blob: ccf913038f9f0cb36fd694850f9ebacd55f61023 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/kernel/timer.c
3 *
Stephen Rothwell4a22f162013-04-30 15:27:37 -07004 * Kernel internal timers
Linus Torvalds1da177e2005-04-16 15:20:36 -07005 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
Paul Gortmaker9984de12011-05-23 14:51:41 -040023#include <linux/export.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070024#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
Pavel Emelyanovb4888932007-10-18 23:40:14 -070029#include <linux/pid_namespace.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070030#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
Adrian Bunk97a41e22006-01-08 01:02:17 -080037#include <linux/delay.h>
Thomas Gleixner79bf2bb2007-02-16 01:28:03 -080038#include <linux/tick.h>
Ingo Molnar82f67cd2007-02-16 01:28:13 -080039#include <linux/kallsyms.h>
Peter Zijlstrae360adb2010-10-14 14:01:34 +080040#include <linux/irq_work.h>
Arun R Bharadwajeea08f32009-04-16 12:16:41 +053041#include <linux/sched.h>
Clark Williamscf4aebc22013-02-07 09:46:59 -060042#include <linux/sched/sysctl.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090043#include <linux/slab.h>
Stephen Rothwell1a0df592013-04-30 15:27:34 -070044#include <linux/compat.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070045
46#include <asm/uaccess.h>
47#include <asm/unistd.h>
48#include <asm/div64.h>
49#include <asm/timex.h>
50#include <asm/io.h>
51
Thomas Gleixnerc1ad3482015-04-14 21:08:58 +000052#include "tick-internal.h"
53
Xiao Guangrong2b022e32009-08-10 10:48:59 +080054#define CREATE_TRACE_POINTS
55#include <trace/events/timer.h>
56
Andi Kleen40747ff2014-02-08 08:51:59 +010057__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
Thomas Gleixnerecea8d12005-10-30 15:03:00 -080058
59EXPORT_SYMBOL(jiffies_64);
60
Linus Torvalds1da177e2005-04-16 15:20:36 -070061/*
Thomas Gleixner500462a2016-07-04 09:50:30 +000062 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
63 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
64 * level has a different granularity.
65 *
66 * The level granularity is: LVL_CLK_DIV ^ lvl
67 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level)
68 *
69 * The array level of a newly armed timer depends on the relative expiry
70 * time. The farther the expiry time is away the higher the array level and
71 * therefor the granularity becomes.
72 *
73 * Contrary to the original timer wheel implementation, which aims for 'exact'
74 * expiry of the timers, this implementation removes the need for recascading
75 * the timers into the lower array levels. The previous 'classic' timer wheel
76 * implementation of the kernel already violated the 'exact' expiry by adding
77 * slack to the expiry time to provide batched expiration. The granularity
78 * levels provide implicit batching.
79 *
80 * This is an optimization of the original timer wheel implementation for the
81 * majority of the timer wheel use cases: timeouts. The vast majority of
82 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
83 * the timeout expires it indicates that normal operation is disturbed, so it
84 * does not matter much whether the timeout comes with a slight delay.
85 *
86 * The only exception to this are networking timers with a small expiry
87 * time. They rely on the granularity. Those fit into the first wheel level,
88 * which has HZ granularity.
89 *
90 * We don't have cascading anymore. timers with a expiry time above the
91 * capacity of the last wheel level are force expired at the maximum timeout
92 * value of the last wheel level. From data sampling we know that the maximum
93 * value observed is 5 days (network connection tracking), so this should not
94 * be an issue.
95 *
96 * The currently chosen array constants values are a good compromise between
97 * array size and granularity.
98 *
99 * This results in the following granularity and range levels:
100 *
101 * HZ 1000 steps
102 * Level Offset Granularity Range
103 * 0 0 1 ms 0 ms - 63 ms
104 * 1 64 8 ms 64 ms - 511 ms
105 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s)
106 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s)
107 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m)
108 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m)
109 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h)
110 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d)
111 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d)
112 *
113 * HZ 300
114 * Level Offset Granularity Range
115 * 0 0 3 ms 0 ms - 210 ms
116 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s)
117 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s)
118 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m)
119 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m)
120 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h)
121 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h)
122 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d)
123 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
124 *
125 * HZ 250
126 * Level Offset Granularity Range
127 * 0 0 4 ms 0 ms - 255 ms
128 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s)
129 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s)
130 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m)
131 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m)
132 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h)
133 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h)
134 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d)
135 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
136 *
137 * HZ 100
138 * Level Offset Granularity Range
139 * 0 0 10 ms 0 ms - 630 ms
140 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s)
141 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s)
142 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m)
143 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m)
144 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h)
145 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d)
146 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700147 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700148
Thomas Gleixner500462a2016-07-04 09:50:30 +0000149/* Clock divisor for the next level */
150#define LVL_CLK_SHIFT 3
151#define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT)
152#define LVL_CLK_MASK (LVL_CLK_DIV - 1)
153#define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT)
154#define LVL_GRAN(n) (1UL << LVL_SHIFT(n))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700155
Thomas Gleixner500462a2016-07-04 09:50:30 +0000156/*
157 * The time start value for each level to select the bucket at enqueue
158 * time.
159 */
160#define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700161
Thomas Gleixner500462a2016-07-04 09:50:30 +0000162/* Size of each clock level */
163#define LVL_BITS 6
164#define LVL_SIZE (1UL << LVL_BITS)
165#define LVL_MASK (LVL_SIZE - 1)
166#define LVL_OFFS(n) ((n) * LVL_SIZE)
167
168/* Level depth */
169#if HZ > 100
170# define LVL_DEPTH 9
171# else
172# define LVL_DEPTH 8
173#endif
174
175/* The cutoff (max. capacity of the wheel) */
176#define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH))
177#define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
178
179/*
180 * The resulting wheel size. If NOHZ is configured we allocate two
181 * wheels so we have a separate storage for the deferrable timers.
182 */
183#define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH)
184
185#ifdef CONFIG_NO_HZ_COMMON
186# define NR_BASES 2
187# define BASE_STD 0
188# define BASE_DEF 1
189#else
190# define NR_BASES 1
191# define BASE_STD 0
192# define BASE_DEF 0
193#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700194
Thomas Gleixner494af3e2016-07-04 09:50:28 +0000195struct timer_base {
Thomas Gleixner500462a2016-07-04 09:50:30 +0000196 spinlock_t lock;
197 struct timer_list *running_timer;
198 unsigned long clk;
Thomas Gleixnera683f392016-07-04 09:50:36 +0000199 unsigned long next_expiry;
Thomas Gleixner500462a2016-07-04 09:50:30 +0000200 unsigned int cpu;
201 bool migration_enabled;
202 bool nohz_active;
Thomas Gleixnera683f392016-07-04 09:50:36 +0000203 bool is_idle;
Thomas Gleixner500462a2016-07-04 09:50:30 +0000204 DECLARE_BITMAP(pending_map, WHEEL_SIZE);
205 struct hlist_head vectors[WHEEL_SIZE];
Venki Pallipadi6e453a62007-05-08 00:27:44 -0700206} ____cacheline_aligned;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700207
Thomas Gleixner500462a2016-07-04 09:50:30 +0000208static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
Venki Pallipadi6e453a62007-05-08 00:27:44 -0700209
Thomas Gleixnerbc7a34b2015-05-26 22:50:33 +0000210#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
211unsigned int sysctl_timer_migration = 1;
212
Thomas Gleixner683be132015-05-26 22:50:35 +0000213void timers_update_migration(bool update_nohz)
Thomas Gleixnerbc7a34b2015-05-26 22:50:33 +0000214{
215 bool on = sysctl_timer_migration && tick_nohz_active;
216 unsigned int cpu;
217
218 /* Avoid the loop, if nothing to update */
Thomas Gleixner500462a2016-07-04 09:50:30 +0000219 if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on)
Thomas Gleixnerbc7a34b2015-05-26 22:50:33 +0000220 return;
221
222 for_each_possible_cpu(cpu) {
Thomas Gleixner500462a2016-07-04 09:50:30 +0000223 per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on;
224 per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on;
Thomas Gleixnerbc7a34b2015-05-26 22:50:33 +0000225 per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
Thomas Gleixner683be132015-05-26 22:50:35 +0000226 if (!update_nohz)
227 continue;
Thomas Gleixner500462a2016-07-04 09:50:30 +0000228 per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true;
229 per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true;
Thomas Gleixner683be132015-05-26 22:50:35 +0000230 per_cpu(hrtimer_bases.nohz_active, cpu) = true;
Thomas Gleixnerbc7a34b2015-05-26 22:50:33 +0000231 }
232}
233
234int timer_migration_handler(struct ctl_table *table, int write,
235 void __user *buffer, size_t *lenp,
236 loff_t *ppos)
237{
238 static DEFINE_MUTEX(mutex);
239 int ret;
240
241 mutex_lock(&mutex);
242 ret = proc_dointvec(table, write, buffer, lenp, ppos);
243 if (!ret && write)
Thomas Gleixner683be132015-05-26 22:50:35 +0000244 timers_update_migration(false);
Thomas Gleixnerbc7a34b2015-05-26 22:50:33 +0000245 mutex_unlock(&mutex);
246 return ret;
247}
Thomas Gleixnerbc7a34b2015-05-26 22:50:33 +0000248#endif
249
Alan Stern9c133c42008-11-06 08:42:48 +0100250static unsigned long round_jiffies_common(unsigned long j, int cpu,
251 bool force_up)
252{
253 int rem;
254 unsigned long original = j;
255
256 /*
257 * We don't want all cpus firing their timers at once hitting the
258 * same lock or cachelines, so we skew each extra cpu with an extra
259 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
260 * already did this.
261 * The skew is done by adding 3*cpunr, then round, then subtract this
262 * extra offset again.
263 */
264 j += cpu * 3;
265
266 rem = j % HZ;
267
268 /*
269 * If the target jiffie is just after a whole second (which can happen
270 * due to delays of the timer irq, long irq off times etc etc) then
271 * we should round down to the whole second, not up. Use 1/4th second
272 * as cutoff for this rounding as an extreme upper bound for this.
273 * But never round down if @force_up is set.
274 */
275 if (rem < HZ/4 && !force_up) /* round down */
276 j = j - rem;
277 else /* round up */
278 j = j - rem + HZ;
279
280 /* now that we have rounded, subtract the extra skew again */
281 j -= cpu * 3;
282
Bart Van Assche9e04d382013-05-21 20:43:50 +0200283 /*
284 * Make sure j is still in the future. Otherwise return the
285 * unmodified value.
286 */
287 return time_is_after_jiffies(j) ? j : original;
Alan Stern9c133c42008-11-06 08:42:48 +0100288}
289
Arjan van de Ven4c36a5d2006-12-10 02:21:24 -0800290/**
291 * __round_jiffies - function to round jiffies to a full second
292 * @j: the time in (absolute) jiffies that should be rounded
293 * @cpu: the processor number on which the timeout will happen
294 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -0800295 * __round_jiffies() rounds an absolute time in the future (in jiffies)
Arjan van de Ven4c36a5d2006-12-10 02:21:24 -0800296 * up or down to (approximately) full seconds. This is useful for timers
297 * for which the exact time they fire does not matter too much, as long as
298 * they fire approximately every X seconds.
299 *
300 * By rounding these timers to whole seconds, all such timers will fire
301 * at the same time, rather than at various times spread out. The goal
302 * of this is to have the CPU wake up less, which saves power.
303 *
304 * The exact rounding is skewed for each processor to avoid all
305 * processors firing at the exact same time, which could lead
306 * to lock contention or spurious cache line bouncing.
307 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -0800308 * The return value is the rounded version of the @j parameter.
Arjan van de Ven4c36a5d2006-12-10 02:21:24 -0800309 */
310unsigned long __round_jiffies(unsigned long j, int cpu)
311{
Alan Stern9c133c42008-11-06 08:42:48 +0100312 return round_jiffies_common(j, cpu, false);
Arjan van de Ven4c36a5d2006-12-10 02:21:24 -0800313}
314EXPORT_SYMBOL_GPL(__round_jiffies);
315
316/**
317 * __round_jiffies_relative - function to round jiffies to a full second
318 * @j: the time in (relative) jiffies that should be rounded
319 * @cpu: the processor number on which the timeout will happen
320 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -0800321 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
Arjan van de Ven4c36a5d2006-12-10 02:21:24 -0800322 * up or down to (approximately) full seconds. This is useful for timers
323 * for which the exact time they fire does not matter too much, as long as
324 * they fire approximately every X seconds.
325 *
326 * By rounding these timers to whole seconds, all such timers will fire
327 * at the same time, rather than at various times spread out. The goal
328 * of this is to have the CPU wake up less, which saves power.
329 *
330 * The exact rounding is skewed for each processor to avoid all
331 * processors firing at the exact same time, which could lead
332 * to lock contention or spurious cache line bouncing.
333 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -0800334 * The return value is the rounded version of the @j parameter.
Arjan van de Ven4c36a5d2006-12-10 02:21:24 -0800335 */
336unsigned long __round_jiffies_relative(unsigned long j, int cpu)
337{
Alan Stern9c133c42008-11-06 08:42:48 +0100338 unsigned long j0 = jiffies;
339
340 /* Use j0 because jiffies might change while we run */
341 return round_jiffies_common(j + j0, cpu, false) - j0;
Arjan van de Ven4c36a5d2006-12-10 02:21:24 -0800342}
343EXPORT_SYMBOL_GPL(__round_jiffies_relative);
344
345/**
346 * round_jiffies - function to round jiffies to a full second
347 * @j: the time in (absolute) jiffies that should be rounded
348 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -0800349 * round_jiffies() rounds an absolute time in the future (in jiffies)
Arjan van de Ven4c36a5d2006-12-10 02:21:24 -0800350 * up or down to (approximately) full seconds. This is useful for timers
351 * for which the exact time they fire does not matter too much, as long as
352 * they fire approximately every X seconds.
353 *
354 * By rounding these timers to whole seconds, all such timers will fire
355 * at the same time, rather than at various times spread out. The goal
356 * of this is to have the CPU wake up less, which saves power.
357 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -0800358 * The return value is the rounded version of the @j parameter.
Arjan van de Ven4c36a5d2006-12-10 02:21:24 -0800359 */
360unsigned long round_jiffies(unsigned long j)
361{
Alan Stern9c133c42008-11-06 08:42:48 +0100362 return round_jiffies_common(j, raw_smp_processor_id(), false);
Arjan van de Ven4c36a5d2006-12-10 02:21:24 -0800363}
364EXPORT_SYMBOL_GPL(round_jiffies);
365
366/**
367 * round_jiffies_relative - function to round jiffies to a full second
368 * @j: the time in (relative) jiffies that should be rounded
369 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -0800370 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
Arjan van de Ven4c36a5d2006-12-10 02:21:24 -0800371 * up or down to (approximately) full seconds. This is useful for timers
372 * for which the exact time they fire does not matter too much, as long as
373 * they fire approximately every X seconds.
374 *
375 * By rounding these timers to whole seconds, all such timers will fire
376 * at the same time, rather than at various times spread out. The goal
377 * of this is to have the CPU wake up less, which saves power.
378 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -0800379 * The return value is the rounded version of the @j parameter.
Arjan van de Ven4c36a5d2006-12-10 02:21:24 -0800380 */
381unsigned long round_jiffies_relative(unsigned long j)
382{
383 return __round_jiffies_relative(j, raw_smp_processor_id());
384}
385EXPORT_SYMBOL_GPL(round_jiffies_relative);
386
Alan Stern9c133c42008-11-06 08:42:48 +0100387/**
388 * __round_jiffies_up - function to round jiffies up to a full second
389 * @j: the time in (absolute) jiffies that should be rounded
390 * @cpu: the processor number on which the timeout will happen
391 *
392 * This is the same as __round_jiffies() except that it will never
393 * round down. This is useful for timeouts for which the exact time
394 * of firing does not matter too much, as long as they don't fire too
395 * early.
396 */
397unsigned long __round_jiffies_up(unsigned long j, int cpu)
398{
399 return round_jiffies_common(j, cpu, true);
400}
401EXPORT_SYMBOL_GPL(__round_jiffies_up);
402
403/**
404 * __round_jiffies_up_relative - function to round jiffies up to a full second
405 * @j: the time in (relative) jiffies that should be rounded
406 * @cpu: the processor number on which the timeout will happen
407 *
408 * This is the same as __round_jiffies_relative() except that it will never
409 * round down. This is useful for timeouts for which the exact time
410 * of firing does not matter too much, as long as they don't fire too
411 * early.
412 */
413unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
414{
415 unsigned long j0 = jiffies;
416
417 /* Use j0 because jiffies might change while we run */
418 return round_jiffies_common(j + j0, cpu, true) - j0;
419}
420EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
421
422/**
423 * round_jiffies_up - function to round jiffies up to a full second
424 * @j: the time in (absolute) jiffies that should be rounded
425 *
426 * This is the same as round_jiffies() except that it will never
427 * round down. This is useful for timeouts for which the exact time
428 * of firing does not matter too much, as long as they don't fire too
429 * early.
430 */
431unsigned long round_jiffies_up(unsigned long j)
432{
433 return round_jiffies_common(j, raw_smp_processor_id(), true);
434}
435EXPORT_SYMBOL_GPL(round_jiffies_up);
436
437/**
438 * round_jiffies_up_relative - function to round jiffies up to a full second
439 * @j: the time in (relative) jiffies that should be rounded
440 *
441 * This is the same as round_jiffies_relative() except that it will never
442 * round down. This is useful for timeouts for which the exact time
443 * of firing does not matter too much, as long as they don't fire too
444 * early.
445 */
446unsigned long round_jiffies_up_relative(unsigned long j)
447{
448 return __round_jiffies_up_relative(j, raw_smp_processor_id());
449}
450EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
451
Arjan van de Ven3bbb9ec2010-03-11 14:04:36 -0800452
Thomas Gleixner500462a2016-07-04 09:50:30 +0000453static inline unsigned int timer_get_idx(struct timer_list *timer)
Venki Pallipadic5c061b82007-07-15 23:40:30 -0700454{
Thomas Gleixner500462a2016-07-04 09:50:30 +0000455 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
Venki Pallipadic5c061b82007-07-15 23:40:30 -0700456}
Thomas Gleixner500462a2016-07-04 09:50:30 +0000457
458static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
459{
460 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
461 idx << TIMER_ARRAYSHIFT;
462}
463
464/*
465 * Helper function to calculate the array index for a given expiry
466 * time.
467 */
468static inline unsigned calc_index(unsigned expires, unsigned lvl)
469{
470 expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
471 return LVL_OFFS(lvl) + (expires & LVL_MASK);
472}
473
Anna-Maria Gleixnerffdf0472016-07-04 09:50:39 +0000474static int calc_wheel_index(unsigned long expires, unsigned long clk)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700475{
Anna-Maria Gleixnerffdf0472016-07-04 09:50:39 +0000476 unsigned long delta = expires - clk;
Thomas Gleixner500462a2016-07-04 09:50:30 +0000477 unsigned int idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700478
Thomas Gleixner500462a2016-07-04 09:50:30 +0000479 if (delta < LVL_START(1)) {
480 idx = calc_index(expires, 0);
481 } else if (delta < LVL_START(2)) {
482 idx = calc_index(expires, 1);
483 } else if (delta < LVL_START(3)) {
484 idx = calc_index(expires, 2);
485 } else if (delta < LVL_START(4)) {
486 idx = calc_index(expires, 3);
487 } else if (delta < LVL_START(5)) {
488 idx = calc_index(expires, 4);
489 } else if (delta < LVL_START(6)) {
490 idx = calc_index(expires, 5);
491 } else if (delta < LVL_START(7)) {
492 idx = calc_index(expires, 6);
493 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
494 idx = calc_index(expires, 7);
495 } else if ((long) delta < 0) {
Anna-Maria Gleixnerffdf0472016-07-04 09:50:39 +0000496 idx = clk & LVL_MASK;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700497 } else {
Thomas Gleixner500462a2016-07-04 09:50:30 +0000498 /*
499 * Force expire obscene large timeouts to expire at the
500 * capacity limit of the wheel.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700501 */
Thomas Gleixner500462a2016-07-04 09:50:30 +0000502 if (expires >= WHEEL_TIMEOUT_CUTOFF)
503 expires = WHEEL_TIMEOUT_MAX;
Thomas Gleixner1bd04bf2015-05-26 22:50:26 +0000504
Thomas Gleixner500462a2016-07-04 09:50:30 +0000505 idx = calc_index(expires, LVL_DEPTH - 1);
506 }
Anna-Maria Gleixnerffdf0472016-07-04 09:50:39 +0000507 return idx;
508}
509
510/*
511 * Enqueue the timer into the hash bucket, mark it pending in
512 * the bitmap and store the index in the timer flags.
513 */
514static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
515 unsigned int idx)
516{
517 hlist_add_head(&timer->entry, base->vectors + idx);
Thomas Gleixner500462a2016-07-04 09:50:30 +0000518 __set_bit(idx, base->pending_map);
519 timer_set_idx(timer, idx);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700520}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700521
522static void
Anna-Maria Gleixnerffdf0472016-07-04 09:50:39 +0000523__internal_add_timer(struct timer_base *base, struct timer_list *timer)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700524{
Anna-Maria Gleixnerffdf0472016-07-04 09:50:39 +0000525 unsigned int idx;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700526
Anna-Maria Gleixnerffdf0472016-07-04 09:50:39 +0000527 idx = calc_wheel_index(timer->expires, base->clk);
528 enqueue_timer(base, timer, idx);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700529}
530
Anna-Maria Gleixnerffdf0472016-07-04 09:50:39 +0000531static void
532trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
Thomas Gleixnerfacbb4a2012-05-25 22:08:57 +0000533{
Thomas Gleixnera683f392016-07-04 09:50:36 +0000534 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
535 return;
Viresh Kumar9f6d9ba2014-06-22 01:29:14 +0200536
537 /*
Thomas Gleixnera683f392016-07-04 09:50:36 +0000538 * TODO: This wants some optimizing similar to the code below, but we
539 * will do that when we switch from push to pull for deferrable timers.
Viresh Kumar9f6d9ba2014-06-22 01:29:14 +0200540 */
Thomas Gleixnera683f392016-07-04 09:50:36 +0000541 if (timer->flags & TIMER_DEFERRABLE) {
542 if (tick_nohz_full_cpu(base->cpu))
Thomas Gleixner683be132015-05-26 22:50:35 +0000543 wake_up_nohz_cpu(base->cpu);
Thomas Gleixnera683f392016-07-04 09:50:36 +0000544 return;
Thomas Gleixner683be132015-05-26 22:50:35 +0000545 }
Thomas Gleixnera683f392016-07-04 09:50:36 +0000546
547 /*
548 * We might have to IPI the remote CPU if the base is idle and the
549 * timer is not deferrable. If the other CPU is on the way to idle
550 * then it can't set base->is_idle as we hold the base lock:
551 */
552 if (!base->is_idle)
553 return;
554
555 /* Check whether this is the new first expiring timer: */
556 if (time_after_eq(timer->expires, base->next_expiry))
557 return;
558
559 /*
560 * Set the next expiry time and kick the CPU so it can reevaluate the
561 * wheel:
562 */
563 base->next_expiry = timer->expires;
Anna-Maria Gleixnerffdf0472016-07-04 09:50:39 +0000564 wake_up_nohz_cpu(base->cpu);
565}
566
567static void
568internal_add_timer(struct timer_base *base, struct timer_list *timer)
569{
570 __internal_add_timer(base, timer);
571 trigger_dyntick_cpu(base, timer);
Thomas Gleixnerfacbb4a2012-05-25 22:08:57 +0000572}
573
Ingo Molnar82f67cd2007-02-16 01:28:13 -0800574#ifdef CONFIG_TIMER_STATS
575void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
576{
577 if (timer->start_site)
578 return;
579
580 timer->start_site = addr;
581 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
582 timer->start_pid = current->pid;
583}
Venki Pallipadic5c061b82007-07-15 23:40:30 -0700584
585static void timer_stats_account_timer(struct timer_list *timer)
586{
Dmitry Vyukov3ed769b2015-09-18 15:54:23 +0200587 void *site;
588
589 /*
590 * start_site can be concurrently reset by
591 * timer_stats_timer_clear_start_info()
592 */
593 site = READ_ONCE(timer->start_site);
594 if (likely(!site))
Heiko Carstens507e1232009-06-23 17:38:15 +0200595 return;
Venki Pallipadic5c061b82007-07-15 23:40:30 -0700596
Dmitry Vyukov3ed769b2015-09-18 15:54:23 +0200597 timer_stats_update_stats(timer, timer->start_pid, site,
Thomas Gleixnerc74441a2015-05-26 22:50:31 +0000598 timer->function, timer->start_comm,
599 timer->flags);
Venki Pallipadic5c061b82007-07-15 23:40:30 -0700600}
601
602#else
603static void timer_stats_account_timer(struct timer_list *timer) {}
Ingo Molnar82f67cd2007-02-16 01:28:13 -0800604#endif
605
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700606#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
607
608static struct debug_obj_descr timer_debug_descr;
609
Stanislaw Gruszka99777282011-03-07 09:58:33 +0100610static void *timer_debug_hint(void *addr)
611{
612 return ((struct timer_list *) addr)->function;
613}
614
Du, Changbinb9fdac72016-05-19 17:09:41 -0700615static bool timer_is_static_object(void *addr)
616{
617 struct timer_list *timer = addr;
618
619 return (timer->entry.pprev == NULL &&
620 timer->entry.next == TIMER_ENTRY_STATIC);
621}
622
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700623/*
624 * fixup_init is called when:
625 * - an active object is initialized
626 */
Du, Changbine3252462016-05-19 17:09:29 -0700627static bool timer_fixup_init(void *addr, enum debug_obj_state state)
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700628{
629 struct timer_list *timer = addr;
630
631 switch (state) {
632 case ODEBUG_STATE_ACTIVE:
633 del_timer_sync(timer);
634 debug_object_init(timer, &timer_debug_descr);
Du, Changbine3252462016-05-19 17:09:29 -0700635 return true;
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700636 default:
Du, Changbine3252462016-05-19 17:09:29 -0700637 return false;
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700638 }
639}
640
Stephen Boydfb16b8c2011-11-07 19:48:26 -0800641/* Stub timer callback for improperly used timers. */
642static void stub_timer(unsigned long data)
643{
644 WARN_ON(1);
645}
646
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700647/*
648 * fixup_activate is called when:
649 * - an active object is activated
Du, Changbinb9fdac72016-05-19 17:09:41 -0700650 * - an unknown non-static object is activated
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700651 */
Du, Changbine3252462016-05-19 17:09:29 -0700652static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700653{
654 struct timer_list *timer = addr;
655
656 switch (state) {
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700657 case ODEBUG_STATE_NOTAVAILABLE:
Du, Changbinb9fdac72016-05-19 17:09:41 -0700658 setup_timer(timer, stub_timer, 0);
659 return true;
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700660
661 case ODEBUG_STATE_ACTIVE:
662 WARN_ON(1);
663
664 default:
Du, Changbine3252462016-05-19 17:09:29 -0700665 return false;
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700666 }
667}
668
669/*
670 * fixup_free is called when:
671 * - an active object is freed
672 */
Du, Changbine3252462016-05-19 17:09:29 -0700673static bool timer_fixup_free(void *addr, enum debug_obj_state state)
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700674{
675 struct timer_list *timer = addr;
676
677 switch (state) {
678 case ODEBUG_STATE_ACTIVE:
679 del_timer_sync(timer);
680 debug_object_free(timer, &timer_debug_descr);
Du, Changbine3252462016-05-19 17:09:29 -0700681 return true;
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700682 default:
Du, Changbine3252462016-05-19 17:09:29 -0700683 return false;
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700684 }
685}
686
Christine Chandc4218b2011-11-07 19:48:28 -0800687/*
688 * fixup_assert_init is called when:
689 * - an untracked/uninit-ed object is found
690 */
Du, Changbine3252462016-05-19 17:09:29 -0700691static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
Christine Chandc4218b2011-11-07 19:48:28 -0800692{
693 struct timer_list *timer = addr;
694
695 switch (state) {
696 case ODEBUG_STATE_NOTAVAILABLE:
Du, Changbinb9fdac72016-05-19 17:09:41 -0700697 setup_timer(timer, stub_timer, 0);
698 return true;
Christine Chandc4218b2011-11-07 19:48:28 -0800699 default:
Du, Changbine3252462016-05-19 17:09:29 -0700700 return false;
Christine Chandc4218b2011-11-07 19:48:28 -0800701 }
702}
703
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700704static struct debug_obj_descr timer_debug_descr = {
Christine Chandc4218b2011-11-07 19:48:28 -0800705 .name = "timer_list",
706 .debug_hint = timer_debug_hint,
Du, Changbinb9fdac72016-05-19 17:09:41 -0700707 .is_static_object = timer_is_static_object,
Christine Chandc4218b2011-11-07 19:48:28 -0800708 .fixup_init = timer_fixup_init,
709 .fixup_activate = timer_fixup_activate,
710 .fixup_free = timer_fixup_free,
711 .fixup_assert_init = timer_fixup_assert_init,
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700712};
713
714static inline void debug_timer_init(struct timer_list *timer)
715{
716 debug_object_init(timer, &timer_debug_descr);
717}
718
719static inline void debug_timer_activate(struct timer_list *timer)
720{
721 debug_object_activate(timer, &timer_debug_descr);
722}
723
724static inline void debug_timer_deactivate(struct timer_list *timer)
725{
726 debug_object_deactivate(timer, &timer_debug_descr);
727}
728
729static inline void debug_timer_free(struct timer_list *timer)
730{
731 debug_object_free(timer, &timer_debug_descr);
732}
733
Christine Chandc4218b2011-11-07 19:48:28 -0800734static inline void debug_timer_assert_init(struct timer_list *timer)
735{
736 debug_object_assert_init(timer, &timer_debug_descr);
737}
738
Tejun Heofc683992012-08-08 11:10:27 -0700739static void do_init_timer(struct timer_list *timer, unsigned int flags,
740 const char *name, struct lock_class_key *key);
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700741
Tejun Heofc683992012-08-08 11:10:27 -0700742void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
743 const char *name, struct lock_class_key *key)
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700744{
745 debug_object_init_on_stack(timer, &timer_debug_descr);
Tejun Heofc683992012-08-08 11:10:27 -0700746 do_init_timer(timer, flags, name, key);
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700747}
Johannes Berg6f2b9b92009-01-29 16:03:20 +0100748EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700749
750void destroy_timer_on_stack(struct timer_list *timer)
751{
752 debug_object_free(timer, &timer_debug_descr);
753}
754EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
755
756#else
757static inline void debug_timer_init(struct timer_list *timer) { }
758static inline void debug_timer_activate(struct timer_list *timer) { }
759static inline void debug_timer_deactivate(struct timer_list *timer) { }
Christine Chandc4218b2011-11-07 19:48:28 -0800760static inline void debug_timer_assert_init(struct timer_list *timer) { }
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700761#endif
762
Xiao Guangrong2b022e32009-08-10 10:48:59 +0800763static inline void debug_init(struct timer_list *timer)
764{
765 debug_timer_init(timer);
766 trace_timer_init(timer);
767}
768
769static inline void
770debug_activate(struct timer_list *timer, unsigned long expires)
771{
772 debug_timer_activate(timer);
Thomas Gleixner0eeda712015-05-26 22:50:29 +0000773 trace_timer_start(timer, expires, timer->flags);
Xiao Guangrong2b022e32009-08-10 10:48:59 +0800774}
775
776static inline void debug_deactivate(struct timer_list *timer)
777{
778 debug_timer_deactivate(timer);
779 trace_timer_cancel(timer);
780}
781
Christine Chandc4218b2011-11-07 19:48:28 -0800782static inline void debug_assert_init(struct timer_list *timer)
783{
784 debug_timer_assert_init(timer);
785}
786
Tejun Heofc683992012-08-08 11:10:27 -0700787static void do_init_timer(struct timer_list *timer, unsigned int flags,
788 const char *name, struct lock_class_key *key)
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700789{
Thomas Gleixner1dabbce2015-05-26 22:50:28 +0000790 timer->entry.pprev = NULL;
Thomas Gleixner0eeda712015-05-26 22:50:29 +0000791 timer->flags = flags | raw_smp_processor_id();
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700792#ifdef CONFIG_TIMER_STATS
793 timer->start_site = NULL;
794 timer->start_pid = -1;
795 memset(timer->start_comm, 0, TASK_COMM_LEN);
796#endif
Johannes Berg6f2b9b92009-01-29 16:03:20 +0100797 lockdep_init_map(&timer->lockdep_map, name, key, 0);
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700798}
799
Rolf Eike Beer2aae4a12006-09-29 01:59:46 -0700800/**
Randy Dunlap633fe792009-04-01 17:47:23 -0700801 * init_timer_key - initialize a timer
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700802 * @timer: the timer to be initialized
Tejun Heofc683992012-08-08 11:10:27 -0700803 * @flags: timer flags
Randy Dunlap633fe792009-04-01 17:47:23 -0700804 * @name: name of the timer
805 * @key: lockdep class key of the fake lock used for tracking timer
806 * sync lock dependencies
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700807 *
Randy Dunlap633fe792009-04-01 17:47:23 -0700808 * init_timer_key() must be done to a timer prior calling *any* of the
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700809 * other timer functions.
810 */
Tejun Heofc683992012-08-08 11:10:27 -0700811void init_timer_key(struct timer_list *timer, unsigned int flags,
812 const char *name, struct lock_class_key *key)
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700813{
Xiao Guangrong2b022e32009-08-10 10:48:59 +0800814 debug_init(timer);
Tejun Heofc683992012-08-08 11:10:27 -0700815 do_init_timer(timer, flags, name, key);
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700816}
Johannes Berg6f2b9b92009-01-29 16:03:20 +0100817EXPORT_SYMBOL(init_timer_key);
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700818
Thomas Gleixnerec44bc72012-05-25 22:08:57 +0000819static inline void detach_timer(struct timer_list *timer, bool clear_pending)
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700820{
Thomas Gleixner1dabbce2015-05-26 22:50:28 +0000821 struct hlist_node *entry = &timer->entry;
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700822
Xiao Guangrong2b022e32009-08-10 10:48:59 +0800823 debug_deactivate(timer);
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -0700824
Thomas Gleixner1dabbce2015-05-26 22:50:28 +0000825 __hlist_del(entry);
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700826 if (clear_pending)
Thomas Gleixner1dabbce2015-05-26 22:50:28 +0000827 entry->pprev = NULL;
828 entry->next = LIST_POISON2;
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700829}
830
Thomas Gleixner494af3e2016-07-04 09:50:28 +0000831static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
Thomas Gleixnerec44bc72012-05-25 22:08:57 +0000832 bool clear_pending)
833{
Thomas Gleixner500462a2016-07-04 09:50:30 +0000834 unsigned idx = timer_get_idx(timer);
835
Thomas Gleixnerec44bc72012-05-25 22:08:57 +0000836 if (!timer_pending(timer))
837 return 0;
838
Thomas Gleixner500462a2016-07-04 09:50:30 +0000839 if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
840 __clear_bit(idx, base->pending_map);
841
Thomas Gleixnerec44bc72012-05-25 22:08:57 +0000842 detach_timer(timer, clear_pending);
Thomas Gleixnerec44bc72012-05-25 22:08:57 +0000843 return 1;
844}
845
Thomas Gleixner500462a2016-07-04 09:50:30 +0000846static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
847{
848 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
849
850 /*
851 * If the timer is deferrable and nohz is active then we need to use
852 * the deferrable base.
853 */
854 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
855 (tflags & TIMER_DEFERRABLE))
856 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
857 return base;
858}
859
860static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
861{
862 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
863
864 /*
865 * If the timer is deferrable and nohz is active then we need to use
866 * the deferrable base.
867 */
868 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
869 (tflags & TIMER_DEFERRABLE))
870 base = this_cpu_ptr(&timer_bases[BASE_DEF]);
871 return base;
872}
873
874static inline struct timer_base *get_timer_base(u32 tflags)
875{
876 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
877}
878
Thomas Gleixnera683f392016-07-04 09:50:36 +0000879#ifdef CONFIG_NO_HZ_COMMON
880static inline struct timer_base *
881__get_target_base(struct timer_base *base, unsigned tflags)
Thomas Gleixner500462a2016-07-04 09:50:30 +0000882{
Thomas Gleixnera683f392016-07-04 09:50:36 +0000883#ifdef CONFIG_SMP
Thomas Gleixner500462a2016-07-04 09:50:30 +0000884 if ((tflags & TIMER_PINNED) || !base->migration_enabled)
885 return get_timer_this_cpu_base(tflags);
886 return get_timer_cpu_base(tflags, get_nohz_timer_target());
887#else
888 return get_timer_this_cpu_base(tflags);
889#endif
890}
891
Thomas Gleixnera683f392016-07-04 09:50:36 +0000892static inline void forward_timer_base(struct timer_base *base)
893{
894 /*
895 * We only forward the base when it's idle and we have a delta between
896 * base clock and jiffies.
897 */
898 if (!base->is_idle || (long) (jiffies - base->clk) < 2)
899 return;
900
901 /*
902 * If the next expiry value is > jiffies, then we fast forward to
903 * jiffies otherwise we forward to the next expiry value.
904 */
905 if (time_after(base->next_expiry, jiffies))
906 base->clk = jiffies;
907 else
908 base->clk = base->next_expiry;
909}
910#else
911static inline struct timer_base *
912__get_target_base(struct timer_base *base, unsigned tflags)
913{
914 return get_timer_this_cpu_base(tflags);
915}
916
917static inline void forward_timer_base(struct timer_base *base) { }
918#endif
919
920static inline struct timer_base *
921get_target_base(struct timer_base *base, unsigned tflags)
922{
923 struct timer_base *target = __get_target_base(base, tflags);
924
925 forward_timer_base(target);
926 return target;
927}
928
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700929/*
Thomas Gleixner500462a2016-07-04 09:50:30 +0000930 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
931 * that all timers which are tied to this base are locked, and the base itself
932 * is locked too.
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700933 *
934 * So __run_timers/migrate_timers can safely modify all timers which could
Thomas Gleixner500462a2016-07-04 09:50:30 +0000935 * be found in the base->vectors array.
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700936 *
Thomas Gleixner500462a2016-07-04 09:50:30 +0000937 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
938 * to wait until the migration is done.
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700939 */
Thomas Gleixner494af3e2016-07-04 09:50:28 +0000940static struct timer_base *lock_timer_base(struct timer_list *timer,
Thomas Gleixner500462a2016-07-04 09:50:30 +0000941 unsigned long *flags)
Josh Triplett89e7e3742006-09-29 01:59:36 -0700942 __acquires(timer->base->lock)
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700943{
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700944 for (;;) {
Thomas Gleixner494af3e2016-07-04 09:50:28 +0000945 struct timer_base *base;
Thomas Gleixnerb8312752016-10-24 11:41:56 +0200946 u32 tf;
947
948 /*
949 * We need to use READ_ONCE() here, otherwise the compiler
950 * might re-read @tf between the check for TIMER_MIGRATING
951 * and spin_lock().
952 */
953 tf = READ_ONCE(timer->flags);
Thomas Gleixner0eeda712015-05-26 22:50:29 +0000954
955 if (!(tf & TIMER_MIGRATING)) {
Thomas Gleixner500462a2016-07-04 09:50:30 +0000956 base = get_timer_base(tf);
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700957 spin_lock_irqsave(&base->lock, *flags);
Thomas Gleixner0eeda712015-05-26 22:50:29 +0000958 if (timer->flags == tf)
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700959 return base;
Oleg Nesterov55c888d2005-06-23 00:08:56 -0700960 spin_unlock_irqrestore(&base->lock, *flags);
961 }
962 cpu_relax();
963 }
964}
965
Ingo Molnar74019222009-02-18 12:23:29 +0100966static inline int
Thomas Gleixner177ec0a2016-07-04 09:50:24 +0000967__mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700968{
Thomas Gleixner494af3e2016-07-04 09:50:28 +0000969 struct timer_base *base, *new_base;
Anna-Maria Gleixnerf00c0af2016-07-04 09:50:40 +0000970 unsigned int idx = UINT_MAX;
971 unsigned long clk = 0, flags;
Thomas Gleixnerbc7a34b2015-05-26 22:50:33 +0000972 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700973
Thomas Gleixner4da91522016-10-24 11:55:10 +0200974 BUG_ON(!timer->function);
975
Thomas Gleixner500462a2016-07-04 09:50:30 +0000976 /*
Anna-Maria Gleixnerf00c0af2016-07-04 09:50:40 +0000977 * This is a common optimization triggered by the networking code - if
978 * the timer is re-modified to have the same timeout or ends up in the
979 * same array bucket then just return:
Thomas Gleixner500462a2016-07-04 09:50:30 +0000980 */
981 if (timer_pending(timer)) {
982 if (timer->expires == expires)
983 return 1;
Anna-Maria Gleixnerf00c0af2016-07-04 09:50:40 +0000984
Thomas Gleixner4da91522016-10-24 11:55:10 +0200985 /*
986 * We lock timer base and calculate the bucket index right
987 * here. If the timer ends up in the same bucket, then we
988 * just update the expiry time and avoid the whole
989 * dequeue/enqueue dance.
990 */
991 base = lock_timer_base(timer, &flags);
992
993 clk = base->clk;
Anna-Maria Gleixnerf00c0af2016-07-04 09:50:40 +0000994 idx = calc_wheel_index(expires, clk);
995
996 /*
997 * Retrieve and compare the array index of the pending
998 * timer. If it matches set the expiry to the new value so a
999 * subsequent call will exit in the expires check above.
1000 */
1001 if (idx == timer_get_idx(timer)) {
1002 timer->expires = expires;
Thomas Gleixner4da91522016-10-24 11:55:10 +02001003 ret = 1;
1004 goto out_unlock;
Anna-Maria Gleixnerf00c0af2016-07-04 09:50:40 +00001005 }
Thomas Gleixner4da91522016-10-24 11:55:10 +02001006 } else {
1007 base = lock_timer_base(timer, &flags);
Thomas Gleixner500462a2016-07-04 09:50:30 +00001008 }
1009
Ingo Molnar82f67cd2007-02-16 01:28:13 -08001010 timer_stats_timer_set_start_info(timer);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001011
Thomas Gleixnerec44bc72012-05-25 22:08:57 +00001012 ret = detach_if_pending(timer, base, false);
1013 if (!ret && pending_only)
1014 goto out_unlock;
Oleg Nesterov55c888d2005-06-23 00:08:56 -07001015
Xiao Guangrong2b022e32009-08-10 10:48:59 +08001016 debug_activate(timer, expires);
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -07001017
Thomas Gleixner500462a2016-07-04 09:50:30 +00001018 new_base = get_target_base(base, timer->flags);
Arun R Bharadwajeea08f32009-04-16 12:16:41 +05301019
Oleg Nesterov3691c512006-03-31 02:30:30 -08001020 if (base != new_base) {
Oleg Nesterov55c888d2005-06-23 00:08:56 -07001021 /*
Thomas Gleixner500462a2016-07-04 09:50:30 +00001022 * We are trying to schedule the timer on the new base.
Oleg Nesterov55c888d2005-06-23 00:08:56 -07001023 * However we can't change timer's base while it is running,
1024 * otherwise del_timer_sync() can't detect that the timer's
Thomas Gleixner500462a2016-07-04 09:50:30 +00001025 * handler yet has not finished. This also guarantees that the
1026 * timer is serialized wrt itself.
Oleg Nesterov55c888d2005-06-23 00:08:56 -07001027 */
Oleg Nesterova2c348f2006-03-31 02:30:31 -08001028 if (likely(base->running_timer != timer)) {
Oleg Nesterov55c888d2005-06-23 00:08:56 -07001029 /* See the comment in lock_timer_base() */
Thomas Gleixner0eeda712015-05-26 22:50:29 +00001030 timer->flags |= TIMER_MIGRATING;
1031
Oleg Nesterov55c888d2005-06-23 00:08:56 -07001032 spin_unlock(&base->lock);
Oleg Nesterova2c348f2006-03-31 02:30:31 -08001033 base = new_base;
1034 spin_lock(&base->lock);
Eric Dumazetd0023a12015-08-17 10:18:48 -07001035 WRITE_ONCE(timer->flags,
1036 (timer->flags & ~TIMER_BASEMASK) | base->cpu);
Oleg Nesterov55c888d2005-06-23 00:08:56 -07001037 }
1038 }
1039
Linus Torvalds1da177e2005-04-16 15:20:36 -07001040 timer->expires = expires;
Anna-Maria Gleixnerf00c0af2016-07-04 09:50:40 +00001041 /*
1042 * If 'idx' was calculated above and the base time did not advance
Thomas Gleixner4da91522016-10-24 11:55:10 +02001043 * between calculating 'idx' and possibly switching the base, only
1044 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1045 * we need to (re)calculate the wheel index via
1046 * internal_add_timer().
Anna-Maria Gleixnerf00c0af2016-07-04 09:50:40 +00001047 */
1048 if (idx != UINT_MAX && clk == base->clk) {
1049 enqueue_timer(base, timer, idx);
1050 trigger_dyntick_cpu(base, timer);
1051 } else {
1052 internal_add_timer(base, timer);
1053 }
Ingo Molnar74019222009-02-18 12:23:29 +01001054
1055out_unlock:
Oleg Nesterova2c348f2006-03-31 02:30:31 -08001056 spin_unlock_irqrestore(&base->lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001057
1058 return ret;
1059}
1060
Ingo Molnar74019222009-02-18 12:23:29 +01001061/**
1062 * mod_timer_pending - modify a pending timer's timeout
1063 * @timer: the pending timer to be modified
1064 * @expires: new timeout in jiffies
1065 *
1066 * mod_timer_pending() is the same for pending timers as mod_timer(),
1067 * but will not re-activate and modify already deleted timers.
1068 *
1069 * It is useful for unserialized use of timers.
1070 */
1071int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1072{
Thomas Gleixner177ec0a2016-07-04 09:50:24 +00001073 return __mod_timer(timer, expires, true);
Ingo Molnar74019222009-02-18 12:23:29 +01001074}
1075EXPORT_SYMBOL(mod_timer_pending);
1076
1077/**
1078 * mod_timer - modify a timer's timeout
1079 * @timer: the timer to be modified
1080 * @expires: new timeout in jiffies
1081 *
1082 * mod_timer() is a more efficient way to update the expire field of an
1083 * active timer (if the timer is inactive it will be activated)
1084 *
1085 * mod_timer(timer, expires) is equivalent to:
1086 *
1087 * del_timer(timer); timer->expires = expires; add_timer(timer);
1088 *
1089 * Note that if there are multiple unserialized concurrent users of the
1090 * same timer, then mod_timer() is the only safe way to modify the timeout,
1091 * since add_timer() cannot modify an already running timer.
1092 *
1093 * The function returns whether it has modified a pending timer or not.
1094 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1095 * active timer returns 1.)
1096 */
1097int mod_timer(struct timer_list *timer, unsigned long expires)
1098{
Thomas Gleixner177ec0a2016-07-04 09:50:24 +00001099 return __mod_timer(timer, expires, false);
Ingo Molnar74019222009-02-18 12:23:29 +01001100}
1101EXPORT_SYMBOL(mod_timer);
1102
1103/**
1104 * add_timer - start a timer
1105 * @timer: the timer to be added
1106 *
1107 * The kernel will do a ->function(->data) callback from the
1108 * timer interrupt at the ->expires point in the future. The
1109 * current time is 'jiffies'.
1110 *
1111 * The timer's ->expires, ->function (and if the handler uses it, ->data)
1112 * fields must be set prior calling this function.
1113 *
1114 * Timers with an ->expires field in the past will be executed in the next
1115 * timer tick.
1116 */
1117void add_timer(struct timer_list *timer)
1118{
1119 BUG_ON(timer_pending(timer));
1120 mod_timer(timer, timer->expires);
1121}
1122EXPORT_SYMBOL(add_timer);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001123
Rolf Eike Beer2aae4a12006-09-29 01:59:46 -07001124/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001125 * add_timer_on - start a timer on a particular CPU
1126 * @timer: the timer to be added
1127 * @cpu: the CPU to start it on
1128 *
1129 * This is not very scalable on SMP. Double adds are not possible.
1130 */
1131void add_timer_on(struct timer_list *timer, int cpu)
1132{
Thomas Gleixner500462a2016-07-04 09:50:30 +00001133 struct timer_base *new_base, *base;
Thomas Gleixner68194572007-07-19 01:49:16 -07001134 unsigned long flags;
Oleg Nesterov55c888d2005-06-23 00:08:56 -07001135
Ingo Molnar82f67cd2007-02-16 01:28:13 -08001136 timer_stats_timer_set_start_info(timer);
Thomas Gleixner68194572007-07-19 01:49:16 -07001137 BUG_ON(timer_pending(timer) || !timer->function);
Tejun Heo22b886d2015-11-04 12:15:33 -05001138
Thomas Gleixner500462a2016-07-04 09:50:30 +00001139 new_base = get_timer_cpu_base(timer->flags, cpu);
1140
Tejun Heo22b886d2015-11-04 12:15:33 -05001141 /*
1142 * If @timer was on a different CPU, it should be migrated with the
1143 * old base locked to prevent other operations proceeding with the
1144 * wrong base locked. See lock_timer_base().
1145 */
1146 base = lock_timer_base(timer, &flags);
1147 if (base != new_base) {
1148 timer->flags |= TIMER_MIGRATING;
1149
1150 spin_unlock(&base->lock);
1151 base = new_base;
1152 spin_lock(&base->lock);
1153 WRITE_ONCE(timer->flags,
1154 (timer->flags & ~TIMER_BASEMASK) | cpu);
1155 }
1156
Xiao Guangrong2b022e32009-08-10 10:48:59 +08001157 debug_activate(timer, timer->expires);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001158 internal_add_timer(base, timer);
Oleg Nesterov3691c512006-03-31 02:30:30 -08001159 spin_unlock_irqrestore(&base->lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001160}
Andi Kleena9862e02009-05-19 22:49:07 +02001161EXPORT_SYMBOL_GPL(add_timer_on);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001162
Rolf Eike Beer2aae4a12006-09-29 01:59:46 -07001163/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001164 * del_timer - deactive a timer.
1165 * @timer: the timer to be deactivated
1166 *
1167 * del_timer() deactivates a timer - this works on both active and inactive
1168 * timers.
1169 *
1170 * The function returns whether it has deactivated a pending timer or not.
1171 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1172 * active timer returns 1.)
1173 */
1174int del_timer(struct timer_list *timer)
1175{
Thomas Gleixner494af3e2016-07-04 09:50:28 +00001176 struct timer_base *base;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001177 unsigned long flags;
Oleg Nesterov55c888d2005-06-23 00:08:56 -07001178 int ret = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001179
Christine Chandc4218b2011-11-07 19:48:28 -08001180 debug_assert_init(timer);
1181
Ingo Molnar82f67cd2007-02-16 01:28:13 -08001182 timer_stats_timer_clear_start_info(timer);
Oleg Nesterov55c888d2005-06-23 00:08:56 -07001183 if (timer_pending(timer)) {
1184 base = lock_timer_base(timer, &flags);
Thomas Gleixnerec44bc72012-05-25 22:08:57 +00001185 ret = detach_if_pending(timer, base, true);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001186 spin_unlock_irqrestore(&base->lock, flags);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001187 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001188
Oleg Nesterov55c888d2005-06-23 00:08:56 -07001189 return ret;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001190}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001191EXPORT_SYMBOL(del_timer);
1192
Rolf Eike Beer2aae4a12006-09-29 01:59:46 -07001193/**
1194 * try_to_del_timer_sync - Try to deactivate a timer
1195 * @timer: timer do del
1196 *
Oleg Nesterovfd450b72005-06-23 00:08:59 -07001197 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1198 * exit the timer is not queued and the handler is not running on any CPU.
Oleg Nesterovfd450b72005-06-23 00:08:59 -07001199 */
1200int try_to_del_timer_sync(struct timer_list *timer)
1201{
Thomas Gleixner494af3e2016-07-04 09:50:28 +00001202 struct timer_base *base;
Oleg Nesterovfd450b72005-06-23 00:08:59 -07001203 unsigned long flags;
1204 int ret = -1;
1205
Christine Chandc4218b2011-11-07 19:48:28 -08001206 debug_assert_init(timer);
1207
Oleg Nesterovfd450b72005-06-23 00:08:59 -07001208 base = lock_timer_base(timer, &flags);
1209
Thomas Gleixnerec44bc72012-05-25 22:08:57 +00001210 if (base->running_timer != timer) {
1211 timer_stats_timer_clear_start_info(timer);
1212 ret = detach_if_pending(timer, base, true);
Oleg Nesterovfd450b72005-06-23 00:08:59 -07001213 }
Oleg Nesterovfd450b72005-06-23 00:08:59 -07001214 spin_unlock_irqrestore(&base->lock, flags);
1215
1216 return ret;
1217}
David Howellse19dff12007-04-26 15:46:56 -07001218EXPORT_SYMBOL(try_to_del_timer_sync);
1219
Yong Zhang6f1bc452010-10-20 15:57:31 -07001220#ifdef CONFIG_SMP
Rolf Eike Beer2aae4a12006-09-29 01:59:46 -07001221/**
Linus Torvalds1da177e2005-04-16 15:20:36 -07001222 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1223 * @timer: the timer to be deactivated
1224 *
1225 * This function only differs from del_timer() on SMP: besides deactivating
1226 * the timer it also makes sure the handler has finished executing on other
1227 * CPUs.
1228 *
Robert P. J. Day72fd4a32007-02-10 01:45:59 -08001229 * Synchronization rules: Callers must prevent restarting of the timer,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001230 * otherwise this function is meaningless. It must not be called from
Tejun Heoc5f66e92012-08-08 11:10:28 -07001231 * interrupt contexts unless the timer is an irqsafe one. The caller must
1232 * not hold locks which would prevent completion of the timer's
1233 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1234 * timer is not queued and the handler is not running on any CPU.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001235 *
Tejun Heoc5f66e92012-08-08 11:10:28 -07001236 * Note: For !irqsafe timers, you must not hold locks that are held in
1237 * interrupt context while calling this function. Even if the lock has
1238 * nothing to do with the timer in question. Here's why:
Steven Rostedt48228f72011-02-08 12:39:54 -05001239 *
1240 * CPU0 CPU1
1241 * ---- ----
1242 * <SOFTIRQ>
1243 * call_timer_fn();
1244 * base->running_timer = mytimer;
1245 * spin_lock_irq(somelock);
1246 * <IRQ>
1247 * spin_lock(somelock);
1248 * del_timer_sync(mytimer);
1249 * while (base->running_timer == mytimer);
1250 *
1251 * Now del_timer_sync() will never return and never release somelock.
1252 * The interrupt on the other CPU is waiting to grab somelock but
1253 * it has interrupted the softirq that CPU0 is waiting to finish.
1254 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001255 * The function returns whether it has deactivated a pending timer or not.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001256 */
1257int del_timer_sync(struct timer_list *timer)
1258{
Johannes Berg6f2b9b92009-01-29 16:03:20 +01001259#ifdef CONFIG_LOCKDEP
Peter Zijlstraf266a512011-02-03 15:09:41 +01001260 unsigned long flags;
1261
Steven Rostedt48228f72011-02-08 12:39:54 -05001262 /*
1263 * If lockdep gives a backtrace here, please reference
1264 * the synchronization rules above.
1265 */
Peter Zijlstra7ff20792011-02-08 15:18:00 +01001266 local_irq_save(flags);
Johannes Berg6f2b9b92009-01-29 16:03:20 +01001267 lock_map_acquire(&timer->lockdep_map);
1268 lock_map_release(&timer->lockdep_map);
Peter Zijlstra7ff20792011-02-08 15:18:00 +01001269 local_irq_restore(flags);
Johannes Berg6f2b9b92009-01-29 16:03:20 +01001270#endif
Yong Zhang466bd302010-10-20 15:57:33 -07001271 /*
1272 * don't use it in hardirq context, because it
1273 * could lead to deadlock.
1274 */
Thomas Gleixner0eeda712015-05-26 22:50:29 +00001275 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
Oleg Nesterovfd450b72005-06-23 00:08:59 -07001276 for (;;) {
1277 int ret = try_to_del_timer_sync(timer);
1278 if (ret >= 0)
1279 return ret;
Andrew Mortona0009652006-07-14 00:24:06 -07001280 cpu_relax();
Oleg Nesterovfd450b72005-06-23 00:08:59 -07001281 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001282}
1283EXPORT_SYMBOL(del_timer_sync);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001284#endif
1285
Thomas Gleixner576da122010-03-12 21:10:29 +01001286static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1287 unsigned long data)
1288{
Peter Zijlstra4a2b4b22013-08-14 14:55:24 +02001289 int count = preempt_count();
Thomas Gleixner576da122010-03-12 21:10:29 +01001290
1291#ifdef CONFIG_LOCKDEP
1292 /*
1293 * It is permissible to free the timer from inside the
1294 * function that is called from it, this we need to take into
1295 * account for lockdep too. To avoid bogus "held lock freed"
1296 * warnings as well as problems when looking into
1297 * timer->lockdep_map, make a copy and use that here.
1298 */
Peter Zijlstra4d82a1d2012-05-15 08:06:19 -07001299 struct lockdep_map lockdep_map;
1300
1301 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
Thomas Gleixner576da122010-03-12 21:10:29 +01001302#endif
1303 /*
1304 * Couple the lock chain with the lock chain at
1305 * del_timer_sync() by acquiring the lock_map around the fn()
1306 * call here and in del_timer_sync().
1307 */
1308 lock_map_acquire(&lockdep_map);
1309
1310 trace_timer_expire_entry(timer);
1311 fn(data);
1312 trace_timer_expire_exit(timer);
1313
1314 lock_map_release(&lockdep_map);
1315
Peter Zijlstra4a2b4b22013-08-14 14:55:24 +02001316 if (count != preempt_count()) {
Thomas Gleixner802702e2010-03-12 20:13:23 +01001317 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
Peter Zijlstra4a2b4b22013-08-14 14:55:24 +02001318 fn, count, preempt_count());
Thomas Gleixner802702e2010-03-12 20:13:23 +01001319 /*
1320 * Restore the preempt count. That gives us a decent
1321 * chance to survive and extract information. If the
1322 * callback kept a lock held, bad luck, but not worse
1323 * than the BUG() we had.
1324 */
Peter Zijlstra4a2b4b22013-08-14 14:55:24 +02001325 preempt_count_set(count);
Thomas Gleixner576da122010-03-12 21:10:29 +01001326 }
1327}
1328
Thomas Gleixner500462a2016-07-04 09:50:30 +00001329static void expire_timers(struct timer_base *base, struct hlist_head *head)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001330{
Thomas Gleixner500462a2016-07-04 09:50:30 +00001331 while (!hlist_empty(head)) {
1332 struct timer_list *timer;
1333 void (*fn)(unsigned long);
1334 unsigned long data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001335
Thomas Gleixner500462a2016-07-04 09:50:30 +00001336 timer = hlist_entry(head->first, struct timer_list, entry);
1337 timer_stats_account_timer(timer);
Thomas Gleixner3bb475a2015-05-26 22:50:24 +00001338
Thomas Gleixner500462a2016-07-04 09:50:30 +00001339 base->running_timer = timer;
1340 detach_timer(timer, true);
Thomas Gleixner3bb475a2015-05-26 22:50:24 +00001341
Thomas Gleixner500462a2016-07-04 09:50:30 +00001342 fn = timer->function;
1343 data = timer->data;
Thomas Gleixner3bb475a2015-05-26 22:50:24 +00001344
Thomas Gleixner500462a2016-07-04 09:50:30 +00001345 if (timer->flags & TIMER_IRQSAFE) {
1346 spin_unlock(&base->lock);
1347 call_timer_fn(timer, fn, data);
1348 spin_lock(&base->lock);
1349 } else {
1350 spin_unlock_irq(&base->lock);
1351 call_timer_fn(timer, fn, data);
1352 spin_lock_irq(&base->lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001353 }
1354 }
Thomas Gleixner500462a2016-07-04 09:50:30 +00001355}
1356
Anna-Maria Gleixner23696832016-07-04 09:50:34 +00001357static int __collect_expired_timers(struct timer_base *base,
1358 struct hlist_head *heads)
Thomas Gleixner500462a2016-07-04 09:50:30 +00001359{
1360 unsigned long clk = base->clk;
1361 struct hlist_head *vec;
1362 int i, levels = 0;
1363 unsigned int idx;
1364
1365 for (i = 0; i < LVL_DEPTH; i++) {
1366 idx = (clk & LVL_MASK) + i * LVL_SIZE;
1367
1368 if (__test_and_clear_bit(idx, base->pending_map)) {
1369 vec = base->vectors + idx;
1370 hlist_move_list(vec, heads++);
1371 levels++;
1372 }
1373 /* Is it time to look at the next level? */
1374 if (clk & LVL_CLK_MASK)
1375 break;
1376 /* Shift clock for the next level granularity */
1377 clk >>= LVL_CLK_SHIFT;
1378 }
1379 return levels;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001380}
1381
Frederic Weisbecker3451d022011-08-10 23:21:01 +02001382#ifdef CONFIG_NO_HZ_COMMON
Linus Torvalds1da177e2005-04-16 15:20:36 -07001383/*
Anna-Maria Gleixner23696832016-07-04 09:50:34 +00001384 * Find the next pending bucket of a level. Search from level start (@offset)
1385 * + @clk upwards and if nothing there, search from start of the level
1386 * (@offset) up to @offset + clk.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001387 */
Thomas Gleixner500462a2016-07-04 09:50:30 +00001388static int next_pending_bucket(struct timer_base *base, unsigned offset,
1389 unsigned clk)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001390{
Thomas Gleixner500462a2016-07-04 09:50:30 +00001391 unsigned pos, start = offset + clk;
1392 unsigned end = offset + LVL_SIZE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001393
Thomas Gleixner500462a2016-07-04 09:50:30 +00001394 pos = find_next_bit(base->pending_map, end, start);
1395 if (pos < end)
1396 return pos - start;
Venki Pallipadi6e453a62007-05-08 00:27:44 -07001397
Thomas Gleixner500462a2016-07-04 09:50:30 +00001398 pos = find_next_bit(base->pending_map, start, offset);
1399 return pos < start ? pos + LVL_SIZE - start : -1;
1400}
1401
1402/*
Anna-Maria Gleixner23696832016-07-04 09:50:34 +00001403 * Search the first expiring timer in the various clock levels. Caller must
1404 * hold base->lock.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001405 */
Thomas Gleixner494af3e2016-07-04 09:50:28 +00001406static unsigned long __next_timer_interrupt(struct timer_base *base)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001407{
Thomas Gleixner500462a2016-07-04 09:50:30 +00001408 unsigned long clk, next, adj;
1409 unsigned lvl, offset = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001410
Thomas Gleixner500462a2016-07-04 09:50:30 +00001411 next = base->clk + NEXT_TIMER_MAX_DELTA;
1412 clk = base->clk;
1413 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1414 int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
Thomas Gleixner1cfd6842007-02-16 01:27:46 -08001415
Thomas Gleixner500462a2016-07-04 09:50:30 +00001416 if (pos >= 0) {
1417 unsigned long tmp = clk + (unsigned long) pos;
1418
1419 tmp <<= LVL_SHIFT(lvl);
1420 if (time_before(tmp, next))
1421 next = tmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001422 }
Thomas Gleixner500462a2016-07-04 09:50:30 +00001423 /*
1424 * Clock for the next level. If the current level clock lower
1425 * bits are zero, we look at the next level as is. If not we
1426 * need to advance it by one because that's going to be the
1427 * next expiring bucket in that level. base->clk is the next
1428 * expiring jiffie. So in case of:
1429 *
1430 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1431 * 0 0 0 0 0 0
1432 *
1433 * we have to look at all levels @index 0. With
1434 *
1435 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1436 * 0 0 0 0 0 2
1437 *
1438 * LVL0 has the next expiring bucket @index 2. The upper
1439 * levels have the next expiring bucket @index 1.
1440 *
1441 * In case that the propagation wraps the next level the same
1442 * rules apply:
1443 *
1444 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1445 * 0 0 0 0 F 2
1446 *
1447 * So after looking at LVL0 we get:
1448 *
1449 * LVL5 LVL4 LVL3 LVL2 LVL1
1450 * 0 0 0 1 0
1451 *
1452 * So no propagation from LVL1 to LVL2 because that happened
1453 * with the add already, but then we need to propagate further
1454 * from LVL2 to LVL3.
1455 *
1456 * So the simple check whether the lower bits of the current
1457 * level are 0 or not is sufficient for all cases.
1458 */
1459 adj = clk & LVL_CLK_MASK ? 1 : 0;
1460 clk >>= LVL_CLK_SHIFT;
1461 clk += adj;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001462 }
Thomas Gleixner500462a2016-07-04 09:50:30 +00001463 return next;
Thomas Gleixner1cfd6842007-02-16 01:27:46 -08001464}
1465
1466/*
1467 * Check, if the next hrtimer event is before the next timer wheel
1468 * event:
1469 */
Thomas Gleixnerc1ad3482015-04-14 21:08:58 +00001470static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
Thomas Gleixner1cfd6842007-02-16 01:27:46 -08001471{
Thomas Gleixnerc1ad3482015-04-14 21:08:58 +00001472 u64 nextevt = hrtimer_get_next_event();
Thomas Gleixner1cfd6842007-02-16 01:27:46 -08001473
Thomas Gleixnerc1ad3482015-04-14 21:08:58 +00001474 /*
1475 * If high resolution timers are enabled
1476 * hrtimer_get_next_event() returns KTIME_MAX.
1477 */
1478 if (expires <= nextevt)
Thomas Gleixner1cfd6842007-02-16 01:27:46 -08001479 return expires;
1480
Thomas Gleixner9501b6c2007-03-25 14:31:17 +02001481 /*
Thomas Gleixnerc1ad3482015-04-14 21:08:58 +00001482 * If the next timer is already expired, return the tick base
1483 * time so the tick is fired immediately.
Thomas Gleixner9501b6c2007-03-25 14:31:17 +02001484 */
Thomas Gleixnerc1ad3482015-04-14 21:08:58 +00001485 if (nextevt <= basem)
1486 return basem;
Thomas Gleixnereaad0842007-05-29 23:47:39 +02001487
1488 /*
Thomas Gleixnerc1ad3482015-04-14 21:08:58 +00001489 * Round up to the next jiffie. High resolution timers are
1490 * off, so the hrtimers are expired in the tick and we need to
1491 * make sure that this tick really expires the timer to avoid
1492 * a ping pong of the nohz stop code.
1493 *
1494 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
Thomas Gleixnereaad0842007-05-29 23:47:39 +02001495 */
Thomas Gleixnerc1ad3482015-04-14 21:08:58 +00001496 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
Thomas Gleixner1cfd6842007-02-16 01:27:46 -08001497}
1498
1499/**
Thomas Gleixnerc1ad3482015-04-14 21:08:58 +00001500 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1501 * @basej: base time jiffies
1502 * @basem: base time clock monotonic
1503 *
1504 * Returns the tick aligned clock monotonic time of the next pending
1505 * timer or KTIME_MAX if no timer is pending.
Thomas Gleixner1cfd6842007-02-16 01:27:46 -08001506 */
Thomas Gleixnerc1ad3482015-04-14 21:08:58 +00001507u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
Thomas Gleixner1cfd6842007-02-16 01:27:46 -08001508{
Thomas Gleixner500462a2016-07-04 09:50:30 +00001509 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
Thomas Gleixnerc1ad3482015-04-14 21:08:58 +00001510 u64 expires = KTIME_MAX;
1511 unsigned long nextevt;
Chris Metcalf46c8f0b2016-08-08 16:29:07 -04001512 bool is_max_delta;
Thomas Gleixner1cfd6842007-02-16 01:27:46 -08001513
Heiko Carstensdbd87b52010-12-01 10:11:09 +01001514 /*
1515 * Pretend that there is no timer pending if the cpu is offline.
1516 * Possible pending timers will be migrated later to an active cpu.
1517 */
1518 if (cpu_is_offline(smp_processor_id()))
Thomas Gleixnere40468a2012-05-25 22:08:59 +00001519 return expires;
1520
Thomas Gleixner1cfd6842007-02-16 01:27:46 -08001521 spin_lock(&base->lock);
Thomas Gleixner500462a2016-07-04 09:50:30 +00001522 nextevt = __next_timer_interrupt(base);
Chris Metcalf46c8f0b2016-08-08 16:29:07 -04001523 is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
Thomas Gleixnera683f392016-07-04 09:50:36 +00001524 base->next_expiry = nextevt;
1525 /*
1526 * We have a fresh next event. Check whether we can forward the base:
1527 */
1528 if (time_after(nextevt, jiffies))
1529 base->clk = jiffies;
1530 else if (time_after(nextevt, base->clk))
1531 base->clk = nextevt;
1532
1533 if (time_before_eq(nextevt, basej)) {
1534 expires = basem;
1535 base->is_idle = false;
1536 } else {
Chris Metcalf46c8f0b2016-08-08 16:29:07 -04001537 if (!is_max_delta)
1538 expires = basem + (nextevt - basej) * TICK_NSEC;
Thomas Gleixnera683f392016-07-04 09:50:36 +00001539 /*
1540 * If we expect to sleep more than a tick, mark the base idle:
1541 */
1542 if ((expires - basem) > TICK_NSEC)
1543 base->is_idle = true;
Thomas Gleixnere40468a2012-05-25 22:08:59 +00001544 }
Oleg Nesterov3691c512006-03-31 02:30:30 -08001545 spin_unlock(&base->lock);
Tony Lindgren69239742006-03-06 15:42:45 -08001546
Thomas Gleixnerc1ad3482015-04-14 21:08:58 +00001547 return cmp_next_hrtimer_event(basem, expires);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001548}
Anna-Maria Gleixner23696832016-07-04 09:50:34 +00001549
Thomas Gleixnera683f392016-07-04 09:50:36 +00001550/**
1551 * timer_clear_idle - Clear the idle state of the timer base
1552 *
1553 * Called with interrupts disabled
1554 */
1555void timer_clear_idle(void)
1556{
1557 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1558
1559 /*
1560 * We do this unlocked. The worst outcome is a remote enqueue sending
1561 * a pointless IPI, but taking the lock would just make the window for
1562 * sending the IPI a few instructions smaller for the cost of taking
1563 * the lock in the exit from idle path.
1564 */
1565 base->is_idle = false;
1566}
1567
Anna-Maria Gleixner23696832016-07-04 09:50:34 +00001568static int collect_expired_timers(struct timer_base *base,
1569 struct hlist_head *heads)
1570{
1571 /*
1572 * NOHZ optimization. After a long idle sleep we need to forward the
1573 * base to current jiffies. Avoid a loop by searching the bitfield for
1574 * the next expiring timer.
1575 */
1576 if ((long)(jiffies - base->clk) > 2) {
1577 unsigned long next = __next_timer_interrupt(base);
1578
1579 /*
1580 * If the next timer is ahead of time forward to current
Thomas Gleixnera683f392016-07-04 09:50:36 +00001581 * jiffies, otherwise forward to the next expiry time:
Anna-Maria Gleixner23696832016-07-04 09:50:34 +00001582 */
1583 if (time_after(next, jiffies)) {
1584 /* The call site will increment clock! */
1585 base->clk = jiffies - 1;
1586 return 0;
1587 }
1588 base->clk = next;
1589 }
1590 return __collect_expired_timers(base, heads);
1591}
1592#else
1593static inline int collect_expired_timers(struct timer_base *base,
1594 struct hlist_head *heads)
1595{
1596 return __collect_expired_timers(base, heads);
1597}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001598#endif
1599
Linus Torvalds1da177e2005-04-16 15:20:36 -07001600/*
Daniel Walker5b4db0c2007-10-18 03:06:11 -07001601 * Called from the timer interrupt handler to charge one tick to the current
Linus Torvalds1da177e2005-04-16 15:20:36 -07001602 * process. user_tick is 1 if the tick is user time, 0 for system.
1603 */
1604void update_process_times(int user_tick)
1605{
1606 struct task_struct *p = current;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001607
1608 /* Note: this timer irq context must be accounted for as well. */
Paul Mackerrasfa13a5a2007-11-09 22:39:38 +01001609 account_process_tick(p, user_tick);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001610 run_local_timers();
Paul E. McKenneyc3377c2d2014-10-21 07:53:02 -07001611 rcu_check_callbacks(user_tick);
Peter Zijlstrae360adb2010-10-14 14:01:34 +08001612#ifdef CONFIG_IRQ_WORK
1613 if (in_irq())
Frederic Weisbecker76a33062014-08-16 18:37:19 +02001614 irq_work_tick();
Peter Zijlstrae360adb2010-10-14 14:01:34 +08001615#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001616 scheduler_tick();
Thomas Gleixner68194572007-07-19 01:49:16 -07001617 run_posix_cpu_timers(p);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001618}
1619
Anna-Maria Gleixner73420fe2016-07-04 09:50:33 +00001620/**
1621 * __run_timers - run all expired timers (if any) on this CPU.
1622 * @base: the timer vector to be processed.
1623 */
1624static inline void __run_timers(struct timer_base *base)
1625{
1626 struct hlist_head heads[LVL_DEPTH];
1627 int levels;
1628
1629 if (!time_after_eq(jiffies, base->clk))
1630 return;
1631
1632 spin_lock_irq(&base->lock);
1633
1634 while (time_after_eq(jiffies, base->clk)) {
1635
1636 levels = collect_expired_timers(base, heads);
1637 base->clk++;
1638
1639 while (levels--)
1640 expire_timers(base, heads + levels);
1641 }
1642 base->running_timer = NULL;
1643 spin_unlock_irq(&base->lock);
1644}
1645
Linus Torvalds1da177e2005-04-16 15:20:36 -07001646/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07001647 * This function runs timers and the timer-tq in bottom half context.
1648 */
Emese Revfy0766f782016-06-20 20:42:34 +02001649static __latent_entropy void run_timer_softirq(struct softirq_action *h)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001650{
Thomas Gleixner500462a2016-07-04 09:50:30 +00001651 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001652
Thomas Gleixner500462a2016-07-04 09:50:30 +00001653 __run_timers(base);
1654 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active)
1655 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001656}
1657
1658/*
1659 * Called by the local, per-CPU timer interrupt on SMP.
1660 */
1661void run_local_timers(void)
1662{
Thomas Gleixner4e858762016-07-04 09:50:37 +00001663 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1664
Peter Zijlstrad3d74452008-01-25 21:08:31 +01001665 hrtimer_run_queues();
Thomas Gleixner4e858762016-07-04 09:50:37 +00001666 /* Raise the softirq only if required. */
1667 if (time_before(jiffies, base->clk)) {
1668 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
1669 return;
1670 /* CPU is awake, so check the deferrable base. */
1671 base++;
1672 if (time_before(jiffies, base->clk))
1673 return;
1674 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001675 raise_softirq(TIMER_SOFTIRQ);
1676}
1677
Linus Torvalds1da177e2005-04-16 15:20:36 -07001678#ifdef __ARCH_WANT_SYS_ALARM
1679
1680/*
1681 * For backwards compatibility? This can be done in libc so Alpha
1682 * and all newer ports shouldn't need it.
1683 */
Heiko Carstens58fd3aa2009-01-14 14:14:03 +01001684SYSCALL_DEFINE1(alarm, unsigned int, seconds)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001685{
Thomas Gleixnerc08b8a42006-03-25 03:06:33 -08001686 return alarm_setitimer(seconds);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001687}
1688
1689#endif
1690
Linus Torvalds1da177e2005-04-16 15:20:36 -07001691static void process_timeout(unsigned long __data)
1692{
Ingo Molnar36c8b582006-07-03 00:25:41 -07001693 wake_up_process((struct task_struct *)__data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001694}
1695
1696/**
1697 * schedule_timeout - sleep until timeout
1698 * @timeout: timeout value in jiffies
1699 *
1700 * Make the current task sleep until @timeout jiffies have
1701 * elapsed. The routine will return immediately unless
1702 * the current task state has been set (see set_current_state()).
1703 *
1704 * You can set the task state as follows -
1705 *
1706 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1707 * pass before the routine returns. The routine will return 0
1708 *
1709 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1710 * delivered to the current task. In this case the remaining time
1711 * in jiffies will be returned, or 0 if the timer expired in time
1712 *
1713 * The current task state is guaranteed to be TASK_RUNNING when this
1714 * routine returns.
1715 *
1716 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1717 * the CPU away without a bound on the timeout. In this case the return
1718 * value will be %MAX_SCHEDULE_TIMEOUT.
1719 *
1720 * In all cases the return value is guaranteed to be non-negative.
1721 */
Harvey Harrison7ad5b3a2008-02-08 04:19:53 -08001722signed long __sched schedule_timeout(signed long timeout)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001723{
1724 struct timer_list timer;
1725 unsigned long expire;
1726
1727 switch (timeout)
1728 {
1729 case MAX_SCHEDULE_TIMEOUT:
1730 /*
1731 * These two special cases are useful to be comfortable
1732 * in the caller. Nothing more. We could take
1733 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1734 * but I' d like to return a valid offset (>=0) to allow
1735 * the caller to do everything it want with the retval.
1736 */
1737 schedule();
1738 goto out;
1739 default:
1740 /*
1741 * Another bit of PARANOID. Note that the retval will be
1742 * 0 since no piece of kernel is supposed to do a check
1743 * for a negative retval of schedule_timeout() (since it
1744 * should never happens anyway). You just have the printk()
1745 * that will tell you if something is gone wrong and where.
1746 */
Andrew Morton5b149bc2006-12-22 01:10:14 -08001747 if (timeout < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001748 printk(KERN_ERR "schedule_timeout: wrong timeout "
Andrew Morton5b149bc2006-12-22 01:10:14 -08001749 "value %lx\n", timeout);
1750 dump_stack();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001751 current->state = TASK_RUNNING;
1752 goto out;
1753 }
1754 }
1755
1756 expire = timeout + jiffies;
1757
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -07001758 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
Thomas Gleixner177ec0a2016-07-04 09:50:24 +00001759 __mod_timer(&timer, expire, false);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001760 schedule();
1761 del_singleshot_timer_sync(&timer);
1762
Thomas Gleixnerc6f3a972008-04-30 00:55:03 -07001763 /* Remove the timer from the object tracker */
1764 destroy_timer_on_stack(&timer);
1765
Linus Torvalds1da177e2005-04-16 15:20:36 -07001766 timeout = expire - jiffies;
1767
1768 out:
1769 return timeout < 0 ? 0 : timeout;
1770}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001771EXPORT_SYMBOL(schedule_timeout);
1772
Andrew Morton8a1c1752005-09-13 01:25:15 -07001773/*
1774 * We can use __set_current_state() here because schedule_timeout() calls
1775 * schedule() unconditionally.
1776 */
Nishanth Aravamudan64ed93a2005-09-10 00:27:21 -07001777signed long __sched schedule_timeout_interruptible(signed long timeout)
1778{
Andrew Mortona5a0d522005-10-30 15:01:42 -08001779 __set_current_state(TASK_INTERRUPTIBLE);
1780 return schedule_timeout(timeout);
Nishanth Aravamudan64ed93a2005-09-10 00:27:21 -07001781}
1782EXPORT_SYMBOL(schedule_timeout_interruptible);
1783
Matthew Wilcox294d5cc2007-12-06 11:59:46 -05001784signed long __sched schedule_timeout_killable(signed long timeout)
1785{
1786 __set_current_state(TASK_KILLABLE);
1787 return schedule_timeout(timeout);
1788}
1789EXPORT_SYMBOL(schedule_timeout_killable);
1790
Nishanth Aravamudan64ed93a2005-09-10 00:27:21 -07001791signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1792{
Andrew Mortona5a0d522005-10-30 15:01:42 -08001793 __set_current_state(TASK_UNINTERRUPTIBLE);
1794 return schedule_timeout(timeout);
Nishanth Aravamudan64ed93a2005-09-10 00:27:21 -07001795}
1796EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1797
Andrew Morton69b27ba2016-03-25 14:20:21 -07001798/*
1799 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1800 * to load average.
1801 */
1802signed long __sched schedule_timeout_idle(signed long timeout)
1803{
1804 __set_current_state(TASK_IDLE);
1805 return schedule_timeout(timeout);
1806}
1807EXPORT_SYMBOL(schedule_timeout_idle);
1808
Linus Torvalds1da177e2005-04-16 15:20:36 -07001809#ifdef CONFIG_HOTPLUG_CPU
Thomas Gleixner494af3e2016-07-04 09:50:28 +00001810static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001811{
1812 struct timer_list *timer;
Thomas Gleixner0eeda712015-05-26 22:50:29 +00001813 int cpu = new_base->cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001814
Thomas Gleixner1dabbce2015-05-26 22:50:28 +00001815 while (!hlist_empty(head)) {
1816 timer = hlist_entry(head->first, struct timer_list, entry);
Thomas Gleixnerec44bc72012-05-25 22:08:57 +00001817 detach_timer(timer, false);
Thomas Gleixner0eeda712015-05-26 22:50:29 +00001818 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001819 internal_add_timer(new_base, timer);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001820 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001821}
1822
Richard Cochran24f73b92016-07-13 17:16:59 +00001823int timers_dead_cpu(unsigned int cpu)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001824{
Thomas Gleixner494af3e2016-07-04 09:50:28 +00001825 struct timer_base *old_base;
1826 struct timer_base *new_base;
Thomas Gleixner500462a2016-07-04 09:50:30 +00001827 int b, i;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001828
1829 BUG_ON(cpu_online(cpu));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001830
Thomas Gleixner500462a2016-07-04 09:50:30 +00001831 for (b = 0; b < NR_BASES; b++) {
1832 old_base = per_cpu_ptr(&timer_bases[b], cpu);
1833 new_base = get_cpu_ptr(&timer_bases[b]);
1834 /*
1835 * The caller is globally serialized and nobody else
1836 * takes two locks at once, deadlock is not possible.
1837 */
1838 spin_lock_irq(&new_base->lock);
1839 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
Oleg Nesterov3691c512006-03-31 02:30:30 -08001840
Thomas Gleixner500462a2016-07-04 09:50:30 +00001841 BUG_ON(old_base->running_timer);
1842
1843 for (i = 0; i < WHEEL_SIZE; i++)
1844 migrate_timer_list(new_base, old_base->vectors + i);
1845
1846 spin_unlock(&old_base->lock);
1847 spin_unlock_irq(&new_base->lock);
1848 put_cpu_ptr(&timer_bases);
Oleg Nesterov55c888d2005-06-23 00:08:56 -07001849 }
Richard Cochran24f73b92016-07-13 17:16:59 +00001850 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001851}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001852
Peter Zijlstra3650b572015-03-31 20:49:02 +05301853#endif /* CONFIG_HOTPLUG_CPU */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001854
Thomas Gleixner0eeda712015-05-26 22:50:29 +00001855static void __init init_timer_cpu(int cpu)
Viresh Kumar8def9062015-03-31 20:49:01 +05301856{
Thomas Gleixner500462a2016-07-04 09:50:30 +00001857 struct timer_base *base;
1858 int i;
Peter Zijlstra3650b572015-03-31 20:49:02 +05301859
Thomas Gleixner500462a2016-07-04 09:50:30 +00001860 for (i = 0; i < NR_BASES; i++) {
1861 base = per_cpu_ptr(&timer_bases[i], cpu);
1862 base->cpu = cpu;
1863 spin_lock_init(&base->lock);
1864 base->clk = jiffies;
1865 }
Viresh Kumar8def9062015-03-31 20:49:01 +05301866}
1867
1868static void __init init_timer_cpus(void)
1869{
Viresh Kumar8def9062015-03-31 20:49:01 +05301870 int cpu;
1871
Thomas Gleixner0eeda712015-05-26 22:50:29 +00001872 for_each_possible_cpu(cpu)
1873 init_timer_cpu(cpu);
Viresh Kumar8def9062015-03-31 20:49:01 +05301874}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001875
1876void __init init_timers(void)
1877{
Viresh Kumar8def9062015-03-31 20:49:01 +05301878 init_timer_cpus();
Viresh Kumarc24a4a32014-02-28 14:15:21 +05301879 init_timer_stats();
Carlos R. Mafra962cf362008-05-15 11:15:37 -03001880 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001881}
1882
Linus Torvalds1da177e2005-04-16 15:20:36 -07001883/**
1884 * msleep - sleep safely even with waitqueue interruptions
1885 * @msecs: Time in milliseconds to sleep for
1886 */
1887void msleep(unsigned int msecs)
1888{
1889 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1890
Nishanth Aravamudan75bcc8c2005-09-10 00:27:24 -07001891 while (timeout)
1892 timeout = schedule_timeout_uninterruptible(timeout);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001893}
1894
1895EXPORT_SYMBOL(msleep);
1896
1897/**
Domen Puncer96ec3ef2005-06-25 14:58:43 -07001898 * msleep_interruptible - sleep waiting for signals
Linus Torvalds1da177e2005-04-16 15:20:36 -07001899 * @msecs: Time in milliseconds to sleep for
1900 */
1901unsigned long msleep_interruptible(unsigned int msecs)
1902{
1903 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1904
Nishanth Aravamudan75bcc8c2005-09-10 00:27:24 -07001905 while (timeout && !signal_pending(current))
1906 timeout = schedule_timeout_interruptible(timeout);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001907 return jiffies_to_msecs(timeout);
1908}
1909
1910EXPORT_SYMBOL(msleep_interruptible);
Patrick Pannuto5e7f5a12010-08-02 15:01:04 -07001911
Thomas Gleixner6deba082015-04-14 21:09:28 +00001912static void __sched do_usleep_range(unsigned long min, unsigned long max)
Patrick Pannuto5e7f5a12010-08-02 15:01:04 -07001913{
1914 ktime_t kmin;
John Stultzda8b44d2016-03-17 14:20:51 -07001915 u64 delta;
Patrick Pannuto5e7f5a12010-08-02 15:01:04 -07001916
1917 kmin = ktime_set(0, min * NSEC_PER_USEC);
John Stultzda8b44d2016-03-17 14:20:51 -07001918 delta = (u64)(max - min) * NSEC_PER_USEC;
Thomas Gleixner6deba082015-04-14 21:09:28 +00001919 schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
Patrick Pannuto5e7f5a12010-08-02 15:01:04 -07001920}
1921
1922/**
Bjorn Helgaasb5227d02016-05-31 16:23:02 -05001923 * usleep_range - Sleep for an approximate time
Patrick Pannuto5e7f5a12010-08-02 15:01:04 -07001924 * @min: Minimum time in usecs to sleep
1925 * @max: Maximum time in usecs to sleep
Bjorn Helgaasb5227d02016-05-31 16:23:02 -05001926 *
1927 * In non-atomic context where the exact wakeup time is flexible, use
1928 * usleep_range() instead of udelay(). The sleep improves responsiveness
1929 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
1930 * power usage by allowing hrtimers to take advantage of an already-
1931 * scheduled interrupt instead of scheduling a new one just for this sleep.
Patrick Pannuto5e7f5a12010-08-02 15:01:04 -07001932 */
Thomas Gleixner2ad5d322015-04-14 21:09:30 +00001933void __sched usleep_range(unsigned long min, unsigned long max)
Patrick Pannuto5e7f5a12010-08-02 15:01:04 -07001934{
1935 __set_current_state(TASK_UNINTERRUPTIBLE);
1936 do_usleep_range(min, max);
1937}
1938EXPORT_SYMBOL(usleep_range);