blob: 5ef92e10c8c0ec3eb67045e40ce177f581cc1bc3 [file] [log] [blame]
Eric Huangaabcb7c2015-08-26 16:52:28 -04001/*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23#include <linux/module.h>
24#include <linux/slab.h>
25#include <linux/fb.h>
26#include "linux/delay.h"
27
28#include "hwmgr.h"
29#include "fiji_smumgr.h"
30#include "atombios.h"
31#include "hardwaremanager.h"
32#include "ppatomctrl.h"
33#include "atombios.h"
34#include "cgs_common.h"
35#include "fiji_dyn_defaults.h"
36#include "fiji_powertune.h"
37#include "smu73.h"
38#include "smu/smu_7_1_3_d.h"
39#include "smu/smu_7_1_3_sh_mask.h"
40#include "gmc/gmc_8_1_d.h"
41#include "gmc/gmc_8_1_sh_mask.h"
42#include "bif/bif_5_0_d.h"
43#include "bif/bif_5_0_sh_mask.h"
44#include "dce/dce_10_0_d.h"
45#include "dce/dce_10_0_sh_mask.h"
46#include "pppcielanes.h"
47#include "fiji_hwmgr.h"
48#include "tonga_processpptables.h"
49#include "tonga_pptable.h"
50#include "pp_debug.h"
51#include "pp_acpi.h"
Alex Deucher16881da2015-11-11 20:18:52 -050052#include "amd_pcie_helpers.h"
Eric Huangaabcb7c2015-08-26 16:52:28 -040053
54#define VOLTAGE_SCALE 4
55#define SMC_RAM_END 0x40000
56#define VDDC_VDDCI_DELTA 300
57
58#define MC_SEQ_MISC0_GDDR5_SHIFT 28
59#define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000
60#define MC_SEQ_MISC0_GDDR5_VALUE 5
61
62#define MC_CG_ARB_FREQ_F0 0x0a /* boot-up default */
63#define MC_CG_ARB_FREQ_F1 0x0b
64#define MC_CG_ARB_FREQ_F2 0x0c
65#define MC_CG_ARB_FREQ_F3 0x0d
66
67/* From smc_reg.h */
68#define SMC_CG_IND_START 0xc0030000
69#define SMC_CG_IND_END 0xc0040000 /* First byte after SMC_CG_IND */
70
71#define VOLTAGE_SCALE 4
72#define VOLTAGE_VID_OFFSET_SCALE1 625
73#define VOLTAGE_VID_OFFSET_SCALE2 100
74
75#define VDDC_VDDCI_DELTA 300
76
77#define ixSWRST_COMMAND_1 0x1400103
78#define MC_SEQ_CNTL__CAC_EN_MASK 0x40000000
79
80/** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
81enum DPM_EVENT_SRC {
82 DPM_EVENT_SRC_ANALOG = 0, /* Internal analog trip point */
83 DPM_EVENT_SRC_EXTERNAL = 1, /* External (GPIO 17) signal */
84 DPM_EVENT_SRC_DIGITAL = 2, /* Internal digital trip point (DIG_THERM_DPM) */
85 DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3, /* Internal analog or external */
86 DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4 /* Internal digital or external */
87};
88
89enum DISPLAY_GAP {
90 DISPLAY_GAP_VBLANK_OR_WM = 0, /* Wait for vblank or MCHG watermark. */
91 DISPLAY_GAP_VBLANK = 1, /* Wait for vblank. */
92 DISPLAY_GAP_WATERMARK = 2, /* Wait for MCHG watermark. */
93 DISPLAY_GAP_IGNORE = 3 /* Do not wait. */
94};
95
96/* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs
97 * not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ]
98 */
99uint16_t fiji_clock_stretcher_lookup_table[2][4] = { {600, 1050, 3, 0},
100 {600, 1050, 6, 1} };
101
102/* [FF, SS] type, [] 4 voltage ranges, and
103 * [Floor Freq, Boundary Freq, VID min , VID max]
104 */
105uint32_t fiji_clock_stretcher_ddt_table[2][4][4] =
106{ { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
107 { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
108
109/* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%]
110 * (coming from PWR_CKS_CNTL.stretch_amount reg spec)
111 */
112uint8_t fiji_clock_stretch_amount_conversion[2][6] = { {0, 1, 3, 2, 4, 5},
113 {0, 2, 4, 5, 6, 5} };
114
115const unsigned long PhwFiji_Magic = (unsigned long)(PHM_VIslands_Magic);
116
117struct fiji_power_state *cast_phw_fiji_power_state(
118 struct pp_hw_power_state *hw_ps)
119{
120 PP_ASSERT_WITH_CODE((PhwFiji_Magic == hw_ps->magic),
121 "Invalid Powerstate Type!",
122 return NULL;);
123
124 return (struct fiji_power_state *)hw_ps;
125}
126
127const struct fiji_power_state *cast_const_phw_fiji_power_state(
128 const struct pp_hw_power_state *hw_ps)
129{
130 PP_ASSERT_WITH_CODE((PhwFiji_Magic == hw_ps->magic),
131 "Invalid Powerstate Type!",
132 return NULL;);
133
134 return (const struct fiji_power_state *)hw_ps;
135}
136
137static bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr)
138{
139 return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
140 CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
141 ? true : false;
142}
143
144static void fiji_init_dpm_defaults(struct pp_hwmgr *hwmgr)
145{
146 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
147 struct fiji_ulv_parm *ulv = &data->ulv;
148
149 ulv->cg_ulv_parameter = PPFIJI_CGULVPARAMETER_DFLT;
150 data->voting_rights_clients0 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT0;
151 data->voting_rights_clients1 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT1;
152 data->voting_rights_clients2 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT2;
153 data->voting_rights_clients3 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT3;
154 data->voting_rights_clients4 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT4;
155 data->voting_rights_clients5 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT5;
156 data->voting_rights_clients6 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT6;
157 data->voting_rights_clients7 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT7;
158
159 data->static_screen_threshold_unit =
160 PPFIJI_STATICSCREENTHRESHOLDUNIT_DFLT;
161 data->static_screen_threshold =
162 PPFIJI_STATICSCREENTHRESHOLD_DFLT;
163
164 /* Unset ABM cap as it moved to DAL.
165 * Add PHM_PlatformCaps_NonABMSupportInPPLib
166 * for re-direct ABM related request to DAL
167 */
168 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
169 PHM_PlatformCaps_ABM);
170 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
171 PHM_PlatformCaps_NonABMSupportInPPLib);
172
173 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
174 PHM_PlatformCaps_DynamicACTiming);
175
176 fiji_initialize_power_tune_defaults(hwmgr);
177
178 data->mclk_stutter_mode_threshold = 60000;
179 data->pcie_gen_performance.max = PP_PCIEGen1;
180 data->pcie_gen_performance.min = PP_PCIEGen3;
181 data->pcie_gen_power_saving.max = PP_PCIEGen1;
182 data->pcie_gen_power_saving.min = PP_PCIEGen3;
183 data->pcie_lane_performance.max = 0;
184 data->pcie_lane_performance.min = 16;
185 data->pcie_lane_power_saving.max = 0;
186 data->pcie_lane_power_saving.min = 16;
187
188 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
189 PHM_PlatformCaps_DynamicUVDState);
190}
191
192static int fiji_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
193 phm_ppt_v1_voltage_lookup_table *lookup_table,
194 uint16_t virtual_voltage_id, int32_t *sclk)
195{
196 uint8_t entryId;
197 uint8_t voltageId;
198 struct phm_ppt_v1_information *table_info =
199 (struct phm_ppt_v1_information *)(hwmgr->pptable);
200
201 PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -EINVAL);
202
203 /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
204 for (entryId = 0; entryId < table_info->vdd_dep_on_sclk->count; entryId++) {
205 voltageId = table_info->vdd_dep_on_sclk->entries[entryId].vddInd;
206 if (lookup_table->entries[voltageId].us_vdd == virtual_voltage_id)
207 break;
208 }
209
210 PP_ASSERT_WITH_CODE(entryId < table_info->vdd_dep_on_sclk->count,
211 "Can't find requested voltage id in vdd_dep_on_sclk table!",
212 return -EINVAL;
213 );
214
215 *sclk = table_info->vdd_dep_on_sclk->entries[entryId].clk;
216
217 return 0;
218}
219
220/**
221* Get Leakage VDDC based on leakage ID.
222*
223* @param hwmgr the address of the powerplay hardware manager.
224* @return always 0
225*/
226static int fiji_get_evv_voltages(struct pp_hwmgr *hwmgr)
227{
228 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
229 uint16_t vv_id;
230 uint16_t vddc = 0;
231 uint16_t evv_default = 1150;
232 uint16_t i, j;
233 uint32_t sclk = 0;
234 struct phm_ppt_v1_information *table_info =
235 (struct phm_ppt_v1_information *)hwmgr->pptable;
236 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
237 table_info->vdd_dep_on_sclk;
238 int result;
239
240 for (i = 0; i < FIJI_MAX_LEAKAGE_COUNT; i++) {
241 vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
242 if (!fiji_get_sclk_for_voltage_evv(hwmgr,
243 table_info->vddc_lookup_table, vv_id, &sclk)) {
244 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
245 PHM_PlatformCaps_ClockStretcher)) {
246 for (j = 1; j < sclk_table->count; j++) {
247 if (sclk_table->entries[j].clk == sclk &&
248 sclk_table->entries[j].cks_enable == 0) {
249 sclk += 5000;
250 break;
251 }
252 }
253 }
254
255 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
256 PHM_PlatformCaps_EnableDriverEVV))
257 result = atomctrl_calculate_voltage_evv_on_sclk(hwmgr,
258 VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc, i, true);
259 else
260 result = -EINVAL;
261
262 if (result)
263 result = atomctrl_get_voltage_evv_on_sclk(hwmgr,
264 VOLTAGE_TYPE_VDDC, sclk,vv_id, &vddc);
265
266 /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
267 PP_ASSERT_WITH_CODE((vddc < 2000),
268 "Invalid VDDC value, greater than 2v!", result = -EINVAL;);
269
270 if (result)
271 /* 1.15V is the default safe value for Fiji */
272 vddc = evv_default;
273
274 /* the voltage should not be zero nor equal to leakage ID */
275 if (vddc != 0 && vddc != vv_id) {
276 data->vddc_leakage.actual_voltage
277 [data->vddc_leakage.count] = vddc;
278 data->vddc_leakage.leakage_id
279 [data->vddc_leakage.count] = vv_id;
280 data->vddc_leakage.count++;
281 }
282 }
283 }
284 return 0;
285}
286
287/**
288 * Change virtual leakage voltage to actual value.
289 *
290 * @param hwmgr the address of the powerplay hardware manager.
291 * @param pointer to changing voltage
292 * @param pointer to leakage table
293 */
294static void fiji_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
295 uint16_t *voltage, struct fiji_leakage_voltage *leakage_table)
296{
297 uint32_t index;
298
299 /* search for leakage voltage ID 0xff01 ~ 0xff08 */
300 for (index = 0; index < leakage_table->count; index++) {
301 /* if this voltage matches a leakage voltage ID */
302 /* patch with actual leakage voltage */
303 if (leakage_table->leakage_id[index] == *voltage) {
304 *voltage = leakage_table->actual_voltage[index];
305 break;
306 }
307 }
308
309 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
310 printk(KERN_ERR "Voltage value looks like a Leakage ID but it's not patched \n");
311}
312
313/**
314* Patch voltage lookup table by EVV leakages.
315*
316* @param hwmgr the address of the powerplay hardware manager.
317* @param pointer to voltage lookup table
318* @param pointer to leakage table
319* @return always 0
320*/
321static int fiji_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
322 phm_ppt_v1_voltage_lookup_table *lookup_table,
323 struct fiji_leakage_voltage *leakage_table)
324{
325 uint32_t i;
326
327 for (i = 0; i < lookup_table->count; i++)
328 fiji_patch_with_vdd_leakage(hwmgr,
329 &lookup_table->entries[i].us_vdd, leakage_table);
330
331 return 0;
332}
333
334static int fiji_patch_clock_voltage_limits_with_vddc_leakage(
335 struct pp_hwmgr *hwmgr, struct fiji_leakage_voltage *leakage_table,
336 uint16_t *vddc)
337{
338 struct phm_ppt_v1_information *table_info =
339 (struct phm_ppt_v1_information *)(hwmgr->pptable);
340 fiji_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
341 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
342 table_info->max_clock_voltage_on_dc.vddc;
343 return 0;
344}
345
346static int fiji_patch_voltage_dependency_tables_with_lookup_table(
347 struct pp_hwmgr *hwmgr)
348{
349 uint8_t entryId;
350 uint8_t voltageId;
351 struct phm_ppt_v1_information *table_info =
352 (struct phm_ppt_v1_information *)(hwmgr->pptable);
353
354 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
355 table_info->vdd_dep_on_sclk;
356 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
357 table_info->vdd_dep_on_mclk;
358 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
359 table_info->mm_dep_table;
360
361 for (entryId = 0; entryId < sclk_table->count; ++entryId) {
362 voltageId = sclk_table->entries[entryId].vddInd;
363 sclk_table->entries[entryId].vddc =
364 table_info->vddc_lookup_table->entries[voltageId].us_vdd;
365 }
366
367 for (entryId = 0; entryId < mclk_table->count; ++entryId) {
368 voltageId = mclk_table->entries[entryId].vddInd;
369 mclk_table->entries[entryId].vddc =
370 table_info->vddc_lookup_table->entries[voltageId].us_vdd;
371 }
372
373 for (entryId = 0; entryId < mm_table->count; ++entryId) {
374 voltageId = mm_table->entries[entryId].vddcInd;
375 mm_table->entries[entryId].vddc =
376 table_info->vddc_lookup_table->entries[voltageId].us_vdd;
377 }
378
379 return 0;
380
381}
382
383static int fiji_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
384{
385 /* Need to determine if we need calculated voltage. */
386 return 0;
387}
388
389static int fiji_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
390{
391 /* Need to determine if we need calculated voltage from mm table. */
392 return 0;
393}
394
395static int fiji_sort_lookup_table(struct pp_hwmgr *hwmgr,
396 struct phm_ppt_v1_voltage_lookup_table *lookup_table)
397{
398 uint32_t table_size, i, j;
399 struct phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
400 table_size = lookup_table->count;
401
402 PP_ASSERT_WITH_CODE(0 != lookup_table->count,
403 "Lookup table is empty", return -EINVAL);
404
405 /* Sorting voltages */
406 for (i = 0; i < table_size - 1; i++) {
407 for (j = i + 1; j > 0; j--) {
408 if (lookup_table->entries[j].us_vdd <
409 lookup_table->entries[j - 1].us_vdd) {
410 tmp_voltage_lookup_record = lookup_table->entries[j - 1];
411 lookup_table->entries[j - 1] = lookup_table->entries[j];
412 lookup_table->entries[j] = tmp_voltage_lookup_record;
413 }
414 }
415 }
416
417 return 0;
418}
419
420static int fiji_complete_dependency_tables(struct pp_hwmgr *hwmgr)
421{
422 int result = 0;
423 int tmp_result;
424 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
425 struct phm_ppt_v1_information *table_info =
426 (struct phm_ppt_v1_information *)(hwmgr->pptable);
427
428 tmp_result = fiji_patch_lookup_table_with_leakage(hwmgr,
429 table_info->vddc_lookup_table, &(data->vddc_leakage));
430 if (tmp_result)
431 result = tmp_result;
432
433 tmp_result = fiji_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
434 &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
435 if (tmp_result)
436 result = tmp_result;
437
438 tmp_result = fiji_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
439 if (tmp_result)
440 result = tmp_result;
441
442 tmp_result = fiji_calc_voltage_dependency_tables(hwmgr);
443 if (tmp_result)
444 result = tmp_result;
445
446 tmp_result = fiji_calc_mm_voltage_dependency_table(hwmgr);
447 if (tmp_result)
448 result = tmp_result;
449
450 tmp_result = fiji_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
451 if(tmp_result)
452 result = tmp_result;
453
454 return result;
455}
456
457static int fiji_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
458{
459 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
460 struct phm_ppt_v1_information *table_info =
461 (struct phm_ppt_v1_information *)(hwmgr->pptable);
462
463 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
464 table_info->vdd_dep_on_sclk;
465 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
466 table_info->vdd_dep_on_mclk;
467
468 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
469 "VDD dependency on SCLK table is missing. \
470 This table is mandatory", return -EINVAL);
471 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
472 "VDD dependency on SCLK table has to have is missing. \
473 This table is mandatory", return -EINVAL);
474
475 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
476 "VDD dependency on MCLK table is missing. \
477 This table is mandatory", return -EINVAL);
478 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
479 "VDD dependency on MCLK table has to have is missing. \
480 This table is mandatory", return -EINVAL);
481
482 data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vdd_table->entries[0].vddc;
483 data->max_vddc_in_pptable = (uint16_t)allowed_sclk_vdd_table->
484 entries[allowed_sclk_vdd_table->count - 1].vddc;
485
486 table_info->max_clock_voltage_on_ac.sclk =
487 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
488 table_info->max_clock_voltage_on_ac.mclk =
489 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
490 table_info->max_clock_voltage_on_ac.vddc =
491 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
492 table_info->max_clock_voltage_on_ac.vddci =
493 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
494
495 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
496 table_info->max_clock_voltage_on_ac.sclk;
497 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
498 table_info->max_clock_voltage_on_ac.mclk;
499 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
500 table_info->max_clock_voltage_on_ac.vddc;
501 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
502 table_info->max_clock_voltage_on_ac.vddci;
503
504 return 0;
505}
506
507static uint16_t fiji_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
508{
509 uint32_t speedCntl = 0;
510
511 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
512 speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
513 ixPCIE_LC_SPEED_CNTL);
514 return((uint16_t)PHM_GET_FIELD(speedCntl,
515 PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
516}
517
518static int fiji_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr)
519{
520 uint32_t link_width;
521
522 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
523 link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
524 PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD);
525
526 PP_ASSERT_WITH_CODE((7 >= link_width),
527 "Invalid PCIe lane width!", return 0);
528
529 return decode_pcie_lane_width(link_width);
530}
531
532/** Patch the Boot State to match VBIOS boot clocks and voltage.
533*
534* @param hwmgr Pointer to the hardware manager.
535* @param pPowerState The address of the PowerState instance being created.
536*
537*/
538static int fiji_patch_boot_state(struct pp_hwmgr *hwmgr,
539 struct pp_hw_power_state *hw_ps)
540{
541 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
542 struct fiji_power_state *ps = (struct fiji_power_state *)hw_ps;
543 ATOM_FIRMWARE_INFO_V2_2 *fw_info;
544 uint16_t size;
545 uint8_t frev, crev;
546 int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
547
548 /* First retrieve the Boot clocks and VDDC from the firmware info table.
549 * We assume here that fw_info is unchanged if this call fails.
550 */
551 fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table(
552 hwmgr->device, index,
553 &size, &frev, &crev);
554 if (!fw_info)
555 /* During a test, there is no firmware info table. */
556 return 0;
557
558 /* Patch the state. */
559 data->vbios_boot_state.sclk_bootup_value =
560 le32_to_cpu(fw_info->ulDefaultEngineClock);
561 data->vbios_boot_state.mclk_bootup_value =
562 le32_to_cpu(fw_info->ulDefaultMemoryClock);
563 data->vbios_boot_state.mvdd_bootup_value =
564 le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
565 data->vbios_boot_state.vddc_bootup_value =
566 le16_to_cpu(fw_info->usBootUpVDDCVoltage);
567 data->vbios_boot_state.vddci_bootup_value =
568 le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
569 data->vbios_boot_state.pcie_gen_bootup_value =
570 fiji_get_current_pcie_speed(hwmgr);
571 data->vbios_boot_state.pcie_lane_bootup_value =
572 (uint16_t)fiji_get_current_pcie_lane_number(hwmgr);
573
574 /* set boot power state */
575 ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
576 ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
577 ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
578 ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
579
580 return 0;
581}
582
583static int fiji_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
584{
585 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
586 uint32_t i;
587 struct phm_ppt_v1_information *table_info =
588 (struct phm_ppt_v1_information *)(hwmgr->pptable);
589 bool stay_in_boot;
590 int result;
591
592 data->dll_default_on = false;
593 data->sram_end = SMC_RAM_END;
594
595 for (i = 0; i < SMU73_MAX_LEVELS_GRAPHICS; i++)
596 data->activity_target[i] = FIJI_AT_DFLT;
597
598 data->vddc_vddci_delta = VDDC_VDDCI_DELTA;
599
600 data->mclk_activity_target = PPFIJI_MCLK_TARGETACTIVITY_DFLT;
601 data->mclk_dpm0_activity_target = 0xa;
602
603 data->sclk_dpm_key_disabled = 0;
604 data->mclk_dpm_key_disabled = 0;
605 data->pcie_dpm_key_disabled = 0;
606
607 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
608 PHM_PlatformCaps_UnTabledHardwareInterface);
609 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
610 PHM_PlatformCaps_TablelessHardwareInterface);
611
612 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
613 PHM_PlatformCaps_SclkDeepSleep);
614
615 data->gpio_debug = 0;
616
617 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
618 PHM_PlatformCaps_DynamicPatchPowerState);
619
620 /* need to set voltage control types before EVV patching */
621 data->voltage_control = FIJI_VOLTAGE_CONTROL_NONE;
622 data->vddci_control = FIJI_VOLTAGE_CONTROL_NONE;
623 data->mvdd_control = FIJI_VOLTAGE_CONTROL_NONE;
624
625 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
626 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
627 data->voltage_control = FIJI_VOLTAGE_CONTROL_BY_SVID2;
628
629 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
630 PHM_PlatformCaps_EnableMVDDControl))
631 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
632 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
633 data->mvdd_control = FIJI_VOLTAGE_CONTROL_BY_GPIO;
634
635 if (data->mvdd_control == FIJI_VOLTAGE_CONTROL_NONE)
636 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
637 PHM_PlatformCaps_EnableMVDDControl);
638
639 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
640 PHM_PlatformCaps_ControlVDDCI)) {
641 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
642 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
643 data->vddci_control = FIJI_VOLTAGE_CONTROL_BY_GPIO;
644 else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
645 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
646 data->vddci_control = FIJI_VOLTAGE_CONTROL_BY_SVID2;
647 }
648
649 if (data->vddci_control == FIJI_VOLTAGE_CONTROL_NONE)
650 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
651 PHM_PlatformCaps_ControlVDDCI);
652
653 if (table_info && table_info->cac_dtp_table->usClockStretchAmount)
654 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
655 PHM_PlatformCaps_ClockStretcher);
656
657 fiji_init_dpm_defaults(hwmgr);
658
659 /* Get leakage voltage based on leakage ID. */
660 fiji_get_evv_voltages(hwmgr);
661
662 /* Patch our voltage dependency table with actual leakage voltage
663 * We need to perform leakage translation before it's used by other functions
664 */
665 fiji_complete_dependency_tables(hwmgr);
666
667 /* Parse pptable data read from VBIOS */
668 fiji_set_private_data_based_on_pptable(hwmgr);
669
670 /* ULV Support */
671 data->ulv.ulv_supported = true; /* ULV feature is enabled by default */
672
673 /* Initalize Dynamic State Adjustment Rule Settings */
674 result = tonga_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
675
676 if (!result) {
677 data->uvd_enabled = false;
678 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
679 PHM_PlatformCaps_EnableSMU7ThermalManagement);
680 data->vddc_phase_shed_control = false;
681 }
682
683 stay_in_boot = phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
684 PHM_PlatformCaps_StayInBootState);
685
686 if (0 == result) {
Alex Deucher464cea32015-11-11 21:02:16 -0500687 struct cgs_system_info sys_info = {0};
688
Eric Huangaabcb7c2015-08-26 16:52:28 -0400689 data->is_tlu_enabled = 0;
690 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
691 FIJI_MAX_HARDWARE_POWERLEVELS;
692 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
693 hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
694
Alex Deucher464cea32015-11-11 21:02:16 -0500695 sys_info.size = sizeof(struct cgs_system_info);
696 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO;
697 result = cgs_query_system_info(hwmgr->device, &sys_info);
698 if (result)
699 data->pcie_gen_cap = 0x30007;
700 else
701 data->pcie_gen_cap = (uint32_t)sys_info.value;
702 if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
703 data->pcie_spc_cap = 20;
704 sys_info.size = sizeof(struct cgs_system_info);
705 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW;
706 result = cgs_query_system_info(hwmgr->device, &sys_info);
707 if (result)
708 data->pcie_lane_cap = 0x2f0000;
709 else
710 data->pcie_lane_cap = (uint32_t)sys_info.value;
Eric Huangaabcb7c2015-08-26 16:52:28 -0400711 } else {
712 /* Ignore return value in here, we are cleaning up a mess. */
713 tonga_hwmgr_backend_fini(hwmgr);
714 }
715
716 return 0;
717}
718
719/**
720 * Read clock related registers.
721 *
722 * @param hwmgr the address of the powerplay hardware manager.
723 * @return always 0
724 */
725static int fiji_read_clock_registers(struct pp_hwmgr *hwmgr)
726{
727 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
728
729 data->clock_registers.vCG_SPLL_FUNC_CNTL =
730 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
731 ixCG_SPLL_FUNC_CNTL);
732 data->clock_registers.vCG_SPLL_FUNC_CNTL_2 =
733 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
734 ixCG_SPLL_FUNC_CNTL_2);
735 data->clock_registers.vCG_SPLL_FUNC_CNTL_3 =
736 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
737 ixCG_SPLL_FUNC_CNTL_3);
738 data->clock_registers.vCG_SPLL_FUNC_CNTL_4 =
739 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
740 ixCG_SPLL_FUNC_CNTL_4);
741 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM =
742 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
743 ixCG_SPLL_SPREAD_SPECTRUM);
744 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
745 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
746 ixCG_SPLL_SPREAD_SPECTRUM_2);
747
748 return 0;
749}
750
751/**
752 * Find out if memory is GDDR5.
753 *
754 * @param hwmgr the address of the powerplay hardware manager.
755 * @return always 0
756 */
757static int fiji_get_memory_type(struct pp_hwmgr *hwmgr)
758{
759 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
760 uint32_t temp;
761
762 temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0);
763
764 data->is_memory_gddr5 = (MC_SEQ_MISC0_GDDR5_VALUE ==
765 ((temp & MC_SEQ_MISC0_GDDR5_MASK) >>
766 MC_SEQ_MISC0_GDDR5_SHIFT));
767
768 return 0;
769}
770
771/**
772 * Enables Dynamic Power Management by SMC
773 *
774 * @param hwmgr the address of the powerplay hardware manager.
775 * @return always 0
776 */
777static int fiji_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
778{
779 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
780 GENERAL_PWRMGT, STATIC_PM_EN, 1);
781
782 return 0;
783}
784
785/**
786 * Initialize PowerGating States for different engines
787 *
788 * @param hwmgr the address of the powerplay hardware manager.
789 * @return always 0
790 */
791static int fiji_init_power_gate_state(struct pp_hwmgr *hwmgr)
792{
793 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
794
795 data->uvd_power_gated = false;
796 data->vce_power_gated = false;
797 data->samu_power_gated = false;
798 data->acp_power_gated = false;
799 data->pg_acp_init = true;
800
801 return 0;
802}
803
804static int fiji_init_sclk_threshold(struct pp_hwmgr *hwmgr)
805{
806 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
807 data->low_sclk_interrupt_threshold = 0;
808
809 return 0;
810}
811
812static int fiji_setup_asic_task(struct pp_hwmgr *hwmgr)
813{
814 int tmp_result, result = 0;
815
816 tmp_result = fiji_read_clock_registers(hwmgr);
817 PP_ASSERT_WITH_CODE((0 == tmp_result),
818 "Failed to read clock registers!", result = tmp_result);
819
820 tmp_result = fiji_get_memory_type(hwmgr);
821 PP_ASSERT_WITH_CODE((0 == tmp_result),
822 "Failed to get memory type!", result = tmp_result);
823
824 tmp_result = fiji_enable_acpi_power_management(hwmgr);
825 PP_ASSERT_WITH_CODE((0 == tmp_result),
826 "Failed to enable ACPI power management!", result = tmp_result);
827
828 tmp_result = fiji_init_power_gate_state(hwmgr);
829 PP_ASSERT_WITH_CODE((0 == tmp_result),
830 "Failed to init power gate state!", result = tmp_result);
831
832 tmp_result = tonga_get_mc_microcode_version(hwmgr);
833 PP_ASSERT_WITH_CODE((0 == tmp_result),
834 "Failed to get MC microcode version!", result = tmp_result);
835
836 tmp_result = fiji_init_sclk_threshold(hwmgr);
837 PP_ASSERT_WITH_CODE((0 == tmp_result),
838 "Failed to init sclk threshold!", result = tmp_result);
839
840 return result;
841}
842
843/**
844* Checks if we want to support voltage control
845*
846* @param hwmgr the address of the powerplay hardware manager.
847*/
848static bool fiji_voltage_control(const struct pp_hwmgr *hwmgr)
849{
850 const struct fiji_hwmgr *data =
851 (const struct fiji_hwmgr *)(hwmgr->backend);
852
853 return (FIJI_VOLTAGE_CONTROL_NONE != data->voltage_control);
854}
855
856/**
857* Enable voltage control
858*
859* @param hwmgr the address of the powerplay hardware manager.
860* @return always 0
861*/
862static int fiji_enable_voltage_control(struct pp_hwmgr *hwmgr)
863{
864 /* enable voltage control */
865 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
866 GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
867
868 return 0;
869}
870
871/**
872* Remove repeated voltage values and create table with unique values.
873*
874* @param hwmgr the address of the powerplay hardware manager.
875* @param vol_table the pointer to changing voltage table
876* @return 0 in success
877*/
878
879static int fiji_trim_voltage_table(struct pp_hwmgr *hwmgr,
880 struct pp_atomctrl_voltage_table *vol_table)
881{
882 uint32_t i, j;
883 uint16_t vvalue;
884 bool found = false;
885 struct pp_atomctrl_voltage_table *table;
886
887 PP_ASSERT_WITH_CODE((NULL != vol_table),
888 "Voltage Table empty.", return -EINVAL);
889 table = kzalloc(sizeof(struct pp_atomctrl_voltage_table),
890 GFP_KERNEL);
891
892 if (NULL == table)
893 return -EINVAL;
894
895 table->mask_low = vol_table->mask_low;
896 table->phase_delay = vol_table->phase_delay;
897
898 for (i = 0; i < vol_table->count; i++) {
899 vvalue = vol_table->entries[i].value;
900 found = false;
901
902 for (j = 0; j < table->count; j++) {
903 if (vvalue == table->entries[j].value) {
904 found = true;
905 break;
906 }
907 }
908
909 if (!found) {
910 table->entries[table->count].value = vvalue;
911 table->entries[table->count].smio_low =
912 vol_table->entries[i].smio_low;
913 table->count++;
914 }
915 }
916
917 memcpy(vol_table, table, sizeof(struct pp_atomctrl_voltage_table));
918 kfree(table);
919
920 return 0;
921}
922static int fiji_get_svi2_mvdd_voltage_table(struct pp_hwmgr *hwmgr,
923 phm_ppt_v1_clock_voltage_dependency_table *dep_table)
924{
925 uint32_t i;
926 int result;
927 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
928 struct pp_atomctrl_voltage_table *vol_table = &(data->mvdd_voltage_table);
929
930 PP_ASSERT_WITH_CODE((0 != dep_table->count),
931 "Voltage Dependency Table empty.", return -EINVAL);
932
933 vol_table->mask_low = 0;
934 vol_table->phase_delay = 0;
935 vol_table->count = dep_table->count;
936
937 for (i = 0; i < dep_table->count; i++) {
938 vol_table->entries[i].value = dep_table->entries[i].mvdd;
939 vol_table->entries[i].smio_low = 0;
940 }
941
942 result = fiji_trim_voltage_table(hwmgr, vol_table);
943 PP_ASSERT_WITH_CODE((0 == result),
944 "Failed to trim MVDD table.", return result);
945
946 return 0;
947}
948
949static int fiji_get_svi2_vddci_voltage_table(struct pp_hwmgr *hwmgr,
950 phm_ppt_v1_clock_voltage_dependency_table *dep_table)
951{
952 uint32_t i;
953 int result;
954 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
955 struct pp_atomctrl_voltage_table *vol_table = &(data->vddci_voltage_table);
956
957 PP_ASSERT_WITH_CODE((0 != dep_table->count),
958 "Voltage Dependency Table empty.", return -EINVAL);
959
960 vol_table->mask_low = 0;
961 vol_table->phase_delay = 0;
962 vol_table->count = dep_table->count;
963
964 for (i = 0; i < dep_table->count; i++) {
965 vol_table->entries[i].value = dep_table->entries[i].vddci;
966 vol_table->entries[i].smio_low = 0;
967 }
968
969 result = fiji_trim_voltage_table(hwmgr, vol_table);
970 PP_ASSERT_WITH_CODE((0 == result),
971 "Failed to trim VDDCI table.", return result);
972
973 return 0;
974}
975
976static int fiji_get_svi2_vdd_voltage_table(struct pp_hwmgr *hwmgr,
977 phm_ppt_v1_voltage_lookup_table *lookup_table)
978{
979 int i = 0;
980 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
981 struct pp_atomctrl_voltage_table *vol_table = &(data->vddc_voltage_table);
982
983 PP_ASSERT_WITH_CODE((0 != lookup_table->count),
984 "Voltage Lookup Table empty.", return -EINVAL);
985
986 vol_table->mask_low = 0;
987 vol_table->phase_delay = 0;
988
989 vol_table->count = lookup_table->count;
990
991 for (i = 0; i < vol_table->count; i++) {
992 vol_table->entries[i].value = lookup_table->entries[i].us_vdd;
993 vol_table->entries[i].smio_low = 0;
994 }
995
996 return 0;
997}
998
999/* ---- Voltage Tables ----
1000 * If the voltage table would be bigger than
1001 * what will fit into the state table on
1002 * the SMC keep only the higher entries.
1003 */
1004static void fiji_trim_voltage_table_to_fit_state_table(struct pp_hwmgr *hwmgr,
1005 uint32_t max_vol_steps, struct pp_atomctrl_voltage_table *vol_table)
1006{
1007 unsigned int i, diff;
1008
1009 if (vol_table->count <= max_vol_steps)
1010 return;
1011
1012 diff = vol_table->count - max_vol_steps;
1013
1014 for (i = 0; i < max_vol_steps; i++)
1015 vol_table->entries[i] = vol_table->entries[i + diff];
1016
1017 vol_table->count = max_vol_steps;
1018
1019 return;
1020}
1021
1022/**
1023* Create Voltage Tables.
1024*
1025* @param hwmgr the address of the powerplay hardware manager.
1026* @return always 0
1027*/
1028static int fiji_construct_voltage_tables(struct pp_hwmgr *hwmgr)
1029{
1030 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1031 struct phm_ppt_v1_information *table_info =
1032 (struct phm_ppt_v1_information *)hwmgr->pptable;
1033 int result;
1034
1035 if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1036 result = atomctrl_get_voltage_table_v3(hwmgr,
1037 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT,
1038 &(data->mvdd_voltage_table));
1039 PP_ASSERT_WITH_CODE((0 == result),
1040 "Failed to retrieve MVDD table.",
1041 return result);
1042 } else if (FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1043 result = fiji_get_svi2_mvdd_voltage_table(hwmgr,
1044 table_info->vdd_dep_on_mclk);
1045 PP_ASSERT_WITH_CODE((0 == result),
1046 "Failed to retrieve SVI2 MVDD table from dependancy table.",
1047 return result;);
1048 }
1049
1050 if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1051 result = atomctrl_get_voltage_table_v3(hwmgr,
1052 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT,
1053 &(data->vddci_voltage_table));
1054 PP_ASSERT_WITH_CODE((0 == result),
1055 "Failed to retrieve VDDCI table.",
1056 return result);
1057 } else if (FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1058 result = fiji_get_svi2_vddci_voltage_table(hwmgr,
1059 table_info->vdd_dep_on_mclk);
1060 PP_ASSERT_WITH_CODE((0 == result),
1061 "Failed to retrieve SVI2 VDDCI table from dependancy table.",
1062 return result);
1063 }
1064
1065 if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1066 result = fiji_get_svi2_vdd_voltage_table(hwmgr,
1067 table_info->vddc_lookup_table);
1068 PP_ASSERT_WITH_CODE((0 == result),
1069 "Failed to retrieve SVI2 VDDC table from lookup table.",
1070 return result);
1071 }
1072
1073 PP_ASSERT_WITH_CODE(
1074 (data->vddc_voltage_table.count <= (SMU73_MAX_LEVELS_VDDC)),
1075 "Too many voltage values for VDDC. Trimming to fit state table.",
1076 fiji_trim_voltage_table_to_fit_state_table(hwmgr,
1077 SMU73_MAX_LEVELS_VDDC, &(data->vddc_voltage_table)));
1078
1079 PP_ASSERT_WITH_CODE(
1080 (data->vddci_voltage_table.count <= (SMU73_MAX_LEVELS_VDDCI)),
1081 "Too many voltage values for VDDCI. Trimming to fit state table.",
1082 fiji_trim_voltage_table_to_fit_state_table(hwmgr,
1083 SMU73_MAX_LEVELS_VDDCI, &(data->vddci_voltage_table)));
1084
1085 PP_ASSERT_WITH_CODE(
1086 (data->mvdd_voltage_table.count <= (SMU73_MAX_LEVELS_MVDD)),
1087 "Too many voltage values for MVDD. Trimming to fit state table.",
1088 fiji_trim_voltage_table_to_fit_state_table(hwmgr,
1089 SMU73_MAX_LEVELS_MVDD, &(data->mvdd_voltage_table)));
1090
1091 return 0;
1092}
1093
1094static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
1095{
1096 /* Program additional LP registers
1097 * that are no longer programmed by VBIOS
1098 */
1099 cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
1100 cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
1101 cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
1102 cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
1103 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
1104 cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
1105 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
1106 cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
1107 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
1108 cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
1109 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
1110 cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
1111 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
1112 cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
1113
1114 return 0;
1115}
1116
1117/**
1118* Programs static screed detection parameters
1119*
1120* @param hwmgr the address of the powerplay hardware manager.
1121* @return always 0
1122*/
1123static int fiji_program_static_screen_threshold_parameters(
1124 struct pp_hwmgr *hwmgr)
1125{
1126 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1127
1128 /* Set static screen threshold unit */
1129 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1130 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
1131 data->static_screen_threshold_unit);
1132 /* Set static screen threshold */
1133 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1134 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
1135 data->static_screen_threshold);
1136
1137 return 0;
1138}
1139
1140/**
1141* Setup display gap for glitch free memory clock switching.
1142*
1143* @param hwmgr the address of the powerplay hardware manager.
1144* @return always 0
1145*/
1146static int fiji_enable_display_gap(struct pp_hwmgr *hwmgr)
1147{
1148 uint32_t displayGap =
1149 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1150 ixCG_DISPLAY_GAP_CNTL);
1151
1152 displayGap = PHM_SET_FIELD(displayGap, CG_DISPLAY_GAP_CNTL,
1153 DISP_GAP, DISPLAY_GAP_IGNORE);
1154
1155 displayGap = PHM_SET_FIELD(displayGap, CG_DISPLAY_GAP_CNTL,
1156 DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
1157
1158 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1159 ixCG_DISPLAY_GAP_CNTL, displayGap);
1160
1161 return 0;
1162}
1163
1164/**
1165* Programs activity state transition voting clients
1166*
1167* @param hwmgr the address of the powerplay hardware manager.
1168* @return always 0
1169*/
1170static int fiji_program_voting_clients(struct pp_hwmgr *hwmgr)
1171{
1172 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1173
1174 /* Clear reset for voting clients before enabling DPM */
1175 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1176 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
1177 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1178 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
1179
1180 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1181 ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0);
1182 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1183 ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1);
1184 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1185 ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2);
1186 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1187 ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3);
1188 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1189 ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4);
1190 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1191 ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5);
1192 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1193 ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6);
1194 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1195 ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7);
1196
1197 return 0;
1198}
1199
1200/**
1201* Get the location of various tables inside the FW image.
1202*
1203* @param hwmgr the address of the powerplay hardware manager.
1204* @return always 0
1205*/
1206static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr)
1207{
1208 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1209 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
1210 uint32_t tmp;
1211 int result;
1212 bool error = false;
1213
1214 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1215 SMU7_FIRMWARE_HEADER_LOCATION +
1216 offsetof(SMU73_Firmware_Header, DpmTable),
1217 &tmp, data->sram_end);
1218
1219 if (0 == result)
1220 data->dpm_table_start = tmp;
1221
1222 error |= (0 != result);
1223
1224 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1225 SMU7_FIRMWARE_HEADER_LOCATION +
1226 offsetof(SMU73_Firmware_Header, SoftRegisters),
1227 &tmp, data->sram_end);
1228
1229 if (!result) {
1230 data->soft_regs_start = tmp;
1231 smu_data->soft_regs_start = tmp;
1232 }
1233
1234 error |= (0 != result);
1235
1236 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1237 SMU7_FIRMWARE_HEADER_LOCATION +
1238 offsetof(SMU73_Firmware_Header, mcRegisterTable),
1239 &tmp, data->sram_end);
1240
1241 if (!result)
1242 data->mc_reg_table_start = tmp;
1243
1244 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1245 SMU7_FIRMWARE_HEADER_LOCATION +
1246 offsetof(SMU73_Firmware_Header, FanTable),
1247 &tmp, data->sram_end);
1248
1249 if (!result)
1250 data->fan_table_start = tmp;
1251
1252 error |= (0 != result);
1253
1254 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1255 SMU7_FIRMWARE_HEADER_LOCATION +
1256 offsetof(SMU73_Firmware_Header, mcArbDramTimingTable),
1257 &tmp, data->sram_end);
1258
1259 if (!result)
1260 data->arb_table_start = tmp;
1261
1262 error |= (0 != result);
1263
1264 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1265 SMU7_FIRMWARE_HEADER_LOCATION +
1266 offsetof(SMU73_Firmware_Header, Version),
1267 &tmp, data->sram_end);
1268
1269 if (!result)
1270 hwmgr->microcode_version_info.SMC = tmp;
1271
1272 error |= (0 != result);
1273
1274 return error ? -1 : 0;
1275}
1276
1277/* Copy one arb setting to another and then switch the active set.
1278 * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants.
1279 */
1280static int fiji_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
1281 uint32_t arb_src, uint32_t arb_dest)
1282{
1283 uint32_t mc_arb_dram_timing;
1284 uint32_t mc_arb_dram_timing2;
1285 uint32_t burst_time;
1286 uint32_t mc_cg_config;
1287
1288 switch (arb_src) {
1289 case MC_CG_ARB_FREQ_F0:
1290 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1291 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1292 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1293 break;
1294 case MC_CG_ARB_FREQ_F1:
1295 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
1296 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
1297 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
1298 break;
1299 default:
1300 return -EINVAL;
1301 }
1302
1303 switch (arb_dest) {
1304 case MC_CG_ARB_FREQ_F0:
1305 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
1306 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
1307 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
1308 break;
1309 case MC_CG_ARB_FREQ_F1:
1310 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
1311 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
1312 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
1313 break;
1314 default:
1315 return -EINVAL;
1316 }
1317
1318 mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
1319 mc_cg_config |= 0x0000000F;
1320 cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
1321 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);
1322
1323 return 0;
1324}
1325
1326/**
1327* Initial switch from ARB F0->F1
1328*
1329* @param hwmgr the address of the powerplay hardware manager.
1330* @return always 0
1331* This function is to be called from the SetPowerState table.
1332*/
1333static int fiji_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr)
1334{
1335 return fiji_copy_and_switch_arb_sets(hwmgr,
1336 MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
1337}
1338
1339static int fiji_reset_single_dpm_table(struct pp_hwmgr *hwmgr,
1340 struct fiji_single_dpm_table *dpm_table, uint32_t count)
1341{
1342 int i;
1343 PP_ASSERT_WITH_CODE(count <= MAX_REGULAR_DPM_NUMBER,
1344 "Fatal error, can not set up single DPM table entries "
1345 "to exceed max number!",);
1346
1347 dpm_table->count = count;
1348 for (i = 0; i < MAX_REGULAR_DPM_NUMBER; i++)
1349 dpm_table->dpm_levels[i].enabled = false;
1350
1351 return 0;
1352}
1353
1354static void fiji_setup_pcie_table_entry(
1355 struct fiji_single_dpm_table *dpm_table,
1356 uint32_t index, uint32_t pcie_gen,
1357 uint32_t pcie_lanes)
1358{
1359 dpm_table->dpm_levels[index].value = pcie_gen;
1360 dpm_table->dpm_levels[index].param1 = pcie_lanes;
1361 dpm_table->dpm_levels[index].enabled = 1;
1362}
1363
1364static int fiji_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
1365{
1366 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1367 struct phm_ppt_v1_information *table_info =
1368 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1369 struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
1370 uint32_t i, max_entry;
1371
1372 PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels ||
1373 data->use_pcie_power_saving_levels), "No pcie performance levels!",
1374 return -EINVAL);
1375
1376 if (data->use_pcie_performance_levels &&
1377 !data->use_pcie_power_saving_levels) {
1378 data->pcie_gen_power_saving = data->pcie_gen_performance;
1379 data->pcie_lane_power_saving = data->pcie_lane_performance;
1380 } else if (!data->use_pcie_performance_levels &&
1381 data->use_pcie_power_saving_levels) {
1382 data->pcie_gen_performance = data->pcie_gen_power_saving;
1383 data->pcie_lane_performance = data->pcie_lane_power_saving;
1384 }
1385
1386 fiji_reset_single_dpm_table(hwmgr,
1387 &data->dpm_table.pcie_speed_table, SMU73_MAX_LEVELS_LINK);
1388
1389 if (pcie_table != NULL) {
1390 /* max_entry is used to make sure we reserve one PCIE level
1391 * for boot level (fix for A+A PSPP issue).
1392 * If PCIE table from PPTable have ULV entry + 8 entries,
1393 * then ignore the last entry.*/
1394 max_entry = (SMU73_MAX_LEVELS_LINK < pcie_table->count) ?
1395 SMU73_MAX_LEVELS_LINK : pcie_table->count;
1396 for (i = 1; i < max_entry; i++) {
1397 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1,
1398 get_pcie_gen_support(data->pcie_gen_cap,
1399 pcie_table->entries[i].gen_speed),
1400 get_pcie_lane_support(data->pcie_lane_cap,
1401 pcie_table->entries[i].lane_width));
1402 }
1403 data->dpm_table.pcie_speed_table.count = max_entry - 1;
1404 } else {
1405 /* Hardcode Pcie Table */
1406 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
1407 get_pcie_gen_support(data->pcie_gen_cap,
1408 PP_Min_PCIEGen),
1409 get_pcie_lane_support(data->pcie_lane_cap,
1410 PP_Max_PCIELane));
1411 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
1412 get_pcie_gen_support(data->pcie_gen_cap,
1413 PP_Min_PCIEGen),
1414 get_pcie_lane_support(data->pcie_lane_cap,
1415 PP_Max_PCIELane));
1416 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
1417 get_pcie_gen_support(data->pcie_gen_cap,
1418 PP_Max_PCIEGen),
1419 get_pcie_lane_support(data->pcie_lane_cap,
1420 PP_Max_PCIELane));
1421 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
1422 get_pcie_gen_support(data->pcie_gen_cap,
1423 PP_Max_PCIEGen),
1424 get_pcie_lane_support(data->pcie_lane_cap,
1425 PP_Max_PCIELane));
1426 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
1427 get_pcie_gen_support(data->pcie_gen_cap,
1428 PP_Max_PCIEGen),
1429 get_pcie_lane_support(data->pcie_lane_cap,
1430 PP_Max_PCIELane));
1431 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
1432 get_pcie_gen_support(data->pcie_gen_cap,
1433 PP_Max_PCIEGen),
1434 get_pcie_lane_support(data->pcie_lane_cap,
1435 PP_Max_PCIELane));
1436
1437 data->dpm_table.pcie_speed_table.count = 6;
1438 }
1439 /* Populate last level for boot PCIE level, but do not increment count. */
1440 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
1441 data->dpm_table.pcie_speed_table.count,
1442 get_pcie_gen_support(data->pcie_gen_cap,
1443 PP_Min_PCIEGen),
1444 get_pcie_lane_support(data->pcie_lane_cap,
1445 PP_Max_PCIELane));
1446
1447 return 0;
1448}
1449
1450/*
1451 * This function is to initalize all DPM state tables
1452 * for SMU7 based on the dependency table.
1453 * Dynamic state patching function will then trim these
1454 * state tables to the allowed range based
1455 * on the power policy or external client requests,
1456 * such as UVD request, etc.
1457 */
1458static int fiji_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
1459{
1460 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1461 struct phm_ppt_v1_information *table_info =
1462 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1463 uint32_t i;
1464
1465 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
1466 table_info->vdd_dep_on_sclk;
1467 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
1468 table_info->vdd_dep_on_mclk;
1469
1470 PP_ASSERT_WITH_CODE(dep_sclk_table != NULL,
1471 "SCLK dependency table is missing. This table is mandatory",
1472 return -EINVAL);
1473 PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1,
1474 "SCLK dependency table has to have is missing. "
1475 "This table is mandatory",
1476 return -EINVAL);
1477
1478 PP_ASSERT_WITH_CODE(dep_mclk_table != NULL,
1479 "MCLK dependency table is missing. This table is mandatory",
1480 return -EINVAL);
1481 PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
1482 "MCLK dependency table has to have is missing. "
1483 "This table is mandatory",
1484 return -EINVAL);
1485
1486 /* clear the state table to reset everything to default */
1487 fiji_reset_single_dpm_table(hwmgr,
1488 &data->dpm_table.sclk_table, SMU73_MAX_LEVELS_GRAPHICS);
1489 fiji_reset_single_dpm_table(hwmgr,
1490 &data->dpm_table.mclk_table, SMU73_MAX_LEVELS_MEMORY);
1491
1492 /* Initialize Sclk DPM table based on allow Sclk values */
1493 data->dpm_table.sclk_table.count = 0;
1494 for (i = 0; i < dep_sclk_table->count; i++) {
1495 if (i == 0 || data->dpm_table.sclk_table.dpm_levels
1496 [data->dpm_table.sclk_table.count - 1].value !=
1497 dep_sclk_table->entries[i].clk) {
1498 data->dpm_table.sclk_table.dpm_levels
1499 [data->dpm_table.sclk_table.count].value =
1500 dep_sclk_table->entries[i].clk;
1501 data->dpm_table.sclk_table.dpm_levels
1502 [data->dpm_table.sclk_table.count].enabled =
1503 (i == 0) ? true : false;
1504 data->dpm_table.sclk_table.count++;
1505 }
1506 }
1507
1508 /* Initialize Mclk DPM table based on allow Mclk values */
1509 data->dpm_table.mclk_table.count = 0;
1510 for (i=0; i<dep_mclk_table->count; i++) {
1511 if ( i==0 || data->dpm_table.mclk_table.dpm_levels
1512 [data->dpm_table.mclk_table.count - 1].value !=
1513 dep_mclk_table->entries[i].clk) {
1514 data->dpm_table.mclk_table.dpm_levels
1515 [data->dpm_table.mclk_table.count].value =
1516 dep_mclk_table->entries[i].clk;
1517 data->dpm_table.mclk_table.dpm_levels
1518 [data->dpm_table.mclk_table.count].enabled =
1519 (i == 0) ? true : false;
1520 data->dpm_table.mclk_table.count++;
1521 }
1522 }
1523
1524 /* setup PCIE gen speed levels */
1525 fiji_setup_default_pcie_table(hwmgr);
1526
1527 /* save a copy of the default DPM table */
1528 memcpy(&(data->golden_dpm_table), &(data->dpm_table),
1529 sizeof(struct fiji_dpm_table));
1530
1531 return 0;
1532}
1533
1534/**
1535 * @brief PhwFiji_GetVoltageOrder
1536 * Returns index of requested voltage record in lookup(table)
1537 * @param lookup_table - lookup list to search in
1538 * @param voltage - voltage to look for
1539 * @return 0 on success
1540 */
1541uint8_t fiji_get_voltage_index(
1542 struct phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t voltage)
1543{
1544 uint8_t count = (uint8_t) (lookup_table->count);
1545 uint8_t i;
1546
1547 PP_ASSERT_WITH_CODE((NULL != lookup_table),
1548 "Lookup Table empty.", return 0);
1549 PP_ASSERT_WITH_CODE((0 != count),
1550 "Lookup Table empty.", return 0);
1551
1552 for (i = 0; i < lookup_table->count; i++) {
1553 /* find first voltage equal or bigger than requested */
1554 if (lookup_table->entries[i].us_vdd >= voltage)
1555 return i;
1556 }
1557 /* voltage is bigger than max voltage in the table */
1558 return i - 1;
1559}
1560
1561/**
1562* Preparation of vddc and vddgfx CAC tables for SMC.
1563*
1564* @param hwmgr the address of the hardware manager
1565* @param table the SMC DPM table structure to be populated
1566* @return always 0
1567*/
1568static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr,
1569 struct SMU73_Discrete_DpmTable *table)
1570{
1571 uint32_t count;
1572 uint8_t index;
1573 int result = 0;
1574 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1575 struct phm_ppt_v1_information *table_info =
1576 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1577 struct phm_ppt_v1_voltage_lookup_table *lookup_table =
1578 table_info->vddc_lookup_table;
1579 /* tables is already swapped, so in order to use the value from it,
1580 * we need to swap it back.
1581 * We are populating vddc CAC data to BapmVddc table
1582 * in split and merged mode
1583 */
1584 for( count = 0; count<lookup_table->count; count++) {
1585 index = fiji_get_voltage_index(lookup_table,
1586 data->vddc_voltage_table.entries[count].value);
1587 table->BapmVddcVidLoSidd[count] = (uint8_t) ((6200 -
1588 (lookup_table->entries[index].us_cac_low *
1589 VOLTAGE_SCALE)) / 25);
1590 table->BapmVddcVidHiSidd[count] = (uint8_t) ((6200 -
1591 (lookup_table->entries[index].us_cac_high *
1592 VOLTAGE_SCALE)) / 25);
1593 }
1594
1595 return result;
1596}
1597
1598/**
1599* Preparation of voltage tables for SMC.
1600*
1601* @param hwmgr the address of the hardware manager
1602* @param table the SMC DPM table structure to be populated
1603* @return always 0
1604*/
1605
1606int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
1607 struct SMU73_Discrete_DpmTable *table)
1608{
1609 int result;
1610
1611 result = fiji_populate_cac_table(hwmgr, table);
1612 PP_ASSERT_WITH_CODE(0 == result,
1613 "can not populate CAC voltage tables to SMC",
1614 return -EINVAL);
1615
1616 return 0;
1617}
1618
1619static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr,
1620 struct SMU73_Discrete_Ulv *state)
1621{
1622 int result = 0;
1623 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1624 struct phm_ppt_v1_information *table_info =
1625 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1626
1627 state->CcPwrDynRm = 0;
1628 state->CcPwrDynRm1 = 0;
1629
1630 state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
1631 state->VddcOffsetVid = (uint8_t)( table_info->us_ulv_voltage_offset *
1632 VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1 );
1633
1634 state->VddcPhase = (data->vddc_phase_shed_control) ? 0 : 1;
1635
1636 if (!result) {
1637 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
1638 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
1639 CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
1640 }
1641 return result;
1642}
1643
1644static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr,
1645 struct SMU73_Discrete_DpmTable *table)
1646{
1647 return fiji_populate_ulv_level(hwmgr, &table->Ulv);
1648}
1649
1650static int32_t fiji_get_dpm_level_enable_mask_value(
1651 struct fiji_single_dpm_table* dpm_table)
1652{
1653 int32_t i;
1654 int32_t mask = 0;
1655
1656 for (i = dpm_table->count; i > 0; i--) {
1657 mask = mask << 1;
1658 if (dpm_table->dpm_levels[i - 1].enabled)
1659 mask |= 0x1;
1660 else
1661 mask &= 0xFFFFFFFE;
1662 }
1663 return mask;
1664}
1665
1666static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr,
1667 struct SMU73_Discrete_DpmTable *table)
1668{
1669 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1670 struct fiji_dpm_table *dpm_table = &data->dpm_table;
1671 int i;
1672
1673 /* Index (dpm_table->pcie_speed_table.count)
1674 * is reserved for PCIE boot level. */
1675 for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
1676 table->LinkLevel[i].PcieGenSpeed =
1677 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
1678 table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
1679 dpm_table->pcie_speed_table.dpm_levels[i].param1);
1680 table->LinkLevel[i].EnabledForActivity = 1;
1681 table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
1682 table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
1683 table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
1684 }
1685
1686 data->smc_state_table.LinkLevelCount =
1687 (uint8_t)dpm_table->pcie_speed_table.count;
1688 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
1689 fiji_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
1690
1691 return 0;
1692}
1693
1694/**
1695* Calculates the SCLK dividers using the provided engine clock
1696*
1697* @param hwmgr the address of the hardware manager
1698* @param clock the engine clock to use to populate the structure
1699* @param sclk the SMC SCLK structure to be populated
1700*/
1701static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr,
1702 uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk)
1703{
1704 const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1705 struct pp_atomctrl_clock_dividers_vi dividers;
1706 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1707 uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1708 uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1709 uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1710 uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1711 uint32_t ref_clock;
1712 uint32_t ref_divider;
1713 uint32_t fbdiv;
1714 int result;
1715
1716 /* get the engine clock dividers for this clock value */
1717 result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock, &dividers);
1718
1719 PP_ASSERT_WITH_CODE(result == 0,
1720 "Error retrieving Engine Clock dividers from VBIOS.",
1721 return result);
1722
1723 /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
1724 ref_clock = atomctrl_get_reference_clock(hwmgr);
1725 ref_divider = 1 + dividers.uc_pll_ref_div;
1726
1727 /* low 14 bits is fraction and high 12 bits is divider */
1728 fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
1729
1730 /* SPLL_FUNC_CNTL setup */
1731 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1732 SPLL_REF_DIV, dividers.uc_pll_ref_div);
1733 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1734 SPLL_PDIV_A, dividers.uc_pll_post_div);
1735
1736 /* SPLL_FUNC_CNTL_3 setup*/
1737 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
1738 SPLL_FB_DIV, fbdiv);
1739
1740 /* set to use fractional accumulation*/
1741 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
1742 SPLL_DITHEN, 1);
1743
1744 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1745 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
1746 struct pp_atomctrl_internal_ss_info ssInfo;
1747
1748 uint32_t vco_freq = clock * dividers.uc_pll_post_div;
1749 if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
1750 vco_freq, &ssInfo)) {
1751 /*
1752 * ss_info.speed_spectrum_percentage -- in unit of 0.01%
1753 * ss_info.speed_spectrum_rate -- in unit of khz
1754 *
1755 * clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2
1756 */
1757 uint32_t clk_s = ref_clock * 5 /
1758 (ref_divider * ssInfo.speed_spectrum_rate);
1759 /* clkv = 2 * D * fbdiv / NS */
1760 uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage *
1761 fbdiv / (clk_s * 10000);
1762
1763 cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
1764 CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
1765 cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
1766 CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
1767 cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
1768 CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
1769 }
1770 }
1771
1772 sclk->SclkFrequency = clock;
1773 sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
1774 sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
1775 sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
1776 sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
1777 sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
1778
1779 return 0;
1780}
1781
1782static uint16_t fiji_find_closest_vddci(struct pp_hwmgr *hwmgr, uint16_t vddci)
1783{
1784 uint32_t i;
1785 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1786 struct pp_atomctrl_voltage_table *vddci_table =
1787 &(data->vddci_voltage_table);
1788
1789 for (i = 0; i < vddci_table->count; i++) {
1790 if (vddci_table->entries[i].value >= vddci)
1791 return vddci_table->entries[i].value;
1792 }
1793
1794 PP_ASSERT_WITH_CODE(false,
1795 "VDDCI is larger than max VDDCI in VDDCI Voltage Table!",
1796 return vddci_table->entries[i].value);
1797}
1798
1799static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
1800 struct phm_ppt_v1_clock_voltage_dependency_table* dep_table,
1801 uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
1802{
1803 uint32_t i;
1804 uint16_t vddci;
1805 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1806
1807 *voltage = *mvdd = 0;
1808
1809 /* clock - voltage dependency table is empty table */
1810 if (dep_table->count == 0)
1811 return -EINVAL;
1812
1813 for (i = 0; i < dep_table->count; i++) {
1814 /* find first sclk bigger than request */
1815 if (dep_table->entries[i].clk >= clock) {
1816 *voltage |= (dep_table->entries[i].vddc *
1817 VOLTAGE_SCALE) << VDDC_SHIFT;
1818 if (FIJI_VOLTAGE_CONTROL_NONE == data->vddci_control)
1819 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
1820 VOLTAGE_SCALE) << VDDCI_SHIFT;
1821 else if (dep_table->entries[i].vddci)
1822 *voltage |= (dep_table->entries[i].vddci *
1823 VOLTAGE_SCALE) << VDDCI_SHIFT;
1824 else {
1825 vddci = fiji_find_closest_vddci(hwmgr,
1826 (dep_table->entries[i].vddc -
1827 (uint16_t)data->vddc_vddci_delta));
1828 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1829 }
1830
1831 if (FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control)
1832 *mvdd = data->vbios_boot_state.mvdd_bootup_value *
1833 VOLTAGE_SCALE;
1834 else if (dep_table->entries[i].mvdd)
1835 *mvdd = (uint32_t) dep_table->entries[i].mvdd *
1836 VOLTAGE_SCALE;
1837
1838 *voltage |= 1 << PHASES_SHIFT;
1839 return 0;
1840 }
1841 }
1842
1843 /* sclk is bigger than max sclk in the dependence table */
1844 *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1845
1846 if (FIJI_VOLTAGE_CONTROL_NONE == data->vddci_control)
1847 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
1848 VOLTAGE_SCALE) << VDDCI_SHIFT;
1849 else if (dep_table->entries[i-1].vddci) {
1850 vddci = fiji_find_closest_vddci(hwmgr,
1851 (dep_table->entries[i].vddc -
1852 (uint16_t)data->vddc_vddci_delta));
1853 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1854 }
1855
1856 if (FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control)
1857 *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
1858 else if (dep_table->entries[i].mvdd)
1859 *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
1860
1861 return 0;
1862}
1863/**
1864* Populates single SMC SCLK structure using the provided engine clock
1865*
1866* @param hwmgr the address of the hardware manager
1867* @param clock the engine clock to use to populate the structure
1868* @param sclk the SMC SCLK structure to be populated
1869*/
1870
1871static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
1872 uint32_t clock, uint16_t sclk_al_threshold,
1873 struct SMU73_Discrete_GraphicsLevel *level)
1874{
1875 int result;
1876 /* PP_Clocks minClocks; */
1877 uint32_t threshold, mvdd;
1878 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1879 struct phm_ppt_v1_information *table_info =
1880 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1881
1882 result = fiji_calculate_sclk_params(hwmgr, clock, level);
1883
1884 /* populate graphics levels */
1885 result = fiji_get_dependency_volt_by_clk(hwmgr,
1886 table_info->vdd_dep_on_sclk, clock,
1887 &level->MinVoltage, &mvdd);
1888 PP_ASSERT_WITH_CODE((0 == result),
1889 "can not find VDDC voltage value for "
1890 "VDDC engine clock dependency table",
1891 return result);
1892
1893 level->SclkFrequency = clock;
1894 level->ActivityLevel = sclk_al_threshold;
1895 level->CcPwrDynRm = 0;
1896 level->CcPwrDynRm1 = 0;
1897 level->EnabledForActivity = 0;
1898 level->EnabledForThrottle = 1;
1899 level->UpHyst = 10;
1900 level->DownHyst = 0;
1901 level->VoltageDownHyst = 0;
1902 level->PowerThrottle = 0;
1903
1904 threshold = clock * data->fast_watermark_threshold / 100;
1905
1906 /*
1907 * TODO: get minimum clocks from dal configaration
1908 * PECI_GetMinClockSettings(hwmgr->pPECI, &minClocks);
1909 */
1910 /* data->DisplayTiming.minClockInSR = minClocks.engineClockInSR; */
1911
1912 /* get level->DeepSleepDivId
1913 if (phm_cap_enabled(hwmgr->platformDescriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
1914 {
1915 level->DeepSleepDivId = PhwFiji_GetSleepDividerIdFromClock(hwmgr, clock, minClocks.engineClockInSR);
1916 } */
1917
1918 /* Default to slow, highest DPM level will be
1919 * set to PPSMC_DISPLAY_WATERMARK_LOW later.
1920 */
1921 level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1922
1923 CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
1924 CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
1925 CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
1926 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
1927 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
1928 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
1929 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
1930 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
1931 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
1932
1933 return 0;
1934}
1935/**
1936* Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
1937*
1938* @param hwmgr the address of the hardware manager
1939*/
1940static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
1941{
1942 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1943 struct fiji_dpm_table *dpm_table = &data->dpm_table;
1944 struct phm_ppt_v1_information *table_info =
1945 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1946 struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
1947 uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
1948 int result = 0;
1949 uint32_t array = data->dpm_table_start +
1950 offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
1951 uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) *
1952 SMU73_MAX_LEVELS_GRAPHICS;
1953 struct SMU73_Discrete_GraphicsLevel *levels =
1954 data->smc_state_table.GraphicsLevel;
1955 uint32_t i, max_entry;
1956 uint8_t hightest_pcie_level_enabled = 0,
1957 lowest_pcie_level_enabled = 0,
1958 mid_pcie_level_enabled = 0,
1959 count = 0;
1960
1961 for (i = 0; i < dpm_table->sclk_table.count; i++) {
1962 result = fiji_populate_single_graphic_level(hwmgr,
1963 dpm_table->sclk_table.dpm_levels[i].value,
1964 (uint16_t)data->activity_target[i],
1965 &levels[i]);
1966 if (result)
1967 return result;
1968
1969 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
1970 if (i > 1)
1971 levels[i].DeepSleepDivId = 0;
1972 }
1973
1974 /* Only enable level 0 for now.*/
1975 levels[0].EnabledForActivity = 1;
1976
1977 /* set highest level watermark to high */
1978 levels[dpm_table->sclk_table.count - 1].DisplayWatermark =
1979 PPSMC_DISPLAY_WATERMARK_HIGH;
1980
1981 data->smc_state_table.GraphicsDpmLevelCount =
1982 (uint8_t)dpm_table->sclk_table.count;
1983 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
1984 fiji_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
1985
1986 if (pcie_table != NULL) {
1987 PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
1988 "There must be 1 or more PCIE levels defined in PPTable.",
1989 return -EINVAL);
1990 max_entry = pcie_entry_cnt - 1;
1991 for (i = 0; i < dpm_table->sclk_table.count; i++)
1992 levels[i].pcieDpmLevel =
1993 (uint8_t) ((i < max_entry)? i : max_entry);
1994 } else {
1995 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
1996 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1997 (1 << (hightest_pcie_level_enabled + 1))) != 0 ))
1998 hightest_pcie_level_enabled++;
1999
2000 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
2001 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2002 (1 << lowest_pcie_level_enabled)) == 0 ))
2003 lowest_pcie_level_enabled++;
2004
2005 while ((count < hightest_pcie_level_enabled) &&
2006 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2007 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0 ))
2008 count++;
2009
2010 mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1+ count) <
2011 hightest_pcie_level_enabled?
2012 (lowest_pcie_level_enabled + 1 + count) :
2013 hightest_pcie_level_enabled;
2014
2015 /* set pcieDpmLevel to hightest_pcie_level_enabled */
2016 for(i = 2; i < dpm_table->sclk_table.count; i++)
2017 levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
2018
2019 /* set pcieDpmLevel to lowest_pcie_level_enabled */
2020 levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
2021
2022 /* set pcieDpmLevel to mid_pcie_level_enabled */
2023 levels[1].pcieDpmLevel = mid_pcie_level_enabled;
2024 }
2025 /* level count will send to smc once at init smc table and never change */
2026 result = fiji_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
2027 (uint32_t)array_size, data->sram_end);
2028
2029 return result;
2030}
2031
2032/**
2033 * MCLK Frequency Ratio
2034 * SEQ_CG_RESP Bit[31:24] - 0x0
2035 * Bit[27:24] \96 DDR3 Frequency ratio
2036 * 0x0 <= 100MHz, 450 < 0x8 <= 500MHz
2037 * 100 < 0x1 <= 150MHz, 500 < 0x9 <= 550MHz
2038 * 150 < 0x2 <= 200MHz, 550 < 0xA <= 600MHz
2039 * 200 < 0x3 <= 250MHz, 600 < 0xB <= 650MHz
2040 * 250 < 0x4 <= 300MHz, 650 < 0xC <= 700MHz
2041 * 300 < 0x5 <= 350MHz, 700 < 0xD <= 750MHz
2042 * 350 < 0x6 <= 400MHz, 750 < 0xE <= 800MHz
2043 * 400 < 0x7 <= 450MHz, 800 < 0xF
2044 */
2045static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock)
2046{
2047 if (mem_clock <= 10000) return 0x0;
2048 if (mem_clock <= 15000) return 0x1;
2049 if (mem_clock <= 20000) return 0x2;
2050 if (mem_clock <= 25000) return 0x3;
2051 if (mem_clock <= 30000) return 0x4;
2052 if (mem_clock <= 35000) return 0x5;
2053 if (mem_clock <= 40000) return 0x6;
2054 if (mem_clock <= 45000) return 0x7;
2055 if (mem_clock <= 50000) return 0x8;
2056 if (mem_clock <= 55000) return 0x9;
2057 if (mem_clock <= 60000) return 0xa;
2058 if (mem_clock <= 65000) return 0xb;
2059 if (mem_clock <= 70000) return 0xc;
2060 if (mem_clock <= 75000) return 0xd;
2061 if (mem_clock <= 80000) return 0xe;
2062 /* mem_clock > 800MHz */
2063 return 0xf;
2064}
2065
2066/**
2067* Populates the SMC MCLK structure using the provided memory clock
2068*
2069* @param hwmgr the address of the hardware manager
2070* @param clock the memory clock to use to populate the structure
2071* @param sclk the SMC SCLK structure to be populated
2072*/
2073static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr,
2074 uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk)
2075{
2076 struct pp_atomctrl_memory_clock_param mem_param;
2077 int result;
2078
2079 result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param);
2080 PP_ASSERT_WITH_CODE((0 == result),
2081 "Failed to get Memory PLL Dividers.",);
2082
2083 /* Save the result data to outpupt memory level structure */
2084 mclk->MclkFrequency = clock;
2085 mclk->MclkDivider = (uint8_t)mem_param.mpll_post_divider;
2086 mclk->FreqRange = fiji_get_mclk_frequency_ratio(clock);
2087
2088 return result;
2089}
2090
2091static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr,
2092 uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level)
2093{
2094 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2095 struct phm_ppt_v1_information *table_info =
2096 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2097 int result = 0;
2098
2099 if (table_info->vdd_dep_on_mclk) {
2100 result = fiji_get_dependency_volt_by_clk(hwmgr,
2101 table_info->vdd_dep_on_mclk, clock,
2102 &mem_level->MinVoltage, &mem_level->MinMvdd);
2103 PP_ASSERT_WITH_CODE((0 == result),
2104 "can not find MinVddc voltage value from memory "
2105 "VDDC voltage dependency table", return result);
2106 }
2107
2108 mem_level->EnabledForThrottle = 1;
2109 mem_level->EnabledForActivity = 0;
2110 mem_level->UpHyst = 0;
2111 mem_level->DownHyst = 100;
2112 mem_level->VoltageDownHyst = 0;
2113 mem_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
2114 mem_level->StutterEnable = false;
2115
2116 mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2117
2118 /* enable stutter mode if all the follow condition applied
2119 * PECI_GetNumberOfActiveDisplays(hwmgr->pPECI,
2120 * &(data->DisplayTiming.numExistingDisplays));
2121 */
2122 data->display_timing.num_existing_displays = 1;
2123
2124 if ((data->mclk_stutter_mode_threshold) &&
2125 (clock <= data->mclk_stutter_mode_threshold) &&
2126 (!data->is_uvd_enabled) &&
2127 (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
2128 STUTTER_ENABLE) & 0x1))
2129 mem_level->StutterEnable = true;
2130
2131 result = fiji_calculate_mclk_params(hwmgr, clock, mem_level);
2132 if (!result) {
2133 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
2134 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
2135 CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
2136 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
2137 }
2138 return result;
2139}
2140
2141/**
2142* Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
2143*
2144* @param hwmgr the address of the hardware manager
2145*/
2146static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
2147{
2148 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2149 struct fiji_dpm_table *dpm_table = &data->dpm_table;
2150 int result;
2151 /* populate MCLK dpm table to SMU7 */
2152 uint32_t array = data->dpm_table_start +
2153 offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
2154 uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) *
2155 SMU73_MAX_LEVELS_MEMORY;
2156 struct SMU73_Discrete_MemoryLevel *levels =
2157 data->smc_state_table.MemoryLevel;
2158 uint32_t i;
2159
2160 for (i = 0; i < dpm_table->mclk_table.count; i++) {
2161 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
2162 "can not populate memory level as memory clock is zero",
2163 return -EINVAL);
2164 result = fiji_populate_single_memory_level(hwmgr,
2165 dpm_table->mclk_table.dpm_levels[i].value,
2166 &levels[i]);
2167 if (result)
2168 return result;
2169 }
2170
2171 /* Only enable level 0 for now. */
2172 levels[0].EnabledForActivity = 1;
2173
2174 /* in order to prevent MC activity from stutter mode to push DPM up.
2175 * the UVD change complements this by putting the MCLK in
2176 * a higher state by default such that we are not effected by
2177 * up threshold or and MCLK DPM latency.
2178 */
2179 levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
2180 CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
2181
2182 data->smc_state_table.MemoryDpmLevelCount =
2183 (uint8_t)dpm_table->mclk_table.count;
2184 data->dpm_level_enable_mask.mclk_dpm_enable_mask =
2185 fiji_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
2186 /* set highest level watermark to high */
2187 levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
2188 PPSMC_DISPLAY_WATERMARK_HIGH;
2189
2190 /* level count will send to smc once at init smc table and never change */
2191 result = fiji_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
2192 (uint32_t)array_size, data->sram_end);
2193
2194 return result;
2195}
2196
2197/**
2198* Populates the SMC MVDD structure using the provided memory clock.
2199*
2200* @param hwmgr the address of the hardware manager
2201* @param mclk the MCLK value to be used in the decision if MVDD should be high or low.
2202* @param voltage the SMC VOLTAGE structure to be populated
2203*/
2204int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr,
2205 uint32_t mclk, SMIO_Pattern *smio_pat)
2206{
2207 const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2208 struct phm_ppt_v1_information *table_info =
2209 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2210 uint32_t i = 0;
2211
2212 if (FIJI_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
2213 /* find mvdd value which clock is more than request */
2214 for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
2215 if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
2216 smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
2217 break;
2218 }
2219 }
2220 PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
2221 "MVDD Voltage is outside the supported range.",
2222 return -EINVAL);
2223 } else
2224 return -EINVAL;
2225
2226 return 0;
2227}
2228
2229static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
2230 SMU73_Discrete_DpmTable *table)
2231{
2232 int result = 0;
2233 const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2234 struct phm_ppt_v1_information *table_info =
2235 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2236 struct pp_atomctrl_clock_dividers_vi dividers;
2237 SMIO_Pattern vol_level;
2238 uint32_t mvdd;
2239 uint16_t us_mvdd;
2240 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
2241 uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
2242
2243 table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
2244
2245 if (!data->sclk_dpm_key_disabled) {
2246 /* Get MinVoltage and Frequency from DPM0,
2247 * already converted to SMC_UL */
2248 table->ACPILevel.SclkFrequency =
2249 data->dpm_table.sclk_table.dpm_levels[0].value;
2250 result = fiji_get_dependency_volt_by_clk(hwmgr,
2251 table_info->vdd_dep_on_sclk,
2252 table->ACPILevel.SclkFrequency,
2253 &table->ACPILevel.MinVoltage, &mvdd);
2254 PP_ASSERT_WITH_CODE((0 == result),
2255 "Cannot find ACPI VDDC voltage value "
2256 "in Clock Dependency Table",);
2257 } else {
2258 table->ACPILevel.SclkFrequency =
2259 data->vbios_boot_state.sclk_bootup_value;
2260 table->ACPILevel.MinVoltage =
2261 data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
2262 }
2263
2264 /* get the engine clock dividers for this clock value */
2265 result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
2266 table->ACPILevel.SclkFrequency, &dividers);
2267 PP_ASSERT_WITH_CODE(result == 0,
2268 "Error retrieving Engine Clock dividers from VBIOS.",
2269 return result);
2270
2271 table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
2272 table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2273 table->ACPILevel.DeepSleepDivId = 0;
2274
2275 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
2276 SPLL_PWRON, 0);
2277 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
2278 SPLL_RESET, 1);
2279 spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
2280 SCLK_MUX_SEL, 4);
2281
2282 table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
2283 table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
2284 table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
2285 table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
2286 table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
2287 table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
2288 table->ACPILevel.CcPwrDynRm = 0;
2289 table->ACPILevel.CcPwrDynRm1 = 0;
2290
2291 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
2292 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
2293 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
2294 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
2295 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
2296 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
2297 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
2298 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
2299 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
2300 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
2301 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
2302
2303 if (!data->mclk_dpm_key_disabled) {
2304 /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
2305 table->MemoryACPILevel.MclkFrequency =
2306 data->dpm_table.mclk_table.dpm_levels[0].value;
2307 result = fiji_get_dependency_volt_by_clk(hwmgr,
2308 table_info->vdd_dep_on_mclk,
2309 table->MemoryACPILevel.MclkFrequency,
2310 &table->MemoryACPILevel.MinVoltage, &mvdd);
2311 PP_ASSERT_WITH_CODE((0 == result),
2312 "Cannot find ACPI VDDCI voltage value "
2313 "in Clock Dependency Table",);
2314 } else {
2315 table->MemoryACPILevel.MclkFrequency =
2316 data->vbios_boot_state.mclk_bootup_value;
2317 table->MemoryACPILevel.MinVoltage =
2318 data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
2319 }
2320
2321 us_mvdd = 0;
2322 if ((FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
2323 (data->mclk_dpm_key_disabled))
2324 us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
2325 else {
2326 if (!fiji_populate_mvdd_value(hwmgr,
2327 data->dpm_table.mclk_table.dpm_levels[0].value,
2328 &vol_level))
2329 us_mvdd = vol_level.Voltage;
2330 }
2331
2332 table->MemoryACPILevel.MinMvdd =
2333 PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE);
2334
2335 table->MemoryACPILevel.EnabledForThrottle = 0;
2336 table->MemoryACPILevel.EnabledForActivity = 0;
2337 table->MemoryACPILevel.UpHyst = 0;
2338 table->MemoryACPILevel.DownHyst = 100;
2339 table->MemoryACPILevel.VoltageDownHyst = 0;
2340 table->MemoryACPILevel.ActivityLevel =
2341 PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
2342
2343 table->MemoryACPILevel.StutterEnable = false;
2344 CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
2345 CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
2346
2347 return result;
2348}
2349
2350static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
2351 SMU73_Discrete_DpmTable *table)
2352{
2353 int result = -EINVAL;
2354 uint8_t count;
2355 struct pp_atomctrl_clock_dividers_vi dividers;
2356 struct phm_ppt_v1_information *table_info =
2357 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2358 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2359 table_info->mm_dep_table;
2360 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2361
2362 table->VceLevelCount = (uint8_t)(mm_table->count);
2363 table->VceBootLevel = 0;
2364
2365 for(count = 0; count < table->VceLevelCount; count++) {
2366 table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
2367 table->VceLevel[count].MinVoltage |=
2368 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
2369 table->VceLevel[count].MinVoltage |=
2370 ((mm_table->entries[count].vddc - data->vddc_vddci_delta) *
2371 VOLTAGE_SCALE) << VDDCI_SHIFT;
2372 table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2373
2374 /*retrieve divider value for VBIOS */
2375 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2376 table->VceLevel[count].Frequency, &dividers);
2377 PP_ASSERT_WITH_CODE((0 == result),
2378 "can not find divide id for VCE engine clock",
2379 return result);
2380
2381 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
2382
2383 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
2384 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
2385 }
2386 return result;
2387}
2388
2389static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
2390 SMU73_Discrete_DpmTable *table)
2391{
2392 int result = -EINVAL;
2393 uint8_t count;
2394 struct pp_atomctrl_clock_dividers_vi dividers;
2395 struct phm_ppt_v1_information *table_info =
2396 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2397 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2398 table_info->mm_dep_table;
2399 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2400
2401 table->AcpLevelCount = (uint8_t)(mm_table->count);
2402 table->AcpBootLevel = 0;
2403
2404 for (count = 0; count < table->AcpLevelCount; count++) {
2405 table->AcpLevel[count].Frequency = mm_table->entries[count].aclk;
2406 table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
2407 VOLTAGE_SCALE) << VDDC_SHIFT;
2408 table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
2409 data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
2410 table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2411
2412 /* retrieve divider value for VBIOS */
2413 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2414 table->AcpLevel[count].Frequency, &dividers);
2415 PP_ASSERT_WITH_CODE((0 == result),
2416 "can not find divide id for engine clock", return result);
2417
2418 table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
2419
2420 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
2421 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage);
2422 }
2423 return result;
2424}
2425
2426static int fiji_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
2427 SMU73_Discrete_DpmTable *table)
2428{
2429 int result = -EINVAL;
2430 uint8_t count;
2431 struct pp_atomctrl_clock_dividers_vi dividers;
2432 struct phm_ppt_v1_information *table_info =
2433 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2434 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2435 table_info->mm_dep_table;
2436 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2437
2438 table->SamuBootLevel = 0;
2439 table->SamuLevelCount = (uint8_t)(mm_table->count);
2440
2441 for (count = 0; count < table->SamuLevelCount; count++) {
2442 /* not sure whether we need evclk or not */
2443 table->SamuLevel[count].Frequency = mm_table->entries[count].samclock;
2444 table->SamuLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
2445 VOLTAGE_SCALE) << VDDC_SHIFT;
2446 table->SamuLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
2447 data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
2448 table->SamuLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2449
2450 /* retrieve divider value for VBIOS */
2451 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2452 table->SamuLevel[count].Frequency, &dividers);
2453 PP_ASSERT_WITH_CODE((0 == result),
2454 "can not find divide id for samu clock", return result);
2455
2456 table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
2457
2458 CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
2459 CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].MinVoltage);
2460 }
2461 return result;
2462}
2463
2464static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
2465 int32_t eng_clock, int32_t mem_clock,
2466 struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs)
2467{
2468 uint32_t dram_timing;
2469 uint32_t dram_timing2;
2470 uint32_t burstTime;
2471 ULONG state, trrds, trrdl;
2472 int result;
2473
2474 result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
2475 eng_clock, mem_clock);
2476 PP_ASSERT_WITH_CODE(result == 0,
2477 "Error calling VBIOS to set DRAM_TIMING.", return result);
2478
2479 dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
2480 dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
2481 burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
2482
2483 state = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, STATE0);
2484 trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0);
2485 trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0);
2486
2487 arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing);
2488 arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
2489 arb_regs->McArbBurstTime = (uint8_t)burstTime;
2490 arb_regs->TRRDS = (uint8_t)trrds;
2491 arb_regs->TRRDL = (uint8_t)trrdl;
2492
2493 return 0;
2494}
2495
2496static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
2497{
2498 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2499 struct SMU73_Discrete_MCArbDramTimingTable arb_regs;
2500 uint32_t i, j;
2501 int result = 0;
2502
2503 for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
2504 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
2505 result = fiji_populate_memory_timing_parameters(hwmgr,
2506 data->dpm_table.sclk_table.dpm_levels[i].value,
2507 data->dpm_table.mclk_table.dpm_levels[j].value,
2508 &arb_regs.entries[i][j]);
2509 if (result)
2510 break;
2511 }
2512 }
2513
2514 if (!result)
2515 result = fiji_copy_bytes_to_smc(
2516 hwmgr->smumgr,
2517 data->arb_table_start,
2518 (uint8_t *)&arb_regs,
2519 sizeof(SMU73_Discrete_MCArbDramTimingTable),
2520 data->sram_end);
2521 return result;
2522}
2523
2524static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
2525 struct SMU73_Discrete_DpmTable *table)
2526{
2527 int result = -EINVAL;
2528 uint8_t count;
2529 struct pp_atomctrl_clock_dividers_vi dividers;
2530 struct phm_ppt_v1_information *table_info =
2531 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2532 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2533 table_info->mm_dep_table;
2534 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2535
2536 table->UvdLevelCount = (uint8_t)(mm_table->count);
2537 table->UvdBootLevel = 0;
2538
2539 for (count = 0; count < table->UvdLevelCount; count++) {
2540 table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
2541 table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
2542 table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
2543 VOLTAGE_SCALE) << VDDC_SHIFT;
2544 table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
2545 data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
2546 table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2547
2548 /* retrieve divider value for VBIOS */
2549 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2550 table->UvdLevel[count].VclkFrequency, &dividers);
2551 PP_ASSERT_WITH_CODE((0 == result),
2552 "can not find divide id for Vclk clock", return result);
2553
2554 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
2555
2556 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2557 table->UvdLevel[count].DclkFrequency, &dividers);
2558 PP_ASSERT_WITH_CODE((0 == result),
2559 "can not find divide id for Dclk clock", return result);
2560
2561 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
2562
2563 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
2564 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
2565 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
2566
2567 }
2568 return result;
2569}
2570
2571static int fiji_find_boot_level(struct fiji_single_dpm_table *table,
2572 uint32_t value, uint32_t *boot_level)
2573{
2574 int result = -EINVAL;
2575 uint32_t i;
2576
2577 for (i = 0; i < table->count; i++) {
2578 if (value == table->dpm_levels[i].value) {
2579 *boot_level = i;
2580 result = 0;
2581 }
2582 }
2583 return result;
2584}
2585
2586static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
2587 struct SMU73_Discrete_DpmTable *table)
2588{
2589 int result = 0;
2590 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2591
2592 table->GraphicsBootLevel = 0;
2593 table->MemoryBootLevel = 0;
2594
2595 /* find boot level from dpm table */
2596 result = fiji_find_boot_level(&(data->dpm_table.sclk_table),
2597 data->vbios_boot_state.sclk_bootup_value,
2598 (uint32_t *)&(table->GraphicsBootLevel));
2599
2600 result = fiji_find_boot_level(&(data->dpm_table.mclk_table),
2601 data->vbios_boot_state.mclk_bootup_value,
2602 (uint32_t *)&(table->MemoryBootLevel));
2603
2604 table->BootVddc = data->vbios_boot_state.vddc_bootup_value *
2605 VOLTAGE_SCALE;
2606 table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
2607 VOLTAGE_SCALE;
2608 table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value *
2609 VOLTAGE_SCALE;
2610
2611 CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
2612 CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
2613 CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
2614
2615 return 0;
2616}
2617
2618static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
2619{
2620 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2621 struct phm_ppt_v1_information *table_info =
2622 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2623 uint8_t count, level;
2624
2625 count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
2626 for (level = 0; level < count; level++) {
2627 if(table_info->vdd_dep_on_sclk->entries[level].clk >=
2628 data->vbios_boot_state.sclk_bootup_value) {
2629 data->smc_state_table.GraphicsBootLevel = level;
2630 break;
2631 }
2632 }
2633
2634 count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
2635 for (level = 0; level < count; level++) {
2636 if(table_info->vdd_dep_on_mclk->entries[level].clk >=
2637 data->vbios_boot_state.mclk_bootup_value) {
2638 data->smc_state_table.MemoryBootLevel = level;
2639 break;
2640 }
2641 }
2642
2643 return 0;
2644}
2645
2646static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
2647{
2648 uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
2649 volt_with_cks, value;
2650 uint16_t clock_freq_u16;
2651 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2652 uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
2653 volt_offset = 0;
2654 struct phm_ppt_v1_information *table_info =
2655 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2656 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
2657 table_info->vdd_dep_on_sclk;
2658
2659 stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
2660
2661 /* Read SMU_Eefuse to read and calculate RO and determine
2662 * if the part is SS or FF. if RO >= 1660MHz, part is FF.
2663 */
2664 efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2665 ixSMU_EFUSE_0 + (146 * 4));
2666 efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2667 ixSMU_EFUSE_0 + (148 * 4));
2668 efuse &= 0xFF000000;
2669 efuse = efuse >> 24;
2670 efuse2 &= 0xF;
2671
2672 if (efuse2 == 1)
2673 ro = (2300 - 1350) * efuse / 255 + 1350;
2674 else
2675 ro = (2500 - 1000) * efuse / 255 + 1000;
2676
2677 if (ro >= 1660)
2678 type = 0;
2679 else
2680 type = 1;
2681
2682 /* Populate Stretch amount */
2683 data->smc_state_table.ClockStretcherAmount = stretch_amount;
2684
2685 /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
2686 for (i = 0; i < sclk_table->count; i++) {
2687 data->smc_state_table.Sclk_CKS_masterEn0_7 |=
2688 sclk_table->entries[i].cks_enable << i;
2689 volt_without_cks = (uint32_t)((14041 *
2690 (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
2691 (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
2692 volt_with_cks = (uint32_t)((13946 *
2693 (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
2694 (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
2695 if (volt_without_cks >= volt_with_cks)
2696 volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
2697 sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
2698 data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
2699 }
2700
2701 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2702 STRETCH_ENABLE, 0x0);
2703 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2704 masterReset, 0x1);
2705 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2706 staticEnable, 0x1);
2707 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2708 masterReset, 0x0);
2709
2710 /* Populate CKS Lookup Table */
2711 if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
2712 stretch_amount2 = 0;
2713 else if (stretch_amount == 3 || stretch_amount == 4)
2714 stretch_amount2 = 1;
2715 else {
2716 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2717 PHM_PlatformCaps_ClockStretcher);
2718 PP_ASSERT_WITH_CODE(false,
2719 "Stretch Amount in PPTable not supported\n",
2720 return -EINVAL);
2721 }
2722
2723 value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2724 ixPWR_CKS_CNTL);
2725 value &= 0xFFC2FF87;
2726 data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
2727 fiji_clock_stretcher_lookup_table[stretch_amount2][0];
2728 data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
2729 fiji_clock_stretcher_lookup_table[stretch_amount2][1];
2730 clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(data->smc_state_table.
2731 GraphicsLevel[data->smc_state_table.GraphicsDpmLevelCount - 1].
2732 SclkFrequency) / 100);
2733 if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] <
2734 clock_freq_u16 &&
2735 fiji_clock_stretcher_lookup_table[stretch_amount2][1] >
2736 clock_freq_u16) {
2737 /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
2738 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
2739 /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
2740 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
2741 /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
2742 value |= (fiji_clock_stretch_amount_conversion
2743 [fiji_clock_stretcher_lookup_table[stretch_amount2][3]]
2744 [stretch_amount]) << 3;
2745 }
2746 CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.
2747 CKS_LOOKUPTableEntry[0].minFreq);
2748 CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.
2749 CKS_LOOKUPTableEntry[0].maxFreq);
2750 data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
2751 fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
2752 data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
2753 (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
2754
2755 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2756 ixPWR_CKS_CNTL, value);
2757
2758 /* Populate DDT Lookup Table */
2759 for (i = 0; i < 4; i++) {
2760 /* Assign the minimum and maximum VID stored
2761 * in the last row of Clock Stretcher Voltage Table.
2762 */
2763 data->smc_state_table.ClockStretcherDataTable.
2764 ClockStretcherDataTableEntry[i].minVID =
2765 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][2];
2766 data->smc_state_table.ClockStretcherDataTable.
2767 ClockStretcherDataTableEntry[i].maxVID =
2768 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][3];
2769 /* Loop through each SCLK and check the frequency
2770 * to see if it lies within the frequency for clock stretcher.
2771 */
2772 for (j = 0; j < data->smc_state_table.GraphicsDpmLevelCount; j++) {
2773 cks_setting = 0;
2774 clock_freq = PP_SMC_TO_HOST_UL(
2775 data->smc_state_table.GraphicsLevel[j].SclkFrequency);
2776 /* Check the allowed frequency against the sclk level[j].
2777 * Sclk's endianness has already been converted,
2778 * and it's in 10Khz unit,
2779 * as opposed to Data table, which is in Mhz unit.
2780 */
2781 if (clock_freq >=
2782 (fiji_clock_stretcher_ddt_table[type][i][0]) * 100) {
2783 cks_setting |= 0x2;
2784 if (clock_freq <
2785 (fiji_clock_stretcher_ddt_table[type][i][1]) * 100)
2786 cks_setting |= 0x1;
2787 }
2788 data->smc_state_table.ClockStretcherDataTable.
2789 ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
2790 }
2791 CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.
2792 ClockStretcherDataTable.
2793 ClockStretcherDataTableEntry[i].setting);
2794 }
2795
2796 value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
2797 value &= 0xFFFFFFFE;
2798 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
2799
2800 return 0;
2801}
2802
2803/**
2804* Populates the SMC VRConfig field in DPM table.
2805*
2806* @param hwmgr the address of the hardware manager
2807* @param table the SMC DPM table structure to be populated
2808* @return always 0
2809*/
2810static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr,
2811 struct SMU73_Discrete_DpmTable *table)
2812{
2813 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2814 uint16_t config;
2815
2816 config = VR_MERGED_WITH_VDDC;
2817 table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
2818
2819 /* Set Vddc Voltage Controller */
2820 if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
2821 config = VR_SVI2_PLANE_1;
2822 table->VRConfig |= config;
2823 } else {
2824 PP_ASSERT_WITH_CODE(false,
2825 "VDDC should be on SVI2 control in merged mode!",);
2826 }
2827 /* Set Vddci Voltage Controller */
2828 if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
2829 config = VR_SVI2_PLANE_2; /* only in merged mode */
2830 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
2831 } else if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
2832 config = VR_SMIO_PATTERN_1;
2833 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
2834 } else {
2835 config = VR_STATIC_VOLTAGE;
2836 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
2837 }
2838 /* Set Mvdd Voltage Controller */
2839 if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
2840 config = VR_SVI2_PLANE_2;
2841 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
2842 } else if(FIJI_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
2843 config = VR_SMIO_PATTERN_2;
2844 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
2845 } else {
2846 config = VR_STATIC_VOLTAGE;
2847 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
2848 }
2849
2850 return 0;
2851}
2852
2853/**
2854* Initializes the SMC table and uploads it
2855*
2856* @param hwmgr the address of the powerplay hardware manager.
2857* @param pInput the pointer to input data (PowerState)
2858* @return always 0
2859*/
2860static int fiji_init_smc_table(struct pp_hwmgr *hwmgr)
2861{
2862 int result;
2863 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2864 struct phm_ppt_v1_information *table_info =
2865 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2866 struct SMU73_Discrete_DpmTable *table = &(data->smc_state_table);
2867 const struct fiji_ulv_parm *ulv = &(data->ulv);
2868 uint8_t i;
2869 struct pp_atomctrl_gpio_pin_assignment gpio_pin;
2870
2871 result = fiji_setup_default_dpm_tables(hwmgr);
2872 PP_ASSERT_WITH_CODE(0 == result,
2873 "Failed to setup default DPM tables!", return result);
2874
2875 if(FIJI_VOLTAGE_CONTROL_NONE != data->voltage_control)
2876 fiji_populate_smc_voltage_tables(hwmgr, table);
2877
2878 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2879 PHM_PlatformCaps_AutomaticDCTransition))
2880 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
2881
2882 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2883 PHM_PlatformCaps_StepVddc))
2884 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
2885
2886 if (data->is_memory_gddr5)
2887 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
2888
2889 if (ulv->ulv_supported && table_info->us_ulv_voltage_offset) {
2890 result = fiji_populate_ulv_state(hwmgr, table);
2891 PP_ASSERT_WITH_CODE(0 == result,
2892 "Failed to initialize ULV state!", return result);
2893 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2894 ixCG_ULV_PARAMETER, ulv->cg_ulv_parameter);
2895 }
2896
2897 result = fiji_populate_smc_link_level(hwmgr, table);
2898 PP_ASSERT_WITH_CODE(0 == result,
2899 "Failed to initialize Link Level!", return result);
2900
2901 result = fiji_populate_all_graphic_levels(hwmgr);
2902 PP_ASSERT_WITH_CODE(0 == result,
2903 "Failed to initialize Graphics Level!", return result);
2904
2905 result = fiji_populate_all_memory_levels(hwmgr);
2906 PP_ASSERT_WITH_CODE(0 == result,
2907 "Failed to initialize Memory Level!", return result);
2908
2909 result = fiji_populate_smc_acpi_level(hwmgr, table);
2910 PP_ASSERT_WITH_CODE(0 == result,
2911 "Failed to initialize ACPI Level!", return result);
2912
2913 result = fiji_populate_smc_vce_level(hwmgr, table);
2914 PP_ASSERT_WITH_CODE(0 == result,
2915 "Failed to initialize VCE Level!", return result);
2916
2917 result = fiji_populate_smc_acp_level(hwmgr, table);
2918 PP_ASSERT_WITH_CODE(0 == result,
2919 "Failed to initialize ACP Level!", return result);
2920
2921 result = fiji_populate_smc_samu_level(hwmgr, table);
2922 PP_ASSERT_WITH_CODE(0 == result,
2923 "Failed to initialize SAMU Level!", return result);
2924
2925 /* Since only the initial state is completely set up at this point
2926 * (the other states are just copies of the boot state) we only
2927 * need to populate the ARB settings for the initial state.
2928 */
2929 result = fiji_program_memory_timing_parameters(hwmgr);
2930 PP_ASSERT_WITH_CODE(0 == result,
2931 "Failed to Write ARB settings for the initial state.", return result);
2932
2933 result = fiji_populate_smc_uvd_level(hwmgr, table);
2934 PP_ASSERT_WITH_CODE(0 == result,
2935 "Failed to initialize UVD Level!", return result);
2936
2937 result = fiji_populate_smc_boot_level(hwmgr, table);
2938 PP_ASSERT_WITH_CODE(0 == result,
2939 "Failed to initialize Boot Level!", return result);
2940
2941 result = fiji_populate_smc_initailial_state(hwmgr);
2942 PP_ASSERT_WITH_CODE(0 == result,
2943 "Failed to initialize Boot State!", return result);
2944
2945 result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr);
2946 PP_ASSERT_WITH_CODE(0 == result,
2947 "Failed to populate BAPM Parameters!", return result);
2948
2949 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2950 PHM_PlatformCaps_ClockStretcher)) {
2951 result = fiji_populate_clock_stretcher_data_table(hwmgr);
2952 PP_ASSERT_WITH_CODE(0 == result,
2953 "Failed to populate Clock Stretcher Data Table!",
2954 return result);
2955 }
2956
2957 table->GraphicsVoltageChangeEnable = 1;
2958 table->GraphicsThermThrottleEnable = 1;
2959 table->GraphicsInterval = 1;
2960 table->VoltageInterval = 1;
2961 table->ThermalInterval = 1;
2962 table->TemperatureLimitHigh =
2963 table_info->cac_dtp_table->usTargetOperatingTemp *
2964 FIJI_Q88_FORMAT_CONVERSION_UNIT;
2965 table->TemperatureLimitLow =
2966 (table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2967 FIJI_Q88_FORMAT_CONVERSION_UNIT;
2968 table->MemoryVoltageChangeEnable = 1;
2969 table->MemoryInterval = 1;
2970 table->VoltageResponseTime = 0;
2971 table->PhaseResponseTime = 0;
2972 table->MemoryThermThrottleEnable = 1;
2973 table->PCIeBootLinkLevel = 0; /* 0:Gen1 1:Gen2 2:Gen3*/
2974 table->PCIeGenInterval = 1;
2975
2976 result = fiji_populate_vr_config(hwmgr, table);
2977 PP_ASSERT_WITH_CODE(0 == result,
2978 "Failed to populate VRConfig setting!", return result);
2979
2980 table->ThermGpio = 17;
2981 table->SclkStepSize = 0x4000;
2982
2983 if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2984 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2985 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2986 PHM_PlatformCaps_RegulatorHot);
2987 } else {
2988 table->VRHotGpio = FIJI_UNUSED_GPIO_PIN;
2989 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2990 PHM_PlatformCaps_RegulatorHot);
2991 }
2992
2993 if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
2994 &gpio_pin)) {
2995 table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
2996 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2997 PHM_PlatformCaps_AutomaticDCTransition);
2998 } else {
2999 table->AcDcGpio = FIJI_UNUSED_GPIO_PIN;
3000 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3001 PHM_PlatformCaps_AutomaticDCTransition);
3002 }
3003
3004 /* Thermal Output GPIO */
3005 if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
3006 &gpio_pin)) {
3007 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3008 PHM_PlatformCaps_ThermalOutGPIO);
3009
3010 table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
3011
3012 /* For porlarity read GPIOPAD_A with assigned Gpio pin
3013 * since VBIOS will program this register to set 'inactive state',
3014 * driver can then determine 'active state' from this and
3015 * program SMU with correct polarity
3016 */
3017 table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
3018 (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
3019 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
3020
3021 /* if required, combine VRHot/PCC with thermal out GPIO */
3022 if(phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3023 PHM_PlatformCaps_RegulatorHot) &&
3024 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3025 PHM_PlatformCaps_CombinePCCWithThermalSignal))
3026 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
3027 } else {
3028 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3029 PHM_PlatformCaps_ThermalOutGPIO);
3030 table->ThermOutGpio = 17;
3031 table->ThermOutPolarity = 1;
3032 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
3033 }
3034
3035 for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++)
3036 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
3037
3038 CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
3039 CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
3040 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
3041 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
3042 CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
3043 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
3044 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
3045 CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
3046 CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
3047
3048 /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
3049 result = fiji_copy_bytes_to_smc(hwmgr->smumgr,
3050 data->dpm_table_start +
3051 offsetof(SMU73_Discrete_DpmTable, SystemFlags),
3052 (uint8_t *)&(table->SystemFlags),
3053 sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController),
3054 data->sram_end);
3055 PP_ASSERT_WITH_CODE(0 == result,
3056 "Failed to upload dpm data to SMC memory!", return result);
3057
3058 return 0;
3059}
3060
3061/**
3062* Initialize the ARB DRAM timing table's index field.
3063*
3064* @param hwmgr the address of the powerplay hardware manager.
3065* @return always 0
3066*/
3067static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr)
3068{
3069 const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3070 uint32_t tmp;
3071 int result;
3072
3073 /* This is a read-modify-write on the first byte of the ARB table.
3074 * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
3075 * is the field 'current'.
3076 * This solution is ugly, but we never write the whole table only
3077 * individual fields in it.
3078 * In reality this field should not be in that structure
3079 * but in a soft register.
3080 */
3081 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
3082 data->arb_table_start, &tmp, data->sram_end);
3083
3084 if (result)
3085 return result;
3086
3087 tmp &= 0x00FFFFFF;
3088 tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
3089
3090 return fiji_write_smc_sram_dword(hwmgr->smumgr,
3091 data->arb_table_start, tmp, data->sram_end);
3092}
3093
3094static int fiji_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr)
3095{
3096 if(phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3097 PHM_PlatformCaps_RegulatorHot))
3098 return smum_send_msg_to_smc(hwmgr->smumgr,
3099 PPSMC_MSG_EnableVRHotGPIOInterrupt);
3100
3101 return 0;
3102}
3103
3104static int fiji_enable_sclk_control(struct pp_hwmgr *hwmgr)
3105{
3106 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
3107 SCLK_PWRMGT_OFF, 0);
3108 return 0;
3109}
3110
3111static int fiji_enable_ulv(struct pp_hwmgr *hwmgr)
3112{
3113 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3114 struct fiji_ulv_parm *ulv = &(data->ulv);
3115
3116 if (ulv->ulv_supported)
3117 return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_EnableULV);
3118
3119 return 0;
3120}
3121
3122static int fiji_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
3123{
3124 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3125 PHM_PlatformCaps_SclkDeepSleep)) {
3126 if (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MASTER_DeepSleep_ON))
3127 PP_ASSERT_WITH_CODE(false,
3128 "Attempt to enable Master Deep Sleep switch failed!",
3129 return -1);
3130 } else {
3131 if (smum_send_msg_to_smc(hwmgr->smumgr,
3132 PPSMC_MSG_MASTER_DeepSleep_OFF)) {
3133 PP_ASSERT_WITH_CODE(false,
3134 "Attempt to disable Master Deep Sleep switch failed!",
3135 return -1);
3136 }
3137 }
3138
3139 return 0;
3140}
3141
3142static int fiji_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
3143{
3144 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3145 uint32_t val, val0, val2;
3146 uint32_t i, cpl_cntl, cpl_threshold, mc_threshold;
3147
3148 /* enable SCLK dpm */
3149 if(!data->sclk_dpm_key_disabled)
3150 PP_ASSERT_WITH_CODE(
3151 (0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DPM_Enable)),
3152 "Failed to enable SCLK DPM during DPM Start Function!",
3153 return -1);
3154
3155 /* enable MCLK dpm */
3156 if(0 == data->mclk_dpm_key_disabled) {
3157 cpl_threshold = 0;
3158 mc_threshold = 0;
3159
3160 /* Read per MCD tile (0 - 7) */
3161 for (i = 0; i < 8; i++) {
3162 PHM_WRITE_FIELD(hwmgr->device, MC_CONFIG_MCD, MC_RD_ENABLE, i);
3163 val = cgs_read_register(hwmgr->device, mmMC_SEQ_RESERVE_0_S) & 0xf0000000;
3164 if (0xf0000000 != val) {
3165 /* count number of MCQ that has channel(s) enabled */
3166 cpl_threshold++;
3167 /* only harvest 3 or full 4 supported */
3168 mc_threshold = val ? 3 : 4;
3169 }
3170 }
3171 PP_ASSERT_WITH_CODE(0 != cpl_threshold,
3172 "Number of MCQ is zero!", return -EINVAL;);
3173
3174 mc_threshold = ((mc_threshold & LCAC_MC0_CNTL__MC0_THRESHOLD_MASK) <<
3175 LCAC_MC0_CNTL__MC0_THRESHOLD__SHIFT) |
3176 LCAC_MC0_CNTL__MC0_ENABLE_MASK;
3177 cpl_cntl = ((cpl_threshold & LCAC_CPL_CNTL__CPL_THRESHOLD_MASK) <<
3178 LCAC_CPL_CNTL__CPL_THRESHOLD__SHIFT) |
3179 LCAC_CPL_CNTL__CPL_ENABLE_MASK;
3180 cpl_cntl = (cpl_cntl | (8 << LCAC_CPL_CNTL__CPL_BLOCK_ID__SHIFT));
3181 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3182 ixLCAC_MC0_CNTL, mc_threshold);
3183 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3184 ixLCAC_MC1_CNTL, mc_threshold);
3185 if (8 == cpl_threshold) {
3186 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3187 ixLCAC_MC2_CNTL, mc_threshold);
3188 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3189 ixLCAC_MC3_CNTL, mc_threshold);
3190 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3191 ixLCAC_MC4_CNTL, mc_threshold);
3192 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3193 ixLCAC_MC5_CNTL, mc_threshold);
3194 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3195 ixLCAC_MC6_CNTL, mc_threshold);
3196 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3197 ixLCAC_MC7_CNTL, mc_threshold);
3198 }
3199 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3200 ixLCAC_CPL_CNTL, cpl_cntl);
3201
3202 udelay(5);
3203
3204 mc_threshold = mc_threshold |
3205 (1 << LCAC_MC0_CNTL__MC0_SIGNAL_ID__SHIFT);
3206 cpl_cntl = cpl_cntl | (1 << LCAC_CPL_CNTL__CPL_SIGNAL_ID__SHIFT);
3207 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3208 ixLCAC_MC0_CNTL, mc_threshold);
3209 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3210 ixLCAC_MC1_CNTL, mc_threshold);
3211 if (8 == cpl_threshold) {
3212 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3213 ixLCAC_MC2_CNTL, mc_threshold);
3214 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3215 ixLCAC_MC3_CNTL, mc_threshold);
3216 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3217 ixLCAC_MC4_CNTL, mc_threshold);
3218 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3219 ixLCAC_MC5_CNTL, mc_threshold);
3220 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3221 ixLCAC_MC6_CNTL, mc_threshold);
3222 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3223 ixLCAC_MC7_CNTL, mc_threshold);
3224 }
3225 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3226 ixLCAC_CPL_CNTL, cpl_cntl);
3227
3228 /* Program CAC_EN per MCD (0-7) Tile */
3229 val0 = val = cgs_read_register(hwmgr->device, mmMC_CONFIG_MCD);
3230 val &= ~(MC_CONFIG_MCD__MCD0_WR_ENABLE_MASK |
3231 MC_CONFIG_MCD__MCD1_WR_ENABLE_MASK |
3232 MC_CONFIG_MCD__MCD2_WR_ENABLE_MASK |
3233 MC_CONFIG_MCD__MCD3_WR_ENABLE_MASK |
3234 MC_CONFIG_MCD__MCD4_WR_ENABLE_MASK |
3235 MC_CONFIG_MCD__MCD5_WR_ENABLE_MASK |
3236 MC_CONFIG_MCD__MCD6_WR_ENABLE_MASK |
3237 MC_CONFIG_MCD__MCD7_WR_ENABLE_MASK |
3238 MC_CONFIG_MCD__MC_RD_ENABLE_MASK);
3239
3240 for (i = 0; i < 8; i++) {
3241 /* Enable MCD i Tile read & write */
3242 val2 = (val | (i << MC_CONFIG_MCD__MC_RD_ENABLE__SHIFT) |
3243 (1 << i));
3244 cgs_write_register(hwmgr->device, mmMC_CONFIG_MCD, val2);
3245 /* Enbale CAC_ON MCD i Tile */
3246 val2 = cgs_read_register(hwmgr->device, mmMC_SEQ_CNTL);
3247 val2 |= MC_SEQ_CNTL__CAC_EN_MASK;
3248 cgs_write_register(hwmgr->device, mmMC_SEQ_CNTL, val2);
3249 }
3250 /* Set MC_CONFIG_MCD back to its default setting val0 */
3251 cgs_write_register(hwmgr->device, mmMC_CONFIG_MCD, val0);
3252
3253 PP_ASSERT_WITH_CODE(
3254 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
3255 PPSMC_MSG_MCLKDPM_Enable)),
3256 "Failed to enable MCLK DPM during DPM Start Function!",
3257 return -1);
3258 }
3259 return 0;
3260}
3261
3262static int fiji_start_dpm(struct pp_hwmgr *hwmgr)
3263{
3264 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3265
3266 /*enable general power management */
3267 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
3268 GLOBAL_PWRMGT_EN, 1);
3269 /* enable sclk deep sleep */
3270 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
3271 DYNAMIC_PM_EN, 1);
3272 /* prepare for PCIE DPM */
3273 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3274 data->soft_regs_start + offsetof(SMU73_SoftRegisters,
3275 VoltageChangeTimeout), 0x1000);
3276 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
3277 SWRST_COMMAND_1, RESETLC, 0x0);
3278
3279 PP_ASSERT_WITH_CODE(
3280 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
3281 PPSMC_MSG_Voltage_Cntl_Enable)),
3282 "Failed to enable voltage DPM during DPM Start Function!",
3283 return -1);
3284
3285 if (fiji_enable_sclk_mclk_dpm(hwmgr)) {
3286 printk(KERN_ERR "Failed to enable Sclk DPM and Mclk DPM!");
3287 return -1;
3288 }
3289
3290 /* enable PCIE dpm */
3291 if(!data->pcie_dpm_key_disabled) {
3292 PP_ASSERT_WITH_CODE(
3293 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
3294 PPSMC_MSG_PCIeDPM_Enable)),
3295 "Failed to enable pcie DPM during DPM Start Function!",
3296 return -1);
3297 }
3298
3299 return 0;
3300}
3301
3302static void fiji_set_dpm_event_sources(struct pp_hwmgr *hwmgr,
3303 uint32_t sources)
3304{
3305 bool protection;
3306 enum DPM_EVENT_SRC src;
3307
3308 switch (sources) {
3309 default:
3310 printk(KERN_ERR "Unknown throttling event sources.");
3311 /* fall through */
3312 case 0:
3313 protection = false;
3314 /* src is unused */
3315 break;
3316 case (1 << PHM_AutoThrottleSource_Thermal):
3317 protection = true;
3318 src = DPM_EVENT_SRC_DIGITAL;
3319 break;
3320 case (1 << PHM_AutoThrottleSource_External):
3321 protection = true;
3322 src = DPM_EVENT_SRC_EXTERNAL;
3323 break;
3324 case (1 << PHM_AutoThrottleSource_External) |
3325 (1 << PHM_AutoThrottleSource_Thermal):
3326 protection = true;
3327 src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL;
3328 break;
3329 }
3330 /* Order matters - don't enable thermal protection for the wrong source. */
3331 if (protection) {
3332 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL,
3333 DPM_EVENT_SRC, src);
3334 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
3335 THERMAL_PROTECTION_DIS,
3336 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3337 PHM_PlatformCaps_ThermalController));
3338 } else
3339 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
3340 THERMAL_PROTECTION_DIS, 1);
3341}
3342
3343static int fiji_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
3344 PHM_AutoThrottleSource source)
3345{
3346 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3347
3348 if (!(data->active_auto_throttle_sources & (1 << source))) {
3349 data->active_auto_throttle_sources |= 1 << source;
3350 fiji_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
3351 }
3352 return 0;
3353}
3354
3355static int fiji_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
3356{
3357 return fiji_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
3358}
3359
3360static int fiji_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
3361{
3362 int tmp_result, result = 0;
3363
3364 tmp_result = (!fiji_is_dpm_running(hwmgr))? 0 : -1;
3365 PP_ASSERT_WITH_CODE(result == 0,
3366 "DPM is already running right now, no need to enable DPM!",
3367 return 0);
3368
3369 if (fiji_voltage_control(hwmgr)) {
3370 tmp_result = fiji_enable_voltage_control(hwmgr);
3371 PP_ASSERT_WITH_CODE(tmp_result == 0,
3372 "Failed to enable voltage control!",
3373 result = tmp_result);
3374 }
3375
3376 if (fiji_voltage_control(hwmgr)) {
3377 tmp_result = fiji_construct_voltage_tables(hwmgr);
3378 PP_ASSERT_WITH_CODE((0 == tmp_result),
3379 "Failed to contruct voltage tables!",
3380 result = tmp_result);
3381 }
3382
3383 tmp_result = fiji_initialize_mc_reg_table(hwmgr);
3384 PP_ASSERT_WITH_CODE((0 == tmp_result),
3385 "Failed to initialize MC reg table!", result = tmp_result);
3386
3387 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3388 PHM_PlatformCaps_EngineSpreadSpectrumSupport))
3389 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3390 GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1);
3391
3392 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3393 PHM_PlatformCaps_ThermalController))
3394 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3395 GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0);
3396
3397 tmp_result = fiji_program_static_screen_threshold_parameters(hwmgr);
3398 PP_ASSERT_WITH_CODE((0 == tmp_result),
3399 "Failed to program static screen threshold parameters!",
3400 result = tmp_result);
3401
3402 tmp_result = fiji_enable_display_gap(hwmgr);
3403 PP_ASSERT_WITH_CODE((0 == tmp_result),
3404 "Failed to enable display gap!", result = tmp_result);
3405
3406 tmp_result = fiji_program_voting_clients(hwmgr);
3407 PP_ASSERT_WITH_CODE((0 == tmp_result),
3408 "Failed to program voting clients!", result = tmp_result);
3409
3410 tmp_result = fiji_process_firmware_header(hwmgr);
3411 PP_ASSERT_WITH_CODE((0 == tmp_result),
3412 "Failed to process firmware header!", result = tmp_result);
3413
3414 tmp_result = fiji_initial_switch_from_arbf0_to_f1(hwmgr);
3415 PP_ASSERT_WITH_CODE((0 == tmp_result),
3416 "Failed to initialize switch from ArbF0 to F1!",
3417 result = tmp_result);
3418
3419 tmp_result = fiji_init_smc_table(hwmgr);
3420 PP_ASSERT_WITH_CODE((0 == tmp_result),
3421 "Failed to initialize SMC table!", result = tmp_result);
3422
3423 tmp_result = fiji_init_arb_table_index(hwmgr);
3424 PP_ASSERT_WITH_CODE((0 == tmp_result),
3425 "Failed to initialize ARB table index!", result = tmp_result);
3426
3427 tmp_result = fiji_populate_pm_fuses(hwmgr);
3428 PP_ASSERT_WITH_CODE((0 == tmp_result),
3429 "Failed to populate PM fuses!", result = tmp_result);
3430
3431 tmp_result = fiji_enable_vrhot_gpio_interrupt(hwmgr);
3432 PP_ASSERT_WITH_CODE((0 == tmp_result),
3433 "Failed to enable VR hot GPIO interrupt!", result = tmp_result);
3434
3435 tmp_result = fiji_enable_sclk_control(hwmgr);
3436 PP_ASSERT_WITH_CODE((0 == tmp_result),
3437 "Failed to enable SCLK control!", result = tmp_result);
3438
3439 tmp_result = fiji_enable_ulv(hwmgr);
3440 PP_ASSERT_WITH_CODE((0 == tmp_result),
3441 "Failed to enable ULV!", result = tmp_result);
3442
3443 tmp_result = fiji_enable_deep_sleep_master_switch(hwmgr);
3444 PP_ASSERT_WITH_CODE((0 == tmp_result),
3445 "Failed to enable deep sleep master switch!", result = tmp_result);
3446
3447 tmp_result = fiji_start_dpm(hwmgr);
3448 PP_ASSERT_WITH_CODE((0 == tmp_result),
3449 "Failed to start DPM!", result = tmp_result);
3450
3451 tmp_result = fiji_enable_smc_cac(hwmgr);
3452 PP_ASSERT_WITH_CODE((0 == tmp_result),
3453 "Failed to enable SMC CAC!", result = tmp_result);
3454
3455 tmp_result = fiji_enable_power_containment(hwmgr);
3456 PP_ASSERT_WITH_CODE((0 == tmp_result),
3457 "Failed to enable power containment!", result = tmp_result);
3458
3459 tmp_result = fiji_power_control_set_level(hwmgr);
3460 PP_ASSERT_WITH_CODE((0 == tmp_result),
3461 "Failed to power control set level!", result = tmp_result);
3462
3463 tmp_result = fiji_enable_thermal_auto_throttle(hwmgr);
3464 PP_ASSERT_WITH_CODE((0 == tmp_result),
3465 "Failed to enable thermal auto throttle!", result = tmp_result);
3466
3467 return result;
3468}
3469
3470static int fiji_force_dpm_highest(struct pp_hwmgr *hwmgr)
3471{
3472 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3473 uint32_t level, tmp;
3474
3475 if (!data->sclk_dpm_key_disabled) {
3476 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3477 level = 0;
3478 tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
3479 while (tmp >>= 1)
3480 level++;
3481 if (level)
3482 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3483 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3484 (1 << level));
3485 }
3486 }
3487
3488 if (!data->mclk_dpm_key_disabled) {
3489 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3490 level = 0;
3491 tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
3492 while (tmp >>= 1)
3493 level++;
3494 if (level)
3495 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3496 PPSMC_MSG_MCLKDPM_SetEnabledMask,
3497 (1 << level));
3498 }
3499 }
3500
3501 if (!data->pcie_dpm_key_disabled) {
3502 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3503 level = 0;
3504 tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
3505 while (tmp >>= 1)
3506 level++;
3507 if (level)
3508 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3509 PPSMC_MSG_PCIeDPM_ForceLevel,
3510 (1 << level));
3511 }
3512 }
3513 return 0;
3514}
3515
3516static void fiji_apply_dal_min_voltage_request(struct pp_hwmgr *hwmgr)
3517{
3518 struct phm_ppt_v1_information *table_info =
3519 (struct phm_ppt_v1_information *)hwmgr->pptable;
3520 struct phm_clock_voltage_dependency_table *table =
3521 table_info->vddc_dep_on_dal_pwrl;
3522 struct phm_ppt_v1_clock_voltage_dependency_table *vddc_table;
3523 enum PP_DAL_POWERLEVEL dal_power_level = hwmgr->dal_power_level;
3524 uint32_t req_vddc = 0, req_volt, i;
3525
3526 if (!table && !(dal_power_level >= PP_DAL_POWERLEVEL_ULTRALOW &&
3527 dal_power_level <= PP_DAL_POWERLEVEL_PERFORMANCE))
3528 return;
3529
3530 for (i= 0; i < table->count; i++) {
3531 if (dal_power_level == table->entries[i].clk) {
3532 req_vddc = table->entries[i].v;
3533 break;
3534 }
3535 }
3536
3537 vddc_table = table_info->vdd_dep_on_sclk;
3538 for (i= 0; i < vddc_table->count; i++) {
3539 if (req_vddc <= vddc_table->entries[i].vddc) {
3540 req_volt = (((uint32_t)vddc_table->entries[i].vddc) * VOLTAGE_SCALE)
3541 << VDDC_SHIFT;
3542 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3543 PPSMC_MSG_VddC_Request, req_volt);
3544 return;
3545 }
3546 }
3547 printk(KERN_ERR "DAL requested level can not"
3548 " found a available voltage in VDDC DPM Table \n");
3549}
3550
3551static int fiji_upload_dpmlevel_enable_mask(struct pp_hwmgr *hwmgr)
3552{
3553 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3554
3555 fiji_apply_dal_min_voltage_request(hwmgr);
3556
3557 if (!data->sclk_dpm_key_disabled) {
3558 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask)
3559 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3560 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3561 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3562 }
3563 return 0;
3564}
3565
3566static int fiji_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
3567{
3568 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3569
3570 if (!fiji_is_dpm_running(hwmgr))
3571 return -EINVAL;
3572
3573 if (!data->pcie_dpm_key_disabled) {
3574 smum_send_msg_to_smc(hwmgr->smumgr,
3575 PPSMC_MSG_PCIeDPM_UnForceLevel);
3576 }
3577
3578 return fiji_upload_dpmlevel_enable_mask(hwmgr);
3579}
3580
3581static uint32_t fiji_get_lowest_enabled_level(
3582 struct pp_hwmgr *hwmgr, uint32_t mask)
3583{
3584 uint32_t level = 0;
3585
3586 while(0 == (mask & (1 << level)))
3587 level++;
3588
3589 return level;
3590}
3591
3592static int fiji_force_dpm_lowest(struct pp_hwmgr *hwmgr)
3593{
3594 struct fiji_hwmgr *data =
3595 (struct fiji_hwmgr *)(hwmgr->backend);
Alex Deucher74c577b2015-11-11 00:31:00 -05003596 uint32_t level;
Eric Huangaabcb7c2015-08-26 16:52:28 -04003597
Eric Huangaabcb7c2015-08-26 16:52:28 -04003598 if (!data->sclk_dpm_key_disabled)
3599 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3600 level = fiji_get_lowest_enabled_level(hwmgr,
Alex Deucher74c577b2015-11-11 00:31:00 -05003601 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
Eric Huangaabcb7c2015-08-26 16:52:28 -04003602 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
Alex Deucher74c577b2015-11-11 00:31:00 -05003603 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3604 (1 << level));
Eric Huangaabcb7c2015-08-26 16:52:28 -04003605
3606 }
Alex Deucher74c577b2015-11-11 00:31:00 -05003607
3608 if (!data->mclk_dpm_key_disabled) {
3609 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3610 level = fiji_get_lowest_enabled_level(hwmgr,
3611 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
3612 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3613 PPSMC_MSG_MCLKDPM_SetEnabledMask,
3614 (1 << level));
3615 }
3616 }
3617
3618 if (!data->pcie_dpm_key_disabled) {
3619 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3620 level = fiji_get_lowest_enabled_level(hwmgr,
3621 data->dpm_level_enable_mask.pcie_dpm_enable_mask);
3622 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3623 PPSMC_MSG_PCIeDPM_ForceLevel,
3624 (1 << level));
3625 }
3626 }
3627
Eric Huangaabcb7c2015-08-26 16:52:28 -04003628 return 0;
3629
3630}
3631static int fiji_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
3632 enum amd_dpm_forced_level level)
3633{
3634 int ret = 0;
3635
3636 switch (level) {
3637 case AMD_DPM_FORCED_LEVEL_HIGH:
3638 ret = fiji_force_dpm_highest(hwmgr);
3639 if (ret)
3640 return ret;
3641 break;
3642 case AMD_DPM_FORCED_LEVEL_LOW:
3643 ret = fiji_force_dpm_lowest(hwmgr);
3644 if (ret)
3645 return ret;
3646 break;
3647 case AMD_DPM_FORCED_LEVEL_AUTO:
3648 ret = fiji_unforce_dpm_levels(hwmgr);
3649 if (ret)
3650 return ret;
3651 break;
3652 default:
3653 break;
3654 }
3655
3656 hwmgr->dpm_level = level;
3657
3658 return ret;
3659}
3660
3661static int fiji_get_power_state_size(struct pp_hwmgr *hwmgr)
3662{
3663 return sizeof(struct fiji_power_state);
3664}
3665
3666static int fiji_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
3667 void *state, struct pp_power_state *power_state,
3668 void *pp_table, uint32_t classification_flag)
3669{
3670 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3671 struct fiji_power_state *fiji_power_state =
3672 (struct fiji_power_state *)(&(power_state->hardware));
3673 struct fiji_performance_level *performance_level;
3674 ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
3675 ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
3676 (ATOM_Tonga_POWERPLAYTABLE *)pp_table;
3677 ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table =
3678 (ATOM_Tonga_SCLK_Dependency_Table *)
3679 (((unsigned long)powerplay_table) +
3680 le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
3681 ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
3682 (ATOM_Tonga_MCLK_Dependency_Table *)
3683 (((unsigned long)powerplay_table) +
3684 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
3685
3686 /* The following fields are not initialized here: id orderedList allStatesList */
3687 power_state->classification.ui_label =
3688 (le16_to_cpu(state_entry->usClassification) &
3689 ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
3690 ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
3691 power_state->classification.flags = classification_flag;
3692 /* NOTE: There is a classification2 flag in BIOS that is not being used right now */
3693
3694 power_state->classification.temporary_state = false;
3695 power_state->classification.to_be_deleted = false;
3696
3697 power_state->validation.disallowOnDC =
3698 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3699 ATOM_Tonga_DISALLOW_ON_DC));
3700
3701 power_state->pcie.lanes = 0;
3702
3703 power_state->display.disableFrameModulation = false;
3704 power_state->display.limitRefreshrate = false;
3705 power_state->display.enableVariBright =
3706 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3707 ATOM_Tonga_ENABLE_VARIBRIGHT));
3708
3709 power_state->validation.supportedPowerLevels = 0;
3710 power_state->uvd_clocks.VCLK = 0;
3711 power_state->uvd_clocks.DCLK = 0;
3712 power_state->temperatures.min = 0;
3713 power_state->temperatures.max = 0;
3714
3715 performance_level = &(fiji_power_state->performance_levels
3716 [fiji_power_state->performance_level_count++]);
3717
3718 PP_ASSERT_WITH_CODE(
3719 (fiji_power_state->performance_level_count < SMU73_MAX_LEVELS_GRAPHICS),
3720 "Performance levels exceeds SMC limit!",
3721 return -1);
3722
3723 PP_ASSERT_WITH_CODE(
3724 (fiji_power_state->performance_level_count <=
3725 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
3726 "Performance levels exceeds Driver limit!",
3727 return -1);
3728
3729 /* Performance levels are arranged from low to high. */
3730 performance_level->memory_clock = mclk_dep_table->entries
3731 [state_entry->ucMemoryClockIndexLow].ulMclk;
3732 performance_level->engine_clock = sclk_dep_table->entries
3733 [state_entry->ucEngineClockIndexLow].ulSclk;
3734 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3735 state_entry->ucPCIEGenLow);
3736 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3737 state_entry->ucPCIELaneHigh);
3738
3739 performance_level = &(fiji_power_state->performance_levels
3740 [fiji_power_state->performance_level_count++]);
3741 performance_level->memory_clock = mclk_dep_table->entries
3742 [state_entry->ucMemoryClockIndexHigh].ulMclk;
3743 performance_level->engine_clock = sclk_dep_table->entries
3744 [state_entry->ucEngineClockIndexHigh].ulSclk;
3745 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3746 state_entry->ucPCIEGenHigh);
3747 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3748 state_entry->ucPCIELaneHigh);
3749
3750 return 0;
3751}
3752
3753static int fiji_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3754 unsigned long entry_index, struct pp_power_state *state)
3755{
3756 int result;
3757 struct fiji_power_state *ps;
3758 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3759 struct phm_ppt_v1_information *table_info =
3760 (struct phm_ppt_v1_information *)(hwmgr->pptable);
3761 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
3762 table_info->vdd_dep_on_mclk;
3763
3764 state->hardware.magic = PHM_VIslands_Magic;
3765
3766 ps = (struct fiji_power_state *)(&state->hardware);
3767
3768 result = tonga_get_powerplay_table_entry(hwmgr, entry_index, state,
3769 fiji_get_pp_table_entry_callback_func);
3770
3771 /* This is the earliest time we have all the dependency table and the VBIOS boot state
3772 * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
3773 * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
3774 */
3775 if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
3776 if (dep_mclk_table->entries[0].clk !=
3777 data->vbios_boot_state.mclk_bootup_value)
3778 printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table "
3779 "does not match VBIOS boot MCLK level");
3780 if (dep_mclk_table->entries[0].vddci !=
3781 data->vbios_boot_state.vddci_bootup_value)
3782 printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table "
3783 "does not match VBIOS boot VDDCI level");
3784 }
3785
3786 /* set DC compatible flag if this state supports DC */
3787 if (!state->validation.disallowOnDC)
3788 ps->dc_compatible = true;
3789
3790 if (state->classification.flags & PP_StateClassificationFlag_ACPI)
3791 data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
3792
3793 ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3794 ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3795
3796 if (!result) {
3797 uint32_t i;
3798
3799 switch (state->classification.ui_label) {
3800 case PP_StateUILabel_Performance:
3801 data->use_pcie_performance_levels = true;
3802
3803 for (i = 0; i < ps->performance_level_count; i++) {
3804 if (data->pcie_gen_performance.max <
3805 ps->performance_levels[i].pcie_gen)
3806 data->pcie_gen_performance.max =
3807 ps->performance_levels[i].pcie_gen;
3808
3809 if (data->pcie_gen_performance.min >
3810 ps->performance_levels[i].pcie_gen)
3811 data->pcie_gen_performance.min =
3812 ps->performance_levels[i].pcie_gen;
3813
3814 if (data->pcie_lane_performance.max <
3815 ps->performance_levels[i].pcie_lane)
3816 data->pcie_lane_performance.max =
3817 ps->performance_levels[i].pcie_lane;
3818
3819 if (data->pcie_lane_performance.min >
3820 ps->performance_levels[i].pcie_lane)
3821 data->pcie_lane_performance.min =
3822 ps->performance_levels[i].pcie_lane;
3823 }
3824 break;
3825 case PP_StateUILabel_Battery:
3826 data->use_pcie_power_saving_levels = true;
3827
3828 for (i = 0; i < ps->performance_level_count; i++) {
3829 if (data->pcie_gen_power_saving.max <
3830 ps->performance_levels[i].pcie_gen)
3831 data->pcie_gen_power_saving.max =
3832 ps->performance_levels[i].pcie_gen;
3833
3834 if (data->pcie_gen_power_saving.min >
3835 ps->performance_levels[i].pcie_gen)
3836 data->pcie_gen_power_saving.min =
3837 ps->performance_levels[i].pcie_gen;
3838
3839 if (data->pcie_lane_power_saving.max <
3840 ps->performance_levels[i].pcie_lane)
3841 data->pcie_lane_power_saving.max =
3842 ps->performance_levels[i].pcie_lane;
3843
3844 if (data->pcie_lane_power_saving.min >
3845 ps->performance_levels[i].pcie_lane)
3846 data->pcie_lane_power_saving.min =
3847 ps->performance_levels[i].pcie_lane;
3848 }
3849 break;
3850 default:
3851 break;
3852 }
3853 }
3854 return 0;
3855}
3856
3857static int fiji_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
3858 struct pp_power_state *request_ps,
3859 const struct pp_power_state *current_ps)
3860{
3861 struct fiji_power_state *fiji_ps =
3862 cast_phw_fiji_power_state(&request_ps->hardware);
3863 uint32_t sclk;
3864 uint32_t mclk;
3865 struct PP_Clocks minimum_clocks = {0};
3866 bool disable_mclk_switching;
3867 bool disable_mclk_switching_for_frame_lock;
3868 struct cgs_display_info info = {0};
3869 const struct phm_clock_and_voltage_limits *max_limits;
3870 uint32_t i;
3871 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3872 struct phm_ppt_v1_information *table_info =
3873 (struct phm_ppt_v1_information *)(hwmgr->pptable);
3874 int32_t count;
3875 int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
3876
3877 data->battery_state = (PP_StateUILabel_Battery ==
3878 request_ps->classification.ui_label);
3879
3880 PP_ASSERT_WITH_CODE(fiji_ps->performance_level_count == 2,
3881 "VI should always have 2 performance levels",);
3882
3883 max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
3884 &(hwmgr->dyn_state.max_clock_voltage_on_ac) :
3885 &(hwmgr->dyn_state.max_clock_voltage_on_dc);
3886
3887 /* Cap clock DPM tables at DC MAX if it is in DC. */
3888 if (PP_PowerSource_DC == hwmgr->power_source) {
3889 for (i = 0; i < fiji_ps->performance_level_count; i++) {
3890 if (fiji_ps->performance_levels[i].memory_clock > max_limits->mclk)
3891 fiji_ps->performance_levels[i].memory_clock = max_limits->mclk;
3892 if (fiji_ps->performance_levels[i].engine_clock > max_limits->sclk)
3893 fiji_ps->performance_levels[i].engine_clock = max_limits->sclk;
3894 }
3895 }
3896
3897 fiji_ps->vce_clks.evclk = hwmgr->vce_arbiter.evclk;
3898 fiji_ps->vce_clks.ecclk = hwmgr->vce_arbiter.ecclk;
3899
3900 fiji_ps->acp_clk = hwmgr->acp_arbiter.acpclk;
3901
3902 cgs_get_active_displays_info(hwmgr->device, &info);
3903
3904 /*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
3905
3906 /* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */
3907
3908 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3909 PHM_PlatformCaps_StablePState)) {
3910 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
3911 stable_pstate_sclk = (max_limits->sclk * 75) / 100;
3912
3913 for (count = table_info->vdd_dep_on_sclk->count - 1;
3914 count >= 0; count--) {
3915 if (stable_pstate_sclk >=
3916 table_info->vdd_dep_on_sclk->entries[count].clk) {
3917 stable_pstate_sclk =
3918 table_info->vdd_dep_on_sclk->entries[count].clk;
3919 break;
3920 }
3921 }
3922
3923 if (count < 0)
3924 stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
3925
3926 stable_pstate_mclk = max_limits->mclk;
3927
3928 minimum_clocks.engineClock = stable_pstate_sclk;
3929 minimum_clocks.memoryClock = stable_pstate_mclk;
3930 }
3931
3932 if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk)
3933 minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk;
3934
3935 if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk)
3936 minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk;
3937
3938 fiji_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold;
3939
3940 if (0 != hwmgr->gfx_arbiter.sclk_over_drive) {
3941 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <=
3942 hwmgr->platform_descriptor.overdriveLimit.engineClock),
3943 "Overdrive sclk exceeds limit",
3944 hwmgr->gfx_arbiter.sclk_over_drive =
3945 hwmgr->platform_descriptor.overdriveLimit.engineClock);
3946
3947 if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk)
3948 fiji_ps->performance_levels[1].engine_clock =
3949 hwmgr->gfx_arbiter.sclk_over_drive;
3950 }
3951
3952 if (0 != hwmgr->gfx_arbiter.mclk_over_drive) {
3953 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <=
3954 hwmgr->platform_descriptor.overdriveLimit.memoryClock),
3955 "Overdrive mclk exceeds limit",
3956 hwmgr->gfx_arbiter.mclk_over_drive =
3957 hwmgr->platform_descriptor.overdriveLimit.memoryClock);
3958
3959 if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk)
3960 fiji_ps->performance_levels[1].memory_clock =
3961 hwmgr->gfx_arbiter.mclk_over_drive;
3962 }
3963
3964 disable_mclk_switching_for_frame_lock = phm_cap_enabled(
3965 hwmgr->platform_descriptor.platformCaps,
3966 PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
3967
3968 disable_mclk_switching = (1 < info.display_count) ||
3969 disable_mclk_switching_for_frame_lock;
3970
3971 sclk = fiji_ps->performance_levels[0].engine_clock;
3972 mclk = fiji_ps->performance_levels[0].memory_clock;
3973
3974 if (disable_mclk_switching)
3975 mclk = fiji_ps->performance_levels
3976 [fiji_ps->performance_level_count - 1].memory_clock;
3977
3978 if (sclk < minimum_clocks.engineClock)
3979 sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
3980 max_limits->sclk : minimum_clocks.engineClock;
3981
3982 if (mclk < minimum_clocks.memoryClock)
3983 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
3984 max_limits->mclk : minimum_clocks.memoryClock;
3985
3986 fiji_ps->performance_levels[0].engine_clock = sclk;
3987 fiji_ps->performance_levels[0].memory_clock = mclk;
3988
3989 fiji_ps->performance_levels[1].engine_clock =
3990 (fiji_ps->performance_levels[1].engine_clock >=
3991 fiji_ps->performance_levels[0].engine_clock) ?
3992 fiji_ps->performance_levels[1].engine_clock :
3993 fiji_ps->performance_levels[0].engine_clock;
3994
3995 if (disable_mclk_switching) {
3996 if (mclk < fiji_ps->performance_levels[1].memory_clock)
3997 mclk = fiji_ps->performance_levels[1].memory_clock;
3998
3999 fiji_ps->performance_levels[0].memory_clock = mclk;
4000 fiji_ps->performance_levels[1].memory_clock = mclk;
4001 } else {
4002 if (fiji_ps->performance_levels[1].memory_clock <
4003 fiji_ps->performance_levels[0].memory_clock)
4004 fiji_ps->performance_levels[1].memory_clock =
4005 fiji_ps->performance_levels[0].memory_clock;
4006 }
4007
4008 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4009 PHM_PlatformCaps_StablePState)) {
4010 for (i = 0; i < fiji_ps->performance_level_count; i++) {
4011 fiji_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
4012 fiji_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
4013 fiji_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
4014 fiji_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
4015 }
4016 }
4017
4018 return 0;
4019}
4020
4021static int fiji_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
4022{
4023 const struct phm_set_power_state_input *states =
4024 (const struct phm_set_power_state_input *)input;
4025 const struct fiji_power_state *fiji_ps =
4026 cast_const_phw_fiji_power_state(states->pnew_state);
4027 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4028 struct fiji_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4029 uint32_t sclk = fiji_ps->performance_levels
4030 [fiji_ps->performance_level_count - 1].engine_clock;
4031 struct fiji_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4032 uint32_t mclk = fiji_ps->performance_levels
4033 [fiji_ps->performance_level_count - 1].memory_clock;
4034 struct PP_Clocks min_clocks = {0};
4035 uint32_t i;
4036 struct cgs_display_info info = {0};
4037
4038 data->need_update_smu7_dpm_table = 0;
4039
4040 for (i = 0; i < sclk_table->count; i++) {
4041 if (sclk == sclk_table->dpm_levels[i].value)
4042 break;
4043 }
4044
4045 if (i >= sclk_table->count)
4046 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
4047 else {
4048 /* TODO: Check SCLK in DAL's minimum clocks
4049 * in case DeepSleep divider update is required.
4050 */
4051 if(data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR)
4052 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
4053 }
4054
4055 for (i = 0; i < mclk_table->count; i++) {
4056 if (mclk == mclk_table->dpm_levels[i].value)
4057 break;
4058 }
4059
4060 if (i >= mclk_table->count)
4061 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
4062
4063 cgs_get_active_displays_info(hwmgr->device, &info);
4064
4065 if (data->display_timing.num_existing_displays != info.display_count)
4066 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
4067
4068 return 0;
4069}
4070
4071static uint16_t fiji_get_maximum_link_speed(struct pp_hwmgr *hwmgr,
4072 const struct fiji_power_state *fiji_ps)
4073{
4074 uint32_t i;
4075 uint32_t sclk, max_sclk = 0;
4076 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4077 struct fiji_dpm_table *dpm_table = &data->dpm_table;
4078
4079 for (i = 0; i < fiji_ps->performance_level_count; i++) {
4080 sclk = fiji_ps->performance_levels[i].engine_clock;
4081 if (max_sclk < sclk)
4082 max_sclk = sclk;
4083 }
4084
4085 for (i = 0; i < dpm_table->sclk_table.count; i++) {
4086 if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk)
4087 return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ?
4088 dpm_table->pcie_speed_table.dpm_levels
4089 [dpm_table->pcie_speed_table.count - 1].value :
4090 dpm_table->pcie_speed_table.dpm_levels[i].value);
4091 }
4092
4093 return 0;
4094}
4095
4096static int fiji_request_link_speed_change_before_state_change(
4097 struct pp_hwmgr *hwmgr, const void *input)
4098{
4099 const struct phm_set_power_state_input *states =
4100 (const struct phm_set_power_state_input *)input;
4101 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4102 const struct fiji_power_state *fiji_nps =
4103 cast_const_phw_fiji_power_state(states->pnew_state);
4104 const struct fiji_power_state *fiji_cps =
4105 cast_const_phw_fiji_power_state(states->pcurrent_state);
4106
4107 uint16_t target_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_nps);
4108 uint16_t current_link_speed;
4109
4110 if (data->force_pcie_gen == PP_PCIEGenInvalid)
4111 current_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_cps);
4112 else
4113 current_link_speed = data->force_pcie_gen;
4114
4115 data->force_pcie_gen = PP_PCIEGenInvalid;
4116 data->pspp_notify_required = false;
4117 if (target_link_speed > current_link_speed) {
4118 switch(target_link_speed) {
4119 case PP_PCIEGen3:
4120 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false))
4121 break;
4122 data->force_pcie_gen = PP_PCIEGen2;
4123 if (current_link_speed == PP_PCIEGen2)
4124 break;
4125 case PP_PCIEGen2:
4126 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false))
4127 break;
4128 default:
4129 data->force_pcie_gen = fiji_get_current_pcie_speed(hwmgr);
4130 break;
4131 }
4132 } else {
4133 if (target_link_speed < current_link_speed)
4134 data->pspp_notify_required = true;
4135 }
4136
4137 return 0;
4138}
4139
4140static int fiji_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4141{
4142 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4143
4144 if (0 == data->need_update_smu7_dpm_table)
4145 return 0;
4146
4147 if ((0 == data->sclk_dpm_key_disabled) &&
4148 (data->need_update_smu7_dpm_table &
4149 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
4150 PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
4151 "Trying to freeze SCLK DPM when DPM is disabled",);
4152 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4153 PPSMC_MSG_SCLKDPM_FreezeLevel),
4154 "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
4155 return -1);
4156 }
4157
4158 if ((0 == data->mclk_dpm_key_disabled) &&
4159 (data->need_update_smu7_dpm_table &
4160 DPMTABLE_OD_UPDATE_MCLK)) {
4161 PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
4162 "Trying to freeze MCLK DPM when DPM is disabled",);
4163 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4164 PPSMC_MSG_MCLKDPM_FreezeLevel),
4165 "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
4166 return -1);
4167 }
4168
4169 return 0;
4170}
4171
4172static int fiji_populate_and_upload_sclk_mclk_dpm_levels(
4173 struct pp_hwmgr *hwmgr, const void *input)
4174{
4175 int result = 0;
4176 const struct phm_set_power_state_input *states =
4177 (const struct phm_set_power_state_input *)input;
4178 const struct fiji_power_state *fiji_ps =
4179 cast_const_phw_fiji_power_state(states->pnew_state);
4180 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4181 uint32_t sclk = fiji_ps->performance_levels
4182 [fiji_ps->performance_level_count - 1].engine_clock;
4183 uint32_t mclk = fiji_ps->performance_levels
4184 [fiji_ps->performance_level_count - 1].memory_clock;
4185 struct fiji_dpm_table *dpm_table = &data->dpm_table;
4186
4187 struct fiji_dpm_table *golden_dpm_table = &data->golden_dpm_table;
4188 uint32_t dpm_count, clock_percent;
4189 uint32_t i;
4190
4191 if (0 == data->need_update_smu7_dpm_table)
4192 return 0;
4193
4194 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
4195 dpm_table->sclk_table.dpm_levels
4196 [dpm_table->sclk_table.count - 1].value = sclk;
4197
4198 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4199 PHM_PlatformCaps_OD6PlusinACSupport) ||
4200 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4201 PHM_PlatformCaps_OD6PlusinDCSupport)) {
4202 /* Need to do calculation based on the golden DPM table
4203 * as the Heatmap GPU Clock axis is also based on the default values
4204 */
4205 PP_ASSERT_WITH_CODE(
4206 (golden_dpm_table->sclk_table.dpm_levels
4207 [golden_dpm_table->sclk_table.count - 1].value != 0),
4208 "Divide by 0!",
4209 return -1);
4210 dpm_count = dpm_table->sclk_table.count < 2 ?
4211 0 : dpm_table->sclk_table.count - 2;
4212 for (i = dpm_count; i > 1; i--) {
4213 if (sclk > golden_dpm_table->sclk_table.dpm_levels
4214 [golden_dpm_table->sclk_table.count-1].value) {
4215 clock_percent =
4216 ((sclk - golden_dpm_table->sclk_table.dpm_levels
4217 [golden_dpm_table->sclk_table.count-1].value) * 100) /
4218 golden_dpm_table->sclk_table.dpm_levels
4219 [golden_dpm_table->sclk_table.count-1].value;
4220
4221 dpm_table->sclk_table.dpm_levels[i].value =
4222 golden_dpm_table->sclk_table.dpm_levels[i].value +
4223 (golden_dpm_table->sclk_table.dpm_levels[i].value *
4224 clock_percent)/100;
4225
4226 } else if (golden_dpm_table->sclk_table.dpm_levels
4227 [dpm_table->sclk_table.count-1].value > sclk) {
4228 clock_percent =
4229 ((golden_dpm_table->sclk_table.dpm_levels
4230 [golden_dpm_table->sclk_table.count - 1].value - sclk) *
4231 100) /
4232 golden_dpm_table->sclk_table.dpm_levels
4233 [golden_dpm_table->sclk_table.count-1].value;
4234
4235 dpm_table->sclk_table.dpm_levels[i].value =
4236 golden_dpm_table->sclk_table.dpm_levels[i].value -
4237 (golden_dpm_table->sclk_table.dpm_levels[i].value *
4238 clock_percent) / 100;
4239 } else
4240 dpm_table->sclk_table.dpm_levels[i].value =
4241 golden_dpm_table->sclk_table.dpm_levels[i].value;
4242 }
4243 }
4244 }
4245
4246 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
4247 dpm_table->mclk_table.dpm_levels
4248 [dpm_table->mclk_table.count - 1].value = mclk;
4249
4250 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4251 PHM_PlatformCaps_OD6PlusinACSupport) ||
4252 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4253 PHM_PlatformCaps_OD6PlusinDCSupport)) {
4254
4255 PP_ASSERT_WITH_CODE(
4256 (golden_dpm_table->mclk_table.dpm_levels
4257 [golden_dpm_table->mclk_table.count-1].value != 0),
4258 "Divide by 0!",
4259 return -1);
4260 dpm_count = dpm_table->mclk_table.count < 2 ?
4261 0 : dpm_table->mclk_table.count - 2;
4262 for (i = dpm_count; i > 1; i--) {
4263 if (mclk > golden_dpm_table->mclk_table.dpm_levels
4264 [golden_dpm_table->mclk_table.count-1].value) {
4265 clock_percent = ((mclk -
4266 golden_dpm_table->mclk_table.dpm_levels
4267 [golden_dpm_table->mclk_table.count-1].value) * 100) /
4268 golden_dpm_table->mclk_table.dpm_levels
4269 [golden_dpm_table->mclk_table.count-1].value;
4270
4271 dpm_table->mclk_table.dpm_levels[i].value =
4272 golden_dpm_table->mclk_table.dpm_levels[i].value +
4273 (golden_dpm_table->mclk_table.dpm_levels[i].value *
4274 clock_percent) / 100;
4275
4276 } else if (golden_dpm_table->mclk_table.dpm_levels
4277 [dpm_table->mclk_table.count-1].value > mclk) {
4278 clock_percent = ((golden_dpm_table->mclk_table.dpm_levels
4279 [golden_dpm_table->mclk_table.count-1].value - mclk) * 100) /
4280 golden_dpm_table->mclk_table.dpm_levels
4281 [golden_dpm_table->mclk_table.count-1].value;
4282
4283 dpm_table->mclk_table.dpm_levels[i].value =
4284 golden_dpm_table->mclk_table.dpm_levels[i].value -
4285 (golden_dpm_table->mclk_table.dpm_levels[i].value *
4286 clock_percent) / 100;
4287 } else
4288 dpm_table->mclk_table.dpm_levels[i].value =
4289 golden_dpm_table->mclk_table.dpm_levels[i].value;
4290 }
4291 }
4292 }
4293
4294 if (data->need_update_smu7_dpm_table &
4295 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
4296 result = fiji_populate_all_memory_levels(hwmgr);
4297 PP_ASSERT_WITH_CODE((0 == result),
4298 "Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
4299 return result);
4300 }
4301
4302 if (data->need_update_smu7_dpm_table &
4303 (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
4304 /*populate MCLK dpm table to SMU7 */
4305 result = fiji_populate_all_memory_levels(hwmgr);
4306 PP_ASSERT_WITH_CODE((0 == result),
4307 "Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
4308 return result);
4309 }
4310
4311 return result;
4312}
4313
4314static int fiji_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
4315 struct fiji_single_dpm_table * dpm_table,
4316 uint32_t low_limit, uint32_t high_limit)
4317{
4318 uint32_t i;
4319
4320 for (i = 0; i < dpm_table->count; i++) {
4321 if ((dpm_table->dpm_levels[i].value < low_limit) ||
4322 (dpm_table->dpm_levels[i].value > high_limit))
4323 dpm_table->dpm_levels[i].enabled = false;
4324 else
4325 dpm_table->dpm_levels[i].enabled = true;
4326 }
4327 return 0;
4328}
4329
4330static int fiji_trim_dpm_states(struct pp_hwmgr *hwmgr,
4331 const struct fiji_power_state *fiji_ps)
4332{
4333 int result = 0;
4334 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4335 uint32_t high_limit_count;
4336
4337 PP_ASSERT_WITH_CODE((fiji_ps->performance_level_count >= 1),
4338 "power state did not have any performance level",
4339 return -1);
4340
4341 high_limit_count = (1 == fiji_ps->performance_level_count) ? 0 : 1;
4342
4343 fiji_trim_single_dpm_states(hwmgr,
4344 &(data->dpm_table.sclk_table),
4345 fiji_ps->performance_levels[0].engine_clock,
4346 fiji_ps->performance_levels[high_limit_count].engine_clock);
4347
4348 fiji_trim_single_dpm_states(hwmgr,
4349 &(data->dpm_table.mclk_table),
4350 fiji_ps->performance_levels[0].memory_clock,
4351 fiji_ps->performance_levels[high_limit_count].memory_clock);
4352
4353 return result;
4354}
4355
4356static int fiji_generate_dpm_level_enable_mask(
4357 struct pp_hwmgr *hwmgr, const void *input)
4358{
4359 int result;
4360 const struct phm_set_power_state_input *states =
4361 (const struct phm_set_power_state_input *)input;
4362 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4363 const struct fiji_power_state *fiji_ps =
4364 cast_const_phw_fiji_power_state(states->pnew_state);
4365
4366 result = fiji_trim_dpm_states(hwmgr, fiji_ps);
4367 if (result)
4368 return result;
4369
4370 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
4371 fiji_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
4372 data->dpm_level_enable_mask.mclk_dpm_enable_mask =
4373 fiji_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
4374 data->last_mclk_dpm_enable_mask =
4375 data->dpm_level_enable_mask.mclk_dpm_enable_mask;
4376
4377 if (data->uvd_enabled) {
4378 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask & 1)
4379 data->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE;
4380 }
4381
4382 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
4383 fiji_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
4384
4385 return 0;
4386}
4387
4388static int fiji_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
4389{
4390 return smum_send_msg_to_smc(hwmgr->smumgr, enable?
4391 PPSMC_MSG_VCEDPM_Enable :
4392 PPSMC_MSG_VCEDPM_Disable);
4393}
4394
4395static int fiji_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input)
4396{
4397 const struct phm_set_power_state_input *states =
4398 (const struct phm_set_power_state_input *)input;
4399 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4400 const struct fiji_power_state *fiji_nps =
4401 cast_const_phw_fiji_power_state(states->pnew_state);
4402 const struct fiji_power_state *fiji_cps =
4403 cast_const_phw_fiji_power_state(states->pcurrent_state);
4404
4405 uint32_t mm_boot_level_offset, mm_boot_level_value;
4406 struct phm_ppt_v1_information *table_info =
4407 (struct phm_ppt_v1_information *)(hwmgr->pptable);
4408
4409 if (fiji_nps->vce_clks.evclk >0 &&
4410 (fiji_cps == NULL || fiji_cps->vce_clks.evclk == 0)) {
4411 data->smc_state_table.VceBootLevel =
4412 (uint8_t) (table_info->mm_dep_table->count - 1);
4413
4414 mm_boot_level_offset = data->dpm_table_start +
4415 offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
4416 mm_boot_level_offset /= 4;
4417 mm_boot_level_offset *= 4;
4418 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4419 CGS_IND_REG__SMC, mm_boot_level_offset);
4420 mm_boot_level_value &= 0xFF00FFFF;
4421 mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16;
4422 cgs_write_ind_register(hwmgr->device,
4423 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4424
4425 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4426 PHM_PlatformCaps_StablePState)) {
4427 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4428 PPSMC_MSG_VCEDPM_SetEnabledMask,
4429 (uint32_t)1 << data->smc_state_table.VceBootLevel);
4430
4431 fiji_enable_disable_vce_dpm(hwmgr, true);
4432 } else if (fiji_nps->vce_clks.evclk == 0 &&
4433 fiji_cps != NULL &&
4434 fiji_cps->vce_clks.evclk > 0)
4435 fiji_enable_disable_vce_dpm(hwmgr, false);
4436 }
4437
4438 return 0;
4439}
4440
4441static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr)
4442{
4443 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4444
4445 int result = 0;
4446 uint32_t low_sclk_interrupt_threshold = 0;
4447
4448 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4449 PHM_PlatformCaps_SclkThrottleLowNotification)
4450 && (hwmgr->gfx_arbiter.sclk_threshold !=
4451 data->low_sclk_interrupt_threshold)) {
4452 data->low_sclk_interrupt_threshold =
4453 hwmgr->gfx_arbiter.sclk_threshold;
4454 low_sclk_interrupt_threshold =
4455 data->low_sclk_interrupt_threshold;
4456
4457 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
4458
4459 result = fiji_copy_bytes_to_smc(
4460 hwmgr->smumgr,
4461 data->dpm_table_start +
4462 offsetof(SMU73_Discrete_DpmTable,
4463 LowSclkInterruptThreshold),
4464 (uint8_t *)&low_sclk_interrupt_threshold,
4465 sizeof(uint32_t),
4466 data->sram_end);
4467 }
4468
4469 return result;
4470}
4471
4472static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
4473{
4474 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4475
4476 if (data->need_update_smu7_dpm_table &
4477 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
4478 return fiji_program_memory_timing_parameters(hwmgr);
4479
4480 return 0;
4481}
4482
4483static int fiji_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4484{
4485 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4486
4487 if (0 == data->need_update_smu7_dpm_table)
4488 return 0;
4489
4490 if ((0 == data->sclk_dpm_key_disabled) &&
4491 (data->need_update_smu7_dpm_table &
4492 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
4493
4494 PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
4495 "Trying to Unfreeze SCLK DPM when DPM is disabled",);
4496 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4497 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
4498 "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
4499 return -1);
4500 }
4501
4502 if ((0 == data->mclk_dpm_key_disabled) &&
4503 (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
4504
4505 PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
4506 "Trying to Unfreeze MCLK DPM when DPM is disabled",);
4507 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4508 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
4509 "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
4510 return -1);
4511 }
4512
4513 data->need_update_smu7_dpm_table = 0;
4514
4515 return 0;
4516}
4517
4518/* Look up the voltaged based on DAL's requested level.
4519 * and then send the requested VDDC voltage to SMC
4520 */
4521static void fiji_apply_dal_minimum_voltage_request(struct pp_hwmgr *hwmgr)
4522{
4523 return;
4524}
4525
4526int fiji_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
4527{
4528 int result;
4529 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4530
4531 /* Apply minimum voltage based on DAL's request level */
4532 fiji_apply_dal_minimum_voltage_request(hwmgr);
4533
4534 if (0 == data->sclk_dpm_key_disabled) {
4535 /* Checking if DPM is running. If we discover hang because of this,
4536 * we should skip this message.
4537 */
4538 if (!fiji_is_dpm_running(hwmgr))
4539 printk(KERN_ERR "[ powerplay ] "
4540 "Trying to set Enable Mask when DPM is disabled \n");
4541
4542 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
4543 result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4544 PPSMC_MSG_SCLKDPM_SetEnabledMask,
4545 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
4546 PP_ASSERT_WITH_CODE((0 == result),
4547 "Set Sclk Dpm enable Mask failed", return -1);
4548 }
4549 }
4550
4551 if (0 == data->mclk_dpm_key_disabled) {
4552 /* Checking if DPM is running. If we discover hang because of this,
4553 * we should skip this message.
4554 */
4555 if (!fiji_is_dpm_running(hwmgr))
4556 printk(KERN_ERR "[ powerplay ]"
4557 " Trying to set Enable Mask when DPM is disabled \n");
4558
4559 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
4560 result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4561 PPSMC_MSG_MCLKDPM_SetEnabledMask,
4562 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
4563 PP_ASSERT_WITH_CODE((0 == result),
4564 "Set Mclk Dpm enable Mask failed", return -1);
4565 }
4566 }
4567
4568 return 0;
4569}
4570
4571static int fiji_notify_link_speed_change_after_state_change(
4572 struct pp_hwmgr *hwmgr, const void *input)
4573{
4574 const struct phm_set_power_state_input *states =
4575 (const struct phm_set_power_state_input *)input;
4576 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4577 const struct fiji_power_state *fiji_ps =
4578 cast_const_phw_fiji_power_state(states->pnew_state);
4579 uint16_t target_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_ps);
4580 uint8_t request;
4581
4582 if (data->pspp_notify_required) {
4583 if (target_link_speed == PP_PCIEGen3)
4584 request = PCIE_PERF_REQ_GEN3;
4585 else if (target_link_speed == PP_PCIEGen2)
4586 request = PCIE_PERF_REQ_GEN2;
4587 else
4588 request = PCIE_PERF_REQ_GEN1;
4589
4590 if(request == PCIE_PERF_REQ_GEN1 &&
4591 fiji_get_current_pcie_speed(hwmgr) > 0)
4592 return 0;
4593
4594 if (acpi_pcie_perf_request(hwmgr->device, request, false)) {
4595 if (PP_PCIEGen2 == target_link_speed)
4596 printk("PSPP request to switch to Gen2 from Gen3 Failed!");
4597 else
4598 printk("PSPP request to switch to Gen1 from Gen2 Failed!");
4599 }
4600 }
4601
4602 return 0;
4603}
4604
4605static int fiji_set_power_state_tasks(struct pp_hwmgr *hwmgr,
4606 const void *input)
4607{
4608 int tmp_result, result = 0;
4609
4610 tmp_result = fiji_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
4611 PP_ASSERT_WITH_CODE((0 == tmp_result),
4612 "Failed to find DPM states clocks in DPM table!",
4613 result = tmp_result);
4614
4615 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4616 PHM_PlatformCaps_PCIEPerformanceRequest)) {
4617 tmp_result =
4618 fiji_request_link_speed_change_before_state_change(hwmgr, input);
4619 PP_ASSERT_WITH_CODE((0 == tmp_result),
4620 "Failed to request link speed change before state change!",
4621 result = tmp_result);
4622 }
4623
4624 tmp_result = fiji_freeze_sclk_mclk_dpm(hwmgr);
4625 PP_ASSERT_WITH_CODE((0 == tmp_result),
4626 "Failed to freeze SCLK MCLK DPM!", result = tmp_result);
4627
4628 tmp_result = fiji_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
4629 PP_ASSERT_WITH_CODE((0 == tmp_result),
4630 "Failed to populate and upload SCLK MCLK DPM levels!",
4631 result = tmp_result);
4632
4633 tmp_result = fiji_generate_dpm_level_enable_mask(hwmgr, input);
4634 PP_ASSERT_WITH_CODE((0 == tmp_result),
4635 "Failed to generate DPM level enabled mask!",
4636 result = tmp_result);
4637
4638 tmp_result = fiji_update_vce_dpm(hwmgr, input);
4639 PP_ASSERT_WITH_CODE((0 == tmp_result),
4640 "Failed to update VCE DPM!",
4641 result = tmp_result);
4642
4643 tmp_result = fiji_update_sclk_threshold(hwmgr);
4644 PP_ASSERT_WITH_CODE((0 == tmp_result),
4645 "Failed to update SCLK threshold!",
4646 result = tmp_result);
4647
4648 tmp_result = fiji_program_mem_timing_parameters(hwmgr);
4649 PP_ASSERT_WITH_CODE((0 == tmp_result),
4650 "Failed to program memory timing parameters!",
4651 result = tmp_result);
4652
4653 tmp_result = fiji_unfreeze_sclk_mclk_dpm(hwmgr);
4654 PP_ASSERT_WITH_CODE((0 == tmp_result),
4655 "Failed to unfreeze SCLK MCLK DPM!",
4656 result = tmp_result);
4657
4658 tmp_result = fiji_upload_dpm_level_enable_mask(hwmgr);
4659 PP_ASSERT_WITH_CODE((0 == tmp_result),
4660 "Failed to upload DPM level enabled mask!",
4661 result = tmp_result);
4662
4663 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4664 PHM_PlatformCaps_PCIEPerformanceRequest)) {
4665 tmp_result =
4666 fiji_notify_link_speed_change_after_state_change(hwmgr, input);
4667 PP_ASSERT_WITH_CODE((0 == tmp_result),
4668 "Failed to notify link speed change after state change!",
4669 result = tmp_result);
4670 }
4671
4672 return result;
4673}
4674
4675static int fiji_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
4676{
4677 struct pp_power_state *ps;
4678 struct fiji_power_state *fiji_ps;
4679
4680 if (hwmgr == NULL)
4681 return -EINVAL;
4682
4683 ps = hwmgr->request_ps;
4684
4685 if (ps == NULL)
4686 return -EINVAL;
4687
4688 fiji_ps = cast_phw_fiji_power_state(&ps->hardware);
4689
4690 if (low)
4691 return fiji_ps->performance_levels[0].engine_clock;
4692 else
4693 return fiji_ps->performance_levels
4694 [fiji_ps->performance_level_count-1].engine_clock;
4695}
4696
4697static int fiji_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
4698{
4699 struct pp_power_state *ps;
4700 struct fiji_power_state *fiji_ps;
4701
4702 if (hwmgr == NULL)
4703 return -EINVAL;
4704
4705 ps = hwmgr->request_ps;
4706
4707 if (ps == NULL)
4708 return -EINVAL;
4709
4710 fiji_ps = cast_phw_fiji_power_state(&ps->hardware);
4711
4712 if (low)
4713 return fiji_ps->performance_levels[0].memory_clock;
4714 else
4715 return fiji_ps->performance_levels
4716 [fiji_ps->performance_level_count-1].memory_clock;
4717}
4718
4719static void fiji_print_current_perforce_level(
4720 struct pp_hwmgr *hwmgr, struct seq_file *m)
4721{
4722 uint32_t sclk, mclk;
4723
4724 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
4725
4726 sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
4727
4728 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
4729
4730 mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
4731 seq_printf(m, "\n [ mclk ]: %u MHz\n\n [ sclk ]: %u MHz\n",
4732 mclk / 100, sclk / 100);
4733}
4734
4735static const struct pp_hwmgr_func fiji_hwmgr_funcs = {
4736 .backend_init = &fiji_hwmgr_backend_init,
4737 .backend_fini = &tonga_hwmgr_backend_fini,
4738 .asic_setup = &fiji_setup_asic_task,
4739 .dynamic_state_management_enable = &fiji_enable_dpm_tasks,
4740 .force_dpm_level = &fiji_dpm_force_dpm_level,
4741 .get_num_of_pp_table_entries = &tonga_get_number_of_powerplay_table_entries,
4742 .get_power_state_size = &fiji_get_power_state_size,
4743 .get_pp_table_entry = &fiji_get_pp_table_entry,
4744 .patch_boot_state = &fiji_patch_boot_state,
4745 .apply_state_adjust_rules = &fiji_apply_state_adjust_rules,
4746 .power_state_set = &fiji_set_power_state_tasks,
4747 .get_sclk = &fiji_dpm_get_sclk,
4748 .get_mclk = &fiji_dpm_get_mclk,
4749 .print_current_perforce_level = &fiji_print_current_perforce_level,
4750};
4751
4752int fiji_hwmgr_init(struct pp_hwmgr *hwmgr)
4753{
4754 struct fiji_hwmgr *data;
4755 int ret = 0;
4756
4757 data = kzalloc(sizeof(struct fiji_hwmgr), GFP_KERNEL);
4758 if (data == NULL)
4759 return -ENOMEM;
4760
4761 hwmgr->backend = data;
4762 hwmgr->hwmgr_func = &fiji_hwmgr_funcs;
4763 hwmgr->pptable_func = &tonga_pptable_funcs;
4764 return ret;
4765}