Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Linux/PA-RISC Project (http://www.parisc-linux.org/) |
| 3 | * |
| 4 | * Floating-point emulation code |
| 5 | * Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org> |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License as published by |
| 9 | * the Free Software Foundation; either version 2, or (at your option) |
| 10 | * any later version. |
| 11 | * |
| 12 | * This program is distributed in the hope that it will be useful, |
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | * GNU General Public License for more details. |
| 16 | * |
| 17 | * You should have received a copy of the GNU General Public License |
| 18 | * along with this program; if not, write to the Free Software |
| 19 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 20 | */ |
| 21 | /* |
| 22 | * BEGIN_DESC |
| 23 | * |
| 24 | * File: |
| 25 | * @(#) pa/spmath/dfrem.c $Revision: 1.1 $ |
| 26 | * |
| 27 | * Purpose: |
| 28 | * Double Precision Floating-point Remainder |
| 29 | * |
| 30 | * External Interfaces: |
| 31 | * dbl_frem(srcptr1,srcptr2,dstptr,status) |
| 32 | * |
| 33 | * Internal Interfaces: |
| 34 | * |
| 35 | * Theory: |
| 36 | * <<please update with a overview of the operation of this file>> |
| 37 | * |
| 38 | * END_DESC |
| 39 | */ |
| 40 | |
| 41 | |
| 42 | |
| 43 | #include "float.h" |
| 44 | #include "dbl_float.h" |
| 45 | |
| 46 | /* |
| 47 | * Double Precision Floating-point Remainder |
| 48 | */ |
| 49 | |
| 50 | int |
| 51 | dbl_frem (dbl_floating_point * srcptr1, dbl_floating_point * srcptr2, |
| 52 | dbl_floating_point * dstptr, unsigned int *status) |
| 53 | { |
| 54 | register unsigned int opnd1p1, opnd1p2, opnd2p1, opnd2p2; |
| 55 | register unsigned int resultp1, resultp2; |
| 56 | register int opnd1_exponent, opnd2_exponent, dest_exponent, stepcount; |
| 57 | register boolean roundup = FALSE; |
| 58 | |
| 59 | Dbl_copyfromptr(srcptr1,opnd1p1,opnd1p2); |
| 60 | Dbl_copyfromptr(srcptr2,opnd2p1,opnd2p2); |
| 61 | /* |
| 62 | * check first operand for NaN's or infinity |
| 63 | */ |
| 64 | if ((opnd1_exponent = Dbl_exponent(opnd1p1)) == DBL_INFINITY_EXPONENT) { |
| 65 | if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { |
| 66 | if (Dbl_isnotnan(opnd2p1,opnd2p2)) { |
| 67 | /* invalid since first operand is infinity */ |
| 68 | if (Is_invalidtrap_enabled()) |
| 69 | return(INVALIDEXCEPTION); |
| 70 | Set_invalidflag(); |
| 71 | Dbl_makequietnan(resultp1,resultp2); |
| 72 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 73 | return(NOEXCEPTION); |
| 74 | } |
| 75 | } |
| 76 | else { |
| 77 | /* |
| 78 | * is NaN; signaling or quiet? |
| 79 | */ |
| 80 | if (Dbl_isone_signaling(opnd1p1)) { |
| 81 | /* trap if INVALIDTRAP enabled */ |
| 82 | if (Is_invalidtrap_enabled()) |
| 83 | return(INVALIDEXCEPTION); |
| 84 | /* make NaN quiet */ |
| 85 | Set_invalidflag(); |
| 86 | Dbl_set_quiet(opnd1p1); |
| 87 | } |
| 88 | /* |
| 89 | * is second operand a signaling NaN? |
| 90 | */ |
| 91 | else if (Dbl_is_signalingnan(opnd2p1)) { |
| 92 | /* trap if INVALIDTRAP enabled */ |
| 93 | if (Is_invalidtrap_enabled()) |
| 94 | return(INVALIDEXCEPTION); |
| 95 | /* make NaN quiet */ |
| 96 | Set_invalidflag(); |
| 97 | Dbl_set_quiet(opnd2p1); |
| 98 | Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); |
| 99 | return(NOEXCEPTION); |
| 100 | } |
| 101 | /* |
| 102 | * return quiet NaN |
| 103 | */ |
| 104 | Dbl_copytoptr(opnd1p1,opnd1p2,dstptr); |
| 105 | return(NOEXCEPTION); |
| 106 | } |
| 107 | } |
| 108 | /* |
| 109 | * check second operand for NaN's or infinity |
| 110 | */ |
| 111 | if ((opnd2_exponent = Dbl_exponent(opnd2p1)) == DBL_INFINITY_EXPONENT) { |
| 112 | if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { |
| 113 | /* |
| 114 | * return first operand |
| 115 | */ |
| 116 | Dbl_copytoptr(opnd1p1,opnd1p2,dstptr); |
| 117 | return(NOEXCEPTION); |
| 118 | } |
| 119 | /* |
| 120 | * is NaN; signaling or quiet? |
| 121 | */ |
| 122 | if (Dbl_isone_signaling(opnd2p1)) { |
| 123 | /* trap if INVALIDTRAP enabled */ |
| 124 | if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION); |
| 125 | /* make NaN quiet */ |
| 126 | Set_invalidflag(); |
| 127 | Dbl_set_quiet(opnd2p1); |
| 128 | } |
| 129 | /* |
| 130 | * return quiet NaN |
| 131 | */ |
| 132 | Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); |
| 133 | return(NOEXCEPTION); |
| 134 | } |
| 135 | /* |
| 136 | * check second operand for zero |
| 137 | */ |
| 138 | if (Dbl_iszero_exponentmantissa(opnd2p1,opnd2p2)) { |
| 139 | /* invalid since second operand is zero */ |
| 140 | if (Is_invalidtrap_enabled()) return(INVALIDEXCEPTION); |
| 141 | Set_invalidflag(); |
| 142 | Dbl_makequietnan(resultp1,resultp2); |
| 143 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 144 | return(NOEXCEPTION); |
| 145 | } |
| 146 | |
| 147 | /* |
| 148 | * get sign of result |
| 149 | */ |
| 150 | resultp1 = opnd1p1; |
| 151 | |
| 152 | /* |
| 153 | * check for denormalized operands |
| 154 | */ |
| 155 | if (opnd1_exponent == 0) { |
| 156 | /* check for zero */ |
| 157 | if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { |
| 158 | Dbl_copytoptr(opnd1p1,opnd1p2,dstptr); |
| 159 | return(NOEXCEPTION); |
| 160 | } |
| 161 | /* normalize, then continue */ |
| 162 | opnd1_exponent = 1; |
| 163 | Dbl_normalize(opnd1p1,opnd1p2,opnd1_exponent); |
| 164 | } |
| 165 | else { |
| 166 | Dbl_clear_signexponent_set_hidden(opnd1p1); |
| 167 | } |
| 168 | if (opnd2_exponent == 0) { |
| 169 | /* normalize, then continue */ |
| 170 | opnd2_exponent = 1; |
| 171 | Dbl_normalize(opnd2p1,opnd2p2,opnd2_exponent); |
| 172 | } |
| 173 | else { |
| 174 | Dbl_clear_signexponent_set_hidden(opnd2p1); |
| 175 | } |
| 176 | |
| 177 | /* find result exponent and divide step loop count */ |
| 178 | dest_exponent = opnd2_exponent - 1; |
| 179 | stepcount = opnd1_exponent - opnd2_exponent; |
| 180 | |
| 181 | /* |
| 182 | * check for opnd1/opnd2 < 1 |
| 183 | */ |
| 184 | if (stepcount < 0) { |
| 185 | /* |
| 186 | * check for opnd1/opnd2 > 1/2 |
| 187 | * |
| 188 | * In this case n will round to 1, so |
| 189 | * r = opnd1 - opnd2 |
| 190 | */ |
| 191 | if (stepcount == -1 && |
| 192 | Dbl_isgreaterthan(opnd1p1,opnd1p2,opnd2p1,opnd2p2)) { |
| 193 | /* set sign */ |
| 194 | Dbl_allp1(resultp1) = ~Dbl_allp1(resultp1); |
| 195 | /* align opnd2 with opnd1 */ |
| 196 | Dbl_leftshiftby1(opnd2p1,opnd2p2); |
| 197 | Dbl_subtract(opnd2p1,opnd2p2,opnd1p1,opnd1p2, |
| 198 | opnd2p1,opnd2p2); |
| 199 | /* now normalize */ |
| 200 | while (Dbl_iszero_hidden(opnd2p1)) { |
| 201 | Dbl_leftshiftby1(opnd2p1,opnd2p2); |
| 202 | dest_exponent--; |
| 203 | } |
| 204 | Dbl_set_exponentmantissa(resultp1,resultp2,opnd2p1,opnd2p2); |
| 205 | goto testforunderflow; |
| 206 | } |
| 207 | /* |
| 208 | * opnd1/opnd2 <= 1/2 |
| 209 | * |
| 210 | * In this case n will round to zero, so |
| 211 | * r = opnd1 |
| 212 | */ |
| 213 | Dbl_set_exponentmantissa(resultp1,resultp2,opnd1p1,opnd1p2); |
| 214 | dest_exponent = opnd1_exponent; |
| 215 | goto testforunderflow; |
| 216 | } |
| 217 | |
| 218 | /* |
| 219 | * Generate result |
| 220 | * |
| 221 | * Do iterative subtract until remainder is less than operand 2. |
| 222 | */ |
| 223 | while (stepcount-- > 0 && (Dbl_allp1(opnd1p1) || Dbl_allp2(opnd1p2))) { |
| 224 | if (Dbl_isnotlessthan(opnd1p1,opnd1p2,opnd2p1,opnd2p2)) { |
| 225 | Dbl_subtract(opnd1p1,opnd1p2,opnd2p1,opnd2p2,opnd1p1,opnd1p2); |
| 226 | } |
| 227 | Dbl_leftshiftby1(opnd1p1,opnd1p2); |
| 228 | } |
| 229 | /* |
| 230 | * Do last subtract, then determine which way to round if remainder |
| 231 | * is exactly 1/2 of opnd2 |
| 232 | */ |
| 233 | if (Dbl_isnotlessthan(opnd1p1,opnd1p2,opnd2p1,opnd2p2)) { |
| 234 | Dbl_subtract(opnd1p1,opnd1p2,opnd2p1,opnd2p2,opnd1p1,opnd1p2); |
| 235 | roundup = TRUE; |
| 236 | } |
| 237 | if (stepcount > 0 || Dbl_iszero(opnd1p1,opnd1p2)) { |
| 238 | /* division is exact, remainder is zero */ |
| 239 | Dbl_setzero_exponentmantissa(resultp1,resultp2); |
| 240 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 241 | return(NOEXCEPTION); |
| 242 | } |
| 243 | |
| 244 | /* |
| 245 | * Check for cases where opnd1/opnd2 < n |
| 246 | * |
| 247 | * In this case the result's sign will be opposite that of |
| 248 | * opnd1. The mantissa also needs some correction. |
| 249 | */ |
| 250 | Dbl_leftshiftby1(opnd1p1,opnd1p2); |
| 251 | if (Dbl_isgreaterthan(opnd1p1,opnd1p2,opnd2p1,opnd2p2)) { |
| 252 | Dbl_invert_sign(resultp1); |
| 253 | Dbl_leftshiftby1(opnd2p1,opnd2p2); |
| 254 | Dbl_subtract(opnd2p1,opnd2p2,opnd1p1,opnd1p2,opnd1p1,opnd1p2); |
| 255 | } |
| 256 | /* check for remainder being exactly 1/2 of opnd2 */ |
| 257 | else if (Dbl_isequal(opnd1p1,opnd1p2,opnd2p1,opnd2p2) && roundup) { |
| 258 | Dbl_invert_sign(resultp1); |
| 259 | } |
| 260 | |
| 261 | /* normalize result's mantissa */ |
| 262 | while (Dbl_iszero_hidden(opnd1p1)) { |
| 263 | dest_exponent--; |
| 264 | Dbl_leftshiftby1(opnd1p1,opnd1p2); |
| 265 | } |
| 266 | Dbl_set_exponentmantissa(resultp1,resultp2,opnd1p1,opnd1p2); |
| 267 | |
| 268 | /* |
| 269 | * Test for underflow |
| 270 | */ |
| 271 | testforunderflow: |
| 272 | if (dest_exponent <= 0) { |
| 273 | /* trap if UNDERFLOWTRAP enabled */ |
| 274 | if (Is_underflowtrap_enabled()) { |
| 275 | /* |
| 276 | * Adjust bias of result |
| 277 | */ |
| 278 | Dbl_setwrapped_exponent(resultp1,dest_exponent,unfl); |
| 279 | /* frem is always exact */ |
| 280 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 281 | return(UNDERFLOWEXCEPTION); |
| 282 | } |
| 283 | /* |
| 284 | * denormalize result or set to signed zero |
| 285 | */ |
| 286 | if (dest_exponent >= (1 - DBL_P)) { |
| 287 | Dbl_rightshift_exponentmantissa(resultp1,resultp2, |
| 288 | 1-dest_exponent); |
| 289 | } |
| 290 | else { |
| 291 | Dbl_setzero_exponentmantissa(resultp1,resultp2); |
| 292 | } |
| 293 | } |
| 294 | else Dbl_set_exponent(resultp1,dest_exponent); |
| 295 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 296 | return(NOEXCEPTION); |
| 297 | } |