Thomas Graf | a783474 | 2005-11-05 21:14:03 +0100 | [diff] [blame] | 1 | #ifndef __NET_SCHED_RED_H |
| 2 | #define __NET_SCHED_RED_H |
| 3 | |
Thomas Graf | a783474 | 2005-11-05 21:14:03 +0100 | [diff] [blame] | 4 | #include <linux/types.h> |
| 5 | #include <net/pkt_sched.h> |
| 6 | #include <net/inet_ecn.h> |
| 7 | #include <net/dsfield.h> |
| 8 | |
| 9 | /* Random Early Detection (RED) algorithm. |
| 10 | ======================================= |
| 11 | |
| 12 | Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways |
| 13 | for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking. |
| 14 | |
| 15 | This file codes a "divisionless" version of RED algorithm |
| 16 | as written down in Fig.17 of the paper. |
| 17 | |
| 18 | Short description. |
| 19 | ------------------ |
| 20 | |
| 21 | When a new packet arrives we calculate the average queue length: |
| 22 | |
| 23 | avg = (1-W)*avg + W*current_queue_len, |
| 24 | |
| 25 | W is the filter time constant (chosen as 2^(-Wlog)), it controls |
| 26 | the inertia of the algorithm. To allow larger bursts, W should be |
| 27 | decreased. |
| 28 | |
| 29 | if (avg > th_max) -> packet marked (dropped). |
| 30 | if (avg < th_min) -> packet passes. |
| 31 | if (th_min < avg < th_max) we calculate probability: |
| 32 | |
| 33 | Pb = max_P * (avg - th_min)/(th_max-th_min) |
| 34 | |
| 35 | and mark (drop) packet with this probability. |
| 36 | Pb changes from 0 (at avg==th_min) to max_P (avg==th_max). |
| 37 | max_P should be small (not 1), usually 0.01..0.02 is good value. |
| 38 | |
| 39 | max_P is chosen as a number, so that max_P/(th_max-th_min) |
| 40 | is a negative power of two in order arithmetics to contain |
| 41 | only shifts. |
| 42 | |
| 43 | |
| 44 | Parameters, settable by user: |
| 45 | ----------------------------- |
| 46 | |
| 47 | qth_min - bytes (should be < qth_max/2) |
| 48 | qth_max - bytes (should be at least 2*qth_min and less limit) |
| 49 | Wlog - bits (<32) log(1/W). |
| 50 | Plog - bits (<32) |
| 51 | |
| 52 | Plog is related to max_P by formula: |
| 53 | |
| 54 | max_P = (qth_max-qth_min)/2^Plog; |
| 55 | |
| 56 | F.e. if qth_max=128K and qth_min=32K, then Plog=22 |
| 57 | corresponds to max_P=0.02 |
| 58 | |
| 59 | Scell_log |
| 60 | Stab |
| 61 | |
| 62 | Lookup table for log((1-W)^(t/t_ave). |
| 63 | |
| 64 | |
| 65 | NOTES: |
| 66 | |
| 67 | Upper bound on W. |
| 68 | ----------------- |
| 69 | |
| 70 | If you want to allow bursts of L packets of size S, |
| 71 | you should choose W: |
| 72 | |
| 73 | L + 1 - th_min/S < (1-(1-W)^L)/W |
| 74 | |
| 75 | th_min/S = 32 th_min/S = 4 |
| 76 | |
| 77 | log(W) L |
| 78 | -1 33 |
| 79 | -2 35 |
| 80 | -3 39 |
| 81 | -4 46 |
| 82 | -5 57 |
| 83 | -6 75 |
| 84 | -7 101 |
| 85 | -8 135 |
| 86 | -9 190 |
| 87 | etc. |
| 88 | */ |
| 89 | |
| 90 | #define RED_STAB_SIZE 256 |
| 91 | #define RED_STAB_MASK (RED_STAB_SIZE - 1) |
| 92 | |
| 93 | struct red_stats |
| 94 | { |
| 95 | u32 prob_drop; /* Early probability drops */ |
| 96 | u32 prob_mark; /* Early probability marks */ |
| 97 | u32 forced_drop; /* Forced drops, qavg > max_thresh */ |
| 98 | u32 forced_mark; /* Forced marks, qavg > max_thresh */ |
| 99 | u32 pdrop; /* Drops due to queue limits */ |
| 100 | u32 other; /* Drops due to drop() calls */ |
| 101 | u32 backlog; |
| 102 | }; |
| 103 | |
| 104 | struct red_parms |
| 105 | { |
| 106 | /* Parameters */ |
| 107 | u32 qth_min; /* Min avg length threshold: A scaled */ |
| 108 | u32 qth_max; /* Max avg length threshold: A scaled */ |
| 109 | u32 Scell_max; |
| 110 | u32 Rmask; /* Cached random mask, see red_rmask */ |
| 111 | u8 Scell_log; |
| 112 | u8 Wlog; /* log(W) */ |
| 113 | u8 Plog; /* random number bits */ |
| 114 | u8 Stab[RED_STAB_SIZE]; |
| 115 | |
| 116 | /* Variables */ |
| 117 | int qcount; /* Number of packets since last random |
| 118 | number generation */ |
| 119 | u32 qR; /* Cached random number */ |
| 120 | |
| 121 | unsigned long qavg; /* Average queue length: A scaled */ |
| 122 | psched_time_t qidlestart; /* Start of current idle period */ |
| 123 | }; |
| 124 | |
| 125 | static inline u32 red_rmask(u8 Plog) |
| 126 | { |
| 127 | return Plog < 32 ? ((1 << Plog) - 1) : ~0UL; |
| 128 | } |
| 129 | |
| 130 | static inline void red_set_parms(struct red_parms *p, |
| 131 | u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog, |
| 132 | u8 Scell_log, u8 *stab) |
| 133 | { |
| 134 | /* Reset average queue length, the value is strictly bound |
| 135 | * to the parameters below, reseting hurts a bit but leaving |
| 136 | * it might result in an unreasonable qavg for a while. --TGR |
| 137 | */ |
| 138 | p->qavg = 0; |
| 139 | |
| 140 | p->qcount = -1; |
| 141 | p->qth_min = qth_min << Wlog; |
| 142 | p->qth_max = qth_max << Wlog; |
| 143 | p->Wlog = Wlog; |
| 144 | p->Plog = Plog; |
| 145 | p->Rmask = red_rmask(Plog); |
| 146 | p->Scell_log = Scell_log; |
| 147 | p->Scell_max = (255 << Scell_log); |
| 148 | |
| 149 | memcpy(p->Stab, stab, sizeof(p->Stab)); |
| 150 | } |
| 151 | |
| 152 | static inline int red_is_idling(struct red_parms *p) |
| 153 | { |
| 154 | return !PSCHED_IS_PASTPERFECT(p->qidlestart); |
| 155 | } |
| 156 | |
| 157 | static inline void red_start_of_idle_period(struct red_parms *p) |
| 158 | { |
| 159 | PSCHED_GET_TIME(p->qidlestart); |
| 160 | } |
| 161 | |
| 162 | static inline void red_end_of_idle_period(struct red_parms *p) |
| 163 | { |
| 164 | PSCHED_SET_PASTPERFECT(p->qidlestart); |
| 165 | } |
| 166 | |
| 167 | static inline void red_restart(struct red_parms *p) |
| 168 | { |
| 169 | red_end_of_idle_period(p); |
| 170 | p->qavg = 0; |
| 171 | p->qcount = -1; |
| 172 | } |
| 173 | |
| 174 | static inline unsigned long red_calc_qavg_from_idle_time(struct red_parms *p) |
| 175 | { |
| 176 | psched_time_t now; |
| 177 | long us_idle; |
| 178 | int shift; |
| 179 | |
| 180 | PSCHED_GET_TIME(now); |
| 181 | us_idle = PSCHED_TDIFF_SAFE(now, p->qidlestart, p->Scell_max); |
| 182 | |
| 183 | /* |
| 184 | * The problem: ideally, average length queue recalcultion should |
| 185 | * be done over constant clock intervals. This is too expensive, so |
| 186 | * that the calculation is driven by outgoing packets. |
| 187 | * When the queue is idle we have to model this clock by hand. |
| 188 | * |
| 189 | * SF+VJ proposed to "generate": |
| 190 | * |
| 191 | * m = idletime / (average_pkt_size / bandwidth) |
| 192 | * |
| 193 | * dummy packets as a burst after idle time, i.e. |
| 194 | * |
| 195 | * p->qavg *= (1-W)^m |
| 196 | * |
| 197 | * This is an apparently overcomplicated solution (f.e. we have to |
| 198 | * precompute a table to make this calculation in reasonable time) |
| 199 | * I believe that a simpler model may be used here, |
| 200 | * but it is field for experiments. |
| 201 | */ |
| 202 | |
| 203 | shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK]; |
| 204 | |
| 205 | if (shift) |
| 206 | return p->qavg >> shift; |
| 207 | else { |
| 208 | /* Approximate initial part of exponent with linear function: |
| 209 | * |
| 210 | * (1-W)^m ~= 1-mW + ... |
| 211 | * |
| 212 | * Seems, it is the best solution to |
| 213 | * problem of too coarse exponent tabulation. |
| 214 | */ |
Ilpo Järvinen | c4c0ce5 | 2006-08-04 16:36:18 -0700 | [diff] [blame] | 215 | us_idle = (p->qavg * (u64)us_idle) >> p->Scell_log; |
Thomas Graf | a783474 | 2005-11-05 21:14:03 +0100 | [diff] [blame] | 216 | |
| 217 | if (us_idle < (p->qavg >> 1)) |
| 218 | return p->qavg - us_idle; |
| 219 | else |
| 220 | return p->qavg >> 1; |
| 221 | } |
| 222 | } |
| 223 | |
| 224 | static inline unsigned long red_calc_qavg_no_idle_time(struct red_parms *p, |
| 225 | unsigned int backlog) |
| 226 | { |
| 227 | /* |
| 228 | * NOTE: p->qavg is fixed point number with point at Wlog. |
| 229 | * The formula below is equvalent to floating point |
| 230 | * version: |
| 231 | * |
| 232 | * qavg = qavg*(1-W) + backlog*W; |
| 233 | * |
| 234 | * --ANK (980924) |
| 235 | */ |
| 236 | return p->qavg + (backlog - (p->qavg >> p->Wlog)); |
| 237 | } |
| 238 | |
| 239 | static inline unsigned long red_calc_qavg(struct red_parms *p, |
| 240 | unsigned int backlog) |
| 241 | { |
| 242 | if (!red_is_idling(p)) |
| 243 | return red_calc_qavg_no_idle_time(p, backlog); |
| 244 | else |
| 245 | return red_calc_qavg_from_idle_time(p); |
| 246 | } |
| 247 | |
| 248 | static inline u32 red_random(struct red_parms *p) |
| 249 | { |
| 250 | return net_random() & p->Rmask; |
| 251 | } |
| 252 | |
| 253 | static inline int red_mark_probability(struct red_parms *p, unsigned long qavg) |
| 254 | { |
| 255 | /* The formula used below causes questions. |
| 256 | |
| 257 | OK. qR is random number in the interval 0..Rmask |
| 258 | i.e. 0..(2^Plog). If we used floating point |
| 259 | arithmetics, it would be: (2^Plog)*rnd_num, |
| 260 | where rnd_num is less 1. |
| 261 | |
| 262 | Taking into account, that qavg have fixed |
| 263 | point at Wlog, and Plog is related to max_P by |
| 264 | max_P = (qth_max-qth_min)/2^Plog; two lines |
| 265 | below have the following floating point equivalent: |
| 266 | |
| 267 | max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount |
| 268 | |
| 269 | Any questions? --ANK (980924) |
| 270 | */ |
| 271 | return !(((qavg - p->qth_min) >> p->Wlog) * p->qcount < p->qR); |
| 272 | } |
| 273 | |
| 274 | enum { |
| 275 | RED_BELOW_MIN_THRESH, |
| 276 | RED_BETWEEN_TRESH, |
| 277 | RED_ABOVE_MAX_TRESH, |
| 278 | }; |
| 279 | |
| 280 | static inline int red_cmp_thresh(struct red_parms *p, unsigned long qavg) |
| 281 | { |
| 282 | if (qavg < p->qth_min) |
| 283 | return RED_BELOW_MIN_THRESH; |
| 284 | else if (qavg >= p->qth_max) |
| 285 | return RED_ABOVE_MAX_TRESH; |
| 286 | else |
| 287 | return RED_BETWEEN_TRESH; |
| 288 | } |
| 289 | |
| 290 | enum { |
| 291 | RED_DONT_MARK, |
| 292 | RED_PROB_MARK, |
| 293 | RED_HARD_MARK, |
| 294 | }; |
| 295 | |
| 296 | static inline int red_action(struct red_parms *p, unsigned long qavg) |
| 297 | { |
| 298 | switch (red_cmp_thresh(p, qavg)) { |
| 299 | case RED_BELOW_MIN_THRESH: |
| 300 | p->qcount = -1; |
| 301 | return RED_DONT_MARK; |
| 302 | |
| 303 | case RED_BETWEEN_TRESH: |
| 304 | if (++p->qcount) { |
| 305 | if (red_mark_probability(p, qavg)) { |
| 306 | p->qcount = 0; |
| 307 | p->qR = red_random(p); |
| 308 | return RED_PROB_MARK; |
| 309 | } |
| 310 | } else |
| 311 | p->qR = red_random(p); |
| 312 | |
| 313 | return RED_DONT_MARK; |
| 314 | |
| 315 | case RED_ABOVE_MAX_TRESH: |
| 316 | p->qcount = -1; |
| 317 | return RED_HARD_MARK; |
| 318 | } |
| 319 | |
| 320 | BUG(); |
| 321 | return RED_DONT_MARK; |
| 322 | } |
| 323 | |
| 324 | #endif |