance_cpu(struct sched_group *sg);
807
Peter Zijlstrae3baac42014-06-04 10:31:18 -0700808#else
809
810static inline void sched_ttwu_pending(void) { }
811
Peter Zijlstra518cd622011-12-07 15:07:31 +0100812#endif /* CONFIG_SMP */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200813
Peter Zijlstra391e43d2011-11-15 17:14:39 +0100814#include "stats.h"
815#include "auto_group.h"
Peter Zijlstra029632f2011-10-25 10:00:11 +0200816
817#ifdef CONFIG_CGROUP_SCHED
818
819/*
820 * Return the group to which this tasks belongs.
821 *
Tejun Heo8af01f52013-08-08 20:11:22 -0400822 * We cannot use task_css() and friends because the cgroup subsystem
823 * changes that value before the cgroup_subsys::attach() method is called,
824 * therefore we cannot pin it and might observe the wrong value.
Peter Zijlstra8323f262012-06-22 13:36:05 +0200825 *
826 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
827 * core changes this before calling sched_move_task().
828 *
829 * Instead we use a 'copy' which is updated from sched_move_task() while
830 * holding both task_struct::pi_lock and rq::lock.
Peter Zijlstra029632f2011-10-25 10:00:11 +0200831 */
832static inline struct task_group *task_group(struct task_struct *p)
833{
Peter Zijlstra8323f262012-06-22 13:36:05 +0200834 return p->sched_task_group;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200835}
836
837/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
838static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
839{
840#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
841 struct task_group *tg = task_group(p);
842#endif
843
844#ifdef CONFIG_FAIR_GROUP_SCHED
845 p->se.cfs_rq = tg->cfs_rq[cpu];
846 p->se.parent = tg->se[cpu];
847#endif
848
849#ifdef CONFIG_RT_GROUP_SCHED
850 p->rt.rt_rq = tg->rt_rq[cpu];
851 p->rt.parent = tg->rt_se[cpu];
852#endif
853}
854
855#else /* CONFIG_CGROUP_SCHED */
856
857static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
858static inline struct task_group *task_group(struct task_struct *p)
859{
860 return NULL;
861}
862
863#endif /* CONFIG_CGROUP_SCHED */
864
865static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
866{
867 set_task_rq(p, cpu);
868#ifdef CONFIG_SMP
869 /*
870 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
871 * successfuly executed on another CPU. We must ensure that updates of
872 * per-task data have been completed by this moment.
873 */
874 smp_wmb();
875 task_thread_info(p)->cpu = cpu;
Peter Zijlstraac66f542013-10-07 11:29:16 +0100876 p->wake_cpu = cpu;
Peter Zijlstra029632f2011-10-25 10:00:11 +0200877#endif
878}
879
880/*
881 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
882 */
883#ifdef CONFIG_SCHED_DEBUG
Ingo Molnarc5905af2012-02-24 08:31:31 +0100884# include <linux/static_key.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +0200885# define const_debug __read_mostly
886#else
887# define const_debug const
888#endif
889
890extern const_debug unsigned int sysctl_sched_features;
891
892#define SCHED_FEAT(name, enabled) \
893 __SCHED_FEAT_##name ,
894
895enum {
Peter Zijlstra391e43d2011-11-15 17:14:39 +0100896#include "features.h"
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200897 __SCHED_FEAT_NR,
Peter Zijlstra029632f2011-10-25 10:00:11 +0200898};
899
900#undef SCHED_FEAT
901
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200902#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200903#define SCHED_FEAT(name, enabled) \
Ingo Molnarc5905af2012-02-24 08:31:31 +0100904static __always_inline bool static_branch_##name(struct static_key *key) \
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200905{ \
Jason Baron6e76ea82014-07-02 15:52:41 +0000906 return static_key_##enabled(key); \
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200907}
908
909#include "features.h"
910
911#undef SCHED_FEAT
912
Ingo Molnarc5905af2012-02-24 08:31:31 +0100913extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200914#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
915#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200916#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
Peter Zijlstraf8b6d1c2011-07-06 14:20:14 +0200917#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
Peter Zijlstra029632f2011-10-25 10:00:11 +0200918
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200919#ifdef CONFIG_NUMA_BALANCING
920#define sched_feat_numa(x) sched_feat(x)
Mel Gorman3105b862012-11-23 11:23:49 +0000921#ifdef CONFIG_SCHED_DEBUG
922#define numabalancing_enabled sched_feat_numa(NUMA)
923#else
924extern bool numabalancing_enabled;
925#endif /* CONFIG_SCHED_DEBUG */
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200926#else
927#define sched_feat_numa(x) (0)
Mel Gorman3105b862012-11-23 11:23:49 +0000928#define numabalancing_enabled (0)
929#endif /* CONFIG_NUMA_BALANCING */
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200930
Peter Zijlstra029632f2011-10-25 10:00:11 +0200931static inline u64 global_rt_period(void)
932{
933 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
934}
935
936static inline u64 global_rt_runtime(void)
937{
938 if (sysctl_sched_rt_runtime < 0)
939 return RUNTIME_INF;
940
941 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
942}
943
Peter Zijlstra029632f2011-10-25 10:00:11 +0200944static inline int task_current(struct rq *rq, struct task_struct *p)
945{
946 return rq->curr == p;
947}
948
949static inline int task_running(struct rq *rq, struct task_struct *p)
950{
951#ifdef CONFIG_SMP
952 return p->on_cpu;
953#else
954 return task_current(rq, p);
955#endif
956}
957
Kirill Tkhaida0c1e62014-08-20 13:47:32 +0400958static inline int task_on_rq_queued(struct task_struct *p)
959{
960 return p->on_rq == TASK_ON_RQ_QUEUED;
961}
Peter Zijlstra029632f2011-10-25 10:00:11 +0200962
Kirill Tkhaicca26e82014-08-20 13:47:42 +0400963static inline int task_on_rq_migrating(struct task_struct *p)
964{
965 return p->on_rq == TASK_ON_RQ_MIGRATING;
966}
967
Peter Zijlstra029632f2011-10-25 10:00:11 +0200968#ifndef prepare_arch_switch
969# define prepare_arch_switch(next) do { } while (0)
970#endif
971#ifndef finish_arch_switch
972# define finish_arch_switch(prev) do { } while (0)
973#endif
Catalin Marinas01f23e12011-11-27 21:43:10 +0000974#ifndef finish_arch_post_lock_switch
975# define finish_arch_post_lock_switch() do { } while (0)
976#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +0200977
978#ifndef __ARCH_WANT_UNLOCKED_CTXSW
979static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
980{
981#ifdef CONFIG_SMP
982 /*
983 * We can optimise this out completely for !SMP, because the
984 * SMP rebalancing from interrupt is the only thing that cares
985 * here.
986 */
987 next->on_cpu = 1;
988#endif
989}
990
991static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
992{
993#ifdef CONFIG_SMP
994 /*
995 * After ->on_cpu is cleared, the task can be moved to a different CPU.
996 * We must ensure this doesn't happen until the switch is completely
997 * finished.
998 */
999 smp_wmb();
1000 prev->on_cpu = 0;
1001#endif
1002#ifdef CONFIG_DEBUG_SPINLOCK
1003 /* this is a valid case when another task releases the spinlock */
1004 rq->lock.owner = current;
1005#endif
1006 /*
1007 * If we are tracking spinlock dependencies then we have to
1008 * fix up the runqueue lock - which gets 'carried over' from
1009 * prev into current:
1010 */
1011 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1012
1013 raw_spin_unlock_irq(&rq->lock);
1014}
1015
1016#else /* __ARCH_WANT_UNLOCKED_CTXSW */
1017static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1018{
1019#ifdef CONFIG_SMP
1020 /*
1021 * We can optimise this out completely for !SMP, because the
1022 * SMP rebalancing from interrupt is the only thing that cares
1023 * here.
1024 */
1025 next->on_cpu = 1;
1026#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02001027 raw_spin_unlock(&rq->lock);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001028}
1029
1030static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1031{
1032#ifdef CONFIG_SMP
1033 /*
1034 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1035 * We must ensure this doesn't happen until the switch is completely
1036 * finished.
1037 */
1038 smp_wmb();
1039 prev->on_cpu = 0;
1040#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02001041 local_irq_enable();
Peter Zijlstra029632f2011-10-25 10:00:11 +02001042}
1043#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1044
Li Zefanb13095f2013-03-05 16:06:38 +08001045/*
1046 * wake flags
1047 */
1048#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
1049#define WF_FORK 0x02 /* child wakeup after fork */
1050#define WF_MIGRATED 0x4 /* internal use, task got migrated */
1051
Peter Zijlstra029632f2011-10-25 10:00:11 +02001052/*
1053 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1054 * of tasks with abnormal "nice" values across CPUs the contribution that
1055 * each task makes to its run queue's load is weighted according to its
1056 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1057 * scaled version of the new time slice allocation that they receive on time
1058 * slice expiry etc.
1059 */
1060
1061#define WEIGHT_IDLEPRIO 3
1062#define WMULT_IDLEPRIO 1431655765
1063
1064/*
1065 * Nice levels are multiplicative, with a gentle 10% change for every
1066 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1067 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1068 * that remained on nice 0.
1069 *
1070 * The "10% effect" is relative and cumulative: from _any_ nice level,
1071 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1072 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1073 * If a task goes up by ~10% and another task goes down by ~10% then
1074 * the relative distance between them is ~25%.)
1075 */
1076static const int prio_to_weight[40] = {
1077 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1078 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1079 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1080 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1081 /* 0 */ 1024, 820, 655, 526, 423,
1082 /* 5 */ 335, 272, 215, 172, 137,
1083 /* 10 */ 110, 87, 70, 56, 45,
1084 /* 15 */ 36, 29, 23, 18, 15,
1085};
1086
1087/*
1088 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1089 *
1090 * In cases where the weight does not change often, we can use the
1091 * precalculated inverse to speed up arithmetics by turning divisions
1092 * into multiplications:
1093 */
1094static const u32 prio_to_wmult[40] = {
1095 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1096 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1097 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1098 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1099 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1100 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1101 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1102 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1103};
1104
Li Zefanc82ba9f2013-03-05 16:06:55 +08001105#define ENQUEUE_WAKEUP 1
1106#define ENQUEUE_HEAD 2
1107#ifdef CONFIG_SMP
1108#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1109#else
1110#define ENQUEUE_WAKING 0
1111#endif
Dario Faggioliaab03e02013-11-28 11:14:43 +01001112#define ENQUEUE_REPLENISH 8
Li Zefanc82ba9f2013-03-05 16:06:55 +08001113
1114#define DEQUEUE_SLEEP 1
1115
Peter Zijlstra37e117c2014-02-14 12:25:08 +01001116#define RETRY_TASK ((void *)-1UL)
1117
Li Zefanc82ba9f2013-03-05 16:06:55 +08001118struct sched_class {
1119 const struct sched_class *next;
1120
1121 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1122 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1123 void (*yield_task) (struct rq *rq);
1124 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1125
1126 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1127
Peter Zijlstra606dba22012-02-11 06:05:00 +01001128 /*
1129 * It is the responsibility of the pick_next_task() method that will
1130 * return the next task to call put_prev_task() on the @prev task or
1131 * something equivalent.
Peter Zijlstra37e117c2014-02-14 12:25:08 +01001132 *
1133 * May return RETRY_TASK when it finds a higher prio class has runnable
1134 * tasks.
Peter Zijlstra606dba22012-02-11 06:05:00 +01001135 */
1136 struct task_struct * (*pick_next_task) (struct rq *rq,
1137 struct task_struct *prev);
Li Zefanc82ba9f2013-03-05 16:06:55 +08001138 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1139
1140#ifdef CONFIG_SMP
Peter Zijlstraac66f542013-10-07 11:29:16 +01001141 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
Li Zefanc82ba9f2013-03-05 16:06:55 +08001142 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1143
Li Zefanc82ba9f2013-03-05 16:06:55 +08001144 void (*post_schedule) (struct rq *this_rq);
1145 void (*task_waking) (struct task_struct *task);
1146 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1147
1148 void (*set_cpus_allowed)(struct task_struct *p,
1149 const struct cpumask *newmask);
1150
1151 void (*rq_online)(struct rq *rq);
1152 void (*rq_offline)(struct rq *rq);
1153#endif
1154
1155 void (*set_curr_task) (struct rq *rq);
1156 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1157 void (*task_fork) (struct task_struct *p);
Dario Faggiolie6c390f2013-11-07 14:43:35 +01001158 void (*task_dead) (struct task_struct *p);
Li Zefanc82ba9f2013-03-05 16:06:55 +08001159
1160 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1161 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1162 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1163 int oldprio);
1164
1165 unsigned int (*get_rr_interval) (struct rq *rq,
1166 struct task_struct *task);
1167
1168#ifdef CONFIG_FAIR_GROUP_SCHED
1169 void (*task_move_group) (struct task_struct *p, int on_rq);
1170#endif
1171};
Peter Zijlstra029632f2011-10-25 10:00:11 +02001172
Peter Zijlstra3f1d2a32014-02-12 10:49:30 +01001173static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1174{
1175 prev->sched_class->put_prev_task(rq, prev);
1176}
1177
Peter Zijlstra029632f2011-10-25 10:00:11 +02001178#define sched_class_highest (&stop_sched_class)
1179#define for_each_class(class) \
1180 for (class = sched_class_highest; class; class = class->next)
1181
1182extern const struct sched_class stop_sched_class;
Dario Faggioliaab03e02013-11-28 11:14:43 +01001183extern const struct sched_class dl_sched_class;
Peter Zijlstra029632f2011-10-25 10:00:11 +02001184extern const struct sched_class rt_sched_class;
1185extern const struct sched_class fair_sched_class;
1186extern const struct sched_class idle_sched_class;
1187
1188
1189#ifdef CONFIG_SMP
1190
Nicolas Pitre63b2ca32014-05-26 18:19:37 -04001191extern void update_group_capacity(struct sched_domain *sd, int cpu);
Li Zefanb7192032013-03-07 10:00:26 +08001192
Daniel Lezcano7caff662014-01-06 12:34:38 +01001193extern void trigger_load_balance(struct rq *rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001194
Vincent Guittot642dbc32013-04-18 18:34:26 +02001195extern void idle_enter_fair(struct rq *this_rq);
1196extern void idle_exit_fair(struct rq *this_rq);
Vincent Guittot642dbc32013-04-18 18:34:26 +02001197
Peter Zijlstradc877342014-02-12 15:47:29 +01001198#else
1199
1200static inline void idle_enter_fair(struct rq *rq) { }
1201static inline void idle_exit_fair(struct rq *rq) { }
1202
Peter Zijlstra029632f2011-10-25 10:00:11 +02001203#endif
1204
Daniel Lezcano442bf3a2014-09-04 11:32:09 -04001205#ifdef CONFIG_CPU_IDLE
1206static inline void idle_set_state(struct rq *rq,
1207 struct cpuidle_state *idle_state)
1208{
1209 rq->idle_state = idle_state;
1210}
1211
1212static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1213{
1214 WARN_ON(!rcu_read_lock_held());
1215 return rq->idle_state;
1216}
1217#else
1218static inline void idle_set_state(struct rq *rq,
1219 struct cpuidle_state *idle_state)
1220{
1221}
1222
1223static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1224{
1225 return NULL;
1226}
1227#endif
1228
Peter Zijlstra029632f2011-10-25 10:00:11 +02001229extern void sysrq_sched_debug_show(void);
1230extern void sched_init_granularity(void);
1231extern void update_max_interval(void);
Juri Lelli1baca4c2013-11-07 14:43:38 +01001232
1233extern void init_sched_dl_class(void);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001234extern void init_sched_rt_class(void);
1235extern void init_sched_fair_class(void);
Dario Faggioli332ac172013-11-07 14:43:45 +01001236extern void init_sched_dl_class(void);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001237
Kirill Tkhai88751252014-06-29 00:03:57 +04001238extern void resched_curr(struct rq *rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001239extern void resched_cpu(int cpu);
1240
1241extern struct rt_bandwidth def_rt_bandwidth;
1242extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1243
Dario Faggioli332ac172013-11-07 14:43:45 +01001244extern struct dl_bandwidth def_dl_bandwidth;
1245extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
Dario Faggioliaab03e02013-11-28 11:14:43 +01001246extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1247
Dario Faggioli332ac172013-11-07 14:43:45 +01001248unsigned long to_ratio(u64 period, u64 runtime);
1249
Peter Zijlstra556061b2012-05-11 17:31:26 +02001250extern void update_idle_cpu_load(struct rq *this_rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001251
Alex Shia75cdaa2013-06-20 10:18:47 +08001252extern void init_task_runnable_average(struct task_struct *p);
1253
Kirill Tkhai72465442014-05-09 03:00:14 +04001254static inline void add_nr_running(struct rq *rq, unsigned count)
Peter Zijlstra029632f2011-10-25 10:00:11 +02001255{
Kirill Tkhai72465442014-05-09 03:00:14 +04001256 unsigned prev_nr = rq->nr_running;
1257
1258 rq->nr_running = prev_nr + count;
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +02001259
Kirill Tkhai72465442014-05-09 03:00:14 +04001260 if (prev_nr < 2 && rq->nr_running >= 2) {
Tim Chen4486edd2014-06-23 12:16:49 -07001261#ifdef CONFIG_SMP
1262 if (!rq->rd->overload)
1263 rq->rd->overload = true;
1264#endif
1265
1266#ifdef CONFIG_NO_HZ_FULL
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +02001267 if (tick_nohz_full_cpu(rq->cpu)) {
Frederic Weisbecker3882ec62014-03-18 22:54:04 +01001268 /*
1269 * Tick is needed if more than one task runs on a CPU.
1270 * Send the target an IPI to kick it out of nohz mode.
1271 *
1272 * We assume that IPI implies full memory barrier and the
1273 * new value of rq->nr_running is visible on reception
1274 * from the target.
1275 */
Frederic Weisbeckerfd2ac4f2014-03-18 21:12:53 +01001276 tick_nohz_full_kick_cpu(rq->cpu);
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +02001277 }
Frederic Weisbecker9f3660c2013-04-20 14:35:09 +02001278#endif
Tim Chen4486edd2014-06-23 12:16:49 -07001279 }
Peter Zijlstra029632f2011-10-25 10:00:11 +02001280}
1281
Kirill Tkhai72465442014-05-09 03:00:14 +04001282static inline void sub_nr_running(struct rq *rq, unsigned count)
Peter Zijlstra029632f2011-10-25 10:00:11 +02001283{
Kirill Tkhai72465442014-05-09 03:00:14 +04001284 rq->nr_running -= count;
Peter Zijlstra029632f2011-10-25 10:00:11 +02001285}
1286
Frederic Weisbecker265f22a2013-05-03 03:39:05 +02001287static inline void rq_last_tick_reset(struct rq *rq)
1288{
1289#ifdef CONFIG_NO_HZ_FULL
1290 rq->last_sched_tick = jiffies;
1291#endif
1292}
1293
Peter Zijlstra029632f2011-10-25 10:00:11 +02001294extern void update_rq_clock(struct rq *rq);
1295
1296extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1297extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1298
1299extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1300
1301extern const_debug unsigned int sysctl_sched_time_avg;
1302extern const_debug unsigned int sysctl_sched_nr_migrate;
1303extern const_debug unsigned int sysctl_sched_migration_cost;
1304
1305static inline u64 sched_avg_period(void)
1306{
1307 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1308}
1309
Peter Zijlstra029632f2011-10-25 10:00:11 +02001310#ifdef CONFIG_SCHED_HRTICK
1311
1312/*
1313 * Use hrtick when:
1314 * - enabled by features
1315 * - hrtimer is actually high res
1316 */
1317static inline int hrtick_enabled(struct rq *rq)
1318{
1319 if (!sched_feat(HRTICK))
1320 return 0;
1321 if (!cpu_active(cpu_of(rq)))
1322 return 0;
1323 return hrtimer_is_hres_active(&rq->hrtick_timer);
1324}
1325
1326void hrtick_start(struct rq *rq, u64 delay);
1327
Mike Galbraithb39e66e2011-11-22 15:20:07 +01001328#else
1329
1330static inline int hrtick_enabled(struct rq *rq)
1331{
1332 return 0;
1333}
1334
Peter Zijlstra029632f2011-10-25 10:00:11 +02001335#endif /* CONFIG_SCHED_HRTICK */
1336
1337#ifdef CONFIG_SMP
1338extern void sched_avg_update(struct rq *rq);
1339static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1340{
1341 rq->rt_avg += rt_delta;
1342 sched_avg_update(rq);
1343}
1344#else
1345static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1346static inline void sched_avg_update(struct rq *rq) { }
1347#endif
1348
1349extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1350
1351#ifdef CONFIG_SMP
1352#ifdef CONFIG_PREEMPT
1353
1354static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1355
1356/*
1357 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1358 * way at the expense of forcing extra atomic operations in all
1359 * invocations. This assures that the double_lock is acquired using the
1360 * same underlying policy as the spinlock_t on this architecture, which
1361 * reduces latency compared to the unfair variant below. However, it
1362 * also adds more overhead and therefore may reduce throughput.
1363 */
1364static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1365 __releases(this_rq->lock)
1366 __acquires(busiest->lock)
1367 __acquires(this_rq->lock)
1368{
1369 raw_spin_unlock(&this_rq->lock);
1370 double_rq_lock(this_rq, busiest);
1371
1372 return 1;
1373}
1374
1375#else
1376/*
1377 * Unfair double_lock_balance: Optimizes throughput at the expense of
1378 * latency by eliminating extra atomic operations when the locks are
1379 * already in proper order on entry. This favors lower cpu-ids and will
1380 * grant the double lock to lower cpus over higher ids under contention,
1381 * regardless of entry order into the function.
1382 */
1383static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1384 __releases(this_rq->lock)
1385 __acquires(busiest->lock)
1386 __acquires(this_rq->lock)
1387{
1388 int ret = 0;
1389
1390 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1391 if (busiest < this_rq) {
1392 raw_spin_unlock(&this_rq->lock);
1393 raw_spin_lock(&busiest->lock);
1394 raw_spin_lock_nested(&this_rq->lock,
1395 SINGLE_DEPTH_NESTING);
1396 ret = 1;
1397 } else
1398 raw_spin_lock_nested(&busiest->lock,
1399 SINGLE_DEPTH_NESTING);
1400 }
1401 return ret;
1402}
1403
1404#endif /* CONFIG_PREEMPT */
1405
1406/*
1407 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1408 */
1409static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1410{
1411 if (unlikely(!irqs_disabled())) {
1412 /* printk() doesn't work good under rq->lock */
1413 raw_spin_unlock(&this_rq->lock);
1414 BUG_ON(1);
1415 }
1416
1417 return _double_lock_balance(this_rq, busiest);
1418}
1419
1420static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1421 __releases(busiest->lock)
1422{
1423 raw_spin_unlock(&busiest->lock);
1424 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1425}
1426
Peter Zijlstra74602312013-10-10 20:17:22 +02001427static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1428{
1429 if (l1 > l2)
1430 swap(l1, l2);
1431
1432 spin_lock(l1);
1433 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1434}
1435
Mike Galbraith60e69ee2014-04-07 10:55:15 +02001436static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1437{
1438 if (l1 > l2)
1439 swap(l1, l2);
1440
1441 spin_lock_irq(l1);
1442 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1443}
1444
Peter Zijlstra74602312013-10-10 20:17:22 +02001445static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1446{
1447 if (l1 > l2)
1448 swap(l1, l2);
1449
1450 raw_spin_lock(l1);
1451 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1452}
1453
Peter Zijlstra029632f2011-10-25 10:00:11 +02001454/*
1455 * double_rq_lock - safely lock two runqueues
1456 *
1457 * Note this does not disable interrupts like task_rq_lock,
1458 * you need to do so manually before calling.
1459 */
1460static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1461 __acquires(rq1->lock)
1462 __acquires(rq2->lock)
1463{
1464 BUG_ON(!irqs_disabled());
1465 if (rq1 == rq2) {
1466 raw_spin_lock(&rq1->lock);
1467 __acquire(rq2->lock); /* Fake it out ;) */
1468 } else {
1469 if (rq1 < rq2) {
1470 raw_spin_lock(&rq1->lock);
1471 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1472 } else {
1473 raw_spin_lock(&rq2->lock);
1474 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1475 }
1476 }
1477}
1478
1479/*
1480 * double_rq_unlock - safely unlock two runqueues
1481 *
1482 * Note this does not restore interrupts like task_rq_unlock,
1483 * you need to do so manually after calling.
1484 */
1485static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1486 __releases(rq1->lock)
1487 __releases(rq2->lock)
1488{
1489 raw_spin_unlock(&rq1->lock);
1490 if (rq1 != rq2)
1491 raw_spin_unlock(&rq2->lock);
1492 else
1493 __release(rq2->lock);
1494}
1495
1496#else /* CONFIG_SMP */
1497
1498/*
1499 * double_rq_lock - safely lock two runqueues
1500 *
1501 * Note this does not disable interrupts like task_rq_lock,
1502 * you need to do so manually before calling.
1503 */
1504static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1505 __acquires(rq1->lock)
1506 __acquires(rq2->lock)
1507{
1508 BUG_ON(!irqs_disabled());
1509 BUG_ON(rq1 != rq2);
1510 raw_spin_lock(&rq1->lock);
1511 __acquire(rq2->lock); /* Fake it out ;) */
1512}
1513
1514/*
1515 * double_rq_unlock - safely unlock two runqueues
1516 *
1517 * Note this does not restore interrupts like task_rq_unlock,
1518 * you need to do so manually after calling.
1519 */
1520static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1521 __releases(rq1->lock)
1522 __releases(rq2->lock)
1523{
1524 BUG_ON(rq1 != rq2);
1525 raw_spin_unlock(&rq1->lock);
1526 __release(rq2->lock);
1527}
1528
1529#endif
1530
1531extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1532extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1533extern void print_cfs_stats(struct seq_file *m, int cpu);
1534extern void print_rt_stats(struct seq_file *m, int cpu);
1535
1536extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1537extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
Dario Faggioliaab03e02013-11-28 11:14:43 +01001538extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq);
Peter Zijlstra029632f2011-10-25 10:00:11 +02001539
Ben Segall1ee14e62013-10-16 11:16:12 -07001540extern void cfs_bandwidth_usage_inc(void);
1541extern void cfs_bandwidth_usage_dec(void);
Suresh Siddha1c792db2011-12-01 17:07:32 -08001542
Frederic Weisbecker3451d022011-08-10 23:21:01 +02001543#ifdef CONFIG_NO_HZ_COMMON
Suresh Siddha1c792db2011-12-01 17:07:32 -08001544enum rq_nohz_flag_bits {
1545 NOHZ_TICK_STOPPED,
1546 NOHZ_BALANCE_KICK,
1547};
1548
1549#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1550#endif
Frederic Weisbecker73fbec62012-06-16 15:57:37 +02001551
1552#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1553
1554DECLARE_PER_CPU(u64, cpu_hardirq_time);
1555DECLARE_PER_CPU(u64, cpu_softirq_time);
1556
1557#ifndef CONFIG_64BIT
1558DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1559
1560static inline void irq_time_write_begin(void)
1561{
1562 __this_cpu_inc(irq_time_seq.sequence);
1563 smp_wmb();
1564}
1565
1566static inline void irq_time_write_end(void)
1567{
1568 smp_wmb();
1569 __this_cpu_inc(irq_time_seq.sequence);
1570}
1571
1572static inline u64 irq_time_read(int cpu)
1573{
1574 u64 irq_time;
1575 unsigned seq;
1576
1577 do {
1578 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1579 irq_time = per_cpu(cpu_softirq_time, cpu) +
1580 per_cpu(cpu_hardirq_time, cpu);
1581 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1582
1583 return irq_time;
1584}
1585#else /* CONFIG_64BIT */
1586static inline void irq_time_write_begin(void)
1587{
1588}
1589
1590static inline void irq_time_write_end(void)
1591{
1592}
1593
1594static inline u64 irq_time_read(int cpu)
1595{
1596 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1597}
1598#endif /* CONFIG_64BIT */
1599#endif /* CONFIG_IRQ_TIME_ACCOUNTING */