blob: 1e896b923234f6d1b2e21da52fd73b010d45f214 [file] [log] [blame]
Casey Leedom16f8bd42010-06-25 12:12:54 +00001/*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
Casey Leedom16f8bd42010-06-25 12:12:54 +000036#include <linux/pci.h>
37
38#include "t4vf_common.h"
39#include "t4vf_defs.h"
40
41#include "../cxgb4/t4_regs.h"
42#include "../cxgb4/t4fw_api.h"
43
44/*
45 * Wait for the device to become ready (signified by our "who am I" register
46 * returning a value other than all 1's). Return an error if it doesn't
47 * become ready ...
48 */
Bill Pembertond289f862012-12-03 09:23:03 -050049int t4vf_wait_dev_ready(struct adapter *adapter)
Casey Leedom16f8bd42010-06-25 12:12:54 +000050{
51 const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
52 const u32 notready1 = 0xffffffff;
53 const u32 notready2 = 0xeeeeeeee;
54 u32 val;
55
56 val = t4_read_reg(adapter, whoami);
57 if (val != notready1 && val != notready2)
58 return 0;
59 msleep(500);
60 val = t4_read_reg(adapter, whoami);
61 if (val != notready1 && val != notready2)
62 return 0;
63 else
64 return -EIO;
65}
66
67/*
68 * Get the reply to a mailbox command and store it in @rpl in big-endian order
69 * (since the firmware data structures are specified in a big-endian layout).
70 */
71static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
72 u32 mbox_data)
73{
74 for ( ; size; size -= 8, mbox_data += 8)
75 *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
76}
77
78/*
79 * Dump contents of mailbox with a leading tag.
80 */
81static void dump_mbox(struct adapter *adapter, const char *tag, u32 mbox_data)
82{
83 dev_err(adapter->pdev_dev,
84 "mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag,
85 (unsigned long long)t4_read_reg64(adapter, mbox_data + 0),
86 (unsigned long long)t4_read_reg64(adapter, mbox_data + 8),
87 (unsigned long long)t4_read_reg64(adapter, mbox_data + 16),
88 (unsigned long long)t4_read_reg64(adapter, mbox_data + 24),
89 (unsigned long long)t4_read_reg64(adapter, mbox_data + 32),
90 (unsigned long long)t4_read_reg64(adapter, mbox_data + 40),
91 (unsigned long long)t4_read_reg64(adapter, mbox_data + 48),
92 (unsigned long long)t4_read_reg64(adapter, mbox_data + 56));
93}
94
95/**
96 * t4vf_wr_mbox_core - send a command to FW through the mailbox
97 * @adapter: the adapter
98 * @cmd: the command to write
99 * @size: command length in bytes
100 * @rpl: where to optionally store the reply
101 * @sleep_ok: if true we may sleep while awaiting command completion
102 *
103 * Sends the given command to FW through the mailbox and waits for the
104 * FW to execute the command. If @rpl is not %NULL it is used to store
105 * the FW's reply to the command. The command and its optional reply
106 * are of the same length. FW can take up to 500 ms to respond.
107 * @sleep_ok determines whether we may sleep while awaiting the response.
108 * If sleeping is allowed we use progressive backoff otherwise we spin.
109 *
110 * The return value is 0 on success or a negative errno on failure. A
111 * failure can happen either because we are not able to execute the
112 * command or FW executes it but signals an error. In the latter case
113 * the return value is the error code indicated by FW (negated).
114 */
115int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
116 void *rpl, bool sleep_ok)
117{
Joe Perches215faf92010-12-21 02:16:10 -0800118 static const int delay[] = {
Casey Leedom16f8bd42010-06-25 12:12:54 +0000119 1, 1, 3, 5, 10, 10, 20, 50, 100
120 };
121
122 u32 v;
123 int i, ms, delay_idx;
124 const __be64 *p;
125 u32 mbox_data = T4VF_MBDATA_BASE_ADDR;
126 u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
127
128 /*
129 * Commands must be multiples of 16 bytes in length and may not be
130 * larger than the size of the Mailbox Data register array.
131 */
132 if ((size % 16) != 0 ||
133 size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
134 return -EINVAL;
135
136 /*
137 * Loop trying to get ownership of the mailbox. Return an error
138 * if we can't gain ownership.
139 */
140 v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl));
141 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
142 v = MBOWNER_GET(t4_read_reg(adapter, mbox_ctl));
143 if (v != MBOX_OWNER_DRV)
144 return v == MBOX_OWNER_FW ? -EBUSY : -ETIMEDOUT;
145
146 /*
147 * Write the command array into the Mailbox Data register array and
148 * transfer ownership of the mailbox to the firmware.
Casey Leedom80ce3f672011-01-10 13:53:43 -0800149 *
150 * For the VFs, the Mailbox Data "registers" are actually backed by
151 * T4's "MA" interface rather than PL Registers (as is the case for
152 * the PFs). Because these are in different coherency domains, the
153 * write to the VF's PL-register-backed Mailbox Control can race in
154 * front of the writes to the MA-backed VF Mailbox Data "registers".
155 * So we need to do a read-back on at least one byte of the VF Mailbox
156 * Data registers before doing the write to the VF Mailbox Control
157 * register.
Casey Leedom16f8bd42010-06-25 12:12:54 +0000158 */
159 for (i = 0, p = cmd; i < size; i += 8)
160 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
Casey Leedom80ce3f672011-01-10 13:53:43 -0800161 t4_read_reg(adapter, mbox_data); /* flush write */
162
Casey Leedom16f8bd42010-06-25 12:12:54 +0000163 t4_write_reg(adapter, mbox_ctl,
164 MBMSGVALID | MBOWNER(MBOX_OWNER_FW));
165 t4_read_reg(adapter, mbox_ctl); /* flush write */
166
167 /*
168 * Spin waiting for firmware to acknowledge processing our command.
169 */
170 delay_idx = 0;
171 ms = delay[0];
172
Casey Leedom05507692011-02-14 12:56:25 +0000173 for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
Casey Leedom16f8bd42010-06-25 12:12:54 +0000174 if (sleep_ok) {
175 ms = delay[delay_idx];
Casey Leedom024e6292010-07-19 17:51:46 -0700176 if (delay_idx < ARRAY_SIZE(delay) - 1)
Casey Leedom16f8bd42010-06-25 12:12:54 +0000177 delay_idx++;
178 msleep(ms);
179 } else
180 mdelay(ms);
181
182 /*
183 * If we're the owner, see if this is the reply we wanted.
184 */
185 v = t4_read_reg(adapter, mbox_ctl);
186 if (MBOWNER_GET(v) == MBOX_OWNER_DRV) {
187 /*
188 * If the Message Valid bit isn't on, revoke ownership
189 * of the mailbox and continue waiting for our reply.
190 */
191 if ((v & MBMSGVALID) == 0) {
192 t4_write_reg(adapter, mbox_ctl,
193 MBOWNER(MBOX_OWNER_NONE));
194 continue;
195 }
196
197 /*
198 * We now have our reply. Extract the command return
199 * value, copy the reply back to our caller's buffer
200 * (if specified) and revoke ownership of the mailbox.
201 * We return the (negated) firmware command return
202 * code (this depends on FW_SUCCESS == 0).
203 */
204
205 /* return value in low-order little-endian word */
206 v = t4_read_reg(adapter, mbox_data);
207 if (FW_CMD_RETVAL_GET(v))
208 dump_mbox(adapter, "FW Error", mbox_data);
209
210 if (rpl) {
211 /* request bit in high-order BE word */
212 WARN_ON((be32_to_cpu(*(const u32 *)cmd)
213 & FW_CMD_REQUEST) == 0);
214 get_mbox_rpl(adapter, rpl, size, mbox_data);
215 WARN_ON((be32_to_cpu(*(u32 *)rpl)
216 & FW_CMD_REQUEST) != 0);
217 }
218 t4_write_reg(adapter, mbox_ctl,
219 MBOWNER(MBOX_OWNER_NONE));
220 return -FW_CMD_RETVAL_GET(v);
221 }
222 }
223
224 /*
225 * We timed out. Return the error ...
226 */
227 dump_mbox(adapter, "FW Timeout", mbox_data);
228 return -ETIMEDOUT;
229}
230
231/**
232 * hash_mac_addr - return the hash value of a MAC address
233 * @addr: the 48-bit Ethernet MAC address
234 *
235 * Hashes a MAC address according to the hash function used by hardware
236 * inexact (hash) address matching.
237 */
238static int hash_mac_addr(const u8 *addr)
239{
240 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
241 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
242 a ^= b;
243 a ^= (a >> 12);
244 a ^= (a >> 6);
245 return a & 0x3f;
246}
247
248/**
249 * init_link_config - initialize a link's SW state
250 * @lc: structure holding the link state
251 * @caps: link capabilities
252 *
253 * Initializes the SW state maintained for each link, including the link's
254 * capabilities and default speed/flow-control/autonegotiation settings.
255 */
Greg Kroah-Hartman1dd06ae2012-12-06 14:30:56 +0000256static void init_link_config(struct link_config *lc, unsigned int caps)
Casey Leedom16f8bd42010-06-25 12:12:54 +0000257{
258 lc->supported = caps;
259 lc->requested_speed = 0;
260 lc->speed = 0;
261 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
262 if (lc->supported & SUPPORTED_Autoneg) {
263 lc->advertising = lc->supported;
264 lc->autoneg = AUTONEG_ENABLE;
265 lc->requested_fc |= PAUSE_AUTONEG;
266 } else {
267 lc->advertising = 0;
268 lc->autoneg = AUTONEG_DISABLE;
269 }
270}
271
272/**
273 * t4vf_port_init - initialize port hardware/software state
274 * @adapter: the adapter
275 * @pidx: the adapter port index
276 */
Bill Pembertond289f862012-12-03 09:23:03 -0500277int t4vf_port_init(struct adapter *adapter, int pidx)
Casey Leedom16f8bd42010-06-25 12:12:54 +0000278{
279 struct port_info *pi = adap2pinfo(adapter, pidx);
280 struct fw_vi_cmd vi_cmd, vi_rpl;
281 struct fw_port_cmd port_cmd, port_rpl;
282 int v;
283 u32 word;
284
285 /*
286 * Execute a VI Read command to get our Virtual Interface information
287 * like MAC address, etc.
288 */
289 memset(&vi_cmd, 0, sizeof(vi_cmd));
290 vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
291 FW_CMD_REQUEST |
292 FW_CMD_READ);
293 vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
294 vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID(pi->viid));
295 v = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
296 if (v)
297 return v;
298
299 BUG_ON(pi->port_id != FW_VI_CMD_PORTID_GET(vi_rpl.portid_pkd));
300 pi->rss_size = FW_VI_CMD_RSSSIZE_GET(be16_to_cpu(vi_rpl.rsssize_pkd));
301 t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
302
303 /*
304 * If we don't have read access to our port information, we're done
305 * now. Otherwise, execute a PORT Read command to get it ...
306 */
307 if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
308 return 0;
309
310 memset(&port_cmd, 0, sizeof(port_cmd));
311 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP(FW_PORT_CMD) |
312 FW_CMD_REQUEST |
313 FW_CMD_READ |
314 FW_PORT_CMD_PORTID(pi->port_id));
315 port_cmd.action_to_len16 =
316 cpu_to_be32(FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
317 FW_LEN16(port_cmd));
318 v = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
319 if (v)
320 return v;
321
322 v = 0;
323 word = be16_to_cpu(port_rpl.u.info.pcap);
324 if (word & FW_PORT_CAP_SPEED_100M)
325 v |= SUPPORTED_100baseT_Full;
326 if (word & FW_PORT_CAP_SPEED_1G)
327 v |= SUPPORTED_1000baseT_Full;
328 if (word & FW_PORT_CAP_SPEED_10G)
329 v |= SUPPORTED_10000baseT_Full;
Hariprasad Shenai897d55d2014-10-09 05:48:46 +0530330 if (word & FW_PORT_CAP_SPEED_40G)
331 v |= SUPPORTED_40000baseSR4_Full;
Casey Leedom16f8bd42010-06-25 12:12:54 +0000332 if (word & FW_PORT_CAP_ANEG)
333 v |= SUPPORTED_Autoneg;
334 init_link_config(&pi->link_cfg, v);
335
336 return 0;
337}
338
339/**
Casey Leedome68e6132010-11-11 09:06:53 +0000340 * t4vf_fw_reset - issue a reset to FW
341 * @adapter: the adapter
342 *
343 * Issues a reset command to FW. For a Physical Function this would
344 * result in the Firmware reseting all of its state. For a Virtual
345 * Function this just resets the state associated with the VF.
346 */
347int t4vf_fw_reset(struct adapter *adapter)
348{
349 struct fw_reset_cmd cmd;
350
351 memset(&cmd, 0, sizeof(cmd));
352 cmd.op_to_write = cpu_to_be32(FW_CMD_OP(FW_RESET_CMD) |
353 FW_CMD_WRITE);
354 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
355 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
356}
357
358/**
Casey Leedom16f8bd42010-06-25 12:12:54 +0000359 * t4vf_query_params - query FW or device parameters
360 * @adapter: the adapter
361 * @nparams: the number of parameters
362 * @params: the parameter names
363 * @vals: the parameter values
364 *
365 * Reads the values of firmware or device parameters. Up to 7 parameters
366 * can be queried at once.
367 */
stephen hemmingerde5b8672013-12-18 14:16:47 -0800368static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
369 const u32 *params, u32 *vals)
Casey Leedom16f8bd42010-06-25 12:12:54 +0000370{
371 int i, ret;
372 struct fw_params_cmd cmd, rpl;
373 struct fw_params_param *p;
374 size_t len16;
375
376 if (nparams > 7)
377 return -EINVAL;
378
379 memset(&cmd, 0, sizeof(cmd));
380 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD) |
381 FW_CMD_REQUEST |
382 FW_CMD_READ);
383 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
384 param[nparams].mnem), 16);
385 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
386 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
387 p->mnem = htonl(*params++);
388
389 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
390 if (ret == 0)
391 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
392 *vals++ = be32_to_cpu(p->val);
393 return ret;
394}
395
396/**
397 * t4vf_set_params - sets FW or device parameters
398 * @adapter: the adapter
399 * @nparams: the number of parameters
400 * @params: the parameter names
401 * @vals: the parameter values
402 *
403 * Sets the values of firmware or device parameters. Up to 7 parameters
404 * can be specified at once.
405 */
406int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
407 const u32 *params, const u32 *vals)
408{
409 int i;
410 struct fw_params_cmd cmd;
411 struct fw_params_param *p;
412 size_t len16;
413
414 if (nparams > 7)
415 return -EINVAL;
416
417 memset(&cmd, 0, sizeof(cmd));
418 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD) |
419 FW_CMD_REQUEST |
420 FW_CMD_WRITE);
421 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
422 param[nparams]), 16);
423 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
424 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
425 p->mnem = cpu_to_be32(*params++);
426 p->val = cpu_to_be32(*vals++);
427 }
428
429 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
430}
431
432/**
433 * t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
434 * @adapter: the adapter
435 *
436 * Retrieves various core SGE parameters in the form of hardware SGE
437 * register values. The caller is responsible for decoding these as
438 * needed. The SGE parameters are stored in @adapter->params.sge.
439 */
440int t4vf_get_sge_params(struct adapter *adapter)
441{
442 struct sge_params *sge_params = &adapter->params.sge;
443 u32 params[7], vals[7];
444 int v;
445
446 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
447 FW_PARAMS_PARAM_XYZ(SGE_CONTROL));
448 params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
449 FW_PARAMS_PARAM_XYZ(SGE_HOST_PAGE_SIZE));
450 params[2] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
451 FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE0));
452 params[3] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
453 FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE1));
454 params[4] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
455 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_0_AND_1));
456 params[5] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
457 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_2_AND_3));
458 params[6] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
459 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_4_AND_5));
460 v = t4vf_query_params(adapter, 7, params, vals);
461 if (v)
462 return v;
463 sge_params->sge_control = vals[0];
464 sge_params->sge_host_page_size = vals[1];
465 sge_params->sge_fl_buffer_size[0] = vals[2];
466 sge_params->sge_fl_buffer_size[1] = vals[3];
467 sge_params->sge_timer_value_0_and_1 = vals[4];
468 sge_params->sge_timer_value_2_and_3 = vals[5];
469 sge_params->sge_timer_value_4_and_5 = vals[6];
470
Hariprasad Shenaice8f4072014-11-07 17:06:30 +0530471 /* T4 uses a single control field to specify both the PCIe Padding and
472 * Packing Boundary. T5 introduced the ability to specify these
473 * separately with the Padding Boundary in SGE_CONTROL and and Packing
474 * Boundary in SGE_CONTROL2. So for T5 and later we need to grab
475 * SGE_CONTROL in order to determine how ingress packet data will be
476 * laid out in Packed Buffer Mode. Unfortunately, older versions of
477 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
478 * failure grabbing it we throw an error since we can't figure out the
479 * right value.
480 */
481 if (!is_t4(adapter->params.chip)) {
482 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
483 FW_PARAMS_PARAM_XYZ(SGE_CONTROL2_A));
484 v = t4vf_query_params(adapter, 1, params, vals);
485 if (v != FW_SUCCESS) {
486 dev_err(adapter->pdev_dev,
487 "Unable to get SGE Control2; "
488 "probably old firmware.\n");
489 return v;
490 }
491 sge_params->sge_control2 = vals[0];
492 }
493
Casey Leedom16f8bd42010-06-25 12:12:54 +0000494 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
495 FW_PARAMS_PARAM_XYZ(SGE_INGRESS_RX_THRESHOLD));
Hariprasad Shenai50d21a62014-11-07 17:06:31 +0530496 params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) |
497 FW_PARAMS_PARAM_XYZ(SGE_CONM_CTRL));
498 v = t4vf_query_params(adapter, 2, params, vals);
Casey Leedom16f8bd42010-06-25 12:12:54 +0000499 if (v)
500 return v;
501 sge_params->sge_ingress_rx_threshold = vals[0];
Hariprasad Shenai50d21a62014-11-07 17:06:31 +0530502 sge_params->sge_congestion_control = vals[1];
Casey Leedom16f8bd42010-06-25 12:12:54 +0000503
504 return 0;
505}
506
507/**
508 * t4vf_get_vpd_params - retrieve device VPD paremeters
509 * @adapter: the adapter
510 *
511 * Retrives various device Vital Product Data parameters. The parameters
512 * are stored in @adapter->params.vpd.
513 */
514int t4vf_get_vpd_params(struct adapter *adapter)
515{
516 struct vpd_params *vpd_params = &adapter->params.vpd;
517 u32 params[7], vals[7];
518 int v;
519
520 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
521 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK));
522 v = t4vf_query_params(adapter, 1, params, vals);
523 if (v)
524 return v;
525 vpd_params->cclk = vals[0];
526
527 return 0;
528}
529
530/**
531 * t4vf_get_dev_params - retrieve device paremeters
532 * @adapter: the adapter
533 *
534 * Retrives various device parameters. The parameters are stored in
535 * @adapter->params.dev.
536 */
537int t4vf_get_dev_params(struct adapter *adapter)
538{
539 struct dev_params *dev_params = &adapter->params.dev;
540 u32 params[7], vals[7];
541 int v;
542
543 params[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
544 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWREV));
545 params[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
546 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPREV));
547 v = t4vf_query_params(adapter, 2, params, vals);
548 if (v)
549 return v;
550 dev_params->fwrev = vals[0];
551 dev_params->tprev = vals[1];
552
553 return 0;
554}
555
556/**
557 * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
558 * @adapter: the adapter
559 *
560 * Retrieves global RSS mode and parameters with which we have to live
561 * and stores them in the @adapter's RSS parameters.
562 */
563int t4vf_get_rss_glb_config(struct adapter *adapter)
564{
565 struct rss_params *rss = &adapter->params.rss;
566 struct fw_rss_glb_config_cmd cmd, rpl;
567 int v;
568
569 /*
570 * Execute an RSS Global Configuration read command to retrieve
571 * our RSS configuration.
572 */
573 memset(&cmd, 0, sizeof(cmd));
574 cmd.op_to_write = cpu_to_be32(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
575 FW_CMD_REQUEST |
576 FW_CMD_READ);
577 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
578 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
579 if (v)
580 return v;
581
582 /*
583 * Transate the big-endian RSS Global Configuration into our
584 * cpu-endian format based on the RSS mode. We also do first level
585 * filtering at this point to weed out modes which don't support
586 * VF Drivers ...
587 */
588 rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_GET(
589 be32_to_cpu(rpl.u.manual.mode_pkd));
590 switch (rss->mode) {
591 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
592 u32 word = be32_to_cpu(
593 rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
594
595 rss->u.basicvirtual.synmapen =
596 ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN) != 0);
597 rss->u.basicvirtual.syn4tupenipv6 =
598 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6) != 0);
599 rss->u.basicvirtual.syn2tupenipv6 =
600 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6) != 0);
601 rss->u.basicvirtual.syn4tupenipv4 =
602 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4) != 0);
603 rss->u.basicvirtual.syn2tupenipv4 =
604 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4) != 0);
605
606 rss->u.basicvirtual.ofdmapen =
607 ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN) != 0);
608
609 rss->u.basicvirtual.tnlmapen =
610 ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN) != 0);
611 rss->u.basicvirtual.tnlalllookup =
612 ((word & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP) != 0);
613
614 rss->u.basicvirtual.hashtoeplitz =
615 ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ) != 0);
616
617 /* we need at least Tunnel Map Enable to be set */
618 if (!rss->u.basicvirtual.tnlmapen)
619 return -EINVAL;
620 break;
621 }
622
623 default:
624 /* all unknown/unsupported RSS modes result in an error */
625 return -EINVAL;
626 }
627
628 return 0;
629}
630
631/**
632 * t4vf_get_vfres - retrieve VF resource limits
633 * @adapter: the adapter
634 *
635 * Retrieves configured resource limits and capabilities for a virtual
636 * function. The results are stored in @adapter->vfres.
637 */
638int t4vf_get_vfres(struct adapter *adapter)
639{
640 struct vf_resources *vfres = &adapter->params.vfres;
641 struct fw_pfvf_cmd cmd, rpl;
642 int v;
643 u32 word;
644
645 /*
646 * Execute PFVF Read command to get VF resource limits; bail out early
647 * with error on command failure.
648 */
649 memset(&cmd, 0, sizeof(cmd));
650 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_PFVF_CMD) |
651 FW_CMD_REQUEST |
652 FW_CMD_READ);
653 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
654 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
655 if (v)
656 return v;
657
658 /*
659 * Extract VF resource limits and return success.
660 */
661 word = be32_to_cpu(rpl.niqflint_niq);
662 vfres->niqflint = FW_PFVF_CMD_NIQFLINT_GET(word);
663 vfres->niq = FW_PFVF_CMD_NIQ_GET(word);
664
665 word = be32_to_cpu(rpl.type_to_neq);
666 vfres->neq = FW_PFVF_CMD_NEQ_GET(word);
667 vfres->pmask = FW_PFVF_CMD_PMASK_GET(word);
668
669 word = be32_to_cpu(rpl.tc_to_nexactf);
670 vfres->tc = FW_PFVF_CMD_TC_GET(word);
671 vfres->nvi = FW_PFVF_CMD_NVI_GET(word);
672 vfres->nexactf = FW_PFVF_CMD_NEXACTF_GET(word);
673
674 word = be32_to_cpu(rpl.r_caps_to_nethctrl);
675 vfres->r_caps = FW_PFVF_CMD_R_CAPS_GET(word);
676 vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_GET(word);
677 vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_GET(word);
678
679 return 0;
680}
681
682/**
683 * t4vf_read_rss_vi_config - read a VI's RSS configuration
684 * @adapter: the adapter
685 * @viid: Virtual Interface ID
686 * @config: pointer to host-native VI RSS Configuration buffer
687 *
688 * Reads the Virtual Interface's RSS configuration information and
689 * translates it into CPU-native format.
690 */
691int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
692 union rss_vi_config *config)
693{
694 struct fw_rss_vi_config_cmd cmd, rpl;
695 int v;
696
697 memset(&cmd, 0, sizeof(cmd));
698 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
699 FW_CMD_REQUEST |
700 FW_CMD_READ |
701 FW_RSS_VI_CONFIG_CMD_VIID(viid));
702 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
703 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
704 if (v)
705 return v;
706
707 switch (adapter->params.rss.mode) {
708 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
709 u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
710
711 config->basicvirtual.ip6fourtupen =
712 ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) != 0);
713 config->basicvirtual.ip6twotupen =
714 ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) != 0);
715 config->basicvirtual.ip4fourtupen =
716 ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) != 0);
717 config->basicvirtual.ip4twotupen =
718 ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) != 0);
719 config->basicvirtual.udpen =
720 ((word & FW_RSS_VI_CONFIG_CMD_UDPEN) != 0);
721 config->basicvirtual.defaultq =
722 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_GET(word);
723 break;
724 }
725
726 default:
727 return -EINVAL;
728 }
729
730 return 0;
731}
732
733/**
734 * t4vf_write_rss_vi_config - write a VI's RSS configuration
735 * @adapter: the adapter
736 * @viid: Virtual Interface ID
737 * @config: pointer to host-native VI RSS Configuration buffer
738 *
739 * Write the Virtual Interface's RSS configuration information
740 * (translating it into firmware-native format before writing).
741 */
742int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
743 union rss_vi_config *config)
744{
745 struct fw_rss_vi_config_cmd cmd, rpl;
746
747 memset(&cmd, 0, sizeof(cmd));
748 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
749 FW_CMD_REQUEST |
750 FW_CMD_WRITE |
751 FW_RSS_VI_CONFIG_CMD_VIID(viid));
752 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
753 switch (adapter->params.rss.mode) {
754 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
755 u32 word = 0;
756
757 if (config->basicvirtual.ip6fourtupen)
758 word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
759 if (config->basicvirtual.ip6twotupen)
760 word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
761 if (config->basicvirtual.ip4fourtupen)
762 word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
763 if (config->basicvirtual.ip4twotupen)
764 word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
765 if (config->basicvirtual.udpen)
766 word |= FW_RSS_VI_CONFIG_CMD_UDPEN;
767 word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ(
768 config->basicvirtual.defaultq);
769 cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
770 break;
771 }
772
773 default:
774 return -EINVAL;
775 }
776
777 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
778}
779
780/**
781 * t4vf_config_rss_range - configure a portion of the RSS mapping table
782 * @adapter: the adapter
783 * @viid: Virtual Interface of RSS Table Slice
784 * @start: starting entry in the table to write
785 * @n: how many table entries to write
786 * @rspq: values for the "Response Queue" (Ingress Queue) lookup table
787 * @nrspq: number of values in @rspq
788 *
789 * Programs the selected part of the VI's RSS mapping table with the
790 * provided values. If @nrspq < @n the supplied values are used repeatedly
791 * until the full table range is populated.
792 *
793 * The caller must ensure the values in @rspq are in the range 0..1023.
794 */
795int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
796 int start, int n, const u16 *rspq, int nrspq)
797{
798 const u16 *rsp = rspq;
799 const u16 *rsp_end = rspq+nrspq;
800 struct fw_rss_ind_tbl_cmd cmd;
801
802 /*
803 * Initialize firmware command template to write the RSS table.
804 */
805 memset(&cmd, 0, sizeof(cmd));
806 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
807 FW_CMD_REQUEST |
808 FW_CMD_WRITE |
809 FW_RSS_IND_TBL_CMD_VIID(viid));
810 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
811
812 /*
813 * Each firmware RSS command can accommodate up to 32 RSS Ingress
814 * Queue Identifiers. These Ingress Queue IDs are packed three to
815 * a 32-bit word as 10-bit values with the upper remaining 2 bits
816 * reserved.
817 */
818 while (n > 0) {
819 __be32 *qp = &cmd.iq0_to_iq2;
820 int nq = min(n, 32);
821 int ret;
822
823 /*
824 * Set up the firmware RSS command header to send the next
825 * "nq" Ingress Queue IDs to the firmware.
826 */
827 cmd.niqid = cpu_to_be16(nq);
828 cmd.startidx = cpu_to_be16(start);
829
830 /*
831 * "nq" more done for the start of the next loop.
832 */
833 start += nq;
834 n -= nq;
835
836 /*
837 * While there are still Ingress Queue IDs to stuff into the
838 * current firmware RSS command, retrieve them from the
839 * Ingress Queue ID array and insert them into the command.
840 */
841 while (nq > 0) {
842 /*
843 * Grab up to the next 3 Ingress Queue IDs (wrapping
844 * around the Ingress Queue ID array if necessary) and
845 * insert them into the firmware RSS command at the
846 * current 3-tuple position within the commad.
847 */
848 u16 qbuf[3];
849 u16 *qbp = qbuf;
850 int nqbuf = min(3, nq);
851
852 nq -= nqbuf;
853 qbuf[0] = qbuf[1] = qbuf[2] = 0;
854 while (nqbuf) {
855 nqbuf--;
856 *qbp++ = *rsp++;
857 if (rsp >= rsp_end)
858 rsp = rspq;
859 }
860 *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
861 FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
862 FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
863 }
864
865 /*
866 * Send this portion of the RRS table update to the firmware;
867 * bail out on any errors.
868 */
869 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
870 if (ret)
871 return ret;
872 }
873 return 0;
874}
875
876/**
877 * t4vf_alloc_vi - allocate a virtual interface on a port
878 * @adapter: the adapter
879 * @port_id: physical port associated with the VI
880 *
881 * Allocate a new Virtual Interface and bind it to the indicated
882 * physical port. Return the new Virtual Interface Identifier on
883 * success, or a [negative] error number on failure.
884 */
885int t4vf_alloc_vi(struct adapter *adapter, int port_id)
886{
887 struct fw_vi_cmd cmd, rpl;
888 int v;
889
890 /*
891 * Execute a VI command to allocate Virtual Interface and return its
892 * VIID.
893 */
894 memset(&cmd, 0, sizeof(cmd));
895 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
896 FW_CMD_REQUEST |
897 FW_CMD_WRITE |
898 FW_CMD_EXEC);
899 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
900 FW_VI_CMD_ALLOC);
901 cmd.portid_pkd = FW_VI_CMD_PORTID(port_id);
902 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
903 if (v)
904 return v;
905
906 return FW_VI_CMD_VIID_GET(be16_to_cpu(rpl.type_viid));
907}
908
909/**
910 * t4vf_free_vi -- free a virtual interface
911 * @adapter: the adapter
912 * @viid: the virtual interface identifier
913 *
914 * Free a previously allocated Virtual Interface. Return an error on
915 * failure.
916 */
917int t4vf_free_vi(struct adapter *adapter, int viid)
918{
919 struct fw_vi_cmd cmd;
920
921 /*
922 * Execute a VI command to free the Virtual Interface.
923 */
924 memset(&cmd, 0, sizeof(cmd));
925 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_VI_CMD) |
926 FW_CMD_REQUEST |
927 FW_CMD_EXEC);
928 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
929 FW_VI_CMD_FREE);
930 cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID(viid));
931 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
932}
933
934/**
935 * t4vf_enable_vi - enable/disable a virtual interface
936 * @adapter: the adapter
937 * @viid: the Virtual Interface ID
938 * @rx_en: 1=enable Rx, 0=disable Rx
939 * @tx_en: 1=enable Tx, 0=disable Tx
940 *
941 * Enables/disables a virtual interface.
942 */
943int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
944 bool rx_en, bool tx_en)
945{
946 struct fw_vi_enable_cmd cmd;
947
948 memset(&cmd, 0, sizeof(cmd));
949 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD) |
950 FW_CMD_REQUEST |
951 FW_CMD_EXEC |
952 FW_VI_ENABLE_CMD_VIID(viid));
953 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN(rx_en) |
954 FW_VI_ENABLE_CMD_EEN(tx_en) |
955 FW_LEN16(cmd));
956 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
957}
958
959/**
960 * t4vf_identify_port - identify a VI's port by blinking its LED
961 * @adapter: the adapter
962 * @viid: the Virtual Interface ID
963 * @nblinks: how many times to blink LED at 2.5 Hz
964 *
965 * Identifies a VI's port by blinking its LED.
966 */
967int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
968 unsigned int nblinks)
969{
970 struct fw_vi_enable_cmd cmd;
971
972 memset(&cmd, 0, sizeof(cmd));
973 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD) |
974 FW_CMD_REQUEST |
975 FW_CMD_EXEC |
976 FW_VI_ENABLE_CMD_VIID(viid));
977 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED |
978 FW_LEN16(cmd));
979 cmd.blinkdur = cpu_to_be16(nblinks);
980 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
981}
982
983/**
984 * t4vf_set_rxmode - set Rx properties of a virtual interface
985 * @adapter: the adapter
986 * @viid: the VI id
987 * @mtu: the new MTU or -1 for no change
988 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
989 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
990 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
991 * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
992 * -1 no change
993 *
994 * Sets Rx properties of a virtual interface.
995 */
996int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
997 int mtu, int promisc, int all_multi, int bcast, int vlanex,
998 bool sleep_ok)
999{
1000 struct fw_vi_rxmode_cmd cmd;
1001
1002 /* convert to FW values */
1003 if (mtu < 0)
1004 mtu = FW_VI_RXMODE_CMD_MTU_MASK;
1005 if (promisc < 0)
1006 promisc = FW_VI_RXMODE_CMD_PROMISCEN_MASK;
1007 if (all_multi < 0)
1008 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_MASK;
1009 if (bcast < 0)
1010 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_MASK;
1011 if (vlanex < 0)
1012 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_MASK;
1013
1014 memset(&cmd, 0, sizeof(cmd));
1015 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_RXMODE_CMD) |
1016 FW_CMD_REQUEST |
1017 FW_CMD_WRITE |
1018 FW_VI_RXMODE_CMD_VIID(viid));
1019 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1020 cmd.mtu_to_vlanexen =
1021 cpu_to_be32(FW_VI_RXMODE_CMD_MTU(mtu) |
1022 FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
1023 FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
1024 FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
1025 FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
1026 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1027}
1028
1029/**
1030 * t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1031 * @adapter: the adapter
1032 * @viid: the Virtual Interface Identifier
1033 * @free: if true any existing filters for this VI id are first removed
1034 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
1035 * @addr: the MAC address(es)
1036 * @idx: where to store the index of each allocated filter
1037 * @hash: pointer to hash address filter bitmap
1038 * @sleep_ok: call is allowed to sleep
1039 *
1040 * Allocates an exact-match filter for each of the supplied addresses and
1041 * sets it to the corresponding address. If @idx is not %NULL it should
1042 * have at least @naddr entries, each of which will be set to the index of
1043 * the filter allocated for the corresponding MAC address. If a filter
1044 * could not be allocated for an address its index is set to 0xffff.
1045 * If @hash is not %NULL addresses that fail to allocate an exact filter
1046 * are hashed and update the hash filter bitmap pointed at by @hash.
1047 *
1048 * Returns a negative error number or the number of filters allocated.
1049 */
1050int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1051 unsigned int naddr, const u8 **addr, u16 *idx,
1052 u64 *hash, bool sleep_ok)
1053{
Casey Leedom42eb59d2010-11-24 12:23:57 +00001054 int offset, ret = 0;
1055 unsigned nfilters = 0;
1056 unsigned int rem = naddr;
Casey Leedom16f8bd42010-06-25 12:12:54 +00001057 struct fw_vi_mac_cmd cmd, rpl;
Hariprasad Shenai70ee3662013-12-03 17:05:57 +05301058 unsigned int max_naddr = is_t4(adapter->params.chip) ?
Santosh Rastapur622c62b2013-03-14 05:08:57 +00001059 NUM_MPS_CLS_SRAM_L_INSTANCES :
1060 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
Casey Leedom16f8bd42010-06-25 12:12:54 +00001061
Santosh Rastapur622c62b2013-03-14 05:08:57 +00001062 if (naddr > max_naddr)
Casey Leedom16f8bd42010-06-25 12:12:54 +00001063 return -EINVAL;
Casey Leedom16f8bd42010-06-25 12:12:54 +00001064
Casey Leedom42eb59d2010-11-24 12:23:57 +00001065 for (offset = 0; offset < naddr; /**/) {
1066 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1067 ? rem
1068 : ARRAY_SIZE(cmd.u.exact));
1069 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1070 u.exact[fw_naddr]), 16);
1071 struct fw_vi_mac_exact *p;
1072 int i;
Casey Leedom16f8bd42010-06-25 12:12:54 +00001073
Casey Leedom42eb59d2010-11-24 12:23:57 +00001074 memset(&cmd, 0, sizeof(cmd));
1075 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
1076 FW_CMD_REQUEST |
1077 FW_CMD_WRITE |
1078 (free ? FW_CMD_EXEC : 0) |
1079 FW_VI_MAC_CMD_VIID(viid));
1080 cmd.freemacs_to_len16 =
1081 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS(free) |
1082 FW_CMD_LEN16(len16));
1083
1084 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1085 p->valid_to_idx = cpu_to_be16(
1086 FW_VI_MAC_CMD_VALID |
1087 FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
1088 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1089 }
1090
1091
1092 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1093 sleep_ok);
1094 if (ret && ret != -ENOMEM)
1095 break;
1096
1097 for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1098 u16 index = FW_VI_MAC_CMD_IDX_GET(
1099 be16_to_cpu(p->valid_to_idx));
1100
1101 if (idx)
1102 idx[offset+i] =
Santosh Rastapur622c62b2013-03-14 05:08:57 +00001103 (index >= max_naddr
Casey Leedom42eb59d2010-11-24 12:23:57 +00001104 ? 0xffff
1105 : index);
Santosh Rastapur622c62b2013-03-14 05:08:57 +00001106 if (index < max_naddr)
Casey Leedom42eb59d2010-11-24 12:23:57 +00001107 nfilters++;
1108 else if (hash)
1109 *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1110 }
1111
1112 free = false;
1113 offset += fw_naddr;
1114 rem -= fw_naddr;
Casey Leedom16f8bd42010-06-25 12:12:54 +00001115 }
1116
Casey Leedom42eb59d2010-11-24 12:23:57 +00001117 /*
1118 * If there were no errors or we merely ran out of room in our MAC
1119 * address arena, return the number of filters actually written.
1120 */
1121 if (ret == 0 || ret == -ENOMEM)
1122 ret = nfilters;
Casey Leedom16f8bd42010-06-25 12:12:54 +00001123 return ret;
1124}
1125
1126/**
1127 * t4vf_change_mac - modifies the exact-match filter for a MAC address
1128 * @adapter: the adapter
1129 * @viid: the Virtual Interface ID
1130 * @idx: index of existing filter for old value of MAC address, or -1
1131 * @addr: the new MAC address value
1132 * @persist: if idx < 0, the new MAC allocation should be persistent
1133 *
1134 * Modifies an exact-match filter and sets it to the new MAC address.
1135 * Note that in general it is not possible to modify the value of a given
1136 * filter so the generic way to modify an address filter is to free the
1137 * one being used by the old address value and allocate a new filter for
1138 * the new address value. @idx can be -1 if the address is a new
1139 * addition.
1140 *
1141 * Returns a negative error number or the index of the filter with the new
1142 * MAC value.
1143 */
1144int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1145 int idx, const u8 *addr, bool persist)
1146{
1147 int ret;
1148 struct fw_vi_mac_cmd cmd, rpl;
1149 struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1150 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1151 u.exact[1]), 16);
Hariprasad Shenai70ee3662013-12-03 17:05:57 +05301152 unsigned int max_naddr = is_t4(adapter->params.chip) ?
Santosh Rastapur622c62b2013-03-14 05:08:57 +00001153 NUM_MPS_CLS_SRAM_L_INSTANCES :
1154 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
Casey Leedom16f8bd42010-06-25 12:12:54 +00001155
1156 /*
1157 * If this is a new allocation, determine whether it should be
1158 * persistent (across a "freemacs" operation) or not.
1159 */
1160 if (idx < 0)
1161 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1162
1163 memset(&cmd, 0, sizeof(cmd));
1164 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
1165 FW_CMD_REQUEST |
1166 FW_CMD_WRITE |
1167 FW_VI_MAC_CMD_VIID(viid));
1168 cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
1169 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID |
1170 FW_VI_MAC_CMD_IDX(idx));
1171 memcpy(p->macaddr, addr, sizeof(p->macaddr));
1172
1173 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1174 if (ret == 0) {
1175 p = &rpl.u.exact[0];
1176 ret = FW_VI_MAC_CMD_IDX_GET(be16_to_cpu(p->valid_to_idx));
Santosh Rastapur622c62b2013-03-14 05:08:57 +00001177 if (ret >= max_naddr)
Casey Leedom16f8bd42010-06-25 12:12:54 +00001178 ret = -ENOMEM;
1179 }
1180 return ret;
1181}
1182
1183/**
1184 * t4vf_set_addr_hash - program the MAC inexact-match hash filter
1185 * @adapter: the adapter
1186 * @viid: the Virtual Interface Identifier
1187 * @ucast: whether the hash filter should also match unicast addresses
1188 * @vec: the value to be written to the hash filter
1189 * @sleep_ok: call is allowed to sleep
1190 *
1191 * Sets the 64-bit inexact-match hash filter for a virtual interface.
1192 */
1193int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1194 bool ucast, u64 vec, bool sleep_ok)
1195{
1196 struct fw_vi_mac_cmd cmd;
1197 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1198 u.exact[0]), 16);
1199
1200 memset(&cmd, 0, sizeof(cmd));
1201 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD) |
1202 FW_CMD_REQUEST |
1203 FW_CMD_WRITE |
1204 FW_VI_ENABLE_CMD_VIID(viid));
1205 cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN |
1206 FW_VI_MAC_CMD_HASHUNIEN(ucast) |
1207 FW_CMD_LEN16(len16));
1208 cmd.u.hash.hashvec = cpu_to_be64(vec);
1209 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1210}
1211
1212/**
1213 * t4vf_get_port_stats - collect "port" statistics
1214 * @adapter: the adapter
1215 * @pidx: the port index
1216 * @s: the stats structure to fill
1217 *
1218 * Collect statistics for the "port"'s Virtual Interface.
1219 */
1220int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1221 struct t4vf_port_stats *s)
1222{
1223 struct port_info *pi = adap2pinfo(adapter, pidx);
1224 struct fw_vi_stats_vf fwstats;
1225 unsigned int rem = VI_VF_NUM_STATS;
1226 __be64 *fwsp = (__be64 *)&fwstats;
1227
1228 /*
1229 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1230 * commands. We could use a Work Request and get all of them at once
1231 * but that's an asynchronous interface which is awkward to use.
1232 */
1233 while (rem) {
1234 unsigned int ix = VI_VF_NUM_STATS - rem;
1235 unsigned int nstats = min(6U, rem);
1236 struct fw_vi_stats_cmd cmd, rpl;
1237 size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1238 sizeof(struct fw_vi_stats_ctl));
1239 size_t len16 = DIV_ROUND_UP(len, 16);
1240 int ret;
1241
1242 memset(&cmd, 0, sizeof(cmd));
1243 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP(FW_VI_STATS_CMD) |
1244 FW_VI_STATS_CMD_VIID(pi->viid) |
1245 FW_CMD_REQUEST |
1246 FW_CMD_READ);
1247 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16(len16));
1248 cmd.u.ctl.nstats_ix =
1249 cpu_to_be16(FW_VI_STATS_CMD_IX(ix) |
1250 FW_VI_STATS_CMD_NSTATS(nstats));
1251 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1252 if (ret)
1253 return ret;
1254
1255 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1256
1257 rem -= nstats;
1258 fwsp += nstats;
1259 }
1260
1261 /*
1262 * Translate firmware statistics into host native statistics.
1263 */
1264 s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1265 s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1266 s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1267 s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1268 s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1269 s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1270 s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1271 s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1272 s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1273
1274 s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1275 s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1276 s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1277 s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1278 s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1279 s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1280
1281 s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1282
1283 return 0;
1284}
1285
1286/**
1287 * t4vf_iq_free - free an ingress queue and its free lists
1288 * @adapter: the adapter
1289 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1290 * @iqid: ingress queue ID
1291 * @fl0id: FL0 queue ID or 0xffff if no attached FL0
1292 * @fl1id: FL1 queue ID or 0xffff if no attached FL1
1293 *
1294 * Frees an ingress queue and its associated free lists, if any.
1295 */
1296int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1297 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1298{
1299 struct fw_iq_cmd cmd;
1300
1301 memset(&cmd, 0, sizeof(cmd));
1302 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_IQ_CMD) |
1303 FW_CMD_REQUEST |
1304 FW_CMD_EXEC);
1305 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE |
1306 FW_LEN16(cmd));
1307 cmd.type_to_iqandstindex =
1308 cpu_to_be32(FW_IQ_CMD_TYPE(iqtype));
1309
1310 cmd.iqid = cpu_to_be16(iqid);
1311 cmd.fl0id = cpu_to_be16(fl0id);
1312 cmd.fl1id = cpu_to_be16(fl1id);
1313 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1314}
1315
1316/**
1317 * t4vf_eth_eq_free - free an Ethernet egress queue
1318 * @adapter: the adapter
1319 * @eqid: egress queue ID
1320 *
1321 * Frees an Ethernet egress queue.
1322 */
1323int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1324{
1325 struct fw_eq_eth_cmd cmd;
1326
1327 memset(&cmd, 0, sizeof(cmd));
1328 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD) |
1329 FW_CMD_REQUEST |
1330 FW_CMD_EXEC);
1331 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE |
1332 FW_LEN16(cmd));
1333 cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID(eqid));
1334 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1335}
1336
1337/**
1338 * t4vf_handle_fw_rpl - process a firmware reply message
1339 * @adapter: the adapter
1340 * @rpl: start of the firmware message
1341 *
1342 * Processes a firmware message, such as link state change messages.
1343 */
1344int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
1345{
Casey Leedomcaedda32010-11-11 09:30:40 +00001346 const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
Casey Leedom16f8bd42010-06-25 12:12:54 +00001347 u8 opcode = FW_CMD_OP_GET(be32_to_cpu(cmd_hdr->hi));
1348
1349 switch (opcode) {
1350 case FW_PORT_CMD: {
1351 /*
1352 * Link/module state change message.
1353 */
Casey Leedomcaedda32010-11-11 09:30:40 +00001354 const struct fw_port_cmd *port_cmd =
1355 (const struct fw_port_cmd *)rpl;
Casey Leedom16f8bd42010-06-25 12:12:54 +00001356 u32 word;
1357 int action, port_id, link_ok, speed, fc, pidx;
1358
1359 /*
1360 * Extract various fields from port status change message.
1361 */
1362 action = FW_PORT_CMD_ACTION_GET(
1363 be32_to_cpu(port_cmd->action_to_len16));
1364 if (action != FW_PORT_ACTION_GET_PORT_INFO) {
1365 dev_err(adapter->pdev_dev,
1366 "Unknown firmware PORT reply action %x\n",
1367 action);
1368 break;
1369 }
1370
1371 port_id = FW_PORT_CMD_PORTID_GET(
1372 be32_to_cpu(port_cmd->op_to_portid));
1373
1374 word = be32_to_cpu(port_cmd->u.info.lstatus_to_modtype);
1375 link_ok = (word & FW_PORT_CMD_LSTATUS) != 0;
1376 speed = 0;
1377 fc = 0;
1378 if (word & FW_PORT_CMD_RXPAUSE)
1379 fc |= PAUSE_RX;
1380 if (word & FW_PORT_CMD_TXPAUSE)
1381 fc |= PAUSE_TX;
1382 if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
Hariprasad Shenai897d55d2014-10-09 05:48:46 +05301383 speed = 100;
Casey Leedom16f8bd42010-06-25 12:12:54 +00001384 else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
Hariprasad Shenai897d55d2014-10-09 05:48:46 +05301385 speed = 1000;
Casey Leedom16f8bd42010-06-25 12:12:54 +00001386 else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
Hariprasad Shenai897d55d2014-10-09 05:48:46 +05301387 speed = 10000;
1388 else if (word & FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
1389 speed = 40000;
Casey Leedom16f8bd42010-06-25 12:12:54 +00001390
1391 /*
1392 * Scan all of our "ports" (Virtual Interfaces) looking for
1393 * those bound to the physical port which has changed. If
1394 * our recorded state doesn't match the current state,
1395 * signal that change to the OS code.
1396 */
1397 for_each_port(adapter, pidx) {
1398 struct port_info *pi = adap2pinfo(adapter, pidx);
1399 struct link_config *lc;
1400
1401 if (pi->port_id != port_id)
1402 continue;
1403
1404 lc = &pi->link_cfg;
1405 if (link_ok != lc->link_ok || speed != lc->speed ||
1406 fc != lc->fc) {
1407 /* something changed */
1408 lc->link_ok = link_ok;
1409 lc->speed = speed;
1410 lc->fc = fc;
1411 t4vf_os_link_changed(adapter, pidx, link_ok);
1412 }
1413 }
1414 break;
1415 }
1416
1417 default:
1418 dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
1419 opcode);
1420 }
1421 return 0;
1422}