Dmitry Kasatkin | cdec9cb | 2011-08-31 14:05:16 +0300 | [diff] [blame] | 1 | /* mpihelp-mul.c - MPI helper functions |
| 2 | * Copyright (C) 1994, 1996, 1998, 1999, |
| 3 | * 2000 Free Software Foundation, Inc. |
| 4 | * |
| 5 | * This file is part of GnuPG. |
| 6 | * |
| 7 | * GnuPG is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License as published by |
| 9 | * the Free Software Foundation; either version 2 of the License, or |
| 10 | * (at your option) any later version. |
| 11 | * |
| 12 | * GnuPG is distributed in the hope that it will be useful, |
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | * GNU General Public License for more details. |
| 16 | * |
| 17 | * You should have received a copy of the GNU General Public License |
| 18 | * along with this program; if not, write to the Free Software |
| 19 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA |
| 20 | * |
| 21 | * Note: This code is heavily based on the GNU MP Library. |
| 22 | * Actually it's the same code with only minor changes in the |
| 23 | * way the data is stored; this is to support the abstraction |
| 24 | * of an optional secure memory allocation which may be used |
| 25 | * to avoid revealing of sensitive data due to paging etc. |
| 26 | * The GNU MP Library itself is published under the LGPL; |
| 27 | * however I decided to publish this code under the plain GPL. |
| 28 | */ |
| 29 | |
| 30 | #include <linux/string.h> |
| 31 | #include "mpi-internal.h" |
| 32 | #include "longlong.h" |
| 33 | |
| 34 | #define MPN_MUL_N_RECURSE(prodp, up, vp, size, tspace) \ |
| 35 | do { \ |
| 36 | if ((size) < KARATSUBA_THRESHOLD) \ |
| 37 | mul_n_basecase(prodp, up, vp, size); \ |
| 38 | else \ |
| 39 | mul_n(prodp, up, vp, size, tspace); \ |
| 40 | } while (0); |
| 41 | |
| 42 | #define MPN_SQR_N_RECURSE(prodp, up, size, tspace) \ |
| 43 | do { \ |
| 44 | if ((size) < KARATSUBA_THRESHOLD) \ |
| 45 | mpih_sqr_n_basecase(prodp, up, size); \ |
| 46 | else \ |
| 47 | mpih_sqr_n(prodp, up, size, tspace); \ |
| 48 | } while (0); |
| 49 | |
| 50 | /* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP), |
| 51 | * both with SIZE limbs, and store the result at PRODP. 2 * SIZE limbs are |
| 52 | * always stored. Return the most significant limb. |
| 53 | * |
| 54 | * Argument constraints: |
| 55 | * 1. PRODP != UP and PRODP != VP, i.e. the destination |
| 56 | * must be distinct from the multiplier and the multiplicand. |
| 57 | * |
| 58 | * |
| 59 | * Handle simple cases with traditional multiplication. |
| 60 | * |
| 61 | * This is the most critical code of multiplication. All multiplies rely |
| 62 | * on this, both small and huge. Small ones arrive here immediately. Huge |
| 63 | * ones arrive here as this is the base case for Karatsuba's recursive |
| 64 | * algorithm below. |
| 65 | */ |
| 66 | |
| 67 | static mpi_limb_t |
| 68 | mul_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size) |
| 69 | { |
| 70 | mpi_size_t i; |
| 71 | mpi_limb_t cy; |
| 72 | mpi_limb_t v_limb; |
| 73 | |
| 74 | /* Multiply by the first limb in V separately, as the result can be |
| 75 | * stored (not added) to PROD. We also avoid a loop for zeroing. */ |
| 76 | v_limb = vp[0]; |
| 77 | if (v_limb <= 1) { |
| 78 | if (v_limb == 1) |
| 79 | MPN_COPY(prodp, up, size); |
| 80 | else |
| 81 | MPN_ZERO(prodp, size); |
| 82 | cy = 0; |
| 83 | } else |
| 84 | cy = mpihelp_mul_1(prodp, up, size, v_limb); |
| 85 | |
| 86 | prodp[size] = cy; |
| 87 | prodp++; |
| 88 | |
| 89 | /* For each iteration in the outer loop, multiply one limb from |
| 90 | * U with one limb from V, and add it to PROD. */ |
| 91 | for (i = 1; i < size; i++) { |
| 92 | v_limb = vp[i]; |
| 93 | if (v_limb <= 1) { |
| 94 | cy = 0; |
| 95 | if (v_limb == 1) |
| 96 | cy = mpihelp_add_n(prodp, prodp, up, size); |
| 97 | } else |
| 98 | cy = mpihelp_addmul_1(prodp, up, size, v_limb); |
| 99 | |
| 100 | prodp[size] = cy; |
| 101 | prodp++; |
| 102 | } |
| 103 | |
| 104 | return cy; |
| 105 | } |
| 106 | |
| 107 | static void |
| 108 | mul_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, |
| 109 | mpi_size_t size, mpi_ptr_t tspace) |
| 110 | { |
| 111 | if (size & 1) { |
| 112 | /* The size is odd, and the code below doesn't handle that. |
| 113 | * Multiply the least significant (size - 1) limbs with a recursive |
| 114 | * call, and handle the most significant limb of S1 and S2 |
| 115 | * separately. |
| 116 | * A slightly faster way to do this would be to make the Karatsuba |
| 117 | * code below behave as if the size were even, and let it check for |
| 118 | * odd size in the end. I.e., in essence move this code to the end. |
| 119 | * Doing so would save us a recursive call, and potentially make the |
| 120 | * stack grow a lot less. |
| 121 | */ |
| 122 | mpi_size_t esize = size - 1; /* even size */ |
| 123 | mpi_limb_t cy_limb; |
| 124 | |
| 125 | MPN_MUL_N_RECURSE(prodp, up, vp, esize, tspace); |
| 126 | cy_limb = mpihelp_addmul_1(prodp + esize, up, esize, vp[esize]); |
| 127 | prodp[esize + esize] = cy_limb; |
| 128 | cy_limb = mpihelp_addmul_1(prodp + esize, vp, size, up[esize]); |
| 129 | prodp[esize + size] = cy_limb; |
| 130 | } else { |
| 131 | /* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm. |
| 132 | * |
| 133 | * Split U in two pieces, U1 and U0, such that |
| 134 | * U = U0 + U1*(B**n), |
| 135 | * and V in V1 and V0, such that |
| 136 | * V = V0 + V1*(B**n). |
| 137 | * |
| 138 | * UV is then computed recursively using the identity |
| 139 | * |
| 140 | * 2n n n n |
| 141 | * UV = (B + B )U V + B (U -U )(V -V ) + (B + 1)U V |
| 142 | * 1 1 1 0 0 1 0 0 |
| 143 | * |
| 144 | * Where B = 2**BITS_PER_MP_LIMB. |
| 145 | */ |
| 146 | mpi_size_t hsize = size >> 1; |
| 147 | mpi_limb_t cy; |
| 148 | int negflg; |
| 149 | |
| 150 | /* Product H. ________________ ________________ |
| 151 | * |_____U1 x V1____||____U0 x V0_____| |
| 152 | * Put result in upper part of PROD and pass low part of TSPACE |
| 153 | * as new TSPACE. |
| 154 | */ |
| 155 | MPN_MUL_N_RECURSE(prodp + size, up + hsize, vp + hsize, hsize, |
| 156 | tspace); |
| 157 | |
| 158 | /* Product M. ________________ |
| 159 | * |_(U1-U0)(V0-V1)_| |
| 160 | */ |
| 161 | if (mpihelp_cmp(up + hsize, up, hsize) >= 0) { |
| 162 | mpihelp_sub_n(prodp, up + hsize, up, hsize); |
| 163 | negflg = 0; |
| 164 | } else { |
| 165 | mpihelp_sub_n(prodp, up, up + hsize, hsize); |
| 166 | negflg = 1; |
| 167 | } |
| 168 | if (mpihelp_cmp(vp + hsize, vp, hsize) >= 0) { |
| 169 | mpihelp_sub_n(prodp + hsize, vp + hsize, vp, hsize); |
| 170 | negflg ^= 1; |
| 171 | } else { |
| 172 | mpihelp_sub_n(prodp + hsize, vp, vp + hsize, hsize); |
| 173 | /* No change of NEGFLG. */ |
| 174 | } |
| 175 | /* Read temporary operands from low part of PROD. |
| 176 | * Put result in low part of TSPACE using upper part of TSPACE |
| 177 | * as new TSPACE. |
| 178 | */ |
| 179 | MPN_MUL_N_RECURSE(tspace, prodp, prodp + hsize, hsize, |
| 180 | tspace + size); |
| 181 | |
| 182 | /* Add/copy product H. */ |
| 183 | MPN_COPY(prodp + hsize, prodp + size, hsize); |
| 184 | cy = mpihelp_add_n(prodp + size, prodp + size, |
| 185 | prodp + size + hsize, hsize); |
| 186 | |
| 187 | /* Add product M (if NEGFLG M is a negative number) */ |
| 188 | if (negflg) |
| 189 | cy -= |
| 190 | mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace, |
| 191 | size); |
| 192 | else |
| 193 | cy += |
| 194 | mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, |
| 195 | size); |
| 196 | |
| 197 | /* Product L. ________________ ________________ |
| 198 | * |________________||____U0 x V0_____| |
| 199 | * Read temporary operands from low part of PROD. |
| 200 | * Put result in low part of TSPACE using upper part of TSPACE |
| 201 | * as new TSPACE. |
| 202 | */ |
| 203 | MPN_MUL_N_RECURSE(tspace, up, vp, hsize, tspace + size); |
| 204 | |
| 205 | /* Add/copy Product L (twice) */ |
| 206 | |
| 207 | cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size); |
| 208 | if (cy) |
| 209 | mpihelp_add_1(prodp + hsize + size, |
| 210 | prodp + hsize + size, hsize, cy); |
| 211 | |
| 212 | MPN_COPY(prodp, tspace, hsize); |
| 213 | cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize, |
| 214 | hsize); |
| 215 | if (cy) |
| 216 | mpihelp_add_1(prodp + size, prodp + size, size, 1); |
| 217 | } |
| 218 | } |
| 219 | |
| 220 | void mpih_sqr_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size) |
| 221 | { |
| 222 | mpi_size_t i; |
| 223 | mpi_limb_t cy_limb; |
| 224 | mpi_limb_t v_limb; |
| 225 | |
| 226 | /* Multiply by the first limb in V separately, as the result can be |
| 227 | * stored (not added) to PROD. We also avoid a loop for zeroing. */ |
| 228 | v_limb = up[0]; |
| 229 | if (v_limb <= 1) { |
| 230 | if (v_limb == 1) |
| 231 | MPN_COPY(prodp, up, size); |
| 232 | else |
| 233 | MPN_ZERO(prodp, size); |
| 234 | cy_limb = 0; |
| 235 | } else |
| 236 | cy_limb = mpihelp_mul_1(prodp, up, size, v_limb); |
| 237 | |
| 238 | prodp[size] = cy_limb; |
| 239 | prodp++; |
| 240 | |
| 241 | /* For each iteration in the outer loop, multiply one limb from |
| 242 | * U with one limb from V, and add it to PROD. */ |
| 243 | for (i = 1; i < size; i++) { |
| 244 | v_limb = up[i]; |
| 245 | if (v_limb <= 1) { |
| 246 | cy_limb = 0; |
| 247 | if (v_limb == 1) |
| 248 | cy_limb = mpihelp_add_n(prodp, prodp, up, size); |
| 249 | } else |
| 250 | cy_limb = mpihelp_addmul_1(prodp, up, size, v_limb); |
| 251 | |
| 252 | prodp[size] = cy_limb; |
| 253 | prodp++; |
| 254 | } |
| 255 | } |
| 256 | |
| 257 | void |
| 258 | mpih_sqr_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size, mpi_ptr_t tspace) |
| 259 | { |
| 260 | if (size & 1) { |
| 261 | /* The size is odd, and the code below doesn't handle that. |
| 262 | * Multiply the least significant (size - 1) limbs with a recursive |
| 263 | * call, and handle the most significant limb of S1 and S2 |
| 264 | * separately. |
| 265 | * A slightly faster way to do this would be to make the Karatsuba |
| 266 | * code below behave as if the size were even, and let it check for |
| 267 | * odd size in the end. I.e., in essence move this code to the end. |
| 268 | * Doing so would save us a recursive call, and potentially make the |
| 269 | * stack grow a lot less. |
| 270 | */ |
| 271 | mpi_size_t esize = size - 1; /* even size */ |
| 272 | mpi_limb_t cy_limb; |
| 273 | |
| 274 | MPN_SQR_N_RECURSE(prodp, up, esize, tspace); |
| 275 | cy_limb = mpihelp_addmul_1(prodp + esize, up, esize, up[esize]); |
| 276 | prodp[esize + esize] = cy_limb; |
| 277 | cy_limb = mpihelp_addmul_1(prodp + esize, up, size, up[esize]); |
| 278 | |
| 279 | prodp[esize + size] = cy_limb; |
| 280 | } else { |
| 281 | mpi_size_t hsize = size >> 1; |
| 282 | mpi_limb_t cy; |
| 283 | |
| 284 | /* Product H. ________________ ________________ |
| 285 | * |_____U1 x U1____||____U0 x U0_____| |
| 286 | * Put result in upper part of PROD and pass low part of TSPACE |
| 287 | * as new TSPACE. |
| 288 | */ |
| 289 | MPN_SQR_N_RECURSE(prodp + size, up + hsize, hsize, tspace); |
| 290 | |
| 291 | /* Product M. ________________ |
| 292 | * |_(U1-U0)(U0-U1)_| |
| 293 | */ |
| 294 | if (mpihelp_cmp(up + hsize, up, hsize) >= 0) |
| 295 | mpihelp_sub_n(prodp, up + hsize, up, hsize); |
| 296 | else |
| 297 | mpihelp_sub_n(prodp, up, up + hsize, hsize); |
| 298 | |
| 299 | /* Read temporary operands from low part of PROD. |
| 300 | * Put result in low part of TSPACE using upper part of TSPACE |
| 301 | * as new TSPACE. */ |
| 302 | MPN_SQR_N_RECURSE(tspace, prodp, hsize, tspace + size); |
| 303 | |
| 304 | /* Add/copy product H */ |
| 305 | MPN_COPY(prodp + hsize, prodp + size, hsize); |
| 306 | cy = mpihelp_add_n(prodp + size, prodp + size, |
| 307 | prodp + size + hsize, hsize); |
| 308 | |
| 309 | /* Add product M (if NEGFLG M is a negative number). */ |
| 310 | cy -= mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace, size); |
| 311 | |
| 312 | /* Product L. ________________ ________________ |
| 313 | * |________________||____U0 x U0_____| |
| 314 | * Read temporary operands from low part of PROD. |
| 315 | * Put result in low part of TSPACE using upper part of TSPACE |
| 316 | * as new TSPACE. */ |
| 317 | MPN_SQR_N_RECURSE(tspace, up, hsize, tspace + size); |
| 318 | |
| 319 | /* Add/copy Product L (twice). */ |
| 320 | cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size); |
| 321 | if (cy) |
| 322 | mpihelp_add_1(prodp + hsize + size, |
| 323 | prodp + hsize + size, hsize, cy); |
| 324 | |
| 325 | MPN_COPY(prodp, tspace, hsize); |
| 326 | cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize, |
| 327 | hsize); |
| 328 | if (cy) |
| 329 | mpihelp_add_1(prodp + size, prodp + size, size, 1); |
| 330 | } |
| 331 | } |
| 332 | |
Dmitry Kasatkin | cdec9cb | 2011-08-31 14:05:16 +0300 | [diff] [blame] | 333 | int |
| 334 | mpihelp_mul_karatsuba_case(mpi_ptr_t prodp, |
| 335 | mpi_ptr_t up, mpi_size_t usize, |
| 336 | mpi_ptr_t vp, mpi_size_t vsize, |
| 337 | struct karatsuba_ctx *ctx) |
| 338 | { |
| 339 | mpi_limb_t cy; |
| 340 | |
| 341 | if (!ctx->tspace || ctx->tspace_size < vsize) { |
| 342 | if (ctx->tspace) |
| 343 | mpi_free_limb_space(ctx->tspace); |
| 344 | ctx->tspace = mpi_alloc_limb_space(2 * vsize); |
| 345 | if (!ctx->tspace) |
| 346 | return -ENOMEM; |
| 347 | ctx->tspace_size = vsize; |
| 348 | } |
| 349 | |
| 350 | MPN_MUL_N_RECURSE(prodp, up, vp, vsize, ctx->tspace); |
| 351 | |
| 352 | prodp += vsize; |
| 353 | up += vsize; |
| 354 | usize -= vsize; |
| 355 | if (usize >= vsize) { |
| 356 | if (!ctx->tp || ctx->tp_size < vsize) { |
| 357 | if (ctx->tp) |
| 358 | mpi_free_limb_space(ctx->tp); |
| 359 | ctx->tp = mpi_alloc_limb_space(2 * vsize); |
| 360 | if (!ctx->tp) { |
| 361 | if (ctx->tspace) |
| 362 | mpi_free_limb_space(ctx->tspace); |
| 363 | ctx->tspace = NULL; |
| 364 | return -ENOMEM; |
| 365 | } |
| 366 | ctx->tp_size = vsize; |
| 367 | } |
| 368 | |
| 369 | do { |
| 370 | MPN_MUL_N_RECURSE(ctx->tp, up, vp, vsize, ctx->tspace); |
| 371 | cy = mpihelp_add_n(prodp, prodp, ctx->tp, vsize); |
| 372 | mpihelp_add_1(prodp + vsize, ctx->tp + vsize, vsize, |
| 373 | cy); |
| 374 | prodp += vsize; |
| 375 | up += vsize; |
| 376 | usize -= vsize; |
| 377 | } while (usize >= vsize); |
| 378 | } |
| 379 | |
| 380 | if (usize) { |
| 381 | if (usize < KARATSUBA_THRESHOLD) { |
| 382 | mpi_limb_t tmp; |
| 383 | if (mpihelp_mul(ctx->tspace, vp, vsize, up, usize, &tmp) |
| 384 | < 0) |
| 385 | return -ENOMEM; |
| 386 | } else { |
| 387 | if (!ctx->next) { |
| 388 | ctx->next = kzalloc(sizeof *ctx, GFP_KERNEL); |
| 389 | if (!ctx->next) |
| 390 | return -ENOMEM; |
| 391 | } |
| 392 | if (mpihelp_mul_karatsuba_case(ctx->tspace, |
| 393 | vp, vsize, |
| 394 | up, usize, |
| 395 | ctx->next) < 0) |
| 396 | return -ENOMEM; |
| 397 | } |
| 398 | |
| 399 | cy = mpihelp_add_n(prodp, prodp, ctx->tspace, vsize); |
| 400 | mpihelp_add_1(prodp + vsize, ctx->tspace + vsize, usize, cy); |
| 401 | } |
| 402 | |
| 403 | return 0; |
| 404 | } |
| 405 | |
| 406 | void mpihelp_release_karatsuba_ctx(struct karatsuba_ctx *ctx) |
| 407 | { |
| 408 | struct karatsuba_ctx *ctx2; |
| 409 | |
| 410 | if (ctx->tp) |
| 411 | mpi_free_limb_space(ctx->tp); |
| 412 | if (ctx->tspace) |
| 413 | mpi_free_limb_space(ctx->tspace); |
| 414 | for (ctx = ctx->next; ctx; ctx = ctx2) { |
| 415 | ctx2 = ctx->next; |
| 416 | if (ctx->tp) |
| 417 | mpi_free_limb_space(ctx->tp); |
| 418 | if (ctx->tspace) |
| 419 | mpi_free_limb_space(ctx->tspace); |
| 420 | kfree(ctx); |
| 421 | } |
| 422 | } |
| 423 | |
| 424 | /* Multiply the natural numbers u (pointed to by UP, with USIZE limbs) |
| 425 | * and v (pointed to by VP, with VSIZE limbs), and store the result at |
| 426 | * PRODP. USIZE + VSIZE limbs are always stored, but if the input |
| 427 | * operands are normalized. Return the most significant limb of the |
| 428 | * result. |
| 429 | * |
| 430 | * NOTE: The space pointed to by PRODP is overwritten before finished |
| 431 | * with U and V, so overlap is an error. |
| 432 | * |
| 433 | * Argument constraints: |
| 434 | * 1. USIZE >= VSIZE. |
| 435 | * 2. PRODP != UP and PRODP != VP, i.e. the destination |
| 436 | * must be distinct from the multiplier and the multiplicand. |
| 437 | */ |
| 438 | |
| 439 | int |
| 440 | mpihelp_mul(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t usize, |
| 441 | mpi_ptr_t vp, mpi_size_t vsize, mpi_limb_t *_result) |
| 442 | { |
| 443 | mpi_ptr_t prod_endp = prodp + usize + vsize - 1; |
| 444 | mpi_limb_t cy; |
| 445 | struct karatsuba_ctx ctx; |
| 446 | |
| 447 | if (vsize < KARATSUBA_THRESHOLD) { |
| 448 | mpi_size_t i; |
| 449 | mpi_limb_t v_limb; |
| 450 | |
| 451 | if (!vsize) { |
| 452 | *_result = 0; |
| 453 | return 0; |
| 454 | } |
| 455 | |
| 456 | /* Multiply by the first limb in V separately, as the result can be |
| 457 | * stored (not added) to PROD. We also avoid a loop for zeroing. */ |
| 458 | v_limb = vp[0]; |
| 459 | if (v_limb <= 1) { |
| 460 | if (v_limb == 1) |
| 461 | MPN_COPY(prodp, up, usize); |
| 462 | else |
| 463 | MPN_ZERO(prodp, usize); |
| 464 | cy = 0; |
| 465 | } else |
| 466 | cy = mpihelp_mul_1(prodp, up, usize, v_limb); |
| 467 | |
| 468 | prodp[usize] = cy; |
| 469 | prodp++; |
| 470 | |
| 471 | /* For each iteration in the outer loop, multiply one limb from |
| 472 | * U with one limb from V, and add it to PROD. */ |
| 473 | for (i = 1; i < vsize; i++) { |
| 474 | v_limb = vp[i]; |
| 475 | if (v_limb <= 1) { |
| 476 | cy = 0; |
| 477 | if (v_limb == 1) |
| 478 | cy = mpihelp_add_n(prodp, prodp, up, |
| 479 | usize); |
| 480 | } else |
| 481 | cy = mpihelp_addmul_1(prodp, up, usize, v_limb); |
| 482 | |
| 483 | prodp[usize] = cy; |
| 484 | prodp++; |
| 485 | } |
| 486 | |
| 487 | *_result = cy; |
| 488 | return 0; |
| 489 | } |
| 490 | |
| 491 | memset(&ctx, 0, sizeof ctx); |
| 492 | if (mpihelp_mul_karatsuba_case(prodp, up, usize, vp, vsize, &ctx) < 0) |
| 493 | return -ENOMEM; |
| 494 | mpihelp_release_karatsuba_ctx(&ctx); |
| 495 | *_result = *prod_endp; |
| 496 | return 0; |
| 497 | } |