Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * rrunner.c: Linux driver for the Essential RoadRunner HIPPI board. |
| 3 | * |
| 4 | * Copyright (C) 1998-2002 by Jes Sorensen, <jes@wildopensource.com>. |
| 5 | * |
| 6 | * Thanks to Essential Communication for providing us with hardware |
| 7 | * and very comprehensive documentation without which I would not have |
| 8 | * been able to write this driver. A special thank you to John Gibbon |
| 9 | * for sorting out the legal issues, with the NDA, allowing the code to |
| 10 | * be released under the GPL. |
| 11 | * |
| 12 | * This program is free software; you can redistribute it and/or modify |
| 13 | * it under the terms of the GNU General Public License as published by |
| 14 | * the Free Software Foundation; either version 2 of the License, or |
| 15 | * (at your option) any later version. |
| 16 | * |
| 17 | * Thanks to Jayaram Bhat from ODS/Essential for fixing some of the |
| 18 | * stupid bugs in my code. |
| 19 | * |
| 20 | * Softnet support and various other patches from Val Henson of |
| 21 | * ODS/Essential. |
| 22 | * |
| 23 | * PCI DMA mapping code partly based on work by Francois Romieu. |
| 24 | */ |
| 25 | |
| 26 | |
| 27 | #define DEBUG 1 |
| 28 | #define RX_DMA_SKBUFF 1 |
| 29 | #define PKT_COPY_THRESHOLD 512 |
| 30 | |
| 31 | #include <linux/config.h> |
| 32 | #include <linux/module.h> |
| 33 | #include <linux/types.h> |
| 34 | #include <linux/errno.h> |
| 35 | #include <linux/ioport.h> |
| 36 | #include <linux/pci.h> |
| 37 | #include <linux/kernel.h> |
| 38 | #include <linux/netdevice.h> |
| 39 | #include <linux/hippidevice.h> |
| 40 | #include <linux/skbuff.h> |
| 41 | #include <linux/init.h> |
| 42 | #include <linux/delay.h> |
| 43 | #include <linux/mm.h> |
| 44 | #include <net/sock.h> |
| 45 | |
| 46 | #include <asm/system.h> |
| 47 | #include <asm/cache.h> |
| 48 | #include <asm/byteorder.h> |
| 49 | #include <asm/io.h> |
| 50 | #include <asm/irq.h> |
| 51 | #include <asm/uaccess.h> |
| 52 | |
| 53 | #define rr_if_busy(dev) netif_queue_stopped(dev) |
| 54 | #define rr_if_running(dev) netif_running(dev) |
| 55 | |
| 56 | #include "rrunner.h" |
| 57 | |
| 58 | #define RUN_AT(x) (jiffies + (x)) |
| 59 | |
| 60 | |
| 61 | MODULE_AUTHOR("Jes Sorensen <jes@wildopensource.com>"); |
| 62 | MODULE_DESCRIPTION("Essential RoadRunner HIPPI driver"); |
| 63 | MODULE_LICENSE("GPL"); |
| 64 | |
| 65 | static char version[] __devinitdata = "rrunner.c: v0.50 11/11/2002 Jes Sorensen (jes@wildopensource.com)\n"; |
| 66 | |
| 67 | /* |
| 68 | * Implementation notes: |
| 69 | * |
| 70 | * The DMA engine only allows for DMA within physical 64KB chunks of |
| 71 | * memory. The current approach of the driver (and stack) is to use |
| 72 | * linear blocks of memory for the skbuffs. However, as the data block |
| 73 | * is always the first part of the skb and skbs are 2^n aligned so we |
| 74 | * are guarantted to get the whole block within one 64KB align 64KB |
| 75 | * chunk. |
| 76 | * |
| 77 | * On the long term, relying on being able to allocate 64KB linear |
| 78 | * chunks of memory is not feasible and the skb handling code and the |
| 79 | * stack will need to know about I/O vectors or something similar. |
| 80 | */ |
| 81 | |
| 82 | /* |
| 83 | * These are checked at init time to see if they are at least 256KB |
| 84 | * and increased to 256KB if they are not. This is done to avoid ending |
| 85 | * up with socket buffers smaller than the MTU size, |
| 86 | */ |
| 87 | extern __u32 sysctl_wmem_max; |
| 88 | extern __u32 sysctl_rmem_max; |
| 89 | |
| 90 | static int __devinit rr_init_one(struct pci_dev *pdev, |
| 91 | const struct pci_device_id *ent) |
| 92 | { |
| 93 | struct net_device *dev; |
| 94 | static int version_disp; |
| 95 | u8 pci_latency; |
| 96 | struct rr_private *rrpriv; |
| 97 | void *tmpptr; |
| 98 | dma_addr_t ring_dma; |
| 99 | int ret = -ENOMEM; |
| 100 | |
| 101 | dev = alloc_hippi_dev(sizeof(struct rr_private)); |
| 102 | if (!dev) |
| 103 | goto out3; |
| 104 | |
| 105 | ret = pci_enable_device(pdev); |
| 106 | if (ret) { |
| 107 | ret = -ENODEV; |
| 108 | goto out2; |
| 109 | } |
| 110 | |
| 111 | rrpriv = netdev_priv(dev); |
| 112 | |
| 113 | SET_MODULE_OWNER(dev); |
| 114 | SET_NETDEV_DEV(dev, &pdev->dev); |
| 115 | |
| 116 | if (pci_request_regions(pdev, "rrunner")) { |
| 117 | ret = -EIO; |
| 118 | goto out; |
| 119 | } |
| 120 | |
| 121 | pci_set_drvdata(pdev, dev); |
| 122 | |
| 123 | rrpriv->pci_dev = pdev; |
| 124 | |
| 125 | spin_lock_init(&rrpriv->lock); |
| 126 | |
| 127 | dev->irq = pdev->irq; |
| 128 | dev->open = &rr_open; |
| 129 | dev->hard_start_xmit = &rr_start_xmit; |
| 130 | dev->stop = &rr_close; |
| 131 | dev->get_stats = &rr_get_stats; |
| 132 | dev->do_ioctl = &rr_ioctl; |
| 133 | |
| 134 | dev->base_addr = pci_resource_start(pdev, 0); |
| 135 | |
| 136 | /* display version info if adapter is found */ |
| 137 | if (!version_disp) { |
| 138 | /* set display flag to TRUE so that */ |
| 139 | /* we only display this string ONCE */ |
| 140 | version_disp = 1; |
| 141 | printk(version); |
| 142 | } |
| 143 | |
| 144 | pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency); |
| 145 | if (pci_latency <= 0x58){ |
| 146 | pci_latency = 0x58; |
| 147 | pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency); |
| 148 | } |
| 149 | |
| 150 | pci_set_master(pdev); |
| 151 | |
| 152 | printk(KERN_INFO "%s: Essential RoadRunner serial HIPPI " |
| 153 | "at 0x%08lx, irq %i, PCI latency %i\n", dev->name, |
| 154 | dev->base_addr, dev->irq, pci_latency); |
| 155 | |
| 156 | /* |
| 157 | * Remap the regs into kernel space. |
| 158 | */ |
| 159 | |
| 160 | rrpriv->regs = ioremap(dev->base_addr, 0x1000); |
| 161 | |
| 162 | if (!rrpriv->regs){ |
| 163 | printk(KERN_ERR "%s: Unable to map I/O register, " |
| 164 | "RoadRunner will be disabled.\n", dev->name); |
| 165 | ret = -EIO; |
| 166 | goto out; |
| 167 | } |
| 168 | |
| 169 | tmpptr = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma); |
| 170 | rrpriv->tx_ring = tmpptr; |
| 171 | rrpriv->tx_ring_dma = ring_dma; |
| 172 | |
| 173 | if (!tmpptr) { |
| 174 | ret = -ENOMEM; |
| 175 | goto out; |
| 176 | } |
| 177 | |
| 178 | tmpptr = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma); |
| 179 | rrpriv->rx_ring = tmpptr; |
| 180 | rrpriv->rx_ring_dma = ring_dma; |
| 181 | |
| 182 | if (!tmpptr) { |
| 183 | ret = -ENOMEM; |
| 184 | goto out; |
| 185 | } |
| 186 | |
| 187 | tmpptr = pci_alloc_consistent(pdev, EVT_RING_SIZE, &ring_dma); |
| 188 | rrpriv->evt_ring = tmpptr; |
| 189 | rrpriv->evt_ring_dma = ring_dma; |
| 190 | |
| 191 | if (!tmpptr) { |
| 192 | ret = -ENOMEM; |
| 193 | goto out; |
| 194 | } |
| 195 | |
| 196 | /* |
| 197 | * Don't access any register before this point! |
| 198 | */ |
| 199 | #ifdef __BIG_ENDIAN |
| 200 | writel(readl(&rrpriv->regs->HostCtrl) | NO_SWAP, |
| 201 | &rrpriv->regs->HostCtrl); |
| 202 | #endif |
| 203 | /* |
| 204 | * Need to add a case for little-endian 64-bit hosts here. |
| 205 | */ |
| 206 | |
| 207 | rr_init(dev); |
| 208 | |
| 209 | dev->base_addr = 0; |
| 210 | |
| 211 | ret = register_netdev(dev); |
| 212 | if (ret) |
| 213 | goto out; |
| 214 | return 0; |
| 215 | |
| 216 | out: |
| 217 | if (rrpriv->rx_ring) |
| 218 | pci_free_consistent(pdev, RX_TOTAL_SIZE, rrpriv->rx_ring, |
| 219 | rrpriv->rx_ring_dma); |
| 220 | if (rrpriv->tx_ring) |
| 221 | pci_free_consistent(pdev, TX_TOTAL_SIZE, rrpriv->tx_ring, |
| 222 | rrpriv->tx_ring_dma); |
| 223 | if (rrpriv->regs) |
| 224 | iounmap(rrpriv->regs); |
| 225 | if (pdev) { |
| 226 | pci_release_regions(pdev); |
| 227 | pci_set_drvdata(pdev, NULL); |
| 228 | } |
| 229 | out2: |
| 230 | free_netdev(dev); |
| 231 | out3: |
| 232 | return ret; |
| 233 | } |
| 234 | |
| 235 | static void __devexit rr_remove_one (struct pci_dev *pdev) |
| 236 | { |
| 237 | struct net_device *dev = pci_get_drvdata(pdev); |
| 238 | |
| 239 | if (dev) { |
| 240 | struct rr_private *rr = netdev_priv(dev); |
| 241 | |
| 242 | if (!(readl(&rr->regs->HostCtrl) & NIC_HALTED)){ |
| 243 | printk(KERN_ERR "%s: trying to unload running NIC\n", |
| 244 | dev->name); |
| 245 | writel(HALT_NIC, &rr->regs->HostCtrl); |
| 246 | } |
| 247 | |
| 248 | pci_free_consistent(pdev, EVT_RING_SIZE, rr->evt_ring, |
| 249 | rr->evt_ring_dma); |
| 250 | pci_free_consistent(pdev, RX_TOTAL_SIZE, rr->rx_ring, |
| 251 | rr->rx_ring_dma); |
| 252 | pci_free_consistent(pdev, TX_TOTAL_SIZE, rr->tx_ring, |
| 253 | rr->tx_ring_dma); |
| 254 | unregister_netdev(dev); |
| 255 | iounmap(rr->regs); |
| 256 | free_netdev(dev); |
| 257 | pci_release_regions(pdev); |
| 258 | pci_disable_device(pdev); |
| 259 | pci_set_drvdata(pdev, NULL); |
| 260 | } |
| 261 | } |
| 262 | |
| 263 | |
| 264 | /* |
| 265 | * Commands are considered to be slow, thus there is no reason to |
| 266 | * inline this. |
| 267 | */ |
| 268 | static void rr_issue_cmd(struct rr_private *rrpriv, struct cmd *cmd) |
| 269 | { |
| 270 | struct rr_regs __iomem *regs; |
| 271 | u32 idx; |
| 272 | |
| 273 | regs = rrpriv->regs; |
| 274 | /* |
| 275 | * This is temporary - it will go away in the final version. |
| 276 | * We probably also want to make this function inline. |
| 277 | */ |
| 278 | if (readl(®s->HostCtrl) & NIC_HALTED){ |
| 279 | printk("issuing command for halted NIC, code 0x%x, " |
| 280 | "HostCtrl %08x\n", cmd->code, readl(®s->HostCtrl)); |
| 281 | if (readl(®s->Mode) & FATAL_ERR) |
| 282 | printk("error codes Fail1 %02x, Fail2 %02x\n", |
| 283 | readl(®s->Fail1), readl(®s->Fail2)); |
| 284 | } |
| 285 | |
| 286 | idx = rrpriv->info->cmd_ctrl.pi; |
| 287 | |
| 288 | writel(*(u32*)(cmd), ®s->CmdRing[idx]); |
| 289 | wmb(); |
| 290 | |
| 291 | idx = (idx - 1) % CMD_RING_ENTRIES; |
| 292 | rrpriv->info->cmd_ctrl.pi = idx; |
| 293 | wmb(); |
| 294 | |
| 295 | if (readl(®s->Mode) & FATAL_ERR) |
| 296 | printk("error code %02x\n", readl(®s->Fail1)); |
| 297 | } |
| 298 | |
| 299 | |
| 300 | /* |
| 301 | * Reset the board in a sensible manner. The NIC is already halted |
| 302 | * when we get here and a spin-lock is held. |
| 303 | */ |
| 304 | static int rr_reset(struct net_device *dev) |
| 305 | { |
| 306 | struct rr_private *rrpriv; |
| 307 | struct rr_regs __iomem *regs; |
| 308 | struct eeprom *hw = NULL; |
| 309 | u32 start_pc; |
| 310 | int i; |
| 311 | |
| 312 | rrpriv = netdev_priv(dev); |
| 313 | regs = rrpriv->regs; |
| 314 | |
| 315 | rr_load_firmware(dev); |
| 316 | |
| 317 | writel(0x01000000, ®s->TX_state); |
| 318 | writel(0xff800000, ®s->RX_state); |
| 319 | writel(0, ®s->AssistState); |
| 320 | writel(CLEAR_INTA, ®s->LocalCtrl); |
| 321 | writel(0x01, ®s->BrkPt); |
| 322 | writel(0, ®s->Timer); |
| 323 | writel(0, ®s->TimerRef); |
| 324 | writel(RESET_DMA, ®s->DmaReadState); |
| 325 | writel(RESET_DMA, ®s->DmaWriteState); |
| 326 | writel(0, ®s->DmaWriteHostHi); |
| 327 | writel(0, ®s->DmaWriteHostLo); |
| 328 | writel(0, ®s->DmaReadHostHi); |
| 329 | writel(0, ®s->DmaReadHostLo); |
| 330 | writel(0, ®s->DmaReadLen); |
| 331 | writel(0, ®s->DmaWriteLen); |
| 332 | writel(0, ®s->DmaWriteLcl); |
| 333 | writel(0, ®s->DmaWriteIPchecksum); |
| 334 | writel(0, ®s->DmaReadLcl); |
| 335 | writel(0, ®s->DmaReadIPchecksum); |
| 336 | writel(0, ®s->PciState); |
| 337 | #if (BITS_PER_LONG == 64) && defined __LITTLE_ENDIAN |
| 338 | writel(SWAP_DATA | PTR64BIT | PTR_WD_SWAP, ®s->Mode); |
| 339 | #elif (BITS_PER_LONG == 64) |
| 340 | writel(SWAP_DATA | PTR64BIT | PTR_WD_NOSWAP, ®s->Mode); |
| 341 | #else |
| 342 | writel(SWAP_DATA | PTR32BIT | PTR_WD_NOSWAP, ®s->Mode); |
| 343 | #endif |
| 344 | |
| 345 | #if 0 |
| 346 | /* |
| 347 | * Don't worry, this is just black magic. |
| 348 | */ |
| 349 | writel(0xdf000, ®s->RxBase); |
| 350 | writel(0xdf000, ®s->RxPrd); |
| 351 | writel(0xdf000, ®s->RxCon); |
| 352 | writel(0xce000, ®s->TxBase); |
| 353 | writel(0xce000, ®s->TxPrd); |
| 354 | writel(0xce000, ®s->TxCon); |
| 355 | writel(0, ®s->RxIndPro); |
| 356 | writel(0, ®s->RxIndCon); |
| 357 | writel(0, ®s->RxIndRef); |
| 358 | writel(0, ®s->TxIndPro); |
| 359 | writel(0, ®s->TxIndCon); |
| 360 | writel(0, ®s->TxIndRef); |
| 361 | writel(0xcc000, ®s->pad10[0]); |
| 362 | writel(0, ®s->DrCmndPro); |
| 363 | writel(0, ®s->DrCmndCon); |
| 364 | writel(0, ®s->DwCmndPro); |
| 365 | writel(0, ®s->DwCmndCon); |
| 366 | writel(0, ®s->DwCmndRef); |
| 367 | writel(0, ®s->DrDataPro); |
| 368 | writel(0, ®s->DrDataCon); |
| 369 | writel(0, ®s->DrDataRef); |
| 370 | writel(0, ®s->DwDataPro); |
| 371 | writel(0, ®s->DwDataCon); |
| 372 | writel(0, ®s->DwDataRef); |
| 373 | #endif |
| 374 | |
| 375 | writel(0xffffffff, ®s->MbEvent); |
| 376 | writel(0, ®s->Event); |
| 377 | |
| 378 | writel(0, ®s->TxPi); |
| 379 | writel(0, ®s->IpRxPi); |
| 380 | |
| 381 | writel(0, ®s->EvtCon); |
| 382 | writel(0, ®s->EvtPrd); |
| 383 | |
| 384 | rrpriv->info->evt_ctrl.pi = 0; |
| 385 | |
| 386 | for (i = 0; i < CMD_RING_ENTRIES; i++) |
| 387 | writel(0, ®s->CmdRing[i]); |
| 388 | |
| 389 | /* |
| 390 | * Why 32 ? is this not cache line size dependent? |
| 391 | */ |
| 392 | writel(RBURST_64|WBURST_64, ®s->PciState); |
| 393 | wmb(); |
| 394 | |
| 395 | start_pc = rr_read_eeprom_word(rrpriv, &hw->rncd_info.FwStart); |
| 396 | |
| 397 | #if (DEBUG > 1) |
| 398 | printk("%s: Executing firmware at address 0x%06x\n", |
| 399 | dev->name, start_pc); |
| 400 | #endif |
| 401 | |
| 402 | writel(start_pc + 0x800, ®s->Pc); |
| 403 | wmb(); |
| 404 | udelay(5); |
| 405 | |
| 406 | writel(start_pc, ®s->Pc); |
| 407 | wmb(); |
| 408 | |
| 409 | return 0; |
| 410 | } |
| 411 | |
| 412 | |
| 413 | /* |
| 414 | * Read a string from the EEPROM. |
| 415 | */ |
| 416 | static unsigned int rr_read_eeprom(struct rr_private *rrpriv, |
| 417 | unsigned long offset, |
| 418 | unsigned char *buf, |
| 419 | unsigned long length) |
| 420 | { |
| 421 | struct rr_regs __iomem *regs = rrpriv->regs; |
| 422 | u32 misc, io, host, i; |
| 423 | |
| 424 | io = readl(®s->ExtIo); |
| 425 | writel(0, ®s->ExtIo); |
| 426 | misc = readl(®s->LocalCtrl); |
| 427 | writel(0, ®s->LocalCtrl); |
| 428 | host = readl(®s->HostCtrl); |
| 429 | writel(host | HALT_NIC, ®s->HostCtrl); |
| 430 | mb(); |
| 431 | |
| 432 | for (i = 0; i < length; i++){ |
| 433 | writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase); |
| 434 | mb(); |
| 435 | buf[i] = (readl(®s->WinData) >> 24) & 0xff; |
| 436 | mb(); |
| 437 | } |
| 438 | |
| 439 | writel(host, ®s->HostCtrl); |
| 440 | writel(misc, ®s->LocalCtrl); |
| 441 | writel(io, ®s->ExtIo); |
| 442 | mb(); |
| 443 | return i; |
| 444 | } |
| 445 | |
| 446 | |
| 447 | /* |
| 448 | * Shortcut to read one word (4 bytes) out of the EEPROM and convert |
| 449 | * it to our CPU byte-order. |
| 450 | */ |
| 451 | static u32 rr_read_eeprom_word(struct rr_private *rrpriv, |
| 452 | void * offset) |
| 453 | { |
| 454 | u32 word; |
| 455 | |
| 456 | if ((rr_read_eeprom(rrpriv, (unsigned long)offset, |
| 457 | (char *)&word, 4) == 4)) |
| 458 | return be32_to_cpu(word); |
| 459 | return 0; |
| 460 | } |
| 461 | |
| 462 | |
| 463 | /* |
| 464 | * Write a string to the EEPROM. |
| 465 | * |
| 466 | * This is only called when the firmware is not running. |
| 467 | */ |
| 468 | static unsigned int write_eeprom(struct rr_private *rrpriv, |
| 469 | unsigned long offset, |
| 470 | unsigned char *buf, |
| 471 | unsigned long length) |
| 472 | { |
| 473 | struct rr_regs __iomem *regs = rrpriv->regs; |
| 474 | u32 misc, io, data, i, j, ready, error = 0; |
| 475 | |
| 476 | io = readl(®s->ExtIo); |
| 477 | writel(0, ®s->ExtIo); |
| 478 | misc = readl(®s->LocalCtrl); |
| 479 | writel(ENABLE_EEPROM_WRITE, ®s->LocalCtrl); |
| 480 | mb(); |
| 481 | |
| 482 | for (i = 0; i < length; i++){ |
| 483 | writel((EEPROM_BASE + ((offset+i) << 3)), ®s->WinBase); |
| 484 | mb(); |
| 485 | data = buf[i] << 24; |
| 486 | /* |
| 487 | * Only try to write the data if it is not the same |
| 488 | * value already. |
| 489 | */ |
| 490 | if ((readl(®s->WinData) & 0xff000000) != data){ |
| 491 | writel(data, ®s->WinData); |
| 492 | ready = 0; |
| 493 | j = 0; |
| 494 | mb(); |
| 495 | while(!ready){ |
| 496 | udelay(20); |
| 497 | if ((readl(®s->WinData) & 0xff000000) == |
| 498 | data) |
| 499 | ready = 1; |
| 500 | mb(); |
| 501 | if (j++ > 5000){ |
| 502 | printk("data mismatch: %08x, " |
| 503 | "WinData %08x\n", data, |
| 504 | readl(®s->WinData)); |
| 505 | ready = 1; |
| 506 | error = 1; |
| 507 | } |
| 508 | } |
| 509 | } |
| 510 | } |
| 511 | |
| 512 | writel(misc, ®s->LocalCtrl); |
| 513 | writel(io, ®s->ExtIo); |
| 514 | mb(); |
| 515 | |
| 516 | return error; |
| 517 | } |
| 518 | |
| 519 | |
| 520 | static int __init rr_init(struct net_device *dev) |
| 521 | { |
| 522 | struct rr_private *rrpriv; |
| 523 | struct rr_regs __iomem *regs; |
| 524 | struct eeprom *hw = NULL; |
| 525 | u32 sram_size, rev; |
| 526 | int i; |
| 527 | |
| 528 | rrpriv = netdev_priv(dev); |
| 529 | regs = rrpriv->regs; |
| 530 | |
| 531 | rev = readl(®s->FwRev); |
| 532 | rrpriv->fw_rev = rev; |
| 533 | if (rev > 0x00020024) |
| 534 | printk(" Firmware revision: %i.%i.%i\n", (rev >> 16), |
| 535 | ((rev >> 8) & 0xff), (rev & 0xff)); |
| 536 | else if (rev >= 0x00020000) { |
| 537 | printk(" Firmware revision: %i.%i.%i (2.0.37 or " |
| 538 | "later is recommended)\n", (rev >> 16), |
| 539 | ((rev >> 8) & 0xff), (rev & 0xff)); |
| 540 | }else{ |
| 541 | printk(" Firmware revision too old: %i.%i.%i, please " |
| 542 | "upgrade to 2.0.37 or later.\n", |
| 543 | (rev >> 16), ((rev >> 8) & 0xff), (rev & 0xff)); |
| 544 | } |
| 545 | |
| 546 | #if (DEBUG > 2) |
| 547 | printk(" Maximum receive rings %i\n", readl(®s->MaxRxRng)); |
| 548 | #endif |
| 549 | |
| 550 | /* |
| 551 | * Read the hardware address from the eeprom. The HW address |
| 552 | * is not really necessary for HIPPI but awfully convenient. |
| 553 | * The pointer arithmetic to put it in dev_addr is ugly, but |
| 554 | * Donald Becker does it this way for the GigE version of this |
| 555 | * card and it's shorter and more portable than any |
| 556 | * other method I've seen. -VAL |
| 557 | */ |
| 558 | |
| 559 | *(u16 *)(dev->dev_addr) = |
| 560 | htons(rr_read_eeprom_word(rrpriv, &hw->manf.BoardULA)); |
| 561 | *(u32 *)(dev->dev_addr+2) = |
| 562 | htonl(rr_read_eeprom_word(rrpriv, &hw->manf.BoardULA[4])); |
| 563 | |
| 564 | printk(" MAC: "); |
| 565 | |
| 566 | for (i = 0; i < 5; i++) |
| 567 | printk("%2.2x:", dev->dev_addr[i]); |
| 568 | printk("%2.2x\n", dev->dev_addr[i]); |
| 569 | |
| 570 | sram_size = rr_read_eeprom_word(rrpriv, (void *)8); |
| 571 | printk(" SRAM size 0x%06x\n", sram_size); |
| 572 | |
| 573 | if (sysctl_rmem_max < 262144){ |
| 574 | printk(" Receive socket buffer limit too low (%i), " |
| 575 | "setting to 262144\n", sysctl_rmem_max); |
| 576 | sysctl_rmem_max = 262144; |
| 577 | } |
| 578 | |
| 579 | if (sysctl_wmem_max < 262144){ |
| 580 | printk(" Transmit socket buffer limit too low (%i), " |
| 581 | "setting to 262144\n", sysctl_wmem_max); |
| 582 | sysctl_wmem_max = 262144; |
| 583 | } |
| 584 | |
| 585 | return 0; |
| 586 | } |
| 587 | |
| 588 | |
| 589 | static int rr_init1(struct net_device *dev) |
| 590 | { |
| 591 | struct rr_private *rrpriv; |
| 592 | struct rr_regs __iomem *regs; |
| 593 | unsigned long myjif, flags; |
| 594 | struct cmd cmd; |
| 595 | u32 hostctrl; |
| 596 | int ecode = 0; |
| 597 | short i; |
| 598 | |
| 599 | rrpriv = netdev_priv(dev); |
| 600 | regs = rrpriv->regs; |
| 601 | |
| 602 | spin_lock_irqsave(&rrpriv->lock, flags); |
| 603 | |
| 604 | hostctrl = readl(®s->HostCtrl); |
| 605 | writel(hostctrl | HALT_NIC | RR_CLEAR_INT, ®s->HostCtrl); |
| 606 | wmb(); |
| 607 | |
| 608 | if (hostctrl & PARITY_ERR){ |
| 609 | printk("%s: Parity error halting NIC - this is serious!\n", |
| 610 | dev->name); |
| 611 | spin_unlock_irqrestore(&rrpriv->lock, flags); |
| 612 | ecode = -EFAULT; |
| 613 | goto error; |
| 614 | } |
| 615 | |
| 616 | set_rxaddr(regs, rrpriv->rx_ctrl_dma); |
| 617 | set_infoaddr(regs, rrpriv->info_dma); |
| 618 | |
| 619 | rrpriv->info->evt_ctrl.entry_size = sizeof(struct event); |
| 620 | rrpriv->info->evt_ctrl.entries = EVT_RING_ENTRIES; |
| 621 | rrpriv->info->evt_ctrl.mode = 0; |
| 622 | rrpriv->info->evt_ctrl.pi = 0; |
| 623 | set_rraddr(&rrpriv->info->evt_ctrl.rngptr, rrpriv->evt_ring_dma); |
| 624 | |
| 625 | rrpriv->info->cmd_ctrl.entry_size = sizeof(struct cmd); |
| 626 | rrpriv->info->cmd_ctrl.entries = CMD_RING_ENTRIES; |
| 627 | rrpriv->info->cmd_ctrl.mode = 0; |
| 628 | rrpriv->info->cmd_ctrl.pi = 15; |
| 629 | |
| 630 | for (i = 0; i < CMD_RING_ENTRIES; i++) { |
| 631 | writel(0, ®s->CmdRing[i]); |
| 632 | } |
| 633 | |
| 634 | for (i = 0; i < TX_RING_ENTRIES; i++) { |
| 635 | rrpriv->tx_ring[i].size = 0; |
| 636 | set_rraddr(&rrpriv->tx_ring[i].addr, 0); |
| 637 | rrpriv->tx_skbuff[i] = NULL; |
| 638 | } |
| 639 | rrpriv->info->tx_ctrl.entry_size = sizeof(struct tx_desc); |
| 640 | rrpriv->info->tx_ctrl.entries = TX_RING_ENTRIES; |
| 641 | rrpriv->info->tx_ctrl.mode = 0; |
| 642 | rrpriv->info->tx_ctrl.pi = 0; |
| 643 | set_rraddr(&rrpriv->info->tx_ctrl.rngptr, rrpriv->tx_ring_dma); |
| 644 | |
| 645 | /* |
| 646 | * Set dirty_tx before we start receiving interrupts, otherwise |
| 647 | * the interrupt handler might think it is supposed to process |
| 648 | * tx ints before we are up and running, which may cause a null |
| 649 | * pointer access in the int handler. |
| 650 | */ |
| 651 | rrpriv->tx_full = 0; |
| 652 | rrpriv->cur_rx = 0; |
| 653 | rrpriv->dirty_rx = rrpriv->dirty_tx = 0; |
| 654 | |
| 655 | rr_reset(dev); |
| 656 | |
| 657 | /* Tuning values */ |
| 658 | writel(0x5000, ®s->ConRetry); |
| 659 | writel(0x100, ®s->ConRetryTmr); |
| 660 | writel(0x500000, ®s->ConTmout); |
| 661 | writel(0x60, ®s->IntrTmr); |
| 662 | writel(0x500000, ®s->TxDataMvTimeout); |
| 663 | writel(0x200000, ®s->RxDataMvTimeout); |
| 664 | writel(0x80, ®s->WriteDmaThresh); |
| 665 | writel(0x80, ®s->ReadDmaThresh); |
| 666 | |
| 667 | rrpriv->fw_running = 0; |
| 668 | wmb(); |
| 669 | |
| 670 | hostctrl &= ~(HALT_NIC | INVALID_INST_B | PARITY_ERR); |
| 671 | writel(hostctrl, ®s->HostCtrl); |
| 672 | wmb(); |
| 673 | |
| 674 | spin_unlock_irqrestore(&rrpriv->lock, flags); |
| 675 | |
| 676 | for (i = 0; i < RX_RING_ENTRIES; i++) { |
| 677 | struct sk_buff *skb; |
| 678 | dma_addr_t addr; |
| 679 | |
| 680 | rrpriv->rx_ring[i].mode = 0; |
| 681 | skb = alloc_skb(dev->mtu + HIPPI_HLEN, GFP_ATOMIC); |
| 682 | if (!skb) { |
| 683 | printk(KERN_WARNING "%s: Unable to allocate memory " |
| 684 | "for receive ring - halting NIC\n", dev->name); |
| 685 | ecode = -ENOMEM; |
| 686 | goto error; |
| 687 | } |
| 688 | rrpriv->rx_skbuff[i] = skb; |
| 689 | addr = pci_map_single(rrpriv->pci_dev, skb->data, |
| 690 | dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE); |
| 691 | /* |
| 692 | * Sanity test to see if we conflict with the DMA |
| 693 | * limitations of the Roadrunner. |
| 694 | */ |
| 695 | if ((((unsigned long)skb->data) & 0xfff) > ~65320) |
| 696 | printk("skb alloc error\n"); |
| 697 | |
| 698 | set_rraddr(&rrpriv->rx_ring[i].addr, addr); |
| 699 | rrpriv->rx_ring[i].size = dev->mtu + HIPPI_HLEN; |
| 700 | } |
| 701 | |
| 702 | rrpriv->rx_ctrl[4].entry_size = sizeof(struct rx_desc); |
| 703 | rrpriv->rx_ctrl[4].entries = RX_RING_ENTRIES; |
| 704 | rrpriv->rx_ctrl[4].mode = 8; |
| 705 | rrpriv->rx_ctrl[4].pi = 0; |
| 706 | wmb(); |
| 707 | set_rraddr(&rrpriv->rx_ctrl[4].rngptr, rrpriv->rx_ring_dma); |
| 708 | |
| 709 | udelay(1000); |
| 710 | |
| 711 | /* |
| 712 | * Now start the FirmWare. |
| 713 | */ |
| 714 | cmd.code = C_START_FW; |
| 715 | cmd.ring = 0; |
| 716 | cmd.index = 0; |
| 717 | |
| 718 | rr_issue_cmd(rrpriv, &cmd); |
| 719 | |
| 720 | /* |
| 721 | * Give the FirmWare time to chew on the `get running' command. |
| 722 | */ |
| 723 | myjif = jiffies + 5 * HZ; |
| 724 | while (time_before(jiffies, myjif) && !rrpriv->fw_running) |
| 725 | cpu_relax(); |
| 726 | |
| 727 | netif_start_queue(dev); |
| 728 | |
| 729 | return ecode; |
| 730 | |
| 731 | error: |
| 732 | /* |
| 733 | * We might have gotten here because we are out of memory, |
| 734 | * make sure we release everything we allocated before failing |
| 735 | */ |
| 736 | for (i = 0; i < RX_RING_ENTRIES; i++) { |
| 737 | struct sk_buff *skb = rrpriv->rx_skbuff[i]; |
| 738 | |
| 739 | if (skb) { |
| 740 | pci_unmap_single(rrpriv->pci_dev, |
| 741 | rrpriv->rx_ring[i].addr.addrlo, |
| 742 | dev->mtu + HIPPI_HLEN, |
| 743 | PCI_DMA_FROMDEVICE); |
| 744 | rrpriv->rx_ring[i].size = 0; |
| 745 | set_rraddr(&rrpriv->rx_ring[i].addr, 0); |
| 746 | dev_kfree_skb(skb); |
| 747 | rrpriv->rx_skbuff[i] = NULL; |
| 748 | } |
| 749 | } |
| 750 | return ecode; |
| 751 | } |
| 752 | |
| 753 | |
| 754 | /* |
| 755 | * All events are considered to be slow (RX/TX ints do not generate |
| 756 | * events) and are handled here, outside the main interrupt handler, |
| 757 | * to reduce the size of the handler. |
| 758 | */ |
| 759 | static u32 rr_handle_event(struct net_device *dev, u32 prodidx, u32 eidx) |
| 760 | { |
| 761 | struct rr_private *rrpriv; |
| 762 | struct rr_regs __iomem *regs; |
| 763 | u32 tmp; |
| 764 | |
| 765 | rrpriv = netdev_priv(dev); |
| 766 | regs = rrpriv->regs; |
| 767 | |
| 768 | while (prodidx != eidx){ |
| 769 | switch (rrpriv->evt_ring[eidx].code){ |
| 770 | case E_NIC_UP: |
| 771 | tmp = readl(®s->FwRev); |
| 772 | printk(KERN_INFO "%s: Firmware revision %i.%i.%i " |
| 773 | "up and running\n", dev->name, |
| 774 | (tmp >> 16), ((tmp >> 8) & 0xff), (tmp & 0xff)); |
| 775 | rrpriv->fw_running = 1; |
| 776 | writel(RX_RING_ENTRIES - 1, ®s->IpRxPi); |
| 777 | wmb(); |
| 778 | break; |
| 779 | case E_LINK_ON: |
| 780 | printk(KERN_INFO "%s: Optical link ON\n", dev->name); |
| 781 | break; |
| 782 | case E_LINK_OFF: |
| 783 | printk(KERN_INFO "%s: Optical link OFF\n", dev->name); |
| 784 | break; |
| 785 | case E_RX_IDLE: |
| 786 | printk(KERN_WARNING "%s: RX data not moving\n", |
| 787 | dev->name); |
| 788 | goto drop; |
| 789 | case E_WATCHDOG: |
| 790 | printk(KERN_INFO "%s: The watchdog is here to see " |
| 791 | "us\n", dev->name); |
| 792 | break; |
| 793 | case E_INTERN_ERR: |
| 794 | printk(KERN_ERR "%s: HIPPI Internal NIC error\n", |
| 795 | dev->name); |
| 796 | writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, |
| 797 | ®s->HostCtrl); |
| 798 | wmb(); |
| 799 | break; |
| 800 | case E_HOST_ERR: |
| 801 | printk(KERN_ERR "%s: Host software error\n", |
| 802 | dev->name); |
| 803 | writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, |
| 804 | ®s->HostCtrl); |
| 805 | wmb(); |
| 806 | break; |
| 807 | /* |
| 808 | * TX events. |
| 809 | */ |
| 810 | case E_CON_REJ: |
| 811 | printk(KERN_WARNING "%s: Connection rejected\n", |
| 812 | dev->name); |
| 813 | rrpriv->stats.tx_aborted_errors++; |
| 814 | break; |
| 815 | case E_CON_TMOUT: |
| 816 | printk(KERN_WARNING "%s: Connection timeout\n", |
| 817 | dev->name); |
| 818 | break; |
| 819 | case E_DISC_ERR: |
| 820 | printk(KERN_WARNING "%s: HIPPI disconnect error\n", |
| 821 | dev->name); |
| 822 | rrpriv->stats.tx_aborted_errors++; |
| 823 | break; |
| 824 | case E_INT_PRTY: |
| 825 | printk(KERN_ERR "%s: HIPPI Internal Parity error\n", |
| 826 | dev->name); |
| 827 | writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, |
| 828 | ®s->HostCtrl); |
| 829 | wmb(); |
| 830 | break; |
| 831 | case E_TX_IDLE: |
| 832 | printk(KERN_WARNING "%s: Transmitter idle\n", |
| 833 | dev->name); |
| 834 | break; |
| 835 | case E_TX_LINK_DROP: |
| 836 | printk(KERN_WARNING "%s: Link lost during transmit\n", |
| 837 | dev->name); |
| 838 | rrpriv->stats.tx_aborted_errors++; |
| 839 | writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, |
| 840 | ®s->HostCtrl); |
| 841 | wmb(); |
| 842 | break; |
| 843 | case E_TX_INV_RNG: |
| 844 | printk(KERN_ERR "%s: Invalid send ring block\n", |
| 845 | dev->name); |
| 846 | writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, |
| 847 | ®s->HostCtrl); |
| 848 | wmb(); |
| 849 | break; |
| 850 | case E_TX_INV_BUF: |
| 851 | printk(KERN_ERR "%s: Invalid send buffer address\n", |
| 852 | dev->name); |
| 853 | writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, |
| 854 | ®s->HostCtrl); |
| 855 | wmb(); |
| 856 | break; |
| 857 | case E_TX_INV_DSC: |
| 858 | printk(KERN_ERR "%s: Invalid descriptor address\n", |
| 859 | dev->name); |
| 860 | writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, |
| 861 | ®s->HostCtrl); |
| 862 | wmb(); |
| 863 | break; |
| 864 | /* |
| 865 | * RX events. |
| 866 | */ |
| 867 | case E_RX_RNG_OUT: |
| 868 | printk(KERN_INFO "%s: Receive ring full\n", dev->name); |
| 869 | break; |
| 870 | |
| 871 | case E_RX_PAR_ERR: |
| 872 | printk(KERN_WARNING "%s: Receive parity error\n", |
| 873 | dev->name); |
| 874 | goto drop; |
| 875 | case E_RX_LLRC_ERR: |
| 876 | printk(KERN_WARNING "%s: Receive LLRC error\n", |
| 877 | dev->name); |
| 878 | goto drop; |
| 879 | case E_PKT_LN_ERR: |
| 880 | printk(KERN_WARNING "%s: Receive packet length " |
| 881 | "error\n", dev->name); |
| 882 | goto drop; |
| 883 | case E_DTA_CKSM_ERR: |
| 884 | printk(KERN_WARNING "%s: Data checksum error\n", |
| 885 | dev->name); |
| 886 | goto drop; |
| 887 | case E_SHT_BST: |
| 888 | printk(KERN_WARNING "%s: Unexpected short burst " |
| 889 | "error\n", dev->name); |
| 890 | goto drop; |
| 891 | case E_STATE_ERR: |
| 892 | printk(KERN_WARNING "%s: Recv. state transition" |
| 893 | " error\n", dev->name); |
| 894 | goto drop; |
| 895 | case E_UNEXP_DATA: |
| 896 | printk(KERN_WARNING "%s: Unexpected data error\n", |
| 897 | dev->name); |
| 898 | goto drop; |
| 899 | case E_LST_LNK_ERR: |
| 900 | printk(KERN_WARNING "%s: Link lost error\n", |
| 901 | dev->name); |
| 902 | goto drop; |
| 903 | case E_FRM_ERR: |
| 904 | printk(KERN_WARNING "%s: Framming Error\n", |
| 905 | dev->name); |
| 906 | goto drop; |
| 907 | case E_FLG_SYN_ERR: |
| 908 | printk(KERN_WARNING "%s: Flag sync. lost during" |
| 909 | "packet\n", dev->name); |
| 910 | goto drop; |
| 911 | case E_RX_INV_BUF: |
| 912 | printk(KERN_ERR "%s: Invalid receive buffer " |
| 913 | "address\n", dev->name); |
| 914 | writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, |
| 915 | ®s->HostCtrl); |
| 916 | wmb(); |
| 917 | break; |
| 918 | case E_RX_INV_DSC: |
| 919 | printk(KERN_ERR "%s: Invalid receive descriptor " |
| 920 | "address\n", dev->name); |
| 921 | writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, |
| 922 | ®s->HostCtrl); |
| 923 | wmb(); |
| 924 | break; |
| 925 | case E_RNG_BLK: |
| 926 | printk(KERN_ERR "%s: Invalid ring block\n", |
| 927 | dev->name); |
| 928 | writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, |
| 929 | ®s->HostCtrl); |
| 930 | wmb(); |
| 931 | break; |
| 932 | drop: |
| 933 | /* Label packet to be dropped. |
| 934 | * Actual dropping occurs in rx |
| 935 | * handling. |
| 936 | * |
| 937 | * The index of packet we get to drop is |
| 938 | * the index of the packet following |
| 939 | * the bad packet. -kbf |
| 940 | */ |
| 941 | { |
| 942 | u16 index = rrpriv->evt_ring[eidx].index; |
| 943 | index = (index + (RX_RING_ENTRIES - 1)) % |
| 944 | RX_RING_ENTRIES; |
| 945 | rrpriv->rx_ring[index].mode |= |
| 946 | (PACKET_BAD | PACKET_END); |
| 947 | } |
| 948 | break; |
| 949 | default: |
| 950 | printk(KERN_WARNING "%s: Unhandled event 0x%02x\n", |
| 951 | dev->name, rrpriv->evt_ring[eidx].code); |
| 952 | } |
| 953 | eidx = (eidx + 1) % EVT_RING_ENTRIES; |
| 954 | } |
| 955 | |
| 956 | rrpriv->info->evt_ctrl.pi = eidx; |
| 957 | wmb(); |
| 958 | return eidx; |
| 959 | } |
| 960 | |
| 961 | |
| 962 | static void rx_int(struct net_device *dev, u32 rxlimit, u32 index) |
| 963 | { |
| 964 | struct rr_private *rrpriv = netdev_priv(dev); |
| 965 | struct rr_regs __iomem *regs = rrpriv->regs; |
| 966 | |
| 967 | do { |
| 968 | struct rx_desc *desc; |
| 969 | u32 pkt_len; |
| 970 | |
| 971 | desc = &(rrpriv->rx_ring[index]); |
| 972 | pkt_len = desc->size; |
| 973 | #if (DEBUG > 2) |
| 974 | printk("index %i, rxlimit %i\n", index, rxlimit); |
| 975 | printk("len %x, mode %x\n", pkt_len, desc->mode); |
| 976 | #endif |
| 977 | if ( (rrpriv->rx_ring[index].mode & PACKET_BAD) == PACKET_BAD){ |
| 978 | rrpriv->stats.rx_dropped++; |
| 979 | goto defer; |
| 980 | } |
| 981 | |
| 982 | if (pkt_len > 0){ |
| 983 | struct sk_buff *skb, *rx_skb; |
| 984 | |
| 985 | rx_skb = rrpriv->rx_skbuff[index]; |
| 986 | |
| 987 | if (pkt_len < PKT_COPY_THRESHOLD) { |
| 988 | skb = alloc_skb(pkt_len, GFP_ATOMIC); |
| 989 | if (skb == NULL){ |
| 990 | printk(KERN_WARNING "%s: Unable to allocate skb (%i bytes), deferring packet\n", dev->name, pkt_len); |
| 991 | rrpriv->stats.rx_dropped++; |
| 992 | goto defer; |
| 993 | } else { |
| 994 | pci_dma_sync_single_for_cpu(rrpriv->pci_dev, |
| 995 | desc->addr.addrlo, |
| 996 | pkt_len, |
| 997 | PCI_DMA_FROMDEVICE); |
| 998 | |
| 999 | memcpy(skb_put(skb, pkt_len), |
| 1000 | rx_skb->data, pkt_len); |
| 1001 | |
| 1002 | pci_dma_sync_single_for_device(rrpriv->pci_dev, |
| 1003 | desc->addr.addrlo, |
| 1004 | pkt_len, |
| 1005 | PCI_DMA_FROMDEVICE); |
| 1006 | } |
| 1007 | }else{ |
| 1008 | struct sk_buff *newskb; |
| 1009 | |
| 1010 | newskb = alloc_skb(dev->mtu + HIPPI_HLEN, |
| 1011 | GFP_ATOMIC); |
| 1012 | if (newskb){ |
| 1013 | dma_addr_t addr; |
| 1014 | |
| 1015 | pci_unmap_single(rrpriv->pci_dev, |
| 1016 | desc->addr.addrlo, dev->mtu + |
| 1017 | HIPPI_HLEN, PCI_DMA_FROMDEVICE); |
| 1018 | skb = rx_skb; |
| 1019 | skb_put(skb, pkt_len); |
| 1020 | rrpriv->rx_skbuff[index] = newskb; |
| 1021 | addr = pci_map_single(rrpriv->pci_dev, |
| 1022 | newskb->data, |
| 1023 | dev->mtu + HIPPI_HLEN, |
| 1024 | PCI_DMA_FROMDEVICE); |
| 1025 | set_rraddr(&desc->addr, addr); |
| 1026 | } else { |
| 1027 | printk("%s: Out of memory, deferring " |
| 1028 | "packet\n", dev->name); |
| 1029 | rrpriv->stats.rx_dropped++; |
| 1030 | goto defer; |
| 1031 | } |
| 1032 | } |
| 1033 | skb->dev = dev; |
| 1034 | skb->protocol = hippi_type_trans(skb, dev); |
| 1035 | |
| 1036 | netif_rx(skb); /* send it up */ |
| 1037 | |
| 1038 | dev->last_rx = jiffies; |
| 1039 | rrpriv->stats.rx_packets++; |
| 1040 | rrpriv->stats.rx_bytes += pkt_len; |
| 1041 | } |
| 1042 | defer: |
| 1043 | desc->mode = 0; |
| 1044 | desc->size = dev->mtu + HIPPI_HLEN; |
| 1045 | |
| 1046 | if ((index & 7) == 7) |
| 1047 | writel(index, ®s->IpRxPi); |
| 1048 | |
| 1049 | index = (index + 1) % RX_RING_ENTRIES; |
| 1050 | } while(index != rxlimit); |
| 1051 | |
| 1052 | rrpriv->cur_rx = index; |
| 1053 | wmb(); |
| 1054 | } |
| 1055 | |
| 1056 | |
| 1057 | static irqreturn_t rr_interrupt(int irq, void *dev_id, struct pt_regs *ptregs) |
| 1058 | { |
| 1059 | struct rr_private *rrpriv; |
| 1060 | struct rr_regs __iomem *regs; |
| 1061 | struct net_device *dev = (struct net_device *)dev_id; |
| 1062 | u32 prodidx, rxindex, eidx, txcsmr, rxlimit, txcon; |
| 1063 | |
| 1064 | rrpriv = netdev_priv(dev); |
| 1065 | regs = rrpriv->regs; |
| 1066 | |
| 1067 | if (!(readl(®s->HostCtrl) & RR_INT)) |
| 1068 | return IRQ_NONE; |
| 1069 | |
| 1070 | spin_lock(&rrpriv->lock); |
| 1071 | |
| 1072 | prodidx = readl(®s->EvtPrd); |
| 1073 | txcsmr = (prodidx >> 8) & 0xff; |
| 1074 | rxlimit = (prodidx >> 16) & 0xff; |
| 1075 | prodidx &= 0xff; |
| 1076 | |
| 1077 | #if (DEBUG > 2) |
| 1078 | printk("%s: interrupt, prodidx = %i, eidx = %i\n", dev->name, |
| 1079 | prodidx, rrpriv->info->evt_ctrl.pi); |
| 1080 | #endif |
| 1081 | /* |
| 1082 | * Order here is important. We must handle events |
| 1083 | * before doing anything else in order to catch |
| 1084 | * such things as LLRC errors, etc -kbf |
| 1085 | */ |
| 1086 | |
| 1087 | eidx = rrpriv->info->evt_ctrl.pi; |
| 1088 | if (prodidx != eidx) |
| 1089 | eidx = rr_handle_event(dev, prodidx, eidx); |
| 1090 | |
| 1091 | rxindex = rrpriv->cur_rx; |
| 1092 | if (rxindex != rxlimit) |
| 1093 | rx_int(dev, rxlimit, rxindex); |
| 1094 | |
| 1095 | txcon = rrpriv->dirty_tx; |
| 1096 | if (txcsmr != txcon) { |
| 1097 | do { |
| 1098 | /* Due to occational firmware TX producer/consumer out |
| 1099 | * of sync. error need to check entry in ring -kbf |
| 1100 | */ |
| 1101 | if(rrpriv->tx_skbuff[txcon]){ |
| 1102 | struct tx_desc *desc; |
| 1103 | struct sk_buff *skb; |
| 1104 | |
| 1105 | desc = &(rrpriv->tx_ring[txcon]); |
| 1106 | skb = rrpriv->tx_skbuff[txcon]; |
| 1107 | |
| 1108 | rrpriv->stats.tx_packets++; |
| 1109 | rrpriv->stats.tx_bytes += skb->len; |
| 1110 | |
| 1111 | pci_unmap_single(rrpriv->pci_dev, |
| 1112 | desc->addr.addrlo, skb->len, |
| 1113 | PCI_DMA_TODEVICE); |
| 1114 | dev_kfree_skb_irq(skb); |
| 1115 | |
| 1116 | rrpriv->tx_skbuff[txcon] = NULL; |
| 1117 | desc->size = 0; |
| 1118 | set_rraddr(&rrpriv->tx_ring[txcon].addr, 0); |
| 1119 | desc->mode = 0; |
| 1120 | } |
| 1121 | txcon = (txcon + 1) % TX_RING_ENTRIES; |
| 1122 | } while (txcsmr != txcon); |
| 1123 | wmb(); |
| 1124 | |
| 1125 | rrpriv->dirty_tx = txcon; |
| 1126 | if (rrpriv->tx_full && rr_if_busy(dev) && |
| 1127 | (((rrpriv->info->tx_ctrl.pi + 1) % TX_RING_ENTRIES) |
| 1128 | != rrpriv->dirty_tx)){ |
| 1129 | rrpriv->tx_full = 0; |
| 1130 | netif_wake_queue(dev); |
| 1131 | } |
| 1132 | } |
| 1133 | |
| 1134 | eidx |= ((txcsmr << 8) | (rxlimit << 16)); |
| 1135 | writel(eidx, ®s->EvtCon); |
| 1136 | wmb(); |
| 1137 | |
| 1138 | spin_unlock(&rrpriv->lock); |
| 1139 | return IRQ_HANDLED; |
| 1140 | } |
| 1141 | |
| 1142 | static inline void rr_raz_tx(struct rr_private *rrpriv, |
| 1143 | struct net_device *dev) |
| 1144 | { |
| 1145 | int i; |
| 1146 | |
| 1147 | for (i = 0; i < TX_RING_ENTRIES; i++) { |
| 1148 | struct sk_buff *skb = rrpriv->tx_skbuff[i]; |
| 1149 | |
| 1150 | if (skb) { |
| 1151 | struct tx_desc *desc = &(rrpriv->tx_ring[i]); |
| 1152 | |
| 1153 | pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo, |
| 1154 | skb->len, PCI_DMA_TODEVICE); |
| 1155 | desc->size = 0; |
| 1156 | set_rraddr(&desc->addr, 0); |
| 1157 | dev_kfree_skb(skb); |
| 1158 | rrpriv->tx_skbuff[i] = NULL; |
| 1159 | } |
| 1160 | } |
| 1161 | } |
| 1162 | |
| 1163 | |
| 1164 | static inline void rr_raz_rx(struct rr_private *rrpriv, |
| 1165 | struct net_device *dev) |
| 1166 | { |
| 1167 | int i; |
| 1168 | |
| 1169 | for (i = 0; i < RX_RING_ENTRIES; i++) { |
| 1170 | struct sk_buff *skb = rrpriv->rx_skbuff[i]; |
| 1171 | |
| 1172 | if (skb) { |
| 1173 | struct rx_desc *desc = &(rrpriv->rx_ring[i]); |
| 1174 | |
| 1175 | pci_unmap_single(rrpriv->pci_dev, desc->addr.addrlo, |
| 1176 | dev->mtu + HIPPI_HLEN, PCI_DMA_FROMDEVICE); |
| 1177 | desc->size = 0; |
| 1178 | set_rraddr(&desc->addr, 0); |
| 1179 | dev_kfree_skb(skb); |
| 1180 | rrpriv->rx_skbuff[i] = NULL; |
| 1181 | } |
| 1182 | } |
| 1183 | } |
| 1184 | |
| 1185 | static void rr_timer(unsigned long data) |
| 1186 | { |
| 1187 | struct net_device *dev = (struct net_device *)data; |
| 1188 | struct rr_private *rrpriv = netdev_priv(dev); |
| 1189 | struct rr_regs __iomem *regs = rrpriv->regs; |
| 1190 | unsigned long flags; |
| 1191 | |
| 1192 | if (readl(®s->HostCtrl) & NIC_HALTED){ |
| 1193 | printk("%s: Restarting nic\n", dev->name); |
| 1194 | memset(rrpriv->rx_ctrl, 0, 256 * sizeof(struct ring_ctrl)); |
| 1195 | memset(rrpriv->info, 0, sizeof(struct rr_info)); |
| 1196 | wmb(); |
| 1197 | |
| 1198 | rr_raz_tx(rrpriv, dev); |
| 1199 | rr_raz_rx(rrpriv, dev); |
| 1200 | |
| 1201 | if (rr_init1(dev)) { |
| 1202 | spin_lock_irqsave(&rrpriv->lock, flags); |
| 1203 | writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, |
| 1204 | ®s->HostCtrl); |
| 1205 | spin_unlock_irqrestore(&rrpriv->lock, flags); |
| 1206 | } |
| 1207 | } |
| 1208 | rrpriv->timer.expires = RUN_AT(5*HZ); |
| 1209 | add_timer(&rrpriv->timer); |
| 1210 | } |
| 1211 | |
| 1212 | |
| 1213 | static int rr_open(struct net_device *dev) |
| 1214 | { |
| 1215 | struct rr_private *rrpriv = netdev_priv(dev); |
| 1216 | struct pci_dev *pdev = rrpriv->pci_dev; |
| 1217 | struct rr_regs __iomem *regs; |
| 1218 | int ecode = 0; |
| 1219 | unsigned long flags; |
| 1220 | dma_addr_t dma_addr; |
| 1221 | |
| 1222 | regs = rrpriv->regs; |
| 1223 | |
| 1224 | if (rrpriv->fw_rev < 0x00020000) { |
| 1225 | printk(KERN_WARNING "%s: trying to configure device with " |
| 1226 | "obsolete firmware\n", dev->name); |
| 1227 | ecode = -EBUSY; |
| 1228 | goto error; |
| 1229 | } |
| 1230 | |
| 1231 | rrpriv->rx_ctrl = pci_alloc_consistent(pdev, |
| 1232 | 256 * sizeof(struct ring_ctrl), |
| 1233 | &dma_addr); |
| 1234 | if (!rrpriv->rx_ctrl) { |
| 1235 | ecode = -ENOMEM; |
| 1236 | goto error; |
| 1237 | } |
| 1238 | rrpriv->rx_ctrl_dma = dma_addr; |
| 1239 | memset(rrpriv->rx_ctrl, 0, 256*sizeof(struct ring_ctrl)); |
| 1240 | |
| 1241 | rrpriv->info = pci_alloc_consistent(pdev, sizeof(struct rr_info), |
| 1242 | &dma_addr); |
| 1243 | if (!rrpriv->info) { |
| 1244 | ecode = -ENOMEM; |
| 1245 | goto error; |
| 1246 | } |
| 1247 | rrpriv->info_dma = dma_addr; |
| 1248 | memset(rrpriv->info, 0, sizeof(struct rr_info)); |
| 1249 | wmb(); |
| 1250 | |
| 1251 | spin_lock_irqsave(&rrpriv->lock, flags); |
| 1252 | writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl); |
| 1253 | readl(®s->HostCtrl); |
| 1254 | spin_unlock_irqrestore(&rrpriv->lock, flags); |
| 1255 | |
| 1256 | if (request_irq(dev->irq, rr_interrupt, SA_SHIRQ, dev->name, dev)) { |
| 1257 | printk(KERN_WARNING "%s: Requested IRQ %d is busy\n", |
| 1258 | dev->name, dev->irq); |
| 1259 | ecode = -EAGAIN; |
| 1260 | goto error; |
| 1261 | } |
| 1262 | |
| 1263 | if ((ecode = rr_init1(dev))) |
| 1264 | goto error; |
| 1265 | |
| 1266 | /* Set the timer to switch to check for link beat and perhaps switch |
| 1267 | to an alternate media type. */ |
| 1268 | init_timer(&rrpriv->timer); |
| 1269 | rrpriv->timer.expires = RUN_AT(5*HZ); /* 5 sec. watchdog */ |
| 1270 | rrpriv->timer.data = (unsigned long)dev; |
| 1271 | rrpriv->timer.function = &rr_timer; /* timer handler */ |
| 1272 | add_timer(&rrpriv->timer); |
| 1273 | |
| 1274 | netif_start_queue(dev); |
| 1275 | |
| 1276 | return ecode; |
| 1277 | |
| 1278 | error: |
| 1279 | spin_lock_irqsave(&rrpriv->lock, flags); |
| 1280 | writel(readl(®s->HostCtrl)|HALT_NIC|RR_CLEAR_INT, ®s->HostCtrl); |
| 1281 | spin_unlock_irqrestore(&rrpriv->lock, flags); |
| 1282 | |
| 1283 | if (rrpriv->info) { |
| 1284 | pci_free_consistent(pdev, sizeof(struct rr_info), rrpriv->info, |
| 1285 | rrpriv->info_dma); |
| 1286 | rrpriv->info = NULL; |
| 1287 | } |
| 1288 | if (rrpriv->rx_ctrl) { |
| 1289 | pci_free_consistent(pdev, sizeof(struct ring_ctrl), |
| 1290 | rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma); |
| 1291 | rrpriv->rx_ctrl = NULL; |
| 1292 | } |
| 1293 | |
| 1294 | netif_stop_queue(dev); |
| 1295 | |
| 1296 | return ecode; |
| 1297 | } |
| 1298 | |
| 1299 | |
| 1300 | static void rr_dump(struct net_device *dev) |
| 1301 | { |
| 1302 | struct rr_private *rrpriv; |
| 1303 | struct rr_regs __iomem *regs; |
| 1304 | u32 index, cons; |
| 1305 | short i; |
| 1306 | int len; |
| 1307 | |
| 1308 | rrpriv = netdev_priv(dev); |
| 1309 | regs = rrpriv->regs; |
| 1310 | |
| 1311 | printk("%s: dumping NIC TX rings\n", dev->name); |
| 1312 | |
| 1313 | printk("RxPrd %08x, TxPrd %02x, EvtPrd %08x, TxPi %02x, TxCtrlPi %02x\n", |
| 1314 | readl(®s->RxPrd), readl(®s->TxPrd), |
| 1315 | readl(®s->EvtPrd), readl(®s->TxPi), |
| 1316 | rrpriv->info->tx_ctrl.pi); |
| 1317 | |
| 1318 | printk("Error code 0x%x\n", readl(®s->Fail1)); |
| 1319 | |
| 1320 | index = (((readl(®s->EvtPrd) >> 8) & 0xff ) - 1) % EVT_RING_ENTRIES; |
| 1321 | cons = rrpriv->dirty_tx; |
| 1322 | printk("TX ring index %i, TX consumer %i\n", |
| 1323 | index, cons); |
| 1324 | |
| 1325 | if (rrpriv->tx_skbuff[index]){ |
| 1326 | len = min_t(int, 0x80, rrpriv->tx_skbuff[index]->len); |
| 1327 | printk("skbuff for index %i is valid - dumping data (0x%x bytes - DMA len 0x%x)\n", index, len, rrpriv->tx_ring[index].size); |
| 1328 | for (i = 0; i < len; i++){ |
| 1329 | if (!(i & 7)) |
| 1330 | printk("\n"); |
| 1331 | printk("%02x ", (unsigned char) rrpriv->tx_skbuff[index]->data[i]); |
| 1332 | } |
| 1333 | printk("\n"); |
| 1334 | } |
| 1335 | |
| 1336 | if (rrpriv->tx_skbuff[cons]){ |
| 1337 | len = min_t(int, 0x80, rrpriv->tx_skbuff[cons]->len); |
| 1338 | printk("skbuff for cons %i is valid - dumping data (0x%x bytes - skbuff len 0x%x)\n", cons, len, rrpriv->tx_skbuff[cons]->len); |
| 1339 | printk("mode 0x%x, size 0x%x,\n phys %08Lx, skbuff-addr %08lx, truesize 0x%x\n", |
| 1340 | rrpriv->tx_ring[cons].mode, |
| 1341 | rrpriv->tx_ring[cons].size, |
| 1342 | (unsigned long long) rrpriv->tx_ring[cons].addr.addrlo, |
| 1343 | (unsigned long)rrpriv->tx_skbuff[cons]->data, |
| 1344 | (unsigned int)rrpriv->tx_skbuff[cons]->truesize); |
| 1345 | for (i = 0; i < len; i++){ |
| 1346 | if (!(i & 7)) |
| 1347 | printk("\n"); |
| 1348 | printk("%02x ", (unsigned char)rrpriv->tx_ring[cons].size); |
| 1349 | } |
| 1350 | printk("\n"); |
| 1351 | } |
| 1352 | |
| 1353 | printk("dumping TX ring info:\n"); |
| 1354 | for (i = 0; i < TX_RING_ENTRIES; i++) |
| 1355 | printk("mode 0x%x, size 0x%x, phys-addr %08Lx\n", |
| 1356 | rrpriv->tx_ring[i].mode, |
| 1357 | rrpriv->tx_ring[i].size, |
| 1358 | (unsigned long long) rrpriv->tx_ring[i].addr.addrlo); |
| 1359 | |
| 1360 | } |
| 1361 | |
| 1362 | |
| 1363 | static int rr_close(struct net_device *dev) |
| 1364 | { |
| 1365 | struct rr_private *rrpriv; |
| 1366 | struct rr_regs __iomem *regs; |
| 1367 | unsigned long flags; |
| 1368 | u32 tmp; |
| 1369 | short i; |
| 1370 | |
| 1371 | netif_stop_queue(dev); |
| 1372 | |
| 1373 | rrpriv = netdev_priv(dev); |
| 1374 | regs = rrpriv->regs; |
| 1375 | |
| 1376 | /* |
| 1377 | * Lock to make sure we are not cleaning up while another CPU |
| 1378 | * is handling interrupts. |
| 1379 | */ |
| 1380 | spin_lock_irqsave(&rrpriv->lock, flags); |
| 1381 | |
| 1382 | tmp = readl(®s->HostCtrl); |
| 1383 | if (tmp & NIC_HALTED){ |
| 1384 | printk("%s: NIC already halted\n", dev->name); |
| 1385 | rr_dump(dev); |
| 1386 | }else{ |
| 1387 | tmp |= HALT_NIC | RR_CLEAR_INT; |
| 1388 | writel(tmp, ®s->HostCtrl); |
| 1389 | readl(®s->HostCtrl); |
| 1390 | } |
| 1391 | |
| 1392 | rrpriv->fw_running = 0; |
| 1393 | |
| 1394 | del_timer_sync(&rrpriv->timer); |
| 1395 | |
| 1396 | writel(0, ®s->TxPi); |
| 1397 | writel(0, ®s->IpRxPi); |
| 1398 | |
| 1399 | writel(0, ®s->EvtCon); |
| 1400 | writel(0, ®s->EvtPrd); |
| 1401 | |
| 1402 | for (i = 0; i < CMD_RING_ENTRIES; i++) |
| 1403 | writel(0, ®s->CmdRing[i]); |
| 1404 | |
| 1405 | rrpriv->info->tx_ctrl.entries = 0; |
| 1406 | rrpriv->info->cmd_ctrl.pi = 0; |
| 1407 | rrpriv->info->evt_ctrl.pi = 0; |
| 1408 | rrpriv->rx_ctrl[4].entries = 0; |
| 1409 | |
| 1410 | rr_raz_tx(rrpriv, dev); |
| 1411 | rr_raz_rx(rrpriv, dev); |
| 1412 | |
| 1413 | pci_free_consistent(rrpriv->pci_dev, 256 * sizeof(struct ring_ctrl), |
| 1414 | rrpriv->rx_ctrl, rrpriv->rx_ctrl_dma); |
| 1415 | rrpriv->rx_ctrl = NULL; |
| 1416 | |
| 1417 | pci_free_consistent(rrpriv->pci_dev, sizeof(struct rr_info), |
| 1418 | rrpriv->info, rrpriv->info_dma); |
| 1419 | rrpriv->info = NULL; |
| 1420 | |
| 1421 | free_irq(dev->irq, dev); |
| 1422 | spin_unlock_irqrestore(&rrpriv->lock, flags); |
| 1423 | |
| 1424 | return 0; |
| 1425 | } |
| 1426 | |
| 1427 | |
| 1428 | static int rr_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| 1429 | { |
| 1430 | struct rr_private *rrpriv = netdev_priv(dev); |
| 1431 | struct rr_regs __iomem *regs = rrpriv->regs; |
Stephen Hemminger | 6f1cf16 | 2005-08-09 19:31:17 -0700 | [diff] [blame] | 1432 | struct hippi_cb *hcb = (struct hippi_cb *) skb->cb; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1433 | struct ring_ctrl *txctrl; |
| 1434 | unsigned long flags; |
| 1435 | u32 index, len = skb->len; |
| 1436 | u32 *ifield; |
| 1437 | struct sk_buff *new_skb; |
| 1438 | |
| 1439 | if (readl(®s->Mode) & FATAL_ERR) |
| 1440 | printk("error codes Fail1 %02x, Fail2 %02x\n", |
| 1441 | readl(®s->Fail1), readl(®s->Fail2)); |
| 1442 | |
| 1443 | /* |
| 1444 | * We probably need to deal with tbusy here to prevent overruns. |
| 1445 | */ |
| 1446 | |
| 1447 | if (skb_headroom(skb) < 8){ |
| 1448 | printk("incoming skb too small - reallocating\n"); |
| 1449 | if (!(new_skb = dev_alloc_skb(len + 8))) { |
| 1450 | dev_kfree_skb(skb); |
| 1451 | netif_wake_queue(dev); |
| 1452 | return -EBUSY; |
| 1453 | } |
| 1454 | skb_reserve(new_skb, 8); |
| 1455 | skb_put(new_skb, len); |
| 1456 | memcpy(new_skb->data, skb->data, len); |
| 1457 | dev_kfree_skb(skb); |
| 1458 | skb = new_skb; |
| 1459 | } |
| 1460 | |
| 1461 | ifield = (u32 *)skb_push(skb, 8); |
| 1462 | |
| 1463 | ifield[0] = 0; |
Stephen Hemminger | 6f1cf16 | 2005-08-09 19:31:17 -0700 | [diff] [blame] | 1464 | ifield[1] = hcb->ifield; |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1465 | |
| 1466 | /* |
| 1467 | * We don't need the lock before we are actually going to start |
| 1468 | * fiddling with the control blocks. |
| 1469 | */ |
| 1470 | spin_lock_irqsave(&rrpriv->lock, flags); |
| 1471 | |
| 1472 | txctrl = &rrpriv->info->tx_ctrl; |
| 1473 | |
| 1474 | index = txctrl->pi; |
| 1475 | |
| 1476 | rrpriv->tx_skbuff[index] = skb; |
| 1477 | set_rraddr(&rrpriv->tx_ring[index].addr, pci_map_single( |
| 1478 | rrpriv->pci_dev, skb->data, len + 8, PCI_DMA_TODEVICE)); |
| 1479 | rrpriv->tx_ring[index].size = len + 8; /* include IFIELD */ |
| 1480 | rrpriv->tx_ring[index].mode = PACKET_START | PACKET_END; |
| 1481 | txctrl->pi = (index + 1) % TX_RING_ENTRIES; |
| 1482 | wmb(); |
| 1483 | writel(txctrl->pi, ®s->TxPi); |
| 1484 | |
| 1485 | if (txctrl->pi == rrpriv->dirty_tx){ |
| 1486 | rrpriv->tx_full = 1; |
| 1487 | netif_stop_queue(dev); |
| 1488 | } |
| 1489 | |
| 1490 | spin_unlock_irqrestore(&rrpriv->lock, flags); |
| 1491 | |
| 1492 | dev->trans_start = jiffies; |
| 1493 | return 0; |
| 1494 | } |
| 1495 | |
| 1496 | |
| 1497 | static struct net_device_stats *rr_get_stats(struct net_device *dev) |
| 1498 | { |
| 1499 | struct rr_private *rrpriv; |
| 1500 | |
| 1501 | rrpriv = netdev_priv(dev); |
| 1502 | |
| 1503 | return(&rrpriv->stats); |
| 1504 | } |
| 1505 | |
| 1506 | |
| 1507 | /* |
| 1508 | * Read the firmware out of the EEPROM and put it into the SRAM |
| 1509 | * (or from user space - later) |
| 1510 | * |
| 1511 | * This operation requires the NIC to be halted and is performed with |
| 1512 | * interrupts disabled and with the spinlock hold. |
| 1513 | */ |
| 1514 | static int rr_load_firmware(struct net_device *dev) |
| 1515 | { |
| 1516 | struct rr_private *rrpriv; |
| 1517 | struct rr_regs __iomem *regs; |
| 1518 | unsigned long eptr, segptr; |
| 1519 | int i, j; |
| 1520 | u32 localctrl, sptr, len, tmp; |
| 1521 | u32 p2len, p2size, nr_seg, revision, io, sram_size; |
| 1522 | struct eeprom *hw = NULL; |
| 1523 | |
| 1524 | rrpriv = netdev_priv(dev); |
| 1525 | regs = rrpriv->regs; |
| 1526 | |
| 1527 | if (dev->flags & IFF_UP) |
| 1528 | return -EBUSY; |
| 1529 | |
| 1530 | if (!(readl(®s->HostCtrl) & NIC_HALTED)){ |
| 1531 | printk("%s: Trying to load firmware to a running NIC.\n", |
| 1532 | dev->name); |
| 1533 | return -EBUSY; |
| 1534 | } |
| 1535 | |
| 1536 | localctrl = readl(®s->LocalCtrl); |
| 1537 | writel(0, ®s->LocalCtrl); |
| 1538 | |
| 1539 | writel(0, ®s->EvtPrd); |
| 1540 | writel(0, ®s->RxPrd); |
| 1541 | writel(0, ®s->TxPrd); |
| 1542 | |
| 1543 | /* |
| 1544 | * First wipe the entire SRAM, otherwise we might run into all |
| 1545 | * kinds of trouble ... sigh, this took almost all afternoon |
| 1546 | * to track down ;-( |
| 1547 | */ |
| 1548 | io = readl(®s->ExtIo); |
| 1549 | writel(0, ®s->ExtIo); |
| 1550 | sram_size = rr_read_eeprom_word(rrpriv, (void *)8); |
| 1551 | |
| 1552 | for (i = 200; i < sram_size / 4; i++){ |
| 1553 | writel(i * 4, ®s->WinBase); |
| 1554 | mb(); |
| 1555 | writel(0, ®s->WinData); |
| 1556 | mb(); |
| 1557 | } |
| 1558 | writel(io, ®s->ExtIo); |
| 1559 | mb(); |
| 1560 | |
| 1561 | eptr = (unsigned long)rr_read_eeprom_word(rrpriv, |
| 1562 | &hw->rncd_info.AddrRunCodeSegs); |
| 1563 | eptr = ((eptr & 0x1fffff) >> 3); |
| 1564 | |
| 1565 | p2len = rr_read_eeprom_word(rrpriv, (void *)(0x83*4)); |
| 1566 | p2len = (p2len << 2); |
| 1567 | p2size = rr_read_eeprom_word(rrpriv, (void *)(0x84*4)); |
| 1568 | p2size = ((p2size & 0x1fffff) >> 3); |
| 1569 | |
| 1570 | if ((eptr < p2size) || (eptr > (p2size + p2len))){ |
| 1571 | printk("%s: eptr is invalid\n", dev->name); |
| 1572 | goto out; |
| 1573 | } |
| 1574 | |
| 1575 | revision = rr_read_eeprom_word(rrpriv, &hw->manf.HeaderFmt); |
| 1576 | |
| 1577 | if (revision != 1){ |
| 1578 | printk("%s: invalid firmware format (%i)\n", |
| 1579 | dev->name, revision); |
| 1580 | goto out; |
| 1581 | } |
| 1582 | |
| 1583 | nr_seg = rr_read_eeprom_word(rrpriv, (void *)eptr); |
| 1584 | eptr +=4; |
| 1585 | #if (DEBUG > 1) |
| 1586 | printk("%s: nr_seg %i\n", dev->name, nr_seg); |
| 1587 | #endif |
| 1588 | |
| 1589 | for (i = 0; i < nr_seg; i++){ |
| 1590 | sptr = rr_read_eeprom_word(rrpriv, (void *)eptr); |
| 1591 | eptr += 4; |
| 1592 | len = rr_read_eeprom_word(rrpriv, (void *)eptr); |
| 1593 | eptr += 4; |
| 1594 | segptr = (unsigned long)rr_read_eeprom_word(rrpriv, (void *)eptr); |
| 1595 | segptr = ((segptr & 0x1fffff) >> 3); |
| 1596 | eptr += 4; |
| 1597 | #if (DEBUG > 1) |
| 1598 | printk("%s: segment %i, sram address %06x, length %04x, segptr %06x\n", |
| 1599 | dev->name, i, sptr, len, segptr); |
| 1600 | #endif |
| 1601 | for (j = 0; j < len; j++){ |
| 1602 | tmp = rr_read_eeprom_word(rrpriv, (void *)segptr); |
| 1603 | writel(sptr, ®s->WinBase); |
| 1604 | mb(); |
| 1605 | writel(tmp, ®s->WinData); |
| 1606 | mb(); |
| 1607 | segptr += 4; |
| 1608 | sptr += 4; |
| 1609 | } |
| 1610 | } |
| 1611 | |
| 1612 | out: |
| 1613 | writel(localctrl, ®s->LocalCtrl); |
| 1614 | mb(); |
| 1615 | return 0; |
| 1616 | } |
| 1617 | |
| 1618 | |
| 1619 | static int rr_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) |
| 1620 | { |
| 1621 | struct rr_private *rrpriv; |
| 1622 | unsigned char *image, *oldimage; |
| 1623 | unsigned long flags; |
| 1624 | unsigned int i; |
| 1625 | int error = -EOPNOTSUPP; |
| 1626 | |
| 1627 | rrpriv = netdev_priv(dev); |
| 1628 | |
| 1629 | switch(cmd){ |
| 1630 | case SIOCRRGFW: |
| 1631 | if (!capable(CAP_SYS_RAWIO)){ |
| 1632 | return -EPERM; |
| 1633 | } |
| 1634 | |
| 1635 | image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL); |
| 1636 | if (!image){ |
| 1637 | printk(KERN_ERR "%s: Unable to allocate memory " |
| 1638 | "for EEPROM image\n", dev->name); |
| 1639 | return -ENOMEM; |
| 1640 | } |
| 1641 | |
| 1642 | |
| 1643 | if (rrpriv->fw_running){ |
| 1644 | printk("%s: Firmware already running\n", dev->name); |
| 1645 | error = -EPERM; |
| 1646 | goto gf_out; |
| 1647 | } |
| 1648 | |
| 1649 | spin_lock_irqsave(&rrpriv->lock, flags); |
| 1650 | i = rr_read_eeprom(rrpriv, 0, image, EEPROM_BYTES); |
| 1651 | spin_unlock_irqrestore(&rrpriv->lock, flags); |
| 1652 | if (i != EEPROM_BYTES){ |
| 1653 | printk(KERN_ERR "%s: Error reading EEPROM\n", |
| 1654 | dev->name); |
| 1655 | error = -EFAULT; |
| 1656 | goto gf_out; |
| 1657 | } |
| 1658 | error = copy_to_user(rq->ifr_data, image, EEPROM_BYTES); |
| 1659 | if (error) |
| 1660 | error = -EFAULT; |
| 1661 | gf_out: |
| 1662 | kfree(image); |
| 1663 | return error; |
| 1664 | |
| 1665 | case SIOCRRPFW: |
| 1666 | if (!capable(CAP_SYS_RAWIO)){ |
| 1667 | return -EPERM; |
| 1668 | } |
| 1669 | |
| 1670 | image = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL); |
| 1671 | oldimage = kmalloc(EEPROM_WORDS * sizeof(u32), GFP_KERNEL); |
| 1672 | if (!image || !oldimage) { |
| 1673 | printk(KERN_ERR "%s: Unable to allocate memory " |
| 1674 | "for EEPROM image\n", dev->name); |
| 1675 | error = -ENOMEM; |
| 1676 | goto wf_out; |
| 1677 | } |
| 1678 | |
| 1679 | error = copy_from_user(image, rq->ifr_data, EEPROM_BYTES); |
| 1680 | if (error) { |
| 1681 | error = -EFAULT; |
| 1682 | goto wf_out; |
| 1683 | } |
| 1684 | |
| 1685 | if (rrpriv->fw_running){ |
| 1686 | printk("%s: Firmware already running\n", dev->name); |
| 1687 | error = -EPERM; |
| 1688 | goto wf_out; |
| 1689 | } |
| 1690 | |
| 1691 | printk("%s: Updating EEPROM firmware\n", dev->name); |
| 1692 | |
| 1693 | spin_lock_irqsave(&rrpriv->lock, flags); |
| 1694 | error = write_eeprom(rrpriv, 0, image, EEPROM_BYTES); |
| 1695 | if (error) |
| 1696 | printk(KERN_ERR "%s: Error writing EEPROM\n", |
| 1697 | dev->name); |
| 1698 | |
| 1699 | i = rr_read_eeprom(rrpriv, 0, oldimage, EEPROM_BYTES); |
| 1700 | spin_unlock_irqrestore(&rrpriv->lock, flags); |
| 1701 | |
| 1702 | if (i != EEPROM_BYTES) |
| 1703 | printk(KERN_ERR "%s: Error reading back EEPROM " |
| 1704 | "image\n", dev->name); |
| 1705 | |
| 1706 | error = memcmp(image, oldimage, EEPROM_BYTES); |
| 1707 | if (error){ |
| 1708 | printk(KERN_ERR "%s: Error verifying EEPROM image\n", |
| 1709 | dev->name); |
| 1710 | error = -EFAULT; |
| 1711 | } |
| 1712 | wf_out: |
| 1713 | if (oldimage) |
| 1714 | kfree(oldimage); |
| 1715 | if (image) |
| 1716 | kfree(image); |
| 1717 | return error; |
| 1718 | |
| 1719 | case SIOCRRID: |
| 1720 | return put_user(0x52523032, (int __user *)rq->ifr_data); |
| 1721 | default: |
| 1722 | return error; |
| 1723 | } |
| 1724 | } |
| 1725 | |
| 1726 | static struct pci_device_id rr_pci_tbl[] = { |
| 1727 | { PCI_VENDOR_ID_ESSENTIAL, PCI_DEVICE_ID_ESSENTIAL_ROADRUNNER, |
| 1728 | PCI_ANY_ID, PCI_ANY_ID, }, |
| 1729 | { 0,} |
| 1730 | }; |
| 1731 | MODULE_DEVICE_TABLE(pci, rr_pci_tbl); |
| 1732 | |
| 1733 | static struct pci_driver rr_driver = { |
| 1734 | .name = "rrunner", |
| 1735 | .id_table = rr_pci_tbl, |
| 1736 | .probe = rr_init_one, |
| 1737 | .remove = __devexit_p(rr_remove_one), |
| 1738 | }; |
| 1739 | |
| 1740 | static int __init rr_init_module(void) |
| 1741 | { |
| 1742 | return pci_module_init(&rr_driver); |
| 1743 | } |
| 1744 | |
| 1745 | static void __exit rr_cleanup_module(void) |
| 1746 | { |
| 1747 | pci_unregister_driver(&rr_driver); |
| 1748 | } |
| 1749 | |
| 1750 | module_init(rr_init_module); |
| 1751 | module_exit(rr_cleanup_module); |
| 1752 | |
| 1753 | /* |
| 1754 | * Local variables: |
| 1755 | * compile-command: "gcc -D__KERNEL__ -I../../include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -DMODULE -DMODVERSIONS -include ../../include/linux/modversions.h -c rrunner.c" |
| 1756 | * End: |
| 1757 | */ |