Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | Madge Horizon ATM Adapter driver. |
| 3 | Copyright (C) 1995-1999 Madge Networks Ltd. |
| 4 | |
| 5 | This program is free software; you can redistribute it and/or modify |
| 6 | it under the terms of the GNU General Public License as published by |
| 7 | the Free Software Foundation; either version 2 of the License, or |
| 8 | (at your option) any later version. |
| 9 | |
| 10 | This program is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | GNU General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU General Public License |
| 16 | along with this program; if not, write to the Free Software |
| 17 | Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 18 | |
| 19 | The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian |
| 20 | system and in the file COPYING in the Linux kernel source. |
| 21 | */ |
| 22 | |
| 23 | /* |
| 24 | IMPORTANT NOTE: Madge Networks no longer makes the adapters |
| 25 | supported by this driver and makes no commitment to maintain it. |
| 26 | */ |
| 27 | |
| 28 | #include <linux/module.h> |
| 29 | #include <linux/kernel.h> |
| 30 | #include <linux/mm.h> |
| 31 | #include <linux/pci.h> |
| 32 | #include <linux/errno.h> |
| 33 | #include <linux/atm.h> |
| 34 | #include <linux/atmdev.h> |
| 35 | #include <linux/sonet.h> |
| 36 | #include <linux/skbuff.h> |
| 37 | #include <linux/time.h> |
| 38 | #include <linux/delay.h> |
| 39 | #include <linux/uio.h> |
| 40 | #include <linux/init.h> |
| 41 | #include <linux/ioport.h> |
| 42 | #include <linux/wait.h> |
| 43 | |
| 44 | #include <asm/system.h> |
| 45 | #include <asm/io.h> |
| 46 | #include <asm/atomic.h> |
| 47 | #include <asm/uaccess.h> |
| 48 | #include <asm/string.h> |
| 49 | #include <asm/byteorder.h> |
| 50 | |
| 51 | #include "horizon.h" |
| 52 | |
| 53 | #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>" |
| 54 | #define description_string "Madge ATM Horizon [Ultra] driver" |
| 55 | #define version_string "1.2.1" |
| 56 | |
| 57 | static inline void __init show_version (void) { |
| 58 | printk ("%s version %s\n", description_string, version_string); |
| 59 | } |
| 60 | |
| 61 | /* |
| 62 | |
| 63 | CREDITS |
| 64 | |
| 65 | Driver and documentation by: |
| 66 | |
| 67 | Chris Aston Madge Networks |
| 68 | Giuliano Procida Madge Networks |
| 69 | Simon Benham Madge Networks |
| 70 | Simon Johnson Madge Networks |
| 71 | Various Others Madge Networks |
| 72 | |
| 73 | Some inspiration taken from other drivers by: |
| 74 | |
| 75 | Alexandru Cucos UTBv |
| 76 | Kari Mettinen University of Helsinki |
| 77 | Werner Almesberger EPFL LRC |
| 78 | |
| 79 | Theory of Operation |
| 80 | |
| 81 | I Hardware, detection, initialisation and shutdown. |
| 82 | |
| 83 | 1. Supported Hardware |
| 84 | |
| 85 | This driver should handle all variants of the PCI Madge ATM adapters |
| 86 | with the Horizon chipset. These are all PCI cards supporting PIO, BM |
| 87 | DMA and a form of MMIO (registers only, not internal RAM). |
| 88 | |
| 89 | The driver is only known to work with SONET and UTP Horizon Ultra |
| 90 | cards at 155Mb/s. However, code is in place to deal with both the |
| 91 | original Horizon and 25Mb/s operation. |
| 92 | |
| 93 | There are two revisions of the Horizon ASIC: the original and the |
| 94 | Ultra. Details of hardware bugs are in section III. |
| 95 | |
| 96 | The ASIC version can be distinguished by chip markings but is NOT |
| 97 | indicated by the PCI revision (all adapters seem to have PCI rev 1). |
| 98 | |
| 99 | I believe that: |
| 100 | |
| 101 | Horizon => Collage 25 PCI Adapter (UTP and STP) |
| 102 | Horizon Ultra => Collage 155 PCI Client (UTP or SONET) |
| 103 | Ambassador x => Collage 155 PCI Server (completely different) |
| 104 | |
| 105 | Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to |
| 106 | have a Madge B154 plus glue logic serializer. I have also found a |
| 107 | really ancient version of this with slightly different glue. It |
| 108 | comes with the revision 0 (140-025-01) ASIC. |
| 109 | |
| 110 | Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink |
| 111 | output (UTP) or an HP HFBR 5205 output (SONET). It has either |
| 112 | Madge's SAMBA framer or a SUNI-lite device (early versions). It |
| 113 | comes with the revision 1 (140-027-01) ASIC. |
| 114 | |
| 115 | 2. Detection |
| 116 | |
| 117 | All Horizon-based cards present with the same PCI Vendor and Device |
| 118 | IDs. The standard Linux 2.2 PCI API is used to locate any cards and |
| 119 | to enable bus-mastering (with appropriate latency). |
| 120 | |
| 121 | ATM_LAYER_STATUS in the control register distinguishes between the |
| 122 | two possible physical layers (25 and 155). It is not clear whether |
| 123 | the 155 cards can also operate at 25Mbps. We rely on the fact that a |
| 124 | card operates at 155 if and only if it has the newer Horizon Ultra |
| 125 | ASIC. |
| 126 | |
| 127 | For 155 cards the two possible framers are probed for and then set |
| 128 | up for loop-timing. |
| 129 | |
| 130 | 3. Initialisation |
| 131 | |
| 132 | The card is reset and then put into a known state. The physical |
| 133 | layer is configured for normal operation at the appropriate speed; |
| 134 | in the case of the 155 cards, the framer is initialised with |
| 135 | line-based timing; the internal RAM is zeroed and the allocation of |
| 136 | buffers for RX and TX is made; the Burnt In Address is read and |
| 137 | copied to the ATM ESI; various policy settings for RX (VPI bits, |
| 138 | unknown VCs, oam cells) are made. Ideally all policy items should be |
| 139 | configurable at module load (if not actually on-demand), however, |
| 140 | only the vpi vs vci bit allocation can be specified at insmod. |
| 141 | |
| 142 | 4. Shutdown |
| 143 | |
| 144 | This is in response to module_cleaup. No VCs are in use and the card |
| 145 | should be idle; it is reset. |
| 146 | |
| 147 | II Driver software (as it should be) |
| 148 | |
| 149 | 0. Traffic Parameters |
| 150 | |
| 151 | The traffic classes (not an enumeration) are currently: ATM_NONE (no |
| 152 | traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS |
| 153 | (compatible with everything). Together with (perhaps only some of) |
| 154 | the following items they make up the traffic specification. |
| 155 | |
| 156 | struct atm_trafprm { |
| 157 | unsigned char traffic_class; traffic class (ATM_UBR, ...) |
| 158 | int max_pcr; maximum PCR in cells per second |
| 159 | int pcr; desired PCR in cells per second |
| 160 | int min_pcr; minimum PCR in cells per second |
| 161 | int max_cdv; maximum CDV in microseconds |
| 162 | int max_sdu; maximum SDU in bytes |
| 163 | }; |
| 164 | |
| 165 | Note that these denote bandwidth available not bandwidth used; the |
| 166 | possibilities according to ATMF are: |
| 167 | |
| 168 | Real Time (cdv and max CDT given) |
| 169 | |
| 170 | CBR(pcr) pcr bandwidth always available |
| 171 | rtVBR(pcr,scr,mbs) scr bandwidth always available, upto pcr at mbs too |
| 172 | |
| 173 | Non Real Time |
| 174 | |
| 175 | nrtVBR(pcr,scr,mbs) scr bandwidth always available, upto pcr at mbs too |
| 176 | UBR() |
| 177 | ABR(mcr,pcr) mcr bandwidth always available, upto pcr (depending) too |
| 178 | |
| 179 | mbs is max burst size (bucket) |
| 180 | pcr and scr have associated cdvt values |
| 181 | mcr is like scr but has no cdtv |
| 182 | cdtv may differ at each hop |
| 183 | |
| 184 | Some of the above items are qos items (as opposed to traffic |
| 185 | parameters). We have nothing to do with qos. All except ABR can have |
| 186 | their traffic parameters converted to GCRA parameters. The GCRA may |
| 187 | be implemented as a (real-number) leaky bucket. The GCRA can be used |
| 188 | in complicated ways by switches and in simpler ways by end-stations. |
| 189 | It can be used both to filter incoming cells and shape out-going |
| 190 | cells. |
| 191 | |
| 192 | ATM Linux actually supports: |
| 193 | |
| 194 | ATM_NONE() (no traffic in this direction) |
| 195 | ATM_UBR(max_frame_size) |
| 196 | ATM_CBR(max/min_pcr, max_cdv, max_frame_size) |
| 197 | |
| 198 | 0 or ATM_MAX_PCR are used to indicate maximum available PCR |
| 199 | |
| 200 | A traffic specification consists of the AAL type and separate |
| 201 | traffic specifications for either direction. In ATM Linux it is: |
| 202 | |
| 203 | struct atm_qos { |
| 204 | struct atm_trafprm txtp; |
| 205 | struct atm_trafprm rxtp; |
| 206 | unsigned char aal; |
| 207 | }; |
| 208 | |
| 209 | AAL types are: |
| 210 | |
| 211 | ATM_NO_AAL AAL not specified |
| 212 | ATM_AAL0 "raw" ATM cells |
| 213 | ATM_AAL1 AAL1 (CBR) |
| 214 | ATM_AAL2 AAL2 (VBR) |
| 215 | ATM_AAL34 AAL3/4 (data) |
| 216 | ATM_AAL5 AAL5 (data) |
| 217 | ATM_SAAL signaling AAL |
| 218 | |
| 219 | The Horizon has support for AAL frame types: 0, 3/4 and 5. However, |
| 220 | it does not implement AAL 3/4 SAR and it has a different notion of |
| 221 | "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are |
| 222 | supported by this driver. |
| 223 | |
| 224 | The Horizon has limited support for ABR (including UBR), VBR and |
| 225 | CBR. Each TX channel has a bucket (containing up to 31 cell units) |
| 226 | and two timers (PCR and SCR) associated with it that can be used to |
| 227 | govern cell emissions and host notification (in the case of ABR this |
| 228 | is presumably so that RM cells may be emitted at appropriate times). |
| 229 | The timers may either be disabled or may be set to any of 240 values |
| 230 | (determined by the clock crystal, a fixed (?) per-device divider, a |
| 231 | configurable divider and a configurable timer preload value). |
| 232 | |
| 233 | At the moment only UBR and CBR are supported by the driver. VBR will |
| 234 | be supported as soon as ATM for Linux supports it. ABR support is |
| 235 | very unlikely as RM cell handling is completely up to the driver. |
| 236 | |
| 237 | 1. TX (TX channel setup and TX transfer) |
| 238 | |
| 239 | The TX half of the driver owns the TX Horizon registers. The TX |
| 240 | component in the IRQ handler is the BM completion handler. This can |
| 241 | only be entered when tx_busy is true (enforced by hardware). The |
| 242 | other TX component can only be entered when tx_busy is false |
| 243 | (enforced by driver). So TX is single-threaded. |
| 244 | |
| 245 | Apart from a minor optimisation to not re-select the last channel, |
| 246 | the TX send component works as follows: |
| 247 | |
| 248 | Atomic test and set tx_busy until we succeed; we should implement |
| 249 | some sort of timeout so that tx_busy will never be stuck at true. |
| 250 | |
| 251 | If no TX channel is set up for this VC we wait for an idle one (if |
| 252 | necessary) and set it up. |
| 253 | |
| 254 | At this point we have a TX channel ready for use. We wait for enough |
| 255 | buffers to become available then start a TX transmit (set the TX |
| 256 | descriptor, schedule transfer, exit). |
| 257 | |
| 258 | The IRQ component handles TX completion (stats, free buffer, tx_busy |
| 259 | unset, exit). We also re-schedule further transfers for the same |
| 260 | frame if needed. |
| 261 | |
| 262 | TX setup in more detail: |
| 263 | |
| 264 | TX open is a nop, the relevant information is held in the hrz_vcc |
| 265 | (vcc->dev_data) structure and is "cached" on the card. |
| 266 | |
| 267 | TX close gets the TX lock and clears the channel from the "cache". |
| 268 | |
| 269 | 2. RX (Data Available and RX transfer) |
| 270 | |
| 271 | The RX half of the driver owns the RX registers. There are two RX |
| 272 | components in the IRQ handler: the data available handler deals with |
| 273 | fresh data that has arrived on the card, the BM completion handler |
| 274 | is very similar to the TX completion handler. The data available |
| 275 | handler grabs the rx_lock and it is only released once the data has |
| 276 | been discarded or completely transferred to the host. The BM |
| 277 | completion handler only runs when the lock is held; the data |
| 278 | available handler is locked out over the same period. |
| 279 | |
| 280 | Data available on the card triggers an interrupt. If the data is not |
| 281 | suitable for our existing RX channels or we cannot allocate a buffer |
| 282 | it is flushed. Otherwise an RX receive is scheduled. Multiple RX |
| 283 | transfers may be scheduled for the same frame. |
| 284 | |
| 285 | RX setup in more detail: |
| 286 | |
| 287 | RX open... |
| 288 | RX close... |
| 289 | |
| 290 | III Hardware Bugs |
| 291 | |
| 292 | 0. Byte vs Word addressing of adapter RAM. |
| 293 | |
| 294 | A design feature; see the .h file (especially the memory map). |
| 295 | |
| 296 | 1. Bus Master Data Transfers (original Horizon only, fixed in Ultra) |
| 297 | |
| 298 | The host must not start a transmit direction transfer at a |
| 299 | non-four-byte boundary in host memory. Instead the host should |
| 300 | perform a byte, or a two byte, or one byte followed by two byte |
| 301 | transfer in order to start the rest of the transfer on a four byte |
| 302 | boundary. RX is OK. |
| 303 | |
| 304 | Simultaneous transmit and receive direction bus master transfers are |
| 305 | not allowed. |
| 306 | |
| 307 | The simplest solution to these two is to always do PIO (never DMA) |
| 308 | in the TX direction on the original Horizon. More complicated |
| 309 | solutions are likely to hurt my brain. |
| 310 | |
| 311 | 2. Loss of buffer on close VC |
| 312 | |
| 313 | When a VC is being closed, the buffer associated with it is not |
| 314 | returned to the pool. The host must store the reference to this |
| 315 | buffer and when opening a new VC then give it to that new VC. |
| 316 | |
| 317 | The host intervention currently consists of stacking such a buffer |
| 318 | pointer at VC close and checking the stack at VC open. |
| 319 | |
| 320 | 3. Failure to close a VC |
| 321 | |
| 322 | If a VC is currently receiving a frame then closing the VC may fail |
| 323 | and the frame continues to be received. |
| 324 | |
| 325 | The solution is to make sure any received frames are flushed when |
| 326 | ready. This is currently done just before the solution to 2. |
| 327 | |
| 328 | 4. PCI bus (original Horizon only, fixed in Ultra) |
| 329 | |
| 330 | Reading from the data port prior to initialisation will hang the PCI |
| 331 | bus. Just don't do that then! We don't. |
| 332 | |
| 333 | IV To Do List |
| 334 | |
| 335 | . Timer code may be broken. |
| 336 | |
| 337 | . Allow users to specify buffer allocation split for TX and RX. |
| 338 | |
| 339 | . Deal once and for all with buggy VC close. |
| 340 | |
| 341 | . Handle interrupted and/or non-blocking operations. |
| 342 | |
| 343 | . Change some macros to functions and move from .h to .c. |
| 344 | |
| 345 | . Try to limit the number of TX frames each VC may have queued, in |
| 346 | order to reduce the chances of TX buffer exhaustion. |
| 347 | |
| 348 | . Implement VBR (bucket and timers not understood) and ABR (need to |
| 349 | do RM cells manually); also no Linux support for either. |
| 350 | |
| 351 | . Implement QoS changes on open VCs (involves extracting parts of VC open |
| 352 | and close into separate functions and using them to make changes). |
| 353 | |
| 354 | */ |
| 355 | |
| 356 | /********** globals **********/ |
| 357 | |
| 358 | static void do_housekeeping (unsigned long arg); |
| 359 | |
| 360 | static unsigned short debug = 0; |
| 361 | static unsigned short vpi_bits = 0; |
| 362 | static int max_tx_size = 9000; |
| 363 | static int max_rx_size = 9000; |
| 364 | static unsigned char pci_lat = 0; |
| 365 | |
| 366 | /********** access functions **********/ |
| 367 | |
| 368 | /* Read / Write Horizon registers */ |
| 369 | static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) { |
| 370 | outl (cpu_to_le32 (data), dev->iobase + reg); |
| 371 | } |
| 372 | |
| 373 | static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) { |
| 374 | return le32_to_cpu (inl (dev->iobase + reg)); |
| 375 | } |
| 376 | |
| 377 | static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) { |
| 378 | outw (cpu_to_le16 (data), dev->iobase + reg); |
| 379 | } |
| 380 | |
| 381 | static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) { |
| 382 | return le16_to_cpu (inw (dev->iobase + reg)); |
| 383 | } |
| 384 | |
| 385 | static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) { |
| 386 | outsb (dev->iobase + reg, addr, len); |
| 387 | } |
| 388 | |
| 389 | static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) { |
| 390 | insb (dev->iobase + reg, addr, len); |
| 391 | } |
| 392 | |
| 393 | /* Read / Write to a given address in Horizon buffer memory. |
| 394 | Interrupts must be disabled between the address register and data |
| 395 | port accesses as these must form an atomic operation. */ |
| 396 | static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) { |
| 397 | // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr); |
| 398 | wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW)); |
| 399 | wr_regl (dev, MEMORY_PORT_OFF, data); |
| 400 | } |
| 401 | |
| 402 | static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) { |
| 403 | // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr); |
| 404 | wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW)); |
| 405 | return rd_regl (dev, MEMORY_PORT_OFF); |
| 406 | } |
| 407 | |
| 408 | static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) { |
| 409 | wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000); |
| 410 | wr_regl (dev, MEMORY_PORT_OFF, data); |
| 411 | } |
| 412 | |
| 413 | static inline u32 rd_framer (const hrz_dev * dev, u32 addr) { |
| 414 | wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000); |
| 415 | return rd_regl (dev, MEMORY_PORT_OFF); |
| 416 | } |
| 417 | |
| 418 | /********** specialised access functions **********/ |
| 419 | |
| 420 | /* RX */ |
| 421 | |
| 422 | static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) { |
| 423 | wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel); |
| 424 | return; |
| 425 | } |
| 426 | |
| 427 | static inline void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) { |
| 428 | while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL) |
| 429 | ; |
| 430 | return; |
| 431 | } |
| 432 | |
| 433 | static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) { |
| 434 | wr_regw (dev, RX_CHANNEL_PORT_OFF, channel); |
| 435 | return; |
| 436 | } |
| 437 | |
| 438 | static inline void WAIT_UPDATE_COMPLETE (hrz_dev * dev) { |
| 439 | while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS) |
| 440 | ; |
| 441 | return; |
| 442 | } |
| 443 | |
| 444 | /* TX */ |
| 445 | |
| 446 | static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) { |
| 447 | wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel); |
| 448 | return; |
| 449 | } |
| 450 | |
| 451 | /* Update or query one configuration parameter of a particular channel. */ |
| 452 | |
| 453 | static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) { |
| 454 | wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF, |
| 455 | chan * TX_CHANNEL_CONFIG_MULT | mode); |
| 456 | wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value); |
| 457 | return; |
| 458 | } |
| 459 | |
| 460 | static inline u16 query_tx_channel_config (hrz_dev * dev, short chan, u8 mode) { |
| 461 | wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF, |
| 462 | chan * TX_CHANNEL_CONFIG_MULT | mode); |
| 463 | return rd_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF); |
| 464 | } |
| 465 | |
| 466 | /********** dump functions **********/ |
| 467 | |
| 468 | static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) { |
| 469 | #ifdef DEBUG_HORIZON |
| 470 | unsigned int i; |
| 471 | unsigned char * data = skb->data; |
| 472 | PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc); |
| 473 | for (i=0; i<skb->len && i < 256;i++) |
| 474 | PRINTDM (DBG_DATA, "%02x ", data[i]); |
| 475 | PRINTDE (DBG_DATA,""); |
| 476 | #else |
| 477 | (void) prefix; |
| 478 | (void) vc; |
| 479 | (void) skb; |
| 480 | #endif |
| 481 | return; |
| 482 | } |
| 483 | |
| 484 | static inline void dump_regs (hrz_dev * dev) { |
| 485 | #ifdef DEBUG_HORIZON |
| 486 | PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG)); |
| 487 | PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF)); |
| 488 | PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF)); |
| 489 | PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF)); |
| 490 | PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF)); |
| 491 | PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF)); |
| 492 | #else |
| 493 | (void) dev; |
| 494 | #endif |
| 495 | return; |
| 496 | } |
| 497 | |
| 498 | static inline void dump_framer (hrz_dev * dev) { |
| 499 | #ifdef DEBUG_HORIZON |
| 500 | unsigned int i; |
| 501 | PRINTDB (DBG_REGS, "framer registers:"); |
| 502 | for (i = 0; i < 0x10; ++i) |
| 503 | PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i)); |
| 504 | PRINTDE (DBG_REGS,""); |
| 505 | #else |
| 506 | (void) dev; |
| 507 | #endif |
| 508 | return; |
| 509 | } |
| 510 | |
| 511 | /********** VPI/VCI <-> (RX) channel conversions **********/ |
| 512 | |
| 513 | /* RX channels are 10 bit integers, these fns are quite paranoid */ |
| 514 | |
| 515 | static inline int channel_to_vpivci (const u16 channel, short * vpi, int * vci) { |
| 516 | unsigned short vci_bits = 10 - vpi_bits; |
| 517 | if ((channel & RX_CHANNEL_MASK) == channel) { |
| 518 | *vci = channel & ((~0)<<vci_bits); |
| 519 | *vpi = channel >> vci_bits; |
| 520 | return channel ? 0 : -EINVAL; |
| 521 | } |
| 522 | return -EINVAL; |
| 523 | } |
| 524 | |
| 525 | static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) { |
| 526 | unsigned short vci_bits = 10 - vpi_bits; |
| 527 | if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) { |
| 528 | *channel = vpi<<vci_bits | vci; |
| 529 | return *channel ? 0 : -EINVAL; |
| 530 | } |
| 531 | return -EINVAL; |
| 532 | } |
| 533 | |
| 534 | /********** decode RX queue entries **********/ |
| 535 | |
| 536 | static inline u16 rx_q_entry_to_length (u32 x) { |
| 537 | return x & RX_Q_ENTRY_LENGTH_MASK; |
| 538 | } |
| 539 | |
| 540 | static inline u16 rx_q_entry_to_rx_channel (u32 x) { |
| 541 | return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK; |
| 542 | } |
| 543 | |
| 544 | /* Cell Transmit Rate Values |
| 545 | * |
| 546 | * the cell transmit rate (cells per sec) can be set to a variety of |
| 547 | * different values by specifying two parameters: a timer preload from |
| 548 | * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of |
| 549 | * an exponent from 0 to 14; the special value 15 disables the timer). |
| 550 | * |
| 551 | * cellrate = baserate / (preload * 2^divider) |
| 552 | * |
| 553 | * The maximum cell rate that can be specified is therefore just the |
| 554 | * base rate. Halving the preload is equivalent to adding 1 to the |
| 555 | * divider and so values 1 to 8 of the preload are redundant except |
| 556 | * in the case of a maximal divider (14). |
| 557 | * |
| 558 | * Given a desired cell rate, an algorithm to determine the preload |
| 559 | * and divider is: |
| 560 | * |
| 561 | * a) x = baserate / cellrate, want p * 2^d = x (as far as possible) |
| 562 | * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done |
| 563 | * if x <= 16 then set p = x, d = 0 (high rates), done |
| 564 | * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to |
| 565 | * know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until |
| 566 | * we find the range (n will be between 1 and 14), set d = n |
| 567 | * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n |
| 568 | * |
| 569 | * The algorithm used below is a minor variant of the above. |
| 570 | * |
| 571 | * The base rate is derived from the oscillator frequency (Hz) using a |
| 572 | * fixed divider: |
| 573 | * |
| 574 | * baserate = freq / 32 in the case of some Unknown Card |
| 575 | * baserate = freq / 8 in the case of the Horizon 25 |
| 576 | * baserate = freq / 8 in the case of the Horizon Ultra 155 |
| 577 | * |
| 578 | * The Horizon cards have oscillators and base rates as follows: |
| 579 | * |
| 580 | * Card Oscillator Base Rate |
| 581 | * Unknown Card 33 MHz 1.03125 MHz (33 MHz = PCI freq) |
| 582 | * Horizon 25 32 MHz 4 MHz |
| 583 | * Horizon Ultra 155 40 MHz 5 MHz |
| 584 | * |
| 585 | * The following defines give the base rates in Hz. These were |
| 586 | * previously a factor of 100 larger, no doubt someone was using |
| 587 | * cps*100. |
| 588 | */ |
| 589 | |
| 590 | #define BR_UKN 1031250l |
| 591 | #define BR_HRZ 4000000l |
| 592 | #define BR_ULT 5000000l |
| 593 | |
| 594 | // d is an exponent |
| 595 | #define CR_MIND 0 |
| 596 | #define CR_MAXD 14 |
| 597 | |
| 598 | // p ranges from 1 to a power of 2 |
| 599 | #define CR_MAXPEXP 4 |
| 600 | |
| 601 | static int make_rate (const hrz_dev * dev, u32 c, rounding r, |
| 602 | u16 * bits, unsigned int * actual) |
| 603 | { |
| 604 | // note: rounding the rate down means rounding 'p' up |
| 605 | const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ; |
| 606 | |
| 607 | u32 div = CR_MIND; |
| 608 | u32 pre; |
| 609 | |
| 610 | // br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in |
| 611 | // the tests below. We could think harder about exact possibilities |
| 612 | // of failure... |
| 613 | |
| 614 | unsigned long br_man = br; |
| 615 | unsigned int br_exp = 0; |
| 616 | |
| 617 | PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c, |
| 618 | r == round_up ? "up" : r == round_down ? "down" : "nearest"); |
| 619 | |
| 620 | // avoid div by zero |
| 621 | if (!c) { |
| 622 | PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!"); |
| 623 | return -EINVAL; |
| 624 | } |
| 625 | |
| 626 | while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) { |
| 627 | br_man = br_man >> 1; |
| 628 | ++br_exp; |
| 629 | } |
| 630 | // (br >>br_exp) <<br_exp == br and |
| 631 | // br_exp <= CR_MAXPEXP+CR_MIND |
| 632 | |
| 633 | if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) { |
| 634 | // Equivalent to: B <= (c << (MAXPEXP+MIND)) |
| 635 | // take care of rounding |
| 636 | switch (r) { |
| 637 | case round_down: |
| 638 | pre = (br+(c<<div)-1)/(c<<div); |
| 639 | // but p must be non-zero |
| 640 | if (!pre) |
| 641 | pre = 1; |
| 642 | break; |
| 643 | case round_nearest: |
| 644 | pre = (br+(c<<div)/2)/(c<<div); |
| 645 | // but p must be non-zero |
| 646 | if (!pre) |
| 647 | pre = 1; |
| 648 | break; |
| 649 | default: /* round_up */ |
| 650 | pre = br/(c<<div); |
| 651 | // but p must be non-zero |
| 652 | if (!pre) |
| 653 | return -EINVAL; |
| 654 | } |
| 655 | PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div); |
| 656 | goto got_it; |
| 657 | } |
| 658 | |
| 659 | // at this point we have |
| 660 | // d == MIND and (c << (MAXPEXP+MIND)) < B |
| 661 | while (div < CR_MAXD) { |
| 662 | div++; |
| 663 | if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) { |
| 664 | // Equivalent to: B <= (c << (MAXPEXP+d)) |
| 665 | // c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d) |
| 666 | // 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP |
| 667 | // MAXP/2 < B/c2^d <= MAXP |
| 668 | // take care of rounding |
| 669 | switch (r) { |
| 670 | case round_down: |
| 671 | pre = (br+(c<<div)-1)/(c<<div); |
| 672 | break; |
| 673 | case round_nearest: |
| 674 | pre = (br+(c<<div)/2)/(c<<div); |
| 675 | break; |
| 676 | default: /* round_up */ |
| 677 | pre = br/(c<<div); |
| 678 | } |
| 679 | PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div); |
| 680 | goto got_it; |
| 681 | } |
| 682 | } |
| 683 | // at this point we have |
| 684 | // d == MAXD and (c << (MAXPEXP+MAXD)) < B |
| 685 | // but we cannot go any higher |
| 686 | // take care of rounding |
| 687 | if (r == round_down) |
| 688 | return -EINVAL; |
| 689 | pre = 1 << CR_MAXPEXP; |
| 690 | PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div); |
| 691 | got_it: |
| 692 | // paranoia |
| 693 | if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) { |
| 694 | PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u", |
| 695 | div, pre); |
| 696 | return -EINVAL; |
| 697 | } else { |
| 698 | if (bits) |
| 699 | *bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1); |
| 700 | if (actual) { |
| 701 | *actual = (br + (pre<<div) - 1) / (pre<<div); |
| 702 | PRINTD (DBG_QOS, "actual rate: %u", *actual); |
| 703 | } |
| 704 | return 0; |
| 705 | } |
| 706 | } |
| 707 | |
| 708 | static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol, |
| 709 | u16 * bit_pattern, unsigned int * actual) { |
| 710 | unsigned int my_actual; |
| 711 | |
| 712 | PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u", |
| 713 | c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol); |
| 714 | |
| 715 | if (!actual) |
| 716 | // actual rate is not returned |
| 717 | actual = &my_actual; |
| 718 | |
| 719 | if (make_rate (dev, c, round_nearest, bit_pattern, actual)) |
| 720 | // should never happen as round_nearest always succeeds |
| 721 | return -1; |
| 722 | |
| 723 | if (c - tol <= *actual && *actual <= c + tol) |
| 724 | // within tolerance |
| 725 | return 0; |
| 726 | else |
| 727 | // intolerant, try rounding instead |
| 728 | return make_rate (dev, c, r, bit_pattern, actual); |
| 729 | } |
| 730 | |
| 731 | /********** Listen on a VC **********/ |
| 732 | |
| 733 | static int hrz_open_rx (hrz_dev * dev, u16 channel) { |
| 734 | // is there any guarantee that we don't get two simulataneous |
| 735 | // identical calls of this function from different processes? yes |
| 736 | // rate_lock |
| 737 | unsigned long flags; |
| 738 | u32 channel_type; // u16? |
| 739 | |
| 740 | u16 buf_ptr = RX_CHANNEL_IDLE; |
| 741 | |
| 742 | rx_ch_desc * rx_desc = &memmap->rx_descs[channel]; |
| 743 | |
| 744 | PRINTD (DBG_FLOW, "hrz_open_rx %x", channel); |
| 745 | |
| 746 | spin_lock_irqsave (&dev->mem_lock, flags); |
| 747 | channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK; |
| 748 | spin_unlock_irqrestore (&dev->mem_lock, flags); |
| 749 | |
| 750 | // very serious error, should never occur |
| 751 | if (channel_type != RX_CHANNEL_DISABLED) { |
| 752 | PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open"); |
| 753 | return -EBUSY; // clean up? |
| 754 | } |
| 755 | |
| 756 | // Give back spare buffer |
| 757 | if (dev->noof_spare_buffers) { |
| 758 | buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers]; |
| 759 | PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr); |
| 760 | // should never occur |
| 761 | if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) { |
| 762 | // but easy to recover from |
| 763 | PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE"); |
| 764 | buf_ptr = RX_CHANNEL_IDLE; |
| 765 | } |
| 766 | } else { |
| 767 | PRINTD (DBG_VCC, "using IDLE buffer pointer"); |
| 768 | } |
| 769 | |
| 770 | // Channel is currently disabled so change its status to idle |
| 771 | |
| 772 | // do we really need to save the flags again? |
| 773 | spin_lock_irqsave (&dev->mem_lock, flags); |
| 774 | |
| 775 | wr_mem (dev, &rx_desc->wr_buf_type, |
| 776 | buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME); |
| 777 | if (buf_ptr != RX_CHANNEL_IDLE) |
| 778 | wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr); |
| 779 | |
| 780 | spin_unlock_irqrestore (&dev->mem_lock, flags); |
| 781 | |
| 782 | // rxer->rate = make_rate (qos->peak_cells); |
| 783 | |
| 784 | PRINTD (DBG_FLOW, "hrz_open_rx ok"); |
| 785 | |
| 786 | return 0; |
| 787 | } |
| 788 | |
| 789 | #if 0 |
| 790 | /********** change vc rate for a given vc **********/ |
| 791 | |
| 792 | static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) { |
| 793 | rxer->rate = make_rate (qos->peak_cells); |
| 794 | } |
| 795 | #endif |
| 796 | |
| 797 | /********** free an skb (as per ATM device driver documentation) **********/ |
| 798 | |
| 799 | static inline void hrz_kfree_skb (struct sk_buff * skb) { |
| 800 | if (ATM_SKB(skb)->vcc->pop) { |
| 801 | ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb); |
| 802 | } else { |
| 803 | dev_kfree_skb_any (skb); |
| 804 | } |
| 805 | } |
| 806 | |
| 807 | /********** cancel listen on a VC **********/ |
| 808 | |
| 809 | static void hrz_close_rx (hrz_dev * dev, u16 vc) { |
| 810 | unsigned long flags; |
| 811 | |
| 812 | u32 value; |
| 813 | |
| 814 | u32 r1, r2; |
| 815 | |
| 816 | rx_ch_desc * rx_desc = &memmap->rx_descs[vc]; |
| 817 | |
| 818 | int was_idle = 0; |
| 819 | |
| 820 | spin_lock_irqsave (&dev->mem_lock, flags); |
| 821 | value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK; |
| 822 | spin_unlock_irqrestore (&dev->mem_lock, flags); |
| 823 | |
| 824 | if (value == RX_CHANNEL_DISABLED) { |
| 825 | // I suppose this could happen once we deal with _NONE traffic properly |
| 826 | PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc); |
| 827 | return; |
| 828 | } |
| 829 | if (value == RX_CHANNEL_IDLE) |
| 830 | was_idle = 1; |
| 831 | |
| 832 | spin_lock_irqsave (&dev->mem_lock, flags); |
| 833 | |
| 834 | for (;;) { |
| 835 | wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED); |
| 836 | |
| 837 | if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED) |
| 838 | break; |
| 839 | |
| 840 | was_idle = 0; |
| 841 | } |
| 842 | |
| 843 | if (was_idle) { |
| 844 | spin_unlock_irqrestore (&dev->mem_lock, flags); |
| 845 | return; |
| 846 | } |
| 847 | |
| 848 | WAIT_FLUSH_RX_COMPLETE(dev); |
| 849 | |
| 850 | // XXX Is this all really necessary? We can rely on the rx_data_av |
| 851 | // handler to discard frames that remain queued for delivery. If the |
| 852 | // worry is that immediately reopening the channel (perhaps by a |
| 853 | // different process) may cause some data to be mis-delivered then |
| 854 | // there may still be a simpler solution (such as busy-waiting on |
| 855 | // rx_busy once the channel is disabled or before a new one is |
| 856 | // opened - does this leave any holes?). Arguably setting up and |
| 857 | // tearing down the TX and RX halves of each virtual circuit could |
| 858 | // most safely be done within ?x_busy protected regions. |
| 859 | |
| 860 | // OK, current changes are that Simon's marker is disabled and we DO |
| 861 | // look for NULL rxer elsewhere. The code here seems flush frames |
| 862 | // and then remember the last dead cell belonging to the channel |
| 863 | // just disabled - the cell gets relinked at the next vc_open. |
| 864 | // However, when all VCs are closed or only a few opened there are a |
| 865 | // handful of buffers that are unusable. |
| 866 | |
| 867 | // Does anyone feel like documenting spare_buffers properly? |
| 868 | // Does anyone feel like fixing this in a nicer way? |
| 869 | |
| 870 | // Flush any data which is left in the channel |
| 871 | for (;;) { |
| 872 | // Change the rx channel port to something different to the RX |
| 873 | // channel we are trying to close to force Horizon to flush the rx |
| 874 | // channel read and write pointers. |
| 875 | |
| 876 | u16 other = vc^(RX_CHANS/2); |
| 877 | |
| 878 | SELECT_RX_CHANNEL (dev, other); |
| 879 | WAIT_UPDATE_COMPLETE (dev); |
| 880 | |
| 881 | r1 = rd_mem (dev, &rx_desc->rd_buf_type); |
| 882 | |
| 883 | // Select this RX channel. Flush doesn't seem to work unless we |
| 884 | // select an RX channel before hand |
| 885 | |
| 886 | SELECT_RX_CHANNEL (dev, vc); |
| 887 | WAIT_UPDATE_COMPLETE (dev); |
| 888 | |
| 889 | // Attempt to flush a frame on this RX channel |
| 890 | |
| 891 | FLUSH_RX_CHANNEL (dev, vc); |
| 892 | WAIT_FLUSH_RX_COMPLETE (dev); |
| 893 | |
| 894 | // Force Horizon to flush rx channel read and write pointers as before |
| 895 | |
| 896 | SELECT_RX_CHANNEL (dev, other); |
| 897 | WAIT_UPDATE_COMPLETE (dev); |
| 898 | |
| 899 | r2 = rd_mem (dev, &rx_desc->rd_buf_type); |
| 900 | |
| 901 | PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2); |
| 902 | |
| 903 | if (r1 == r2) { |
| 904 | dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1; |
| 905 | break; |
| 906 | } |
| 907 | } |
| 908 | |
| 909 | #if 0 |
| 910 | { |
| 911 | rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)]; |
| 912 | rx_q_entry * rd_ptr = dev->rx_q_entry; |
| 913 | |
| 914 | PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr); |
| 915 | |
| 916 | while (rd_ptr != wr_ptr) { |
| 917 | u32 x = rd_mem (dev, (HDW *) rd_ptr); |
| 918 | |
| 919 | if (vc == rx_q_entry_to_rx_channel (x)) { |
| 920 | x |= SIMONS_DODGEY_MARKER; |
| 921 | |
| 922 | PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey"); |
| 923 | |
| 924 | wr_mem (dev, (HDW *) rd_ptr, x); |
| 925 | } |
| 926 | |
| 927 | if (rd_ptr == dev->rx_q_wrap) |
| 928 | rd_ptr = dev->rx_q_reset; |
| 929 | else |
| 930 | rd_ptr++; |
| 931 | } |
| 932 | } |
| 933 | #endif |
| 934 | |
| 935 | spin_unlock_irqrestore (&dev->mem_lock, flags); |
| 936 | |
| 937 | return; |
| 938 | } |
| 939 | |
| 940 | /********** schedule RX transfers **********/ |
| 941 | |
| 942 | // Note on tail recursion: a GCC developer said that it is not likely |
| 943 | // to be fixed soon, so do not define TAILRECUSRIONWORKS unless you |
| 944 | // are sure it does as you may otherwise overflow the kernel stack. |
| 945 | |
| 946 | // giving this fn a return value would help GCC, alledgedly |
| 947 | |
| 948 | static void rx_schedule (hrz_dev * dev, int irq) { |
| 949 | unsigned int rx_bytes; |
| 950 | |
| 951 | int pio_instead = 0; |
| 952 | #ifndef TAILRECURSIONWORKS |
| 953 | pio_instead = 1; |
| 954 | while (pio_instead) { |
| 955 | #endif |
| 956 | // bytes waiting for RX transfer |
| 957 | rx_bytes = dev->rx_bytes; |
| 958 | |
| 959 | #if 0 |
| 960 | spin_count = 0; |
| 961 | while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) { |
| 962 | PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!"); |
| 963 | if (++spin_count > 10) { |
| 964 | PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion"); |
| 965 | wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); |
| 966 | clear_bit (rx_busy, &dev->flags); |
| 967 | hrz_kfree_skb (dev->rx_skb); |
| 968 | return; |
| 969 | } |
| 970 | } |
| 971 | #endif |
| 972 | |
| 973 | // this code follows the TX code but (at the moment) there is only |
| 974 | // one region - the skb itself. I don't know if this will change, |
| 975 | // but it doesn't hurt to have the code here, disabled. |
| 976 | |
| 977 | if (rx_bytes) { |
| 978 | // start next transfer within same region |
| 979 | if (rx_bytes <= MAX_PIO_COUNT) { |
| 980 | PRINTD (DBG_RX|DBG_BUS, "(pio)"); |
| 981 | pio_instead = 1; |
| 982 | } |
| 983 | if (rx_bytes <= MAX_TRANSFER_COUNT) { |
| 984 | PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)"); |
| 985 | dev->rx_bytes = 0; |
| 986 | } else { |
| 987 | PRINTD (DBG_RX|DBG_BUS, "(continuing multi)"); |
| 988 | dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT; |
| 989 | rx_bytes = MAX_TRANSFER_COUNT; |
| 990 | } |
| 991 | } else { |
| 992 | // rx_bytes == 0 -- we're between regions |
| 993 | // regions remaining to transfer |
| 994 | #if 0 |
| 995 | unsigned int rx_regions = dev->rx_regions; |
| 996 | #else |
| 997 | unsigned int rx_regions = 0; |
| 998 | #endif |
| 999 | |
| 1000 | if (rx_regions) { |
| 1001 | #if 0 |
| 1002 | // start a new region |
| 1003 | dev->rx_addr = dev->rx_iovec->iov_base; |
| 1004 | rx_bytes = dev->rx_iovec->iov_len; |
| 1005 | ++dev->rx_iovec; |
| 1006 | dev->rx_regions = rx_regions - 1; |
| 1007 | |
| 1008 | if (rx_bytes <= MAX_PIO_COUNT) { |
| 1009 | PRINTD (DBG_RX|DBG_BUS, "(pio)"); |
| 1010 | pio_instead = 1; |
| 1011 | } |
| 1012 | if (rx_bytes <= MAX_TRANSFER_COUNT) { |
| 1013 | PRINTD (DBG_RX|DBG_BUS, "(full region)"); |
| 1014 | dev->rx_bytes = 0; |
| 1015 | } else { |
| 1016 | PRINTD (DBG_RX|DBG_BUS, "(start multi region)"); |
| 1017 | dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT; |
| 1018 | rx_bytes = MAX_TRANSFER_COUNT; |
| 1019 | } |
| 1020 | #endif |
| 1021 | } else { |
| 1022 | // rx_regions == 0 |
| 1023 | // that's all folks - end of frame |
| 1024 | struct sk_buff * skb = dev->rx_skb; |
| 1025 | // dev->rx_iovec = 0; |
| 1026 | |
| 1027 | FLUSH_RX_CHANNEL (dev, dev->rx_channel); |
| 1028 | |
| 1029 | dump_skb ("<<<", dev->rx_channel, skb); |
| 1030 | |
| 1031 | PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len); |
| 1032 | |
| 1033 | { |
| 1034 | struct atm_vcc * vcc = ATM_SKB(skb)->vcc; |
| 1035 | // VC layer stats |
| 1036 | atomic_inc(&vcc->stats->rx); |
| 1037 | do_gettimeofday(&skb->stamp); |
| 1038 | // end of our responsability |
| 1039 | vcc->push (vcc, skb); |
| 1040 | } |
| 1041 | } |
| 1042 | } |
| 1043 | |
| 1044 | // note: writing RX_COUNT clears any interrupt condition |
| 1045 | if (rx_bytes) { |
| 1046 | if (pio_instead) { |
| 1047 | if (irq) |
| 1048 | wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); |
| 1049 | rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes); |
| 1050 | } else { |
| 1051 | wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr)); |
| 1052 | wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes); |
| 1053 | } |
| 1054 | dev->rx_addr += rx_bytes; |
| 1055 | } else { |
| 1056 | if (irq) |
| 1057 | wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); |
| 1058 | // allow another RX thread to start |
| 1059 | YELLOW_LED_ON(dev); |
| 1060 | clear_bit (rx_busy, &dev->flags); |
| 1061 | PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev); |
| 1062 | } |
| 1063 | |
| 1064 | #ifdef TAILRECURSIONWORKS |
| 1065 | // and we all bless optimised tail calls |
| 1066 | if (pio_instead) |
| 1067 | return rx_schedule (dev, 0); |
| 1068 | return; |
| 1069 | #else |
| 1070 | // grrrrrrr! |
| 1071 | irq = 0; |
| 1072 | } |
| 1073 | return; |
| 1074 | #endif |
| 1075 | } |
| 1076 | |
| 1077 | /********** handle RX bus master complete events **********/ |
| 1078 | |
| 1079 | static inline void rx_bus_master_complete_handler (hrz_dev * dev) { |
| 1080 | if (test_bit (rx_busy, &dev->flags)) { |
| 1081 | rx_schedule (dev, 1); |
| 1082 | } else { |
| 1083 | PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion"); |
| 1084 | // clear interrupt condition on adapter |
| 1085 | wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0); |
| 1086 | } |
| 1087 | return; |
| 1088 | } |
| 1089 | |
| 1090 | /********** (queue to) become the next TX thread **********/ |
| 1091 | |
| 1092 | static inline int tx_hold (hrz_dev * dev) { |
| 1093 | PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags); |
| 1094 | wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags))); |
| 1095 | PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags); |
| 1096 | if (signal_pending (current)) |
| 1097 | return -1; |
| 1098 | PRINTD (DBG_TX, "set tx_busy for dev %p", dev); |
| 1099 | return 0; |
| 1100 | } |
| 1101 | |
| 1102 | /********** allow another TX thread to start **********/ |
| 1103 | |
| 1104 | static inline void tx_release (hrz_dev * dev) { |
| 1105 | clear_bit (tx_busy, &dev->flags); |
| 1106 | PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev); |
| 1107 | wake_up_interruptible (&dev->tx_queue); |
| 1108 | } |
| 1109 | |
| 1110 | /********** schedule TX transfers **********/ |
| 1111 | |
| 1112 | static void tx_schedule (hrz_dev * const dev, int irq) { |
| 1113 | unsigned int tx_bytes; |
| 1114 | |
| 1115 | int append_desc = 0; |
| 1116 | |
| 1117 | int pio_instead = 0; |
| 1118 | #ifndef TAILRECURSIONWORKS |
| 1119 | pio_instead = 1; |
| 1120 | while (pio_instead) { |
| 1121 | #endif |
| 1122 | // bytes in current region waiting for TX transfer |
| 1123 | tx_bytes = dev->tx_bytes; |
| 1124 | |
| 1125 | #if 0 |
| 1126 | spin_count = 0; |
| 1127 | while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) { |
| 1128 | PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!"); |
| 1129 | if (++spin_count > 10) { |
| 1130 | PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion"); |
| 1131 | wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); |
| 1132 | tx_release (dev); |
| 1133 | hrz_kfree_skb (dev->tx_skb); |
| 1134 | return; |
| 1135 | } |
| 1136 | } |
| 1137 | #endif |
| 1138 | |
| 1139 | if (tx_bytes) { |
| 1140 | // start next transfer within same region |
| 1141 | if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) { |
| 1142 | PRINTD (DBG_TX|DBG_BUS, "(pio)"); |
| 1143 | pio_instead = 1; |
| 1144 | } |
| 1145 | if (tx_bytes <= MAX_TRANSFER_COUNT) { |
| 1146 | PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)"); |
| 1147 | if (!dev->tx_iovec) { |
| 1148 | // end of last region |
| 1149 | append_desc = 1; |
| 1150 | } |
| 1151 | dev->tx_bytes = 0; |
| 1152 | } else { |
| 1153 | PRINTD (DBG_TX|DBG_BUS, "(continuing multi)"); |
| 1154 | dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT; |
| 1155 | tx_bytes = MAX_TRANSFER_COUNT; |
| 1156 | } |
| 1157 | } else { |
| 1158 | // tx_bytes == 0 -- we're between regions |
| 1159 | // regions remaining to transfer |
| 1160 | unsigned int tx_regions = dev->tx_regions; |
| 1161 | |
| 1162 | if (tx_regions) { |
| 1163 | // start a new region |
| 1164 | dev->tx_addr = dev->tx_iovec->iov_base; |
| 1165 | tx_bytes = dev->tx_iovec->iov_len; |
| 1166 | ++dev->tx_iovec; |
| 1167 | dev->tx_regions = tx_regions - 1; |
| 1168 | |
| 1169 | if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) { |
| 1170 | PRINTD (DBG_TX|DBG_BUS, "(pio)"); |
| 1171 | pio_instead = 1; |
| 1172 | } |
| 1173 | if (tx_bytes <= MAX_TRANSFER_COUNT) { |
| 1174 | PRINTD (DBG_TX|DBG_BUS, "(full region)"); |
| 1175 | dev->tx_bytes = 0; |
| 1176 | } else { |
| 1177 | PRINTD (DBG_TX|DBG_BUS, "(start multi region)"); |
| 1178 | dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT; |
| 1179 | tx_bytes = MAX_TRANSFER_COUNT; |
| 1180 | } |
| 1181 | } else { |
| 1182 | // tx_regions == 0 |
| 1183 | // that's all folks - end of frame |
| 1184 | struct sk_buff * skb = dev->tx_skb; |
| 1185 | dev->tx_iovec = NULL; |
| 1186 | |
| 1187 | // VC layer stats |
| 1188 | atomic_inc(&ATM_SKB(skb)->vcc->stats->tx); |
| 1189 | |
| 1190 | // free the skb |
| 1191 | hrz_kfree_skb (skb); |
| 1192 | } |
| 1193 | } |
| 1194 | |
| 1195 | // note: writing TX_COUNT clears any interrupt condition |
| 1196 | if (tx_bytes) { |
| 1197 | if (pio_instead) { |
| 1198 | if (irq) |
| 1199 | wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); |
| 1200 | wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes); |
| 1201 | if (append_desc) |
| 1202 | wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len)); |
| 1203 | } else { |
| 1204 | wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr)); |
| 1205 | if (append_desc) |
| 1206 | wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len)); |
| 1207 | wr_regl (dev, MASTER_TX_COUNT_REG_OFF, |
| 1208 | append_desc |
| 1209 | ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC |
| 1210 | : tx_bytes); |
| 1211 | } |
| 1212 | dev->tx_addr += tx_bytes; |
| 1213 | } else { |
| 1214 | if (irq) |
| 1215 | wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); |
| 1216 | YELLOW_LED_ON(dev); |
| 1217 | tx_release (dev); |
| 1218 | } |
| 1219 | |
| 1220 | #ifdef TAILRECURSIONWORKS |
| 1221 | // and we all bless optimised tail calls |
| 1222 | if (pio_instead) |
| 1223 | return tx_schedule (dev, 0); |
| 1224 | return; |
| 1225 | #else |
| 1226 | // grrrrrrr! |
| 1227 | irq = 0; |
| 1228 | } |
| 1229 | return; |
| 1230 | #endif |
| 1231 | } |
| 1232 | |
| 1233 | /********** handle TX bus master complete events **********/ |
| 1234 | |
| 1235 | static inline void tx_bus_master_complete_handler (hrz_dev * dev) { |
| 1236 | if (test_bit (tx_busy, &dev->flags)) { |
| 1237 | tx_schedule (dev, 1); |
| 1238 | } else { |
| 1239 | PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion"); |
| 1240 | // clear interrupt condition on adapter |
| 1241 | wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0); |
| 1242 | } |
| 1243 | return; |
| 1244 | } |
| 1245 | |
| 1246 | /********** move RX Q pointer to next item in circular buffer **********/ |
| 1247 | |
| 1248 | // called only from IRQ sub-handler |
| 1249 | static inline u32 rx_queue_entry_next (hrz_dev * dev) { |
| 1250 | u32 rx_queue_entry; |
| 1251 | spin_lock (&dev->mem_lock); |
| 1252 | rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry); |
| 1253 | if (dev->rx_q_entry == dev->rx_q_wrap) |
| 1254 | dev->rx_q_entry = dev->rx_q_reset; |
| 1255 | else |
| 1256 | dev->rx_q_entry++; |
| 1257 | wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset); |
| 1258 | spin_unlock (&dev->mem_lock); |
| 1259 | return rx_queue_entry; |
| 1260 | } |
| 1261 | |
| 1262 | /********** handle RX disabled by device **********/ |
| 1263 | |
| 1264 | static inline void rx_disabled_handler (hrz_dev * dev) { |
| 1265 | wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE); |
| 1266 | // count me please |
| 1267 | PRINTK (KERN_WARNING, "RX was disabled!"); |
| 1268 | } |
| 1269 | |
| 1270 | /********** handle RX data received by device **********/ |
| 1271 | |
| 1272 | // called from IRQ handler |
| 1273 | static inline void rx_data_av_handler (hrz_dev * dev) { |
| 1274 | u32 rx_queue_entry; |
| 1275 | u32 rx_queue_entry_flags; |
| 1276 | u16 rx_len; |
| 1277 | u16 rx_channel; |
| 1278 | |
| 1279 | PRINTD (DBG_FLOW, "hrz_data_av_handler"); |
| 1280 | |
| 1281 | // try to grab rx lock (not possible during RX bus mastering) |
| 1282 | if (test_and_set_bit (rx_busy, &dev->flags)) { |
| 1283 | PRINTD (DBG_RX, "locked out of rx lock"); |
| 1284 | return; |
| 1285 | } |
| 1286 | PRINTD (DBG_RX, "set rx_busy for dev %p", dev); |
| 1287 | // lock is cleared if we fail now, o/w after bus master completion |
| 1288 | |
| 1289 | YELLOW_LED_OFF(dev); |
| 1290 | |
| 1291 | rx_queue_entry = rx_queue_entry_next (dev); |
| 1292 | |
| 1293 | rx_len = rx_q_entry_to_length (rx_queue_entry); |
| 1294 | rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry); |
| 1295 | |
| 1296 | WAIT_FLUSH_RX_COMPLETE (dev); |
| 1297 | |
| 1298 | SELECT_RX_CHANNEL (dev, rx_channel); |
| 1299 | |
| 1300 | PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry); |
| 1301 | rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER); |
| 1302 | |
| 1303 | if (!rx_len) { |
| 1304 | // (at least) bus-mastering breaks if we try to handle a |
| 1305 | // zero-length frame, besides AAL5 does not support them |
| 1306 | PRINTK (KERN_ERR, "zero-length frame!"); |
| 1307 | rx_queue_entry_flags &= ~RX_COMPLETE_FRAME; |
| 1308 | } |
| 1309 | |
| 1310 | if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) { |
| 1311 | PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!"); |
| 1312 | } |
| 1313 | if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) { |
| 1314 | struct atm_vcc * atm_vcc; |
| 1315 | |
| 1316 | PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len); |
| 1317 | |
| 1318 | atm_vcc = dev->rxer[rx_channel]; |
| 1319 | // if no vcc is assigned to this channel, we should drop the frame |
| 1320 | // (is this what SIMONS etc. was trying to achieve?) |
| 1321 | |
| 1322 | if (atm_vcc) { |
| 1323 | |
| 1324 | if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) { |
| 1325 | |
| 1326 | if (rx_len <= atm_vcc->qos.rxtp.max_sdu) { |
| 1327 | |
| 1328 | struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC); |
| 1329 | if (skb) { |
| 1330 | // remember this so we can push it later |
| 1331 | dev->rx_skb = skb; |
| 1332 | // remember this so we can flush it later |
| 1333 | dev->rx_channel = rx_channel; |
| 1334 | |
| 1335 | // prepare socket buffer |
| 1336 | skb_put (skb, rx_len); |
| 1337 | ATM_SKB(skb)->vcc = atm_vcc; |
| 1338 | |
| 1339 | // simple transfer |
| 1340 | // dev->rx_regions = 0; |
| 1341 | // dev->rx_iovec = 0; |
| 1342 | dev->rx_bytes = rx_len; |
| 1343 | dev->rx_addr = skb->data; |
| 1344 | PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)", |
| 1345 | skb->data, rx_len); |
| 1346 | |
| 1347 | // do the business |
| 1348 | rx_schedule (dev, 0); |
| 1349 | return; |
| 1350 | |
| 1351 | } else { |
| 1352 | PRINTD (DBG_SKB|DBG_WARN, "failed to get skb"); |
| 1353 | } |
| 1354 | |
| 1355 | } else { |
| 1356 | PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel); |
| 1357 | // do we count this? |
| 1358 | } |
| 1359 | |
| 1360 | } else { |
| 1361 | PRINTK (KERN_WARNING, "dropped over-size frame"); |
| 1362 | // do we count this? |
| 1363 | } |
| 1364 | |
| 1365 | } else { |
| 1366 | PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)"); |
| 1367 | // do we count this? |
| 1368 | } |
| 1369 | |
| 1370 | } else { |
| 1371 | // Wait update complete ? SPONG |
| 1372 | } |
| 1373 | |
| 1374 | // RX was aborted |
| 1375 | YELLOW_LED_ON(dev); |
| 1376 | |
| 1377 | FLUSH_RX_CHANNEL (dev,rx_channel); |
| 1378 | clear_bit (rx_busy, &dev->flags); |
| 1379 | |
| 1380 | return; |
| 1381 | } |
| 1382 | |
| 1383 | /********** interrupt handler **********/ |
| 1384 | |
| 1385 | static irqreturn_t interrupt_handler(int irq, void *dev_id, |
| 1386 | struct pt_regs *pt_regs) { |
| 1387 | hrz_dev * dev = (hrz_dev *) dev_id; |
| 1388 | u32 int_source; |
| 1389 | unsigned int irq_ok; |
| 1390 | (void) pt_regs; |
| 1391 | |
| 1392 | PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id); |
| 1393 | |
| 1394 | if (!dev_id) { |
| 1395 | PRINTD (DBG_IRQ|DBG_ERR, "irq with NULL dev_id: %d", irq); |
| 1396 | return IRQ_NONE; |
| 1397 | } |
| 1398 | if (irq != dev->irq) { |
| 1399 | PRINTD (DBG_IRQ|DBG_ERR, "irq mismatch: %d", irq); |
| 1400 | return IRQ_NONE; |
| 1401 | } |
| 1402 | |
| 1403 | // definitely for us |
| 1404 | irq_ok = 0; |
| 1405 | while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF) |
| 1406 | & INTERESTING_INTERRUPTS)) { |
| 1407 | // In the interests of fairness, the (inline) handlers below are |
| 1408 | // called in sequence and without immediate return to the head of |
| 1409 | // the while loop. This is only of issue for slow hosts (or when |
| 1410 | // debugging messages are on). Really slow hosts may find a fast |
| 1411 | // sender keeps them permanently in the IRQ handler. :( |
| 1412 | |
| 1413 | // (only an issue for slow hosts) RX completion goes before |
| 1414 | // rx_data_av as the former implies rx_busy and so the latter |
| 1415 | // would just abort. If it reschedules another transfer |
| 1416 | // (continuing the same frame) then it will not clear rx_busy. |
| 1417 | |
| 1418 | // (only an issue for slow hosts) TX completion goes before RX |
| 1419 | // data available as it is a much shorter routine - there is the |
| 1420 | // chance that any further transfers it schedules will be complete |
| 1421 | // by the time of the return to the head of the while loop |
| 1422 | |
| 1423 | if (int_source & RX_BUS_MASTER_COMPLETE) { |
| 1424 | ++irq_ok; |
| 1425 | PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted"); |
| 1426 | rx_bus_master_complete_handler (dev); |
| 1427 | } |
| 1428 | if (int_source & TX_BUS_MASTER_COMPLETE) { |
| 1429 | ++irq_ok; |
| 1430 | PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted"); |
| 1431 | tx_bus_master_complete_handler (dev); |
| 1432 | } |
| 1433 | if (int_source & RX_DATA_AV) { |
| 1434 | ++irq_ok; |
| 1435 | PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted"); |
| 1436 | rx_data_av_handler (dev); |
| 1437 | } |
| 1438 | } |
| 1439 | if (irq_ok) { |
| 1440 | PRINTD (DBG_IRQ, "work done: %u", irq_ok); |
| 1441 | } else { |
| 1442 | PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source); |
| 1443 | } |
| 1444 | |
| 1445 | PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id); |
| 1446 | if (irq_ok) |
| 1447 | return IRQ_HANDLED; |
| 1448 | return IRQ_NONE; |
| 1449 | } |
| 1450 | |
| 1451 | /********** housekeeping **********/ |
| 1452 | |
| 1453 | static void do_housekeeping (unsigned long arg) { |
| 1454 | // just stats at the moment |
| 1455 | hrz_dev * dev = (hrz_dev *) arg; |
| 1456 | |
| 1457 | // collect device-specific (not driver/atm-linux) stats here |
| 1458 | dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF); |
| 1459 | dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF); |
| 1460 | dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF); |
| 1461 | dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF); |
| 1462 | |
| 1463 | mod_timer (&dev->housekeeping, jiffies + HZ/10); |
| 1464 | |
| 1465 | return; |
| 1466 | } |
| 1467 | |
| 1468 | /********** find an idle channel for TX and set it up **********/ |
| 1469 | |
| 1470 | // called with tx_busy set |
| 1471 | static inline short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) { |
| 1472 | unsigned short idle_channels; |
| 1473 | short tx_channel = -1; |
| 1474 | unsigned int spin_count; |
| 1475 | PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev); |
| 1476 | |
| 1477 | // better would be to fail immediately, the caller can then decide whether |
| 1478 | // to wait or drop (depending on whether this is UBR etc.) |
| 1479 | spin_count = 0; |
| 1480 | while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) { |
| 1481 | PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel"); |
| 1482 | // delay a bit here |
| 1483 | if (++spin_count > 100) { |
| 1484 | PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel"); |
| 1485 | return -EBUSY; |
| 1486 | } |
| 1487 | } |
| 1488 | |
| 1489 | // got an idle channel |
| 1490 | { |
| 1491 | // tx_idle ensures we look for idle channels in RR order |
| 1492 | int chan = dev->tx_idle; |
| 1493 | |
| 1494 | int keep_going = 1; |
| 1495 | while (keep_going) { |
| 1496 | if (idle_channels & (1<<chan)) { |
| 1497 | tx_channel = chan; |
| 1498 | keep_going = 0; |
| 1499 | } |
| 1500 | ++chan; |
| 1501 | if (chan == TX_CHANS) |
| 1502 | chan = 0; |
| 1503 | } |
| 1504 | |
| 1505 | dev->tx_idle = chan; |
| 1506 | } |
| 1507 | |
| 1508 | // set up the channel we found |
| 1509 | { |
| 1510 | // Initialise the cell header in the transmit channel descriptor |
| 1511 | // a.k.a. prepare the channel and remember that we have done so. |
| 1512 | |
| 1513 | tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel]; |
| 1514 | u16 rd_ptr; |
| 1515 | u16 wr_ptr; |
| 1516 | u16 channel = vcc->channel; |
| 1517 | |
| 1518 | unsigned long flags; |
| 1519 | spin_lock_irqsave (&dev->mem_lock, flags); |
| 1520 | |
| 1521 | // Update the transmit channel record. |
| 1522 | dev->tx_channel_record[tx_channel] = channel; |
| 1523 | |
| 1524 | // xBR channel |
| 1525 | update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS, |
| 1526 | vcc->tx_xbr_bits); |
| 1527 | |
| 1528 | // Update the PCR counter preload value etc. |
| 1529 | update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS, |
| 1530 | vcc->tx_pcr_bits); |
| 1531 | |
| 1532 | #if 0 |
| 1533 | if (vcc->tx_xbr_bits == VBR_RATE_TYPE) { |
| 1534 | // SCR timer |
| 1535 | update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS, |
| 1536 | vcc->tx_scr_bits); |
| 1537 | |
| 1538 | // Bucket size... |
| 1539 | update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS, |
| 1540 | vcc->tx_bucket_bits); |
| 1541 | |
| 1542 | // ... and fullness |
| 1543 | update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS, |
| 1544 | vcc->tx_bucket_bits); |
| 1545 | } |
| 1546 | #endif |
| 1547 | |
| 1548 | // Initialise the read and write buffer pointers |
| 1549 | rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK; |
| 1550 | wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK; |
| 1551 | |
| 1552 | // idle TX channels should have identical pointers |
| 1553 | if (rd_ptr != wr_ptr) { |
| 1554 | PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!"); |
| 1555 | // spin_unlock... return -E... |
| 1556 | // I wonder if gcc would get rid of one of the pointer aliases |
| 1557 | } |
| 1558 | PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.", |
| 1559 | rd_ptr, wr_ptr); |
| 1560 | |
| 1561 | switch (vcc->aal) { |
| 1562 | case aal0: |
| 1563 | PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0"); |
| 1564 | rd_ptr |= CHANNEL_TYPE_RAW_CELLS; |
| 1565 | wr_ptr |= CHANNEL_TYPE_RAW_CELLS; |
| 1566 | break; |
| 1567 | case aal34: |
| 1568 | PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34"); |
| 1569 | rd_ptr |= CHANNEL_TYPE_AAL3_4; |
| 1570 | wr_ptr |= CHANNEL_TYPE_AAL3_4; |
| 1571 | break; |
| 1572 | case aal5: |
| 1573 | rd_ptr |= CHANNEL_TYPE_AAL5; |
| 1574 | wr_ptr |= CHANNEL_TYPE_AAL5; |
| 1575 | // Initialise the CRC |
| 1576 | wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC); |
| 1577 | break; |
| 1578 | } |
| 1579 | |
| 1580 | wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr); |
| 1581 | wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr); |
| 1582 | |
| 1583 | // Write the Cell Header |
| 1584 | // Payload Type, CLP and GFC would go here if non-zero |
| 1585 | wr_mem (dev, &tx_desc->cell_header, channel); |
| 1586 | |
| 1587 | spin_unlock_irqrestore (&dev->mem_lock, flags); |
| 1588 | } |
| 1589 | |
| 1590 | return tx_channel; |
| 1591 | } |
| 1592 | |
| 1593 | /********** send a frame **********/ |
| 1594 | |
| 1595 | static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) { |
| 1596 | unsigned int spin_count; |
| 1597 | int free_buffers; |
| 1598 | hrz_dev * dev = HRZ_DEV(atm_vcc->dev); |
| 1599 | hrz_vcc * vcc = HRZ_VCC(atm_vcc); |
| 1600 | u16 channel = vcc->channel; |
| 1601 | |
| 1602 | u32 buffers_required; |
| 1603 | |
| 1604 | /* signed for error return */ |
| 1605 | short tx_channel; |
| 1606 | |
| 1607 | PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u", |
| 1608 | channel, skb->data, skb->len); |
| 1609 | |
| 1610 | dump_skb (">>>", channel, skb); |
| 1611 | |
| 1612 | if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) { |
| 1613 | PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel); |
| 1614 | hrz_kfree_skb (skb); |
| 1615 | return -EIO; |
| 1616 | } |
| 1617 | |
| 1618 | // don't understand this |
| 1619 | ATM_SKB(skb)->vcc = atm_vcc; |
| 1620 | |
| 1621 | if (skb->len > atm_vcc->qos.txtp.max_sdu) { |
| 1622 | PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping..."); |
| 1623 | hrz_kfree_skb (skb); |
| 1624 | return -EIO; |
| 1625 | } |
| 1626 | |
| 1627 | if (!channel) { |
| 1628 | PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel"); |
| 1629 | hrz_kfree_skb (skb); |
| 1630 | return -EIO; |
| 1631 | } |
| 1632 | |
| 1633 | #if 0 |
| 1634 | { |
| 1635 | // where would be a better place for this? housekeeping? |
| 1636 | u16 status; |
| 1637 | pci_read_config_word (dev->pci_dev, PCI_STATUS, &status); |
| 1638 | if (status & PCI_STATUS_REC_MASTER_ABORT) { |
| 1639 | PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)"); |
| 1640 | status &= ~PCI_STATUS_REC_MASTER_ABORT; |
| 1641 | pci_write_config_word (dev->pci_dev, PCI_STATUS, status); |
| 1642 | if (test_bit (tx_busy, &dev->flags)) { |
| 1643 | hrz_kfree_skb (dev->tx_skb); |
| 1644 | tx_release (dev); |
| 1645 | } |
| 1646 | } |
| 1647 | } |
| 1648 | #endif |
| 1649 | |
| 1650 | #ifdef DEBUG_HORIZON |
| 1651 | /* wey-hey! */ |
| 1652 | if (channel == 1023) { |
| 1653 | unsigned int i; |
| 1654 | unsigned short d = 0; |
| 1655 | char * s = skb->data; |
| 1656 | if (*s++ == 'D') { |
| 1657 | for (i = 0; i < 4; ++i) { |
| 1658 | d = (d<<4) | ((*s <= '9') ? (*s - '0') : (*s - 'a' + 10)); |
| 1659 | ++s; |
| 1660 | } |
| 1661 | PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d); |
| 1662 | } |
| 1663 | } |
| 1664 | #endif |
| 1665 | |
| 1666 | // wait until TX is free and grab lock |
| 1667 | if (tx_hold (dev)) { |
| 1668 | hrz_kfree_skb (skb); |
| 1669 | return -ERESTARTSYS; |
| 1670 | } |
| 1671 | |
| 1672 | // Wait for enough space to be available in transmit buffer memory. |
| 1673 | |
| 1674 | // should be number of cells needed + 2 (according to hardware docs) |
| 1675 | // = ((framelen+8)+47) / 48 + 2 |
| 1676 | // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX |
| 1677 | buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3; |
| 1678 | |
| 1679 | // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry) |
| 1680 | spin_count = 0; |
| 1681 | while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) { |
| 1682 | PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d", |
| 1683 | free_buffers, buffers_required); |
| 1684 | // what is the appropriate delay? implement a timeout? (depending on line speed?) |
| 1685 | // mdelay (1); |
| 1686 | // what happens if we kill (current_pid, SIGKILL) ? |
| 1687 | schedule(); |
| 1688 | if (++spin_count > 1000) { |
| 1689 | PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d", |
| 1690 | free_buffers, buffers_required); |
| 1691 | tx_release (dev); |
| 1692 | hrz_kfree_skb (skb); |
| 1693 | return -ERESTARTSYS; |
| 1694 | } |
| 1695 | } |
| 1696 | |
| 1697 | // Select a channel to transmit the frame on. |
| 1698 | if (channel == dev->last_vc) { |
| 1699 | PRINTD (DBG_TX, "last vc hack: hit"); |
| 1700 | tx_channel = dev->tx_last; |
| 1701 | } else { |
| 1702 | PRINTD (DBG_TX, "last vc hack: miss"); |
| 1703 | // Are we currently transmitting this VC on one of the channels? |
| 1704 | for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel) |
| 1705 | if (dev->tx_channel_record[tx_channel] == channel) { |
| 1706 | PRINTD (DBG_TX, "vc already on channel: hit"); |
| 1707 | break; |
| 1708 | } |
| 1709 | if (tx_channel == TX_CHANS) { |
| 1710 | PRINTD (DBG_TX, "vc already on channel: miss"); |
| 1711 | // Find and set up an idle channel. |
| 1712 | tx_channel = setup_idle_tx_channel (dev, vcc); |
| 1713 | if (tx_channel < 0) { |
| 1714 | PRINTD (DBG_TX|DBG_ERR, "failed to get channel"); |
| 1715 | tx_release (dev); |
| 1716 | return tx_channel; |
| 1717 | } |
| 1718 | } |
| 1719 | |
| 1720 | PRINTD (DBG_TX, "got channel"); |
| 1721 | SELECT_TX_CHANNEL(dev, tx_channel); |
| 1722 | |
| 1723 | dev->last_vc = channel; |
| 1724 | dev->tx_last = tx_channel; |
| 1725 | } |
| 1726 | |
| 1727 | PRINTD (DBG_TX, "using channel %u", tx_channel); |
| 1728 | |
| 1729 | YELLOW_LED_OFF(dev); |
| 1730 | |
| 1731 | // TX start transfer |
| 1732 | |
| 1733 | { |
| 1734 | unsigned int tx_len = skb->len; |
| 1735 | unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags; |
| 1736 | // remember this so we can free it later |
| 1737 | dev->tx_skb = skb; |
| 1738 | |
| 1739 | if (tx_iovcnt) { |
| 1740 | // scatter gather transfer |
| 1741 | dev->tx_regions = tx_iovcnt; |
| 1742 | dev->tx_iovec = NULL; /* @@@ needs rewritten */ |
| 1743 | dev->tx_bytes = 0; |
| 1744 | PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)", |
| 1745 | skb->data, tx_len); |
| 1746 | tx_release (dev); |
| 1747 | hrz_kfree_skb (skb); |
| 1748 | return -EIO; |
| 1749 | } else { |
| 1750 | // simple transfer |
| 1751 | dev->tx_regions = 0; |
| 1752 | dev->tx_iovec = NULL; |
| 1753 | dev->tx_bytes = tx_len; |
| 1754 | dev->tx_addr = skb->data; |
| 1755 | PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)", |
| 1756 | skb->data, tx_len); |
| 1757 | } |
| 1758 | |
| 1759 | // and do the business |
| 1760 | tx_schedule (dev, 0); |
| 1761 | |
| 1762 | } |
| 1763 | |
| 1764 | return 0; |
| 1765 | } |
| 1766 | |
| 1767 | /********** reset a card **********/ |
| 1768 | |
| 1769 | static void hrz_reset (const hrz_dev * dev) { |
| 1770 | u32 control_0_reg = rd_regl (dev, CONTROL_0_REG); |
| 1771 | |
| 1772 | // why not set RESET_HORIZON to one and wait for the card to |
| 1773 | // reassert that bit as zero? Like so: |
| 1774 | control_0_reg = control_0_reg & RESET_HORIZON; |
| 1775 | wr_regl (dev, CONTROL_0_REG, control_0_reg); |
| 1776 | while (control_0_reg & RESET_HORIZON) |
| 1777 | control_0_reg = rd_regl (dev, CONTROL_0_REG); |
| 1778 | |
| 1779 | // old reset code retained: |
| 1780 | wr_regl (dev, CONTROL_0_REG, control_0_reg | |
| 1781 | RESET_ATM | RESET_RX | RESET_TX | RESET_HOST); |
| 1782 | // just guessing here |
| 1783 | udelay (1000); |
| 1784 | |
| 1785 | wr_regl (dev, CONTROL_0_REG, control_0_reg); |
| 1786 | } |
| 1787 | |
| 1788 | /********** read the burnt in address **********/ |
| 1789 | |
| 1790 | static inline void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl) |
| 1791 | { |
| 1792 | wr_regl (dev, CONTROL_0_REG, ctrl); |
| 1793 | udelay (5); |
| 1794 | } |
| 1795 | |
| 1796 | static inline void CLOCK_IT (const hrz_dev *dev, u32 ctrl) |
| 1797 | { |
| 1798 | // DI must be valid around rising SK edge |
| 1799 | WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK); |
| 1800 | WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK); |
| 1801 | } |
| 1802 | |
| 1803 | static u16 __init read_bia (const hrz_dev * dev, u16 addr) |
| 1804 | { |
| 1805 | u32 ctrl = rd_regl (dev, CONTROL_0_REG); |
| 1806 | |
| 1807 | const unsigned int addr_bits = 6; |
| 1808 | const unsigned int data_bits = 16; |
| 1809 | |
| 1810 | unsigned int i; |
| 1811 | |
| 1812 | u16 res; |
| 1813 | |
| 1814 | ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI); |
| 1815 | WRITE_IT_WAIT(dev, ctrl); |
| 1816 | |
| 1817 | // wake Serial EEPROM and send 110 (READ) command |
| 1818 | ctrl |= (SEEPROM_CS | SEEPROM_DI); |
| 1819 | CLOCK_IT(dev, ctrl); |
| 1820 | |
| 1821 | ctrl |= SEEPROM_DI; |
| 1822 | CLOCK_IT(dev, ctrl); |
| 1823 | |
| 1824 | ctrl &= ~SEEPROM_DI; |
| 1825 | CLOCK_IT(dev, ctrl); |
| 1826 | |
| 1827 | for (i=0; i<addr_bits; i++) { |
| 1828 | if (addr & (1 << (addr_bits-1))) |
| 1829 | ctrl |= SEEPROM_DI; |
| 1830 | else |
| 1831 | ctrl &= ~SEEPROM_DI; |
| 1832 | |
| 1833 | CLOCK_IT(dev, ctrl); |
| 1834 | |
| 1835 | addr = addr << 1; |
| 1836 | } |
| 1837 | |
| 1838 | // we could check that we have DO = 0 here |
| 1839 | ctrl &= ~SEEPROM_DI; |
| 1840 | |
| 1841 | res = 0; |
| 1842 | for (i=0;i<data_bits;i++) { |
| 1843 | res = res >> 1; |
| 1844 | |
| 1845 | CLOCK_IT(dev, ctrl); |
| 1846 | |
| 1847 | if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO) |
| 1848 | res |= (1 << (data_bits-1)); |
| 1849 | } |
| 1850 | |
| 1851 | ctrl &= ~(SEEPROM_SK | SEEPROM_CS); |
| 1852 | WRITE_IT_WAIT(dev, ctrl); |
| 1853 | |
| 1854 | return res; |
| 1855 | } |
| 1856 | |
| 1857 | /********** initialise a card **********/ |
| 1858 | |
| 1859 | static int __init hrz_init (hrz_dev * dev) { |
| 1860 | int onefivefive; |
| 1861 | |
| 1862 | u16 chan; |
| 1863 | |
| 1864 | int buff_count; |
| 1865 | |
| 1866 | HDW * mem; |
| 1867 | |
| 1868 | cell_buf * tx_desc; |
| 1869 | cell_buf * rx_desc; |
| 1870 | |
| 1871 | u32 ctrl; |
| 1872 | |
| 1873 | ctrl = rd_regl (dev, CONTROL_0_REG); |
| 1874 | PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl); |
| 1875 | onefivefive = ctrl & ATM_LAYER_STATUS; |
| 1876 | |
| 1877 | if (onefivefive) |
| 1878 | printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)"); |
| 1879 | else |
| 1880 | printk (DEV_LABEL ": Horizon (at 25 MBps)"); |
| 1881 | |
| 1882 | printk (":"); |
| 1883 | // Reset the card to get everything in a known state |
| 1884 | |
| 1885 | printk (" reset"); |
| 1886 | hrz_reset (dev); |
| 1887 | |
| 1888 | // Clear all the buffer memory |
| 1889 | |
| 1890 | printk (" clearing memory"); |
| 1891 | |
| 1892 | for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem) |
| 1893 | wr_mem (dev, mem, 0); |
| 1894 | |
| 1895 | printk (" tx channels"); |
| 1896 | |
| 1897 | // All transmit eight channels are set up as AAL5 ABR channels with |
| 1898 | // a 16us cell spacing. Why? |
| 1899 | |
| 1900 | // Channel 0 gets the free buffer at 100h, channel 1 gets the free |
| 1901 | // buffer at 110h etc. |
| 1902 | |
| 1903 | for (chan = 0; chan < TX_CHANS; ++chan) { |
| 1904 | tx_ch_desc * tx_desc = &memmap->tx_descs[chan]; |
| 1905 | cell_buf * buf = &memmap->inittxbufs[chan]; |
| 1906 | |
| 1907 | // initialise the read and write buffer pointers |
| 1908 | wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf)); |
| 1909 | wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf)); |
| 1910 | |
| 1911 | // set the status of the initial buffers to empty |
| 1912 | wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY); |
| 1913 | } |
| 1914 | |
| 1915 | // Use space bufn3 at the moment for tx buffers |
| 1916 | |
| 1917 | printk (" tx buffers"); |
| 1918 | |
| 1919 | tx_desc = memmap->bufn3; |
| 1920 | |
| 1921 | wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY); |
| 1922 | |
| 1923 | for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) { |
| 1924 | wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY); |
| 1925 | tx_desc++; |
| 1926 | } |
| 1927 | |
| 1928 | wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY); |
| 1929 | |
| 1930 | // Initialise the transmit free buffer count |
| 1931 | wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE); |
| 1932 | |
| 1933 | printk (" rx channels"); |
| 1934 | |
| 1935 | // Initialise all of the receive channels to be AAL5 disabled with |
| 1936 | // an interrupt threshold of 0 |
| 1937 | |
| 1938 | for (chan = 0; chan < RX_CHANS; ++chan) { |
| 1939 | rx_ch_desc * rx_desc = &memmap->rx_descs[chan]; |
| 1940 | |
| 1941 | wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED); |
| 1942 | } |
| 1943 | |
| 1944 | printk (" rx buffers"); |
| 1945 | |
| 1946 | // Use space bufn4 at the moment for rx buffers |
| 1947 | |
| 1948 | rx_desc = memmap->bufn4; |
| 1949 | |
| 1950 | wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY); |
| 1951 | |
| 1952 | for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) { |
| 1953 | wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY); |
| 1954 | |
| 1955 | rx_desc++; |
| 1956 | } |
| 1957 | |
| 1958 | wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY); |
| 1959 | |
| 1960 | // Initialise the receive free buffer count |
| 1961 | wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE); |
| 1962 | |
| 1963 | // Initialize Horizons registers |
| 1964 | |
| 1965 | // TX config |
| 1966 | wr_regw (dev, TX_CONFIG_OFF, |
| 1967 | ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE); |
| 1968 | |
| 1969 | // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0. |
| 1970 | wr_regw (dev, RX_CONFIG_OFF, |
| 1971 | DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits); |
| 1972 | |
| 1973 | // RX line config |
| 1974 | wr_regw (dev, RX_LINE_CONFIG_OFF, |
| 1975 | LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4); |
| 1976 | |
| 1977 | // Set the max AAL5 cell count to be just enough to contain the |
| 1978 | // largest AAL5 frame that the user wants to receive |
| 1979 | wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF, |
| 1980 | (max_rx_size + ATM_AAL5_TRAILER + ATM_CELL_PAYLOAD - 1) / ATM_CELL_PAYLOAD); |
| 1981 | |
| 1982 | // Enable receive |
| 1983 | wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE); |
| 1984 | |
| 1985 | printk (" control"); |
| 1986 | |
| 1987 | // Drive the OE of the LEDs then turn the green LED on |
| 1988 | ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED; |
| 1989 | wr_regl (dev, CONTROL_0_REG, ctrl); |
| 1990 | |
| 1991 | // Test for a 155-capable card |
| 1992 | |
| 1993 | if (onefivefive) { |
| 1994 | // Select 155 mode... make this a choice (or: how do we detect |
| 1995 | // external line speed and switch?) |
| 1996 | ctrl |= ATM_LAYER_SELECT; |
| 1997 | wr_regl (dev, CONTROL_0_REG, ctrl); |
| 1998 | |
| 1999 | // test SUNI-lite vs SAMBA |
| 2000 | |
| 2001 | // Register 0x00 in the SUNI will have some of bits 3-7 set, and |
| 2002 | // they will always be zero for the SAMBA. Ha! Bloody hardware |
| 2003 | // engineers. It'll never work. |
| 2004 | |
| 2005 | if (rd_framer (dev, 0) & 0x00f0) { |
| 2006 | // SUNI |
| 2007 | printk (" SUNI"); |
| 2008 | |
| 2009 | // Reset, just in case |
| 2010 | wr_framer (dev, 0x00, 0x0080); |
| 2011 | wr_framer (dev, 0x00, 0x0000); |
| 2012 | |
| 2013 | // Configure transmit FIFO |
| 2014 | wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002); |
| 2015 | |
| 2016 | // Set line timed mode |
| 2017 | wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001); |
| 2018 | } else { |
| 2019 | // SAMBA |
| 2020 | printk (" SAMBA"); |
| 2021 | |
| 2022 | // Reset, just in case |
| 2023 | wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001); |
| 2024 | wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001); |
| 2025 | |
| 2026 | // Turn off diagnostic loopback and enable line-timed mode |
| 2027 | wr_framer (dev, 0, 0x0002); |
| 2028 | |
| 2029 | // Turn on transmit outputs |
| 2030 | wr_framer (dev, 2, 0x0B80); |
| 2031 | } |
| 2032 | } else { |
| 2033 | // Select 25 mode |
| 2034 | ctrl &= ~ATM_LAYER_SELECT; |
| 2035 | |
| 2036 | // Madge B154 setup |
| 2037 | // none required? |
| 2038 | } |
| 2039 | |
| 2040 | printk (" LEDs"); |
| 2041 | |
| 2042 | GREEN_LED_ON(dev); |
| 2043 | YELLOW_LED_ON(dev); |
| 2044 | |
| 2045 | printk (" ESI="); |
| 2046 | |
| 2047 | { |
| 2048 | u16 b = 0; |
| 2049 | int i; |
| 2050 | u8 * esi = dev->atm_dev->esi; |
| 2051 | |
| 2052 | // in the card I have, EEPROM |
| 2053 | // addresses 0, 1, 2 contain 0 |
| 2054 | // addresess 5, 6 etc. contain ffff |
| 2055 | // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order) |
| 2056 | // the read_bia routine gets the BIA in Ethernet bit order |
| 2057 | |
| 2058 | for (i=0; i < ESI_LEN; ++i) { |
| 2059 | if (i % 2 == 0) |
| 2060 | b = read_bia (dev, i/2 + 2); |
| 2061 | else |
| 2062 | b = b >> 8; |
| 2063 | esi[i] = b & 0xFF; |
| 2064 | printk ("%02x", esi[i]); |
| 2065 | } |
| 2066 | } |
| 2067 | |
| 2068 | // Enable RX_Q and ?X_COMPLETE interrupts only |
| 2069 | wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS); |
| 2070 | printk (" IRQ on"); |
| 2071 | |
| 2072 | printk (".\n"); |
| 2073 | |
| 2074 | return onefivefive; |
| 2075 | } |
| 2076 | |
| 2077 | /********** check max_sdu **********/ |
| 2078 | |
| 2079 | static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) { |
| 2080 | PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu"); |
| 2081 | |
| 2082 | switch (aal) { |
| 2083 | case aal0: |
| 2084 | if (!(tp->max_sdu)) { |
| 2085 | PRINTD (DBG_QOS, "defaulting max_sdu"); |
| 2086 | tp->max_sdu = ATM_AAL0_SDU; |
| 2087 | } else if (tp->max_sdu != ATM_AAL0_SDU) { |
| 2088 | PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu"); |
| 2089 | return -EINVAL; |
| 2090 | } |
| 2091 | break; |
| 2092 | case aal34: |
| 2093 | if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) { |
| 2094 | PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default"); |
| 2095 | tp->max_sdu = ATM_MAX_AAL34_PDU; |
| 2096 | } |
| 2097 | break; |
| 2098 | case aal5: |
| 2099 | if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) { |
| 2100 | PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default"); |
| 2101 | tp->max_sdu = max_frame_size; |
| 2102 | } |
| 2103 | break; |
| 2104 | } |
| 2105 | return 0; |
| 2106 | } |
| 2107 | |
| 2108 | /********** check pcr **********/ |
| 2109 | |
| 2110 | // something like this should be part of ATM Linux |
| 2111 | static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) { |
| 2112 | // we are assuming non-UBR, and non-special values of pcr |
| 2113 | if (tp->min_pcr == ATM_MAX_PCR) |
| 2114 | PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR"); |
| 2115 | else if (tp->min_pcr < 0) |
| 2116 | PRINTD (DBG_QOS, "luser gave negative min_pcr"); |
| 2117 | else if (tp->min_pcr && tp->min_pcr > pcr) |
| 2118 | PRINTD (DBG_QOS, "pcr less than min_pcr"); |
| 2119 | else |
| 2120 | // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1) |
| 2121 | // easier to #define ATM_MAX_PCR 0 and have all rates unsigned? |
| 2122 | // [this would get rid of next two conditionals] |
| 2123 | if ((0) && tp->max_pcr == ATM_MAX_PCR) |
| 2124 | PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR"); |
| 2125 | else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0) |
| 2126 | PRINTD (DBG_QOS, "luser gave negative max_pcr"); |
| 2127 | else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr) |
| 2128 | PRINTD (DBG_QOS, "pcr greater than max_pcr"); |
| 2129 | else { |
| 2130 | // each limit unspecified or not violated |
| 2131 | PRINTD (DBG_QOS, "xBR(pcr) OK"); |
| 2132 | return 0; |
| 2133 | } |
| 2134 | PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d", |
| 2135 | pcr, tp->min_pcr, tp->pcr, tp->max_pcr); |
| 2136 | return -EINVAL; |
| 2137 | } |
| 2138 | |
| 2139 | /********** open VC **********/ |
| 2140 | |
| 2141 | static int hrz_open (struct atm_vcc *atm_vcc) |
| 2142 | { |
| 2143 | int error; |
| 2144 | u16 channel; |
| 2145 | |
| 2146 | struct atm_qos * qos; |
| 2147 | struct atm_trafprm * txtp; |
| 2148 | struct atm_trafprm * rxtp; |
| 2149 | |
| 2150 | hrz_dev * dev = HRZ_DEV(atm_vcc->dev); |
| 2151 | hrz_vcc vcc; |
| 2152 | hrz_vcc * vccp; // allocated late |
| 2153 | short vpi = atm_vcc->vpi; |
| 2154 | int vci = atm_vcc->vci; |
| 2155 | PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci); |
| 2156 | |
| 2157 | #ifdef ATM_VPI_UNSPEC |
| 2158 | // UNSPEC is deprecated, remove this code eventually |
| 2159 | if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) { |
| 2160 | PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)"); |
| 2161 | return -EINVAL; |
| 2162 | } |
| 2163 | #endif |
| 2164 | |
| 2165 | error = vpivci_to_channel (&channel, vpi, vci); |
| 2166 | if (error) { |
| 2167 | PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci); |
| 2168 | return error; |
| 2169 | } |
| 2170 | |
| 2171 | vcc.channel = channel; |
| 2172 | // max speed for the moment |
| 2173 | vcc.tx_rate = 0x0; |
| 2174 | |
| 2175 | qos = &atm_vcc->qos; |
| 2176 | |
| 2177 | // check AAL and remember it |
| 2178 | switch (qos->aal) { |
| 2179 | case ATM_AAL0: |
| 2180 | // we would if it were 48 bytes and not 52! |
| 2181 | PRINTD (DBG_QOS|DBG_VCC, "AAL0"); |
| 2182 | vcc.aal = aal0; |
| 2183 | break; |
| 2184 | case ATM_AAL34: |
| 2185 | // we would if I knew how do the SAR! |
| 2186 | PRINTD (DBG_QOS|DBG_VCC, "AAL3/4"); |
| 2187 | vcc.aal = aal34; |
| 2188 | break; |
| 2189 | case ATM_AAL5: |
| 2190 | PRINTD (DBG_QOS|DBG_VCC, "AAL5"); |
| 2191 | vcc.aal = aal5; |
| 2192 | break; |
| 2193 | default: |
| 2194 | PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!"); |
| 2195 | return -EINVAL; |
| 2196 | break; |
| 2197 | } |
| 2198 | |
| 2199 | // TX traffic parameters |
| 2200 | |
| 2201 | // there are two, interrelated problems here: 1. the reservation of |
| 2202 | // PCR is not a binary choice, we are given bounds and/or a |
| 2203 | // desirable value; 2. the device is only capable of certain values, |
| 2204 | // most of which are not integers. It is almost certainly acceptable |
| 2205 | // to be off by a maximum of 1 to 10 cps. |
| 2206 | |
| 2207 | // Pragmatic choice: always store an integral PCR as that which has |
| 2208 | // been allocated, even if we allocate a little (or a lot) less, |
| 2209 | // after rounding. The actual allocation depends on what we can |
| 2210 | // manage with our rate selection algorithm. The rate selection |
| 2211 | // algorithm is given an integral PCR and a tolerance and told |
| 2212 | // whether it should round the value up or down if the tolerance is |
| 2213 | // exceeded; it returns: a) the actual rate selected (rounded up to |
| 2214 | // the nearest integer), b) a bit pattern to feed to the timer |
| 2215 | // register, and c) a failure value if no applicable rate exists. |
| 2216 | |
| 2217 | // Part of the job is done by atm_pcr_goal which gives us a PCR |
| 2218 | // specification which says: EITHER grab the maximum available PCR |
| 2219 | // (and perhaps a lower bound which we musn't pass), OR grab this |
| 2220 | // amount, rounding down if you have to (and perhaps a lower bound |
| 2221 | // which we musn't pass) OR grab this amount, rounding up if you |
| 2222 | // have to (and perhaps an upper bound which we musn't pass). If any |
| 2223 | // bounds ARE passed we fail. Note that rounding is only rounding to |
| 2224 | // match device limitations, we do not round down to satisfy |
| 2225 | // bandwidth availability even if this would not violate any given |
| 2226 | // lower bound. |
| 2227 | |
| 2228 | // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s |
| 2229 | // (say) so this is not even a binary fixpoint cell rate (but this |
| 2230 | // device can do it). To avoid this sort of hassle we use a |
| 2231 | // tolerance parameter (currently fixed at 10 cps). |
| 2232 | |
| 2233 | PRINTD (DBG_QOS, "TX:"); |
| 2234 | |
| 2235 | txtp = &qos->txtp; |
| 2236 | |
| 2237 | // set up defaults for no traffic |
| 2238 | vcc.tx_rate = 0; |
| 2239 | // who knows what would actually happen if you try and send on this? |
| 2240 | vcc.tx_xbr_bits = IDLE_RATE_TYPE; |
| 2241 | vcc.tx_pcr_bits = CLOCK_DISABLE; |
| 2242 | #if 0 |
| 2243 | vcc.tx_scr_bits = CLOCK_DISABLE; |
| 2244 | vcc.tx_bucket_bits = 0; |
| 2245 | #endif |
| 2246 | |
| 2247 | if (txtp->traffic_class != ATM_NONE) { |
| 2248 | error = check_max_sdu (vcc.aal, txtp, max_tx_size); |
| 2249 | if (error) { |
| 2250 | PRINTD (DBG_QOS, "TX max_sdu check failed"); |
| 2251 | return error; |
| 2252 | } |
| 2253 | |
| 2254 | switch (txtp->traffic_class) { |
| 2255 | case ATM_UBR: { |
| 2256 | // we take "the PCR" as a rate-cap |
| 2257 | // not reserved |
| 2258 | vcc.tx_rate = 0; |
| 2259 | make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL); |
| 2260 | vcc.tx_xbr_bits = ABR_RATE_TYPE; |
| 2261 | break; |
| 2262 | } |
| 2263 | #if 0 |
| 2264 | case ATM_ABR: { |
| 2265 | // reserve min, allow up to max |
| 2266 | vcc.tx_rate = 0; // ? |
| 2267 | make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0); |
| 2268 | vcc.tx_xbr_bits = ABR_RATE_TYPE; |
| 2269 | break; |
| 2270 | } |
| 2271 | #endif |
| 2272 | case ATM_CBR: { |
| 2273 | int pcr = atm_pcr_goal (txtp); |
| 2274 | rounding r; |
| 2275 | if (!pcr) { |
| 2276 | // down vs. up, remaining bandwidth vs. unlimited bandwidth!! |
| 2277 | // should really have: once someone gets unlimited bandwidth |
| 2278 | // that no more non-UBR channels can be opened until the |
| 2279 | // unlimited one closes?? For the moment, round_down means |
| 2280 | // greedy people actually get something and not nothing |
| 2281 | r = round_down; |
| 2282 | // slight race (no locking) here so we may get -EAGAIN |
| 2283 | // later; the greedy bastards would deserve it :) |
| 2284 | PRINTD (DBG_QOS, "snatching all remaining TX bandwidth"); |
| 2285 | pcr = dev->tx_avail; |
| 2286 | } else if (pcr < 0) { |
| 2287 | r = round_down; |
| 2288 | pcr = -pcr; |
| 2289 | } else { |
| 2290 | r = round_up; |
| 2291 | } |
| 2292 | error = make_rate_with_tolerance (dev, pcr, r, 10, |
| 2293 | &vcc.tx_pcr_bits, &vcc.tx_rate); |
| 2294 | if (error) { |
| 2295 | PRINTD (DBG_QOS, "could not make rate from TX PCR"); |
| 2296 | return error; |
| 2297 | } |
| 2298 | // not really clear what further checking is needed |
| 2299 | error = atm_pcr_check (txtp, vcc.tx_rate); |
| 2300 | if (error) { |
| 2301 | PRINTD (DBG_QOS, "TX PCR failed consistency check"); |
| 2302 | return error; |
| 2303 | } |
| 2304 | vcc.tx_xbr_bits = CBR_RATE_TYPE; |
| 2305 | break; |
| 2306 | } |
| 2307 | #if 0 |
| 2308 | case ATM_VBR: { |
| 2309 | int pcr = atm_pcr_goal (txtp); |
| 2310 | // int scr = atm_scr_goal (txtp); |
| 2311 | int scr = pcr/2; // just for fun |
| 2312 | unsigned int mbs = 60; // just for fun |
| 2313 | rounding pr; |
| 2314 | rounding sr; |
| 2315 | unsigned int bucket; |
| 2316 | if (!pcr) { |
| 2317 | pr = round_nearest; |
| 2318 | pcr = 1<<30; |
| 2319 | } else if (pcr < 0) { |
| 2320 | pr = round_down; |
| 2321 | pcr = -pcr; |
| 2322 | } else { |
| 2323 | pr = round_up; |
| 2324 | } |
| 2325 | error = make_rate_with_tolerance (dev, pcr, pr, 10, |
| 2326 | &vcc.tx_pcr_bits, 0); |
| 2327 | if (!scr) { |
| 2328 | // see comments for PCR with CBR above |
| 2329 | sr = round_down; |
| 2330 | // slight race (no locking) here so we may get -EAGAIN |
| 2331 | // later; the greedy bastards would deserve it :) |
| 2332 | PRINTD (DBG_QOS, "snatching all remaining TX bandwidth"); |
| 2333 | scr = dev->tx_avail; |
| 2334 | } else if (scr < 0) { |
| 2335 | sr = round_down; |
| 2336 | scr = -scr; |
| 2337 | } else { |
| 2338 | sr = round_up; |
| 2339 | } |
| 2340 | error = make_rate_with_tolerance (dev, scr, sr, 10, |
| 2341 | &vcc.tx_scr_bits, &vcc.tx_rate); |
| 2342 | if (error) { |
| 2343 | PRINTD (DBG_QOS, "could not make rate from TX SCR"); |
| 2344 | return error; |
| 2345 | } |
| 2346 | // not really clear what further checking is needed |
| 2347 | // error = atm_scr_check (txtp, vcc.tx_rate); |
| 2348 | if (error) { |
| 2349 | PRINTD (DBG_QOS, "TX SCR failed consistency check"); |
| 2350 | return error; |
| 2351 | } |
| 2352 | // bucket calculations (from a piece of paper...) cell bucket |
| 2353 | // capacity must be largest integer smaller than m(p-s)/p + 1 |
| 2354 | // where m = max burst size, p = pcr, s = scr |
| 2355 | bucket = mbs*(pcr-scr)/pcr; |
| 2356 | if (bucket*pcr != mbs*(pcr-scr)) |
| 2357 | bucket += 1; |
| 2358 | if (bucket > BUCKET_MAX_SIZE) { |
| 2359 | PRINTD (DBG_QOS, "shrinking bucket from %u to %u", |
| 2360 | bucket, BUCKET_MAX_SIZE); |
| 2361 | bucket = BUCKET_MAX_SIZE; |
| 2362 | } |
| 2363 | vcc.tx_xbr_bits = VBR_RATE_TYPE; |
| 2364 | vcc.tx_bucket_bits = bucket; |
| 2365 | break; |
| 2366 | } |
| 2367 | #endif |
| 2368 | default: { |
| 2369 | PRINTD (DBG_QOS, "unsupported TX traffic class"); |
| 2370 | return -EINVAL; |
| 2371 | break; |
| 2372 | } |
| 2373 | } |
| 2374 | } |
| 2375 | |
| 2376 | // RX traffic parameters |
| 2377 | |
| 2378 | PRINTD (DBG_QOS, "RX:"); |
| 2379 | |
| 2380 | rxtp = &qos->rxtp; |
| 2381 | |
| 2382 | // set up defaults for no traffic |
| 2383 | vcc.rx_rate = 0; |
| 2384 | |
| 2385 | if (rxtp->traffic_class != ATM_NONE) { |
| 2386 | error = check_max_sdu (vcc.aal, rxtp, max_rx_size); |
| 2387 | if (error) { |
| 2388 | PRINTD (DBG_QOS, "RX max_sdu check failed"); |
| 2389 | return error; |
| 2390 | } |
| 2391 | switch (rxtp->traffic_class) { |
| 2392 | case ATM_UBR: { |
| 2393 | // not reserved |
| 2394 | break; |
| 2395 | } |
| 2396 | #if 0 |
| 2397 | case ATM_ABR: { |
| 2398 | // reserve min |
| 2399 | vcc.rx_rate = 0; // ? |
| 2400 | break; |
| 2401 | } |
| 2402 | #endif |
| 2403 | case ATM_CBR: { |
| 2404 | int pcr = atm_pcr_goal (rxtp); |
| 2405 | if (!pcr) { |
| 2406 | // slight race (no locking) here so we may get -EAGAIN |
| 2407 | // later; the greedy bastards would deserve it :) |
| 2408 | PRINTD (DBG_QOS, "snatching all remaining RX bandwidth"); |
| 2409 | pcr = dev->rx_avail; |
| 2410 | } else if (pcr < 0) { |
| 2411 | pcr = -pcr; |
| 2412 | } |
| 2413 | vcc.rx_rate = pcr; |
| 2414 | // not really clear what further checking is needed |
| 2415 | error = atm_pcr_check (rxtp, vcc.rx_rate); |
| 2416 | if (error) { |
| 2417 | PRINTD (DBG_QOS, "RX PCR failed consistency check"); |
| 2418 | return error; |
| 2419 | } |
| 2420 | break; |
| 2421 | } |
| 2422 | #if 0 |
| 2423 | case ATM_VBR: { |
| 2424 | // int scr = atm_scr_goal (rxtp); |
| 2425 | int scr = 1<<16; // just for fun |
| 2426 | if (!scr) { |
| 2427 | // slight race (no locking) here so we may get -EAGAIN |
| 2428 | // later; the greedy bastards would deserve it :) |
| 2429 | PRINTD (DBG_QOS, "snatching all remaining RX bandwidth"); |
| 2430 | scr = dev->rx_avail; |
| 2431 | } else if (scr < 0) { |
| 2432 | scr = -scr; |
| 2433 | } |
| 2434 | vcc.rx_rate = scr; |
| 2435 | // not really clear what further checking is needed |
| 2436 | // error = atm_scr_check (rxtp, vcc.rx_rate); |
| 2437 | if (error) { |
| 2438 | PRINTD (DBG_QOS, "RX SCR failed consistency check"); |
| 2439 | return error; |
| 2440 | } |
| 2441 | break; |
| 2442 | } |
| 2443 | #endif |
| 2444 | default: { |
| 2445 | PRINTD (DBG_QOS, "unsupported RX traffic class"); |
| 2446 | return -EINVAL; |
| 2447 | break; |
| 2448 | } |
| 2449 | } |
| 2450 | } |
| 2451 | |
| 2452 | |
| 2453 | // late abort useful for diagnostics |
| 2454 | if (vcc.aal != aal5) { |
| 2455 | PRINTD (DBG_QOS, "AAL not supported"); |
| 2456 | return -EINVAL; |
| 2457 | } |
| 2458 | |
| 2459 | // get space for our vcc stuff and copy parameters into it |
| 2460 | vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL); |
| 2461 | if (!vccp) { |
| 2462 | PRINTK (KERN_ERR, "out of memory!"); |
| 2463 | return -ENOMEM; |
| 2464 | } |
| 2465 | *vccp = vcc; |
| 2466 | |
| 2467 | // clear error and grab cell rate resource lock |
| 2468 | error = 0; |
| 2469 | spin_lock (&dev->rate_lock); |
| 2470 | |
| 2471 | if (vcc.tx_rate > dev->tx_avail) { |
| 2472 | PRINTD (DBG_QOS, "not enough TX PCR left"); |
| 2473 | error = -EAGAIN; |
| 2474 | } |
| 2475 | |
| 2476 | if (vcc.rx_rate > dev->rx_avail) { |
| 2477 | PRINTD (DBG_QOS, "not enough RX PCR left"); |
| 2478 | error = -EAGAIN; |
| 2479 | } |
| 2480 | |
| 2481 | if (!error) { |
| 2482 | // really consume cell rates |
| 2483 | dev->tx_avail -= vcc.tx_rate; |
| 2484 | dev->rx_avail -= vcc.rx_rate; |
| 2485 | PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR", |
| 2486 | vcc.tx_rate, vcc.rx_rate); |
| 2487 | } |
| 2488 | |
| 2489 | // release lock and exit on error |
| 2490 | spin_unlock (&dev->rate_lock); |
| 2491 | if (error) { |
| 2492 | PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources"); |
| 2493 | kfree (vccp); |
| 2494 | return error; |
| 2495 | } |
| 2496 | |
| 2497 | // this is "immediately before allocating the connection identifier |
| 2498 | // in hardware" - so long as the next call does not fail :) |
| 2499 | set_bit(ATM_VF_ADDR,&atm_vcc->flags); |
| 2500 | |
| 2501 | // any errors here are very serious and should never occur |
| 2502 | |
| 2503 | if (rxtp->traffic_class != ATM_NONE) { |
| 2504 | if (dev->rxer[channel]) { |
| 2505 | PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX"); |
| 2506 | error = -EBUSY; |
| 2507 | } |
| 2508 | if (!error) |
| 2509 | error = hrz_open_rx (dev, channel); |
| 2510 | if (error) { |
| 2511 | kfree (vccp); |
| 2512 | return error; |
| 2513 | } |
| 2514 | // this link allows RX frames through |
| 2515 | dev->rxer[channel] = atm_vcc; |
| 2516 | } |
| 2517 | |
| 2518 | // success, set elements of atm_vcc |
| 2519 | atm_vcc->dev_data = (void *) vccp; |
| 2520 | |
| 2521 | // indicate readiness |
| 2522 | set_bit(ATM_VF_READY,&atm_vcc->flags); |
| 2523 | |
| 2524 | return 0; |
| 2525 | } |
| 2526 | |
| 2527 | /********** close VC **********/ |
| 2528 | |
| 2529 | static void hrz_close (struct atm_vcc * atm_vcc) { |
| 2530 | hrz_dev * dev = HRZ_DEV(atm_vcc->dev); |
| 2531 | hrz_vcc * vcc = HRZ_VCC(atm_vcc); |
| 2532 | u16 channel = vcc->channel; |
| 2533 | PRINTD (DBG_VCC|DBG_FLOW, "hrz_close"); |
| 2534 | |
| 2535 | // indicate unreadiness |
| 2536 | clear_bit(ATM_VF_READY,&atm_vcc->flags); |
| 2537 | |
| 2538 | if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) { |
| 2539 | unsigned int i; |
| 2540 | |
| 2541 | // let any TX on this channel that has started complete |
| 2542 | // no restart, just keep trying |
| 2543 | while (tx_hold (dev)) |
| 2544 | ; |
| 2545 | // remove record of any tx_channel having been setup for this channel |
| 2546 | for (i = 0; i < TX_CHANS; ++i) |
| 2547 | if (dev->tx_channel_record[i] == channel) { |
| 2548 | dev->tx_channel_record[i] = -1; |
| 2549 | break; |
| 2550 | } |
| 2551 | if (dev->last_vc == channel) |
| 2552 | dev->tx_last = -1; |
| 2553 | tx_release (dev); |
| 2554 | } |
| 2555 | |
| 2556 | if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) { |
| 2557 | // disable RXing - it tries quite hard |
| 2558 | hrz_close_rx (dev, channel); |
| 2559 | // forget the vcc - no more skbs will be pushed |
| 2560 | if (atm_vcc != dev->rxer[channel]) |
| 2561 | PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p", |
| 2562 | "arghhh! we're going to die!", |
| 2563 | atm_vcc, dev->rxer[channel]); |
| 2564 | dev->rxer[channel] = NULL; |
| 2565 | } |
| 2566 | |
| 2567 | // atomically release our rate reservation |
| 2568 | spin_lock (&dev->rate_lock); |
| 2569 | PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR", |
| 2570 | vcc->tx_rate, vcc->rx_rate); |
| 2571 | dev->tx_avail += vcc->tx_rate; |
| 2572 | dev->rx_avail += vcc->rx_rate; |
| 2573 | spin_unlock (&dev->rate_lock); |
| 2574 | |
| 2575 | // free our structure |
| 2576 | kfree (vcc); |
| 2577 | // say the VPI/VCI is free again |
| 2578 | clear_bit(ATM_VF_ADDR,&atm_vcc->flags); |
| 2579 | } |
| 2580 | |
| 2581 | #if 0 |
| 2582 | static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname, |
| 2583 | void *optval, int optlen) { |
| 2584 | hrz_dev * dev = HRZ_DEV(atm_vcc->dev); |
| 2585 | PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt"); |
| 2586 | switch (level) { |
| 2587 | case SOL_SOCKET: |
| 2588 | switch (optname) { |
| 2589 | // case SO_BCTXOPT: |
| 2590 | // break; |
| 2591 | // case SO_BCRXOPT: |
| 2592 | // break; |
| 2593 | default: |
| 2594 | return -ENOPROTOOPT; |
| 2595 | break; |
| 2596 | }; |
| 2597 | break; |
| 2598 | } |
| 2599 | return -EINVAL; |
| 2600 | } |
| 2601 | |
| 2602 | static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname, |
| 2603 | void *optval, int optlen) { |
| 2604 | hrz_dev * dev = HRZ_DEV(atm_vcc->dev); |
| 2605 | PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt"); |
| 2606 | switch (level) { |
| 2607 | case SOL_SOCKET: |
| 2608 | switch (optname) { |
| 2609 | // case SO_BCTXOPT: |
| 2610 | // break; |
| 2611 | // case SO_BCRXOPT: |
| 2612 | // break; |
| 2613 | default: |
| 2614 | return -ENOPROTOOPT; |
| 2615 | break; |
| 2616 | }; |
| 2617 | break; |
| 2618 | } |
| 2619 | return -EINVAL; |
| 2620 | } |
| 2621 | #endif |
| 2622 | |
| 2623 | #if 0 |
| 2624 | static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) { |
| 2625 | hrz_dev * dev = HRZ_DEV(atm_dev); |
| 2626 | PRINTD (DBG_FLOW, "hrz_ioctl"); |
| 2627 | return -1; |
| 2628 | } |
| 2629 | |
| 2630 | unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) { |
| 2631 | hrz_dev * dev = HRZ_DEV(atm_dev); |
| 2632 | PRINTD (DBG_FLOW, "hrz_phy_get"); |
| 2633 | return 0; |
| 2634 | } |
| 2635 | |
| 2636 | static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value, |
| 2637 | unsigned long addr) { |
| 2638 | hrz_dev * dev = HRZ_DEV(atm_dev); |
| 2639 | PRINTD (DBG_FLOW, "hrz_phy_put"); |
| 2640 | } |
| 2641 | |
| 2642 | static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) { |
| 2643 | hrz_dev * dev = HRZ_DEV(vcc->dev); |
| 2644 | PRINTD (DBG_FLOW, "hrz_change_qos"); |
| 2645 | return -1; |
| 2646 | } |
| 2647 | #endif |
| 2648 | |
| 2649 | /********** proc file contents **********/ |
| 2650 | |
| 2651 | static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) { |
| 2652 | hrz_dev * dev = HRZ_DEV(atm_dev); |
| 2653 | int left = *pos; |
| 2654 | PRINTD (DBG_FLOW, "hrz_proc_read"); |
| 2655 | |
| 2656 | /* more diagnostics here? */ |
| 2657 | |
| 2658 | #if 0 |
| 2659 | if (!left--) { |
| 2660 | unsigned int count = sprintf (page, "vbr buckets:"); |
| 2661 | unsigned int i; |
| 2662 | for (i = 0; i < TX_CHANS; ++i) |
| 2663 | count += sprintf (page, " %u/%u", |
| 2664 | query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS), |
| 2665 | query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS)); |
| 2666 | count += sprintf (page+count, ".\n"); |
| 2667 | return count; |
| 2668 | } |
| 2669 | #endif |
| 2670 | |
| 2671 | if (!left--) |
| 2672 | return sprintf (page, |
| 2673 | "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n", |
| 2674 | dev->tx_cell_count, dev->rx_cell_count, |
| 2675 | dev->hec_error_count, dev->unassigned_cell_count); |
| 2676 | |
| 2677 | if (!left--) |
| 2678 | return sprintf (page, |
| 2679 | "free cell buffers: TX %hu, RX %hu+%hu.\n", |
| 2680 | rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF), |
| 2681 | rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF), |
| 2682 | dev->noof_spare_buffers); |
| 2683 | |
| 2684 | if (!left--) |
| 2685 | return sprintf (page, |
| 2686 | "cps remaining: TX %u, RX %u\n", |
| 2687 | dev->tx_avail, dev->rx_avail); |
| 2688 | |
| 2689 | return 0; |
| 2690 | } |
| 2691 | |
| 2692 | static const struct atmdev_ops hrz_ops = { |
| 2693 | .open = hrz_open, |
| 2694 | .close = hrz_close, |
| 2695 | .send = hrz_send, |
| 2696 | .proc_read = hrz_proc_read, |
| 2697 | .owner = THIS_MODULE, |
| 2698 | }; |
| 2699 | |
| 2700 | static int __devinit hrz_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent) |
| 2701 | { |
| 2702 | hrz_dev * dev; |
| 2703 | int err = 0; |
| 2704 | |
| 2705 | // adapter slot free, read resources from PCI configuration space |
| 2706 | u32 iobase = pci_resource_start (pci_dev, 0); |
| 2707 | u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1)); |
| 2708 | unsigned int irq; |
| 2709 | unsigned char lat; |
| 2710 | |
| 2711 | PRINTD (DBG_FLOW, "hrz_probe"); |
| 2712 | |
| 2713 | if (pci_enable_device(pci_dev)) |
| 2714 | return -EINVAL; |
| 2715 | |
| 2716 | /* XXX DEV_LABEL is a guess */ |
| 2717 | if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) { |
| 2718 | return -EINVAL; |
| 2719 | goto out_disable; |
| 2720 | } |
| 2721 | |
| 2722 | dev = kmalloc(sizeof(hrz_dev), GFP_KERNEL); |
| 2723 | if (!dev) { |
| 2724 | // perhaps we should be nice: deregister all adapters and abort? |
| 2725 | PRINTD(DBG_ERR, "out of memory"); |
| 2726 | err = -ENOMEM; |
| 2727 | goto out_release; |
| 2728 | } |
| 2729 | |
| 2730 | memset(dev, 0, sizeof(hrz_dev)); |
| 2731 | |
| 2732 | pci_set_drvdata(pci_dev, dev); |
| 2733 | |
| 2734 | // grab IRQ and install handler - move this someplace more sensible |
| 2735 | irq = pci_dev->irq; |
| 2736 | if (request_irq(irq, |
| 2737 | interrupt_handler, |
| 2738 | SA_SHIRQ, /* irqflags guess */ |
| 2739 | DEV_LABEL, /* name guess */ |
| 2740 | dev)) { |
| 2741 | PRINTD(DBG_WARN, "request IRQ failed!"); |
| 2742 | err = -EINVAL; |
| 2743 | goto out_free; |
| 2744 | } |
| 2745 | |
| 2746 | PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p", |
| 2747 | iobase, irq, membase); |
| 2748 | |
| 2749 | dev->atm_dev = atm_dev_register(DEV_LABEL, &hrz_ops, -1, NULL); |
| 2750 | if (!(dev->atm_dev)) { |
| 2751 | PRINTD(DBG_ERR, "failed to register Madge ATM adapter"); |
| 2752 | err = -EINVAL; |
| 2753 | goto out_free_irq; |
| 2754 | } |
| 2755 | |
| 2756 | PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p", |
| 2757 | dev->atm_dev->number, dev, dev->atm_dev); |
| 2758 | dev->atm_dev->dev_data = (void *) dev; |
| 2759 | dev->pci_dev = pci_dev; |
| 2760 | |
| 2761 | // enable bus master accesses |
| 2762 | pci_set_master(pci_dev); |
| 2763 | |
| 2764 | // frobnicate latency (upwards, usually) |
| 2765 | pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat); |
| 2766 | if (pci_lat) { |
| 2767 | PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu", |
| 2768 | "changing", lat, pci_lat); |
| 2769 | pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat); |
| 2770 | } else if (lat < MIN_PCI_LATENCY) { |
| 2771 | PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu", |
| 2772 | "increasing", lat, MIN_PCI_LATENCY); |
| 2773 | pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY); |
| 2774 | } |
| 2775 | |
| 2776 | dev->iobase = iobase; |
| 2777 | dev->irq = irq; |
| 2778 | dev->membase = membase; |
| 2779 | |
| 2780 | dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0]; |
| 2781 | dev->rx_q_wrap = &memmap->rx_q_entries[RX_CHANS-1]; |
| 2782 | |
| 2783 | // these next three are performance hacks |
| 2784 | dev->last_vc = -1; |
| 2785 | dev->tx_last = -1; |
| 2786 | dev->tx_idle = 0; |
| 2787 | |
| 2788 | dev->tx_regions = 0; |
| 2789 | dev->tx_bytes = 0; |
| 2790 | dev->tx_skb = NULL; |
| 2791 | dev->tx_iovec = NULL; |
| 2792 | |
| 2793 | dev->tx_cell_count = 0; |
| 2794 | dev->rx_cell_count = 0; |
| 2795 | dev->hec_error_count = 0; |
| 2796 | dev->unassigned_cell_count = 0; |
| 2797 | |
| 2798 | dev->noof_spare_buffers = 0; |
| 2799 | |
| 2800 | { |
| 2801 | unsigned int i; |
| 2802 | for (i = 0; i < TX_CHANS; ++i) |
| 2803 | dev->tx_channel_record[i] = -1; |
| 2804 | } |
| 2805 | |
| 2806 | dev->flags = 0; |
| 2807 | |
| 2808 | // Allocate cell rates and remember ASIC version |
| 2809 | // Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53 |
| 2810 | // Copper: (WRONG) we want 6 into the above, close to 25Mb/s |
| 2811 | // Copper: (plagarise!) 25600000/8/270*260/53 - n/53 |
| 2812 | |
| 2813 | if (hrz_init(dev)) { |
| 2814 | // to be really pedantic, this should be ATM_OC3c_PCR |
| 2815 | dev->tx_avail = ATM_OC3_PCR; |
| 2816 | dev->rx_avail = ATM_OC3_PCR; |
| 2817 | set_bit(ultra, &dev->flags); // NOT "|= ultra" ! |
| 2818 | } else { |
| 2819 | dev->tx_avail = ((25600000/8)*26)/(27*53); |
| 2820 | dev->rx_avail = ((25600000/8)*26)/(27*53); |
| 2821 | PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering."); |
| 2822 | } |
| 2823 | |
| 2824 | // rate changes spinlock |
| 2825 | spin_lock_init(&dev->rate_lock); |
| 2826 | |
| 2827 | // on-board memory access spinlock; we want atomic reads and |
| 2828 | // writes to adapter memory (handles IRQ and SMP) |
| 2829 | spin_lock_init(&dev->mem_lock); |
| 2830 | |
| 2831 | init_waitqueue_head(&dev->tx_queue); |
| 2832 | |
| 2833 | // vpi in 0..4, vci in 6..10 |
| 2834 | dev->atm_dev->ci_range.vpi_bits = vpi_bits; |
| 2835 | dev->atm_dev->ci_range.vci_bits = 10-vpi_bits; |
| 2836 | |
| 2837 | init_timer(&dev->housekeeping); |
| 2838 | dev->housekeeping.function = do_housekeeping; |
| 2839 | dev->housekeeping.data = (unsigned long) dev; |
| 2840 | mod_timer(&dev->housekeeping, jiffies); |
| 2841 | |
| 2842 | out: |
| 2843 | return err; |
| 2844 | |
| 2845 | out_free_irq: |
| 2846 | free_irq(dev->irq, dev); |
| 2847 | out_free: |
| 2848 | kfree(dev); |
| 2849 | out_release: |
| 2850 | release_region(iobase, HRZ_IO_EXTENT); |
| 2851 | out_disable: |
| 2852 | pci_disable_device(pci_dev); |
| 2853 | goto out; |
| 2854 | } |
| 2855 | |
| 2856 | static void __devexit hrz_remove_one(struct pci_dev *pci_dev) |
| 2857 | { |
| 2858 | hrz_dev *dev; |
| 2859 | |
| 2860 | dev = pci_get_drvdata(pci_dev); |
| 2861 | |
| 2862 | PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev); |
| 2863 | del_timer_sync(&dev->housekeeping); |
| 2864 | hrz_reset(dev); |
| 2865 | atm_dev_deregister(dev->atm_dev); |
| 2866 | free_irq(dev->irq, dev); |
| 2867 | release_region(dev->iobase, HRZ_IO_EXTENT); |
| 2868 | kfree(dev); |
| 2869 | |
| 2870 | pci_disable_device(pci_dev); |
| 2871 | } |
| 2872 | |
| 2873 | static void __init hrz_check_args (void) { |
| 2874 | #ifdef DEBUG_HORIZON |
| 2875 | PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK); |
| 2876 | #else |
| 2877 | if (debug) |
| 2878 | PRINTK (KERN_NOTICE, "no debug support in this image"); |
| 2879 | #endif |
| 2880 | |
| 2881 | if (vpi_bits > HRZ_MAX_VPI) |
| 2882 | PRINTK (KERN_ERR, "vpi_bits has been limited to %hu", |
| 2883 | vpi_bits = HRZ_MAX_VPI); |
| 2884 | |
| 2885 | if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT) |
| 2886 | PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu", |
| 2887 | max_tx_size = TX_AAL5_LIMIT); |
| 2888 | |
| 2889 | if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT) |
| 2890 | PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu", |
| 2891 | max_rx_size = RX_AAL5_LIMIT); |
| 2892 | |
| 2893 | return; |
| 2894 | } |
| 2895 | |
| 2896 | MODULE_AUTHOR(maintainer_string); |
| 2897 | MODULE_DESCRIPTION(description_string); |
| 2898 | MODULE_LICENSE("GPL"); |
| 2899 | module_param(debug, ushort, 0644); |
| 2900 | module_param(vpi_bits, ushort, 0); |
| 2901 | module_param(max_tx_size, int, 0); |
| 2902 | module_param(max_rx_size, int, 0); |
| 2903 | module_param(pci_lat, byte, 0); |
| 2904 | MODULE_PARM_DESC(debug, "debug bitmap, see .h file"); |
| 2905 | MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs"); |
| 2906 | MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames"); |
| 2907 | MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames"); |
| 2908 | MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles"); |
| 2909 | |
| 2910 | static struct pci_device_id hrz_pci_tbl[] = { |
| 2911 | { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID, |
| 2912 | 0, 0, 0 }, |
| 2913 | { 0, } |
| 2914 | }; |
| 2915 | |
| 2916 | MODULE_DEVICE_TABLE(pci, hrz_pci_tbl); |
| 2917 | |
| 2918 | static struct pci_driver hrz_driver = { |
| 2919 | .name = "horizon", |
| 2920 | .probe = hrz_probe, |
| 2921 | .remove = __devexit_p(hrz_remove_one), |
| 2922 | .id_table = hrz_pci_tbl, |
| 2923 | }; |
| 2924 | |
| 2925 | /********** module entry **********/ |
| 2926 | |
| 2927 | static int __init hrz_module_init (void) { |
| 2928 | // sanity check - cast is needed since printk does not support %Zu |
| 2929 | if (sizeof(struct MEMMAP) != 128*1024/4) { |
| 2930 | PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).", |
| 2931 | (unsigned long) sizeof(struct MEMMAP)); |
| 2932 | return -ENOMEM; |
| 2933 | } |
| 2934 | |
| 2935 | show_version(); |
| 2936 | |
| 2937 | // check arguments |
| 2938 | hrz_check_args(); |
| 2939 | |
| 2940 | // get the juice |
| 2941 | return pci_register_driver(&hrz_driver); |
| 2942 | } |
| 2943 | |
| 2944 | /********** module exit **********/ |
| 2945 | |
| 2946 | static void __exit hrz_module_exit (void) { |
| 2947 | PRINTD (DBG_FLOW, "cleanup_module"); |
| 2948 | |
| 2949 | return pci_unregister_driver(&hrz_driver); |
| 2950 | } |
| 2951 | |
| 2952 | module_init(hrz_module_init); |
| 2953 | module_exit(hrz_module_exit); |