blob: 88e0cddca2057addb1ad823844cc3e2351e0c2e7 [file] [log] [blame]
David Daney5b3b1682009-01-08 16:46:40 -08001/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Unified implementation of memcpy, memmove and the __copy_user backend.
7 *
8 * Copyright (C) 1998, 99, 2000, 01, 2002 Ralf Baechle (ralf@gnu.org)
9 * Copyright (C) 1999, 2000, 01, 2002 Silicon Graphics, Inc.
10 * Copyright (C) 2002 Broadcom, Inc.
11 * memcpy/copy_user author: Mark Vandevoorde
12 *
13 * Mnemonic names for arguments to memcpy/__copy_user
14 */
15
16#include <asm/asm.h>
17#include <asm/asm-offsets.h>
18#include <asm/regdef.h>
19
20#define dst a0
21#define src a1
22#define len a2
23
24/*
25 * Spec
26 *
27 * memcpy copies len bytes from src to dst and sets v0 to dst.
28 * It assumes that
29 * - src and dst don't overlap
30 * - src is readable
31 * - dst is writable
32 * memcpy uses the standard calling convention
33 *
34 * __copy_user copies up to len bytes from src to dst and sets a2 (len) to
35 * the number of uncopied bytes due to an exception caused by a read or write.
36 * __copy_user assumes that src and dst don't overlap, and that the call is
37 * implementing one of the following:
38 * copy_to_user
39 * - src is readable (no exceptions when reading src)
40 * copy_from_user
41 * - dst is writable (no exceptions when writing dst)
42 * __copy_user uses a non-standard calling convention; see
43 * arch/mips/include/asm/uaccess.h
44 *
45 * When an exception happens on a load, the handler must
46 # ensure that all of the destination buffer is overwritten to prevent
47 * leaking information to user mode programs.
48 */
49
50/*
51 * Implementation
52 */
53
54/*
55 * The exception handler for loads requires that:
56 * 1- AT contain the address of the byte just past the end of the source
57 * of the copy,
58 * 2- src_entry <= src < AT, and
59 * 3- (dst - src) == (dst_entry - src_entry),
60 * The _entry suffix denotes values when __copy_user was called.
61 *
62 * (1) is set up up by uaccess.h and maintained by not writing AT in copy_user
63 * (2) is met by incrementing src by the number of bytes copied
64 * (3) is met by not doing loads between a pair of increments of dst and src
65 *
66 * The exception handlers for stores adjust len (if necessary) and return.
67 * These handlers do not need to overwrite any data.
68 *
69 * For __rmemcpy and memmove an exception is always a kernel bug, therefore
70 * they're not protected.
71 */
72
73#define EXC(inst_reg,addr,handler) \
749: inst_reg, addr; \
75 .section __ex_table,"a"; \
76 PTR 9b, handler; \
77 .previous
78
79/*
80 * Only on the 64-bit kernel we can made use of 64-bit registers.
81 */
82#ifdef CONFIG_64BIT
83#define USE_DOUBLE
84#endif
85
86#ifdef USE_DOUBLE
87
88#define LOAD ld
89#define LOADL ldl
90#define LOADR ldr
91#define STOREL sdl
92#define STORER sdr
93#define STORE sd
94#define ADD daddu
95#define SUB dsubu
96#define SRL dsrl
97#define SRA dsra
98#define SLL dsll
99#define SLLV dsllv
100#define SRLV dsrlv
101#define NBYTES 8
102#define LOG_NBYTES 3
103
104/*
105 * As we are sharing code base with the mips32 tree (which use the o32 ABI
106 * register definitions). We need to redefine the register definitions from
107 * the n64 ABI register naming to the o32 ABI register naming.
108 */
109#undef t0
110#undef t1
111#undef t2
112#undef t3
113#define t0 $8
114#define t1 $9
115#define t2 $10
116#define t3 $11
117#define t4 $12
118#define t5 $13
119#define t6 $14
120#define t7 $15
121
122#else
123
124#define LOAD lw
125#define LOADL lwl
126#define LOADR lwr
127#define STOREL swl
128#define STORER swr
129#define STORE sw
130#define ADD addu
131#define SUB subu
132#define SRL srl
133#define SLL sll
134#define SRA sra
135#define SLLV sllv
136#define SRLV srlv
137#define NBYTES 4
138#define LOG_NBYTES 2
139
140#endif /* USE_DOUBLE */
141
142#ifdef CONFIG_CPU_LITTLE_ENDIAN
143#define LDFIRST LOADR
144#define LDREST LOADL
145#define STFIRST STORER
146#define STREST STOREL
147#define SHIFT_DISCARD SLLV
148#else
149#define LDFIRST LOADL
150#define LDREST LOADR
151#define STFIRST STOREL
152#define STREST STORER
153#define SHIFT_DISCARD SRLV
154#endif
155
156#define FIRST(unit) ((unit)*NBYTES)
157#define REST(unit) (FIRST(unit)+NBYTES-1)
158#define UNIT(unit) FIRST(unit)
159
160#define ADDRMASK (NBYTES-1)
161
162 .text
163 .set noreorder
164 .set noat
165
166/*
167 * A combined memcpy/__copy_user
168 * __copy_user sets len to 0 for success; else to an upper bound of
169 * the number of uncopied bytes.
170 * memcpy sets v0 to dst.
171 */
172 .align 5
173LEAF(memcpy) /* a0=dst a1=src a2=len */
174 move v0, dst /* return value */
175__memcpy:
176FEXPORT(__copy_user)
177 /*
178 * Note: dst & src may be unaligned, len may be 0
179 * Temps
180 */
181 #
182 # Octeon doesn't care if the destination is unaligned. The hardware
183 # can fix it faster than we can special case the assembly.
184 #
185 pref 0, 0(src)
186 sltu t0, len, NBYTES # Check if < 1 word
187 bnez t0, copy_bytes_checklen
188 and t0, src, ADDRMASK # Check if src unaligned
189 bnez t0, src_unaligned
190 sltu t0, len, 4*NBYTES # Check if < 4 words
191 bnez t0, less_than_4units
192 sltu t0, len, 8*NBYTES # Check if < 8 words
193 bnez t0, less_than_8units
194 sltu t0, len, 16*NBYTES # Check if < 16 words
195 bnez t0, cleanup_both_aligned
196 sltu t0, len, 128+1 # Check if len < 129
197 bnez t0, 1f # Skip prefetch if len is too short
198 sltu t0, len, 256+1 # Check if len < 257
199 bnez t0, 1f # Skip prefetch if len is too short
200 pref 0, 128(src) # We must not prefetch invalid addresses
201 #
202 # This is where we loop if there is more than 128 bytes left
2032: pref 0, 256(src) # We must not prefetch invalid addresses
204 #
205 # This is where we loop if we can't prefetch anymore
2061:
207EXC( LOAD t0, UNIT(0)(src), l_exc)
208EXC( LOAD t1, UNIT(1)(src), l_exc_copy)
209EXC( LOAD t2, UNIT(2)(src), l_exc_copy)
210EXC( LOAD t3, UNIT(3)(src), l_exc_copy)
211 SUB len, len, 16*NBYTES
212EXC( STORE t0, UNIT(0)(dst), s_exc_p16u)
213EXC( STORE t1, UNIT(1)(dst), s_exc_p15u)
214EXC( STORE t2, UNIT(2)(dst), s_exc_p14u)
215EXC( STORE t3, UNIT(3)(dst), s_exc_p13u)
216EXC( LOAD t0, UNIT(4)(src), l_exc_copy)
217EXC( LOAD t1, UNIT(5)(src), l_exc_copy)
218EXC( LOAD t2, UNIT(6)(src), l_exc_copy)
219EXC( LOAD t3, UNIT(7)(src), l_exc_copy)
220EXC( STORE t0, UNIT(4)(dst), s_exc_p12u)
221EXC( STORE t1, UNIT(5)(dst), s_exc_p11u)
222EXC( STORE t2, UNIT(6)(dst), s_exc_p10u)
223 ADD src, src, 16*NBYTES
224EXC( STORE t3, UNIT(7)(dst), s_exc_p9u)
225 ADD dst, dst, 16*NBYTES
226EXC( LOAD t0, UNIT(-8)(src), l_exc_copy)
227EXC( LOAD t1, UNIT(-7)(src), l_exc_copy)
228EXC( LOAD t2, UNIT(-6)(src), l_exc_copy)
229EXC( LOAD t3, UNIT(-5)(src), l_exc_copy)
230EXC( STORE t0, UNIT(-8)(dst), s_exc_p8u)
231EXC( STORE t1, UNIT(-7)(dst), s_exc_p7u)
232EXC( STORE t2, UNIT(-6)(dst), s_exc_p6u)
233EXC( STORE t3, UNIT(-5)(dst), s_exc_p5u)
234EXC( LOAD t0, UNIT(-4)(src), l_exc_copy)
235EXC( LOAD t1, UNIT(-3)(src), l_exc_copy)
236EXC( LOAD t2, UNIT(-2)(src), l_exc_copy)
237EXC( LOAD t3, UNIT(-1)(src), l_exc_copy)
238EXC( STORE t0, UNIT(-4)(dst), s_exc_p4u)
239EXC( STORE t1, UNIT(-3)(dst), s_exc_p3u)
240EXC( STORE t2, UNIT(-2)(dst), s_exc_p2u)
241EXC( STORE t3, UNIT(-1)(dst), s_exc_p1u)
242 sltu t0, len, 256+1 # See if we can prefetch more
243 beqz t0, 2b
244 sltu t0, len, 128 # See if we can loop more time
245 beqz t0, 1b
246 nop
247 #
248 # Jump here if there are less than 16*NBYTES left.
249 #
250cleanup_both_aligned:
251 beqz len, done
252 sltu t0, len, 8*NBYTES
253 bnez t0, less_than_8units
254 nop
255EXC( LOAD t0, UNIT(0)(src), l_exc)
256EXC( LOAD t1, UNIT(1)(src), l_exc_copy)
257EXC( LOAD t2, UNIT(2)(src), l_exc_copy)
258EXC( LOAD t3, UNIT(3)(src), l_exc_copy)
259 SUB len, len, 8*NBYTES
260EXC( STORE t0, UNIT(0)(dst), s_exc_p8u)
261EXC( STORE t1, UNIT(1)(dst), s_exc_p7u)
262EXC( STORE t2, UNIT(2)(dst), s_exc_p6u)
263EXC( STORE t3, UNIT(3)(dst), s_exc_p5u)
264EXC( LOAD t0, UNIT(4)(src), l_exc_copy)
265EXC( LOAD t1, UNIT(5)(src), l_exc_copy)
266EXC( LOAD t2, UNIT(6)(src), l_exc_copy)
267EXC( LOAD t3, UNIT(7)(src), l_exc_copy)
268EXC( STORE t0, UNIT(4)(dst), s_exc_p4u)
269EXC( STORE t1, UNIT(5)(dst), s_exc_p3u)
270EXC( STORE t2, UNIT(6)(dst), s_exc_p2u)
271EXC( STORE t3, UNIT(7)(dst), s_exc_p1u)
272 ADD src, src, 8*NBYTES
273 beqz len, done
274 ADD dst, dst, 8*NBYTES
275 #
276 # Jump here if there are less than 8*NBYTES left.
277 #
278less_than_8units:
279 sltu t0, len, 4*NBYTES
280 bnez t0, less_than_4units
281 nop
282EXC( LOAD t0, UNIT(0)(src), l_exc)
283EXC( LOAD t1, UNIT(1)(src), l_exc_copy)
284EXC( LOAD t2, UNIT(2)(src), l_exc_copy)
285EXC( LOAD t3, UNIT(3)(src), l_exc_copy)
286 SUB len, len, 4*NBYTES
287EXC( STORE t0, UNIT(0)(dst), s_exc_p4u)
288EXC( STORE t1, UNIT(1)(dst), s_exc_p3u)
289EXC( STORE t2, UNIT(2)(dst), s_exc_p2u)
290EXC( STORE t3, UNIT(3)(dst), s_exc_p1u)
291 ADD src, src, 4*NBYTES
292 beqz len, done
293 ADD dst, dst, 4*NBYTES
294 #
295 # Jump here if there are less than 4*NBYTES left. This means
296 # we may need to copy up to 3 NBYTES words.
297 #
298less_than_4units:
299 sltu t0, len, 1*NBYTES
300 bnez t0, copy_bytes_checklen
301 nop
302 #
303 # 1) Copy NBYTES, then check length again
304 #
305EXC( LOAD t0, 0(src), l_exc)
306 SUB len, len, NBYTES
307 sltu t1, len, 8
308EXC( STORE t0, 0(dst), s_exc_p1u)
309 ADD src, src, NBYTES
310 bnez t1, copy_bytes_checklen
311 ADD dst, dst, NBYTES
312 #
313 # 2) Copy NBYTES, then check length again
314 #
315EXC( LOAD t0, 0(src), l_exc)
316 SUB len, len, NBYTES
317 sltu t1, len, 8
318EXC( STORE t0, 0(dst), s_exc_p1u)
319 ADD src, src, NBYTES
320 bnez t1, copy_bytes_checklen
321 ADD dst, dst, NBYTES
322 #
323 # 3) Copy NBYTES, then check length again
324 #
325EXC( LOAD t0, 0(src), l_exc)
326 SUB len, len, NBYTES
327 ADD src, src, NBYTES
328 ADD dst, dst, NBYTES
329 b copy_bytes_checklen
330EXC( STORE t0, -8(dst), s_exc_p1u)
331
332src_unaligned:
333#define rem t8
334 SRL t0, len, LOG_NBYTES+2 # +2 for 4 units/iter
335 beqz t0, cleanup_src_unaligned
336 and rem, len, (4*NBYTES-1) # rem = len % 4*NBYTES
3371:
338/*
339 * Avoid consecutive LD*'s to the same register since some mips
340 * implementations can't issue them in the same cycle.
341 * It's OK to load FIRST(N+1) before REST(N) because the two addresses
342 * are to the same unit (unless src is aligned, but it's not).
343 */
344EXC( LDFIRST t0, FIRST(0)(src), l_exc)
345EXC( LDFIRST t1, FIRST(1)(src), l_exc_copy)
346 SUB len, len, 4*NBYTES
347EXC( LDREST t0, REST(0)(src), l_exc_copy)
348EXC( LDREST t1, REST(1)(src), l_exc_copy)
349EXC( LDFIRST t2, FIRST(2)(src), l_exc_copy)
350EXC( LDFIRST t3, FIRST(3)(src), l_exc_copy)
351EXC( LDREST t2, REST(2)(src), l_exc_copy)
352EXC( LDREST t3, REST(3)(src), l_exc_copy)
353 ADD src, src, 4*NBYTES
354EXC( STORE t0, UNIT(0)(dst), s_exc_p4u)
355EXC( STORE t1, UNIT(1)(dst), s_exc_p3u)
356EXC( STORE t2, UNIT(2)(dst), s_exc_p2u)
357EXC( STORE t3, UNIT(3)(dst), s_exc_p1u)
358 bne len, rem, 1b
359 ADD dst, dst, 4*NBYTES
360
361cleanup_src_unaligned:
362 beqz len, done
363 and rem, len, NBYTES-1 # rem = len % NBYTES
364 beq rem, len, copy_bytes
365 nop
3661:
367EXC( LDFIRST t0, FIRST(0)(src), l_exc)
368EXC( LDREST t0, REST(0)(src), l_exc_copy)
369 SUB len, len, NBYTES
370EXC( STORE t0, 0(dst), s_exc_p1u)
371 ADD src, src, NBYTES
372 bne len, rem, 1b
373 ADD dst, dst, NBYTES
374
375copy_bytes_checklen:
376 beqz len, done
377 nop
378copy_bytes:
379 /* 0 < len < NBYTES */
380#define COPY_BYTE(N) \
381EXC( lb t0, N(src), l_exc); \
382 SUB len, len, 1; \
383 beqz len, done; \
384EXC( sb t0, N(dst), s_exc_p1)
385
386 COPY_BYTE(0)
387 COPY_BYTE(1)
388#ifdef USE_DOUBLE
389 COPY_BYTE(2)
390 COPY_BYTE(3)
391 COPY_BYTE(4)
392 COPY_BYTE(5)
393#endif
394EXC( lb t0, NBYTES-2(src), l_exc)
395 SUB len, len, 1
396 jr ra
397EXC( sb t0, NBYTES-2(dst), s_exc_p1)
398done:
399 jr ra
400 nop
401 END(memcpy)
402
403l_exc_copy:
404 /*
405 * Copy bytes from src until faulting load address (or until a
406 * lb faults)
407 *
408 * When reached by a faulting LDFIRST/LDREST, THREAD_BUADDR($28)
409 * may be more than a byte beyond the last address.
410 * Hence, the lb below may get an exception.
411 *
412 * Assumes src < THREAD_BUADDR($28)
413 */
414 LOAD t0, TI_TASK($28)
415 nop
416 LOAD t0, THREAD_BUADDR(t0)
4171:
418EXC( lb t1, 0(src), l_exc)
419 ADD src, src, 1
420 sb t1, 0(dst) # can't fault -- we're copy_from_user
421 bne src, t0, 1b
422 ADD dst, dst, 1
423l_exc:
424 LOAD t0, TI_TASK($28)
425 nop
426 LOAD t0, THREAD_BUADDR(t0) # t0 is just past last good address
427 nop
428 SUB len, AT, t0 # len number of uncopied bytes
429 /*
430 * Here's where we rely on src and dst being incremented in tandem,
431 * See (3) above.
432 * dst += (fault addr - src) to put dst at first byte to clear
433 */
434 ADD dst, t0 # compute start address in a1
435 SUB dst, src
436 /*
437 * Clear len bytes starting at dst. Can't call __bzero because it
438 * might modify len. An inefficient loop for these rare times...
439 */
440 beqz len, done
441 SUB src, len, 1
4421: sb zero, 0(dst)
443 ADD dst, dst, 1
444 bnez src, 1b
445 SUB src, src, 1
446 jr ra
447 nop
448
449
450#define SEXC(n) \
451s_exc_p ## n ## u: \
452 jr ra; \
453 ADD len, len, n*NBYTES
454
455SEXC(16)
456SEXC(15)
457SEXC(14)
458SEXC(13)
459SEXC(12)
460SEXC(11)
461SEXC(10)
462SEXC(9)
463SEXC(8)
464SEXC(7)
465SEXC(6)
466SEXC(5)
467SEXC(4)
468SEXC(3)
469SEXC(2)
470SEXC(1)
471
472s_exc_p1:
473 jr ra
474 ADD len, len, 1
475s_exc:
476 jr ra
477 nop
478
479 .align 5
480LEAF(memmove)
481 ADD t0, a0, a2
482 ADD t1, a1, a2
483 sltu t0, a1, t0 # dst + len <= src -> memcpy
484 sltu t1, a0, t1 # dst >= src + len -> memcpy
485 and t0, t1
486 beqz t0, __memcpy
487 move v0, a0 /* return value */
488 beqz a2, r_out
489 END(memmove)
490
491 /* fall through to __rmemcpy */
492LEAF(__rmemcpy) /* a0=dst a1=src a2=len */
493 sltu t0, a1, a0
494 beqz t0, r_end_bytes_up # src >= dst
495 nop
496 ADD a0, a2 # dst = dst + len
497 ADD a1, a2 # src = src + len
498
499r_end_bytes:
500 lb t0, -1(a1)
501 SUB a2, a2, 0x1
502 sb t0, -1(a0)
503 SUB a1, a1, 0x1
504 bnez a2, r_end_bytes
505 SUB a0, a0, 0x1
506
507r_out:
508 jr ra
509 move a2, zero
510
511r_end_bytes_up:
512 lb t0, (a1)
513 SUB a2, a2, 0x1
514 sb t0, (a0)
515 ADD a1, a1, 0x1
516 bnez a2, r_end_bytes_up
517 ADD a0, a0, 0x1
518
519 jr ra
520 move a2, zero
521 END(__rmemcpy)