Darrick J. Wong | baf4bcac | 2016-10-03 09:11:20 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2016 Oracle. All Rights Reserved. |
| 3 | * |
| 4 | * Author: Darrick J. Wong <darrick.wong@oracle.com> |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or |
| 7 | * modify it under the terms of the GNU General Public License |
| 8 | * as published by the Free Software Foundation; either version 2 |
| 9 | * of the License, or (at your option) any later version. |
| 10 | * |
| 11 | * This program is distributed in the hope that it would be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU General Public License |
| 17 | * along with this program; if not, write the Free Software Foundation, |
| 18 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. |
| 19 | */ |
| 20 | #include "xfs.h" |
| 21 | #include "xfs_fs.h" |
| 22 | #include "xfs_format.h" |
| 23 | #include "xfs_log_format.h" |
| 24 | #include "xfs_trans_resv.h" |
Darrick J. Wong | f997ee2 | 2016-10-03 09:11:21 -0700 | [diff] [blame] | 25 | #include "xfs_bit.h" |
Darrick J. Wong | baf4bcac | 2016-10-03 09:11:20 -0700 | [diff] [blame] | 26 | #include "xfs_mount.h" |
Darrick J. Wong | f997ee2 | 2016-10-03 09:11:21 -0700 | [diff] [blame] | 27 | #include "xfs_defer.h" |
Darrick J. Wong | baf4bcac | 2016-10-03 09:11:20 -0700 | [diff] [blame] | 28 | #include "xfs_trans.h" |
| 29 | #include "xfs_trans_priv.h" |
| 30 | #include "xfs_buf_item.h" |
| 31 | #include "xfs_refcount_item.h" |
| 32 | #include "xfs_log.h" |
Darrick J. Wong | f997ee2 | 2016-10-03 09:11:21 -0700 | [diff] [blame] | 33 | #include "xfs_refcount.h" |
Darrick J. Wong | baf4bcac | 2016-10-03 09:11:20 -0700 | [diff] [blame] | 34 | |
| 35 | |
| 36 | kmem_zone_t *xfs_cui_zone; |
| 37 | kmem_zone_t *xfs_cud_zone; |
| 38 | |
| 39 | static inline struct xfs_cui_log_item *CUI_ITEM(struct xfs_log_item *lip) |
| 40 | { |
| 41 | return container_of(lip, struct xfs_cui_log_item, cui_item); |
| 42 | } |
| 43 | |
| 44 | void |
| 45 | xfs_cui_item_free( |
| 46 | struct xfs_cui_log_item *cuip) |
| 47 | { |
| 48 | if (cuip->cui_format.cui_nextents > XFS_CUI_MAX_FAST_EXTENTS) |
| 49 | kmem_free(cuip); |
| 50 | else |
| 51 | kmem_zone_free(xfs_cui_zone, cuip); |
| 52 | } |
| 53 | |
| 54 | STATIC void |
| 55 | xfs_cui_item_size( |
| 56 | struct xfs_log_item *lip, |
| 57 | int *nvecs, |
| 58 | int *nbytes) |
| 59 | { |
| 60 | struct xfs_cui_log_item *cuip = CUI_ITEM(lip); |
| 61 | |
| 62 | *nvecs += 1; |
| 63 | *nbytes += xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents); |
| 64 | } |
| 65 | |
| 66 | /* |
| 67 | * This is called to fill in the vector of log iovecs for the |
| 68 | * given cui log item. We use only 1 iovec, and we point that |
| 69 | * at the cui_log_format structure embedded in the cui item. |
| 70 | * It is at this point that we assert that all of the extent |
| 71 | * slots in the cui item have been filled. |
| 72 | */ |
| 73 | STATIC void |
| 74 | xfs_cui_item_format( |
| 75 | struct xfs_log_item *lip, |
| 76 | struct xfs_log_vec *lv) |
| 77 | { |
| 78 | struct xfs_cui_log_item *cuip = CUI_ITEM(lip); |
| 79 | struct xfs_log_iovec *vecp = NULL; |
| 80 | |
| 81 | ASSERT(atomic_read(&cuip->cui_next_extent) == |
| 82 | cuip->cui_format.cui_nextents); |
| 83 | |
| 84 | cuip->cui_format.cui_type = XFS_LI_CUI; |
| 85 | cuip->cui_format.cui_size = 1; |
| 86 | |
| 87 | xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUI_FORMAT, &cuip->cui_format, |
| 88 | xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents)); |
| 89 | } |
| 90 | |
| 91 | /* |
| 92 | * Pinning has no meaning for an cui item, so just return. |
| 93 | */ |
| 94 | STATIC void |
| 95 | xfs_cui_item_pin( |
| 96 | struct xfs_log_item *lip) |
| 97 | { |
| 98 | } |
| 99 | |
| 100 | /* |
| 101 | * The unpin operation is the last place an CUI is manipulated in the log. It is |
| 102 | * either inserted in the AIL or aborted in the event of a log I/O error. In |
| 103 | * either case, the CUI transaction has been successfully committed to make it |
| 104 | * this far. Therefore, we expect whoever committed the CUI to either construct |
| 105 | * and commit the CUD or drop the CUD's reference in the event of error. Simply |
| 106 | * drop the log's CUI reference now that the log is done with it. |
| 107 | */ |
| 108 | STATIC void |
| 109 | xfs_cui_item_unpin( |
| 110 | struct xfs_log_item *lip, |
| 111 | int remove) |
| 112 | { |
| 113 | struct xfs_cui_log_item *cuip = CUI_ITEM(lip); |
| 114 | |
| 115 | xfs_cui_release(cuip); |
| 116 | } |
| 117 | |
| 118 | /* |
| 119 | * CUI items have no locking or pushing. However, since CUIs are pulled from |
| 120 | * the AIL when their corresponding CUDs are committed to disk, their situation |
| 121 | * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller |
| 122 | * will eventually flush the log. This should help in getting the CUI out of |
| 123 | * the AIL. |
| 124 | */ |
| 125 | STATIC uint |
| 126 | xfs_cui_item_push( |
| 127 | struct xfs_log_item *lip, |
| 128 | struct list_head *buffer_list) |
| 129 | { |
| 130 | return XFS_ITEM_PINNED; |
| 131 | } |
| 132 | |
| 133 | /* |
| 134 | * The CUI has been either committed or aborted if the transaction has been |
| 135 | * cancelled. If the transaction was cancelled, an CUD isn't going to be |
| 136 | * constructed and thus we free the CUI here directly. |
| 137 | */ |
| 138 | STATIC void |
| 139 | xfs_cui_item_unlock( |
| 140 | struct xfs_log_item *lip) |
| 141 | { |
| 142 | if (lip->li_flags & XFS_LI_ABORTED) |
| 143 | xfs_cui_item_free(CUI_ITEM(lip)); |
| 144 | } |
| 145 | |
| 146 | /* |
| 147 | * The CUI is logged only once and cannot be moved in the log, so simply return |
| 148 | * the lsn at which it's been logged. |
| 149 | */ |
| 150 | STATIC xfs_lsn_t |
| 151 | xfs_cui_item_committed( |
| 152 | struct xfs_log_item *lip, |
| 153 | xfs_lsn_t lsn) |
| 154 | { |
| 155 | return lsn; |
| 156 | } |
| 157 | |
| 158 | /* |
| 159 | * The CUI dependency tracking op doesn't do squat. It can't because |
| 160 | * it doesn't know where the free extent is coming from. The dependency |
| 161 | * tracking has to be handled by the "enclosing" metadata object. For |
| 162 | * example, for inodes, the inode is locked throughout the extent freeing |
| 163 | * so the dependency should be recorded there. |
| 164 | */ |
| 165 | STATIC void |
| 166 | xfs_cui_item_committing( |
| 167 | struct xfs_log_item *lip, |
| 168 | xfs_lsn_t lsn) |
| 169 | { |
| 170 | } |
| 171 | |
| 172 | /* |
| 173 | * This is the ops vector shared by all cui log items. |
| 174 | */ |
| 175 | static const struct xfs_item_ops xfs_cui_item_ops = { |
| 176 | .iop_size = xfs_cui_item_size, |
| 177 | .iop_format = xfs_cui_item_format, |
| 178 | .iop_pin = xfs_cui_item_pin, |
| 179 | .iop_unpin = xfs_cui_item_unpin, |
| 180 | .iop_unlock = xfs_cui_item_unlock, |
| 181 | .iop_committed = xfs_cui_item_committed, |
| 182 | .iop_push = xfs_cui_item_push, |
| 183 | .iop_committing = xfs_cui_item_committing, |
| 184 | }; |
| 185 | |
| 186 | /* |
| 187 | * Allocate and initialize an cui item with the given number of extents. |
| 188 | */ |
| 189 | struct xfs_cui_log_item * |
| 190 | xfs_cui_init( |
| 191 | struct xfs_mount *mp, |
| 192 | uint nextents) |
| 193 | |
| 194 | { |
| 195 | struct xfs_cui_log_item *cuip; |
| 196 | |
| 197 | ASSERT(nextents > 0); |
| 198 | if (nextents > XFS_CUI_MAX_FAST_EXTENTS) |
| 199 | cuip = kmem_zalloc(xfs_cui_log_item_sizeof(nextents), |
| 200 | KM_SLEEP); |
| 201 | else |
| 202 | cuip = kmem_zone_zalloc(xfs_cui_zone, KM_SLEEP); |
| 203 | |
| 204 | xfs_log_item_init(mp, &cuip->cui_item, XFS_LI_CUI, &xfs_cui_item_ops); |
| 205 | cuip->cui_format.cui_nextents = nextents; |
| 206 | cuip->cui_format.cui_id = (uintptr_t)(void *)cuip; |
| 207 | atomic_set(&cuip->cui_next_extent, 0); |
| 208 | atomic_set(&cuip->cui_refcount, 2); |
| 209 | |
| 210 | return cuip; |
| 211 | } |
| 212 | |
| 213 | /* |
| 214 | * Freeing the CUI requires that we remove it from the AIL if it has already |
| 215 | * been placed there. However, the CUI may not yet have been placed in the AIL |
| 216 | * when called by xfs_cui_release() from CUD processing due to the ordering of |
| 217 | * committed vs unpin operations in bulk insert operations. Hence the reference |
| 218 | * count to ensure only the last caller frees the CUI. |
| 219 | */ |
| 220 | void |
| 221 | xfs_cui_release( |
| 222 | struct xfs_cui_log_item *cuip) |
| 223 | { |
| 224 | if (atomic_dec_and_test(&cuip->cui_refcount)) { |
| 225 | xfs_trans_ail_remove(&cuip->cui_item, SHUTDOWN_LOG_IO_ERROR); |
| 226 | xfs_cui_item_free(cuip); |
| 227 | } |
| 228 | } |
| 229 | |
| 230 | static inline struct xfs_cud_log_item *CUD_ITEM(struct xfs_log_item *lip) |
| 231 | { |
| 232 | return container_of(lip, struct xfs_cud_log_item, cud_item); |
| 233 | } |
| 234 | |
| 235 | STATIC void |
| 236 | xfs_cud_item_size( |
| 237 | struct xfs_log_item *lip, |
| 238 | int *nvecs, |
| 239 | int *nbytes) |
| 240 | { |
| 241 | *nvecs += 1; |
| 242 | *nbytes += sizeof(struct xfs_cud_log_format); |
| 243 | } |
| 244 | |
| 245 | /* |
| 246 | * This is called to fill in the vector of log iovecs for the |
| 247 | * given cud log item. We use only 1 iovec, and we point that |
| 248 | * at the cud_log_format structure embedded in the cud item. |
| 249 | * It is at this point that we assert that all of the extent |
| 250 | * slots in the cud item have been filled. |
| 251 | */ |
| 252 | STATIC void |
| 253 | xfs_cud_item_format( |
| 254 | struct xfs_log_item *lip, |
| 255 | struct xfs_log_vec *lv) |
| 256 | { |
| 257 | struct xfs_cud_log_item *cudp = CUD_ITEM(lip); |
| 258 | struct xfs_log_iovec *vecp = NULL; |
| 259 | |
| 260 | cudp->cud_format.cud_type = XFS_LI_CUD; |
| 261 | cudp->cud_format.cud_size = 1; |
| 262 | |
| 263 | xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUD_FORMAT, &cudp->cud_format, |
| 264 | sizeof(struct xfs_cud_log_format)); |
| 265 | } |
| 266 | |
| 267 | /* |
| 268 | * Pinning has no meaning for an cud item, so just return. |
| 269 | */ |
| 270 | STATIC void |
| 271 | xfs_cud_item_pin( |
| 272 | struct xfs_log_item *lip) |
| 273 | { |
| 274 | } |
| 275 | |
| 276 | /* |
| 277 | * Since pinning has no meaning for an cud item, unpinning does |
| 278 | * not either. |
| 279 | */ |
| 280 | STATIC void |
| 281 | xfs_cud_item_unpin( |
| 282 | struct xfs_log_item *lip, |
| 283 | int remove) |
| 284 | { |
| 285 | } |
| 286 | |
| 287 | /* |
| 288 | * There isn't much you can do to push on an cud item. It is simply stuck |
| 289 | * waiting for the log to be flushed to disk. |
| 290 | */ |
| 291 | STATIC uint |
| 292 | xfs_cud_item_push( |
| 293 | struct xfs_log_item *lip, |
| 294 | struct list_head *buffer_list) |
| 295 | { |
| 296 | return XFS_ITEM_PINNED; |
| 297 | } |
| 298 | |
| 299 | /* |
| 300 | * The CUD is either committed or aborted if the transaction is cancelled. If |
| 301 | * the transaction is cancelled, drop our reference to the CUI and free the |
| 302 | * CUD. |
| 303 | */ |
| 304 | STATIC void |
| 305 | xfs_cud_item_unlock( |
| 306 | struct xfs_log_item *lip) |
| 307 | { |
| 308 | struct xfs_cud_log_item *cudp = CUD_ITEM(lip); |
| 309 | |
| 310 | if (lip->li_flags & XFS_LI_ABORTED) { |
| 311 | xfs_cui_release(cudp->cud_cuip); |
| 312 | kmem_zone_free(xfs_cud_zone, cudp); |
| 313 | } |
| 314 | } |
| 315 | |
| 316 | /* |
| 317 | * When the cud item is committed to disk, all we need to do is delete our |
| 318 | * reference to our partner cui item and then free ourselves. Since we're |
| 319 | * freeing ourselves we must return -1 to keep the transaction code from |
| 320 | * further referencing this item. |
| 321 | */ |
| 322 | STATIC xfs_lsn_t |
| 323 | xfs_cud_item_committed( |
| 324 | struct xfs_log_item *lip, |
| 325 | xfs_lsn_t lsn) |
| 326 | { |
| 327 | struct xfs_cud_log_item *cudp = CUD_ITEM(lip); |
| 328 | |
| 329 | /* |
| 330 | * Drop the CUI reference regardless of whether the CUD has been |
| 331 | * aborted. Once the CUD transaction is constructed, it is the sole |
| 332 | * responsibility of the CUD to release the CUI (even if the CUI is |
| 333 | * aborted due to log I/O error). |
| 334 | */ |
| 335 | xfs_cui_release(cudp->cud_cuip); |
| 336 | kmem_zone_free(xfs_cud_zone, cudp); |
| 337 | |
| 338 | return (xfs_lsn_t)-1; |
| 339 | } |
| 340 | |
| 341 | /* |
| 342 | * The CUD dependency tracking op doesn't do squat. It can't because |
| 343 | * it doesn't know where the free extent is coming from. The dependency |
| 344 | * tracking has to be handled by the "enclosing" metadata object. For |
| 345 | * example, for inodes, the inode is locked throughout the extent freeing |
| 346 | * so the dependency should be recorded there. |
| 347 | */ |
| 348 | STATIC void |
| 349 | xfs_cud_item_committing( |
| 350 | struct xfs_log_item *lip, |
| 351 | xfs_lsn_t lsn) |
| 352 | { |
| 353 | } |
| 354 | |
| 355 | /* |
| 356 | * This is the ops vector shared by all cud log items. |
| 357 | */ |
| 358 | static const struct xfs_item_ops xfs_cud_item_ops = { |
| 359 | .iop_size = xfs_cud_item_size, |
| 360 | .iop_format = xfs_cud_item_format, |
| 361 | .iop_pin = xfs_cud_item_pin, |
| 362 | .iop_unpin = xfs_cud_item_unpin, |
| 363 | .iop_unlock = xfs_cud_item_unlock, |
| 364 | .iop_committed = xfs_cud_item_committed, |
| 365 | .iop_push = xfs_cud_item_push, |
| 366 | .iop_committing = xfs_cud_item_committing, |
| 367 | }; |
| 368 | |
| 369 | /* |
| 370 | * Allocate and initialize an cud item with the given number of extents. |
| 371 | */ |
| 372 | struct xfs_cud_log_item * |
| 373 | xfs_cud_init( |
| 374 | struct xfs_mount *mp, |
| 375 | struct xfs_cui_log_item *cuip) |
| 376 | |
| 377 | { |
| 378 | struct xfs_cud_log_item *cudp; |
| 379 | |
| 380 | cudp = kmem_zone_zalloc(xfs_cud_zone, KM_SLEEP); |
| 381 | xfs_log_item_init(mp, &cudp->cud_item, XFS_LI_CUD, &xfs_cud_item_ops); |
| 382 | cudp->cud_cuip = cuip; |
| 383 | cudp->cud_format.cud_cui_id = cuip->cui_format.cui_id; |
| 384 | |
| 385 | return cudp; |
| 386 | } |
Darrick J. Wong | f997ee2 | 2016-10-03 09:11:21 -0700 | [diff] [blame] | 387 | |
| 388 | /* |
| 389 | * Process a refcount update intent item that was recovered from the log. |
| 390 | * We need to update the refcountbt. |
| 391 | */ |
| 392 | int |
| 393 | xfs_cui_recover( |
| 394 | struct xfs_mount *mp, |
| 395 | struct xfs_cui_log_item *cuip) |
| 396 | { |
| 397 | int i; |
| 398 | int error = 0; |
Darrick J. Wong | 33ba612 | 2016-10-03 09:11:22 -0700 | [diff] [blame] | 399 | unsigned int refc_type; |
Darrick J. Wong | f997ee2 | 2016-10-03 09:11:21 -0700 | [diff] [blame] | 400 | struct xfs_phys_extent *refc; |
| 401 | xfs_fsblock_t startblock_fsb; |
| 402 | bool op_ok; |
Darrick J. Wong | 33ba612 | 2016-10-03 09:11:22 -0700 | [diff] [blame] | 403 | struct xfs_cud_log_item *cudp; |
| 404 | struct xfs_trans *tp; |
| 405 | struct xfs_btree_cur *rcur = NULL; |
| 406 | enum xfs_refcount_intent_type type; |
| 407 | xfs_fsblock_t firstfsb; |
| 408 | xfs_fsblock_t new_fsb; |
| 409 | xfs_extlen_t new_len; |
| 410 | struct xfs_bmbt_irec irec; |
| 411 | struct xfs_defer_ops dfops; |
| 412 | bool requeue_only = false; |
Darrick J. Wong | f997ee2 | 2016-10-03 09:11:21 -0700 | [diff] [blame] | 413 | |
| 414 | ASSERT(!test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags)); |
| 415 | |
| 416 | /* |
| 417 | * First check the validity of the extents described by the |
| 418 | * CUI. If any are bad, then assume that all are bad and |
| 419 | * just toss the CUI. |
| 420 | */ |
| 421 | for (i = 0; i < cuip->cui_format.cui_nextents; i++) { |
| 422 | refc = &cuip->cui_format.cui_extents[i]; |
| 423 | startblock_fsb = XFS_BB_TO_FSB(mp, |
| 424 | XFS_FSB_TO_DADDR(mp, refc->pe_startblock)); |
| 425 | switch (refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK) { |
| 426 | case XFS_REFCOUNT_INCREASE: |
| 427 | case XFS_REFCOUNT_DECREASE: |
| 428 | case XFS_REFCOUNT_ALLOC_COW: |
| 429 | case XFS_REFCOUNT_FREE_COW: |
| 430 | op_ok = true; |
| 431 | break; |
| 432 | default: |
| 433 | op_ok = false; |
| 434 | break; |
| 435 | } |
| 436 | if (!op_ok || startblock_fsb == 0 || |
| 437 | refc->pe_len == 0 || |
| 438 | startblock_fsb >= mp->m_sb.sb_dblocks || |
| 439 | refc->pe_len >= mp->m_sb.sb_agblocks || |
| 440 | (refc->pe_flags & ~XFS_REFCOUNT_EXTENT_FLAGS)) { |
| 441 | /* |
| 442 | * This will pull the CUI from the AIL and |
| 443 | * free the memory associated with it. |
| 444 | */ |
| 445 | set_bit(XFS_CUI_RECOVERED, &cuip->cui_flags); |
| 446 | xfs_cui_release(cuip); |
| 447 | return -EIO; |
| 448 | } |
| 449 | } |
| 450 | |
Darrick J. Wong | 33ba612 | 2016-10-03 09:11:22 -0700 | [diff] [blame] | 451 | /* |
| 452 | * Under normal operation, refcount updates are deferred, so we |
| 453 | * wouldn't be adding them directly to a transaction. All |
| 454 | * refcount updates manage reservation usage internally and |
| 455 | * dynamically by deferring work that won't fit in the |
| 456 | * transaction. Normally, any work that needs to be deferred |
| 457 | * gets attached to the same defer_ops that scheduled the |
| 458 | * refcount update. However, we're in log recovery here, so we |
| 459 | * we create our own defer_ops and use that to finish up any |
| 460 | * work that doesn't fit. |
| 461 | */ |
| 462 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp); |
| 463 | if (error) |
| 464 | return error; |
| 465 | cudp = xfs_trans_get_cud(tp, cuip); |
| 466 | |
| 467 | xfs_defer_init(&dfops, &firstfsb); |
| 468 | for (i = 0; i < cuip->cui_format.cui_nextents; i++) { |
| 469 | refc = &cuip->cui_format.cui_extents[i]; |
| 470 | refc_type = refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK; |
| 471 | switch (refc_type) { |
| 472 | case XFS_REFCOUNT_INCREASE: |
| 473 | case XFS_REFCOUNT_DECREASE: |
| 474 | case XFS_REFCOUNT_ALLOC_COW: |
| 475 | case XFS_REFCOUNT_FREE_COW: |
| 476 | type = refc_type; |
| 477 | break; |
| 478 | default: |
| 479 | error = -EFSCORRUPTED; |
| 480 | goto abort_error; |
| 481 | } |
| 482 | if (requeue_only) { |
| 483 | new_fsb = refc->pe_startblock; |
| 484 | new_len = refc->pe_len; |
| 485 | } else |
| 486 | error = xfs_trans_log_finish_refcount_update(tp, cudp, |
| 487 | &dfops, type, refc->pe_startblock, refc->pe_len, |
| 488 | &new_fsb, &new_len, &rcur); |
| 489 | if (error) |
| 490 | goto abort_error; |
| 491 | |
| 492 | /* Requeue what we didn't finish. */ |
| 493 | if (new_len > 0) { |
| 494 | irec.br_startblock = new_fsb; |
| 495 | irec.br_blockcount = new_len; |
| 496 | switch (type) { |
| 497 | case XFS_REFCOUNT_INCREASE: |
| 498 | error = xfs_refcount_increase_extent( |
| 499 | tp->t_mountp, &dfops, &irec); |
| 500 | break; |
| 501 | case XFS_REFCOUNT_DECREASE: |
| 502 | error = xfs_refcount_decrease_extent( |
| 503 | tp->t_mountp, &dfops, &irec); |
| 504 | break; |
Darrick J. Wong | 174edb0 | 2016-10-03 09:11:39 -0700 | [diff] [blame] | 505 | case XFS_REFCOUNT_ALLOC_COW: |
| 506 | error = xfs_refcount_alloc_cow_extent( |
| 507 | tp->t_mountp, &dfops, |
| 508 | irec.br_startblock, |
| 509 | irec.br_blockcount); |
| 510 | break; |
| 511 | case XFS_REFCOUNT_FREE_COW: |
| 512 | error = xfs_refcount_free_cow_extent( |
| 513 | tp->t_mountp, &dfops, |
| 514 | irec.br_startblock, |
| 515 | irec.br_blockcount); |
| 516 | break; |
Darrick J. Wong | 33ba612 | 2016-10-03 09:11:22 -0700 | [diff] [blame] | 517 | default: |
| 518 | ASSERT(0); |
| 519 | } |
| 520 | if (error) |
| 521 | goto abort_error; |
| 522 | requeue_only = true; |
| 523 | } |
| 524 | } |
| 525 | |
| 526 | xfs_refcount_finish_one_cleanup(tp, rcur, error); |
| 527 | error = xfs_defer_finish(&tp, &dfops, NULL); |
| 528 | if (error) |
| 529 | goto abort_error; |
Darrick J. Wong | f997ee2 | 2016-10-03 09:11:21 -0700 | [diff] [blame] | 530 | set_bit(XFS_CUI_RECOVERED, &cuip->cui_flags); |
Darrick J. Wong | 33ba612 | 2016-10-03 09:11:22 -0700 | [diff] [blame] | 531 | error = xfs_trans_commit(tp); |
| 532 | return error; |
| 533 | |
| 534 | abort_error: |
| 535 | xfs_refcount_finish_one_cleanup(tp, rcur, error); |
| 536 | xfs_defer_cancel(&dfops); |
| 537 | xfs_trans_cancel(tp); |
Darrick J. Wong | f997ee2 | 2016-10-03 09:11:21 -0700 | [diff] [blame] | 538 | return error; |
| 539 | } |