Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Linux/PA-RISC Project (http://www.parisc-linux.org/) |
| 3 | * |
| 4 | * Floating-point emulation code |
| 5 | * Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org> |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License as published by |
| 9 | * the Free Software Foundation; either version 2, or (at your option) |
| 10 | * any later version. |
| 11 | * |
| 12 | * This program is distributed in the hope that it will be useful, |
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | * GNU General Public License for more details. |
| 16 | * |
| 17 | * You should have received a copy of the GNU General Public License |
| 18 | * along with this program; if not, write to the Free Software |
| 19 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 20 | */ |
| 21 | /* |
| 22 | * BEGIN_DESC |
| 23 | * |
| 24 | * File: |
| 25 | * @(#) pa/spmath/fmpyfadd.c $Revision: 1.1 $ |
| 26 | * |
| 27 | * Purpose: |
| 28 | * Double Floating-point Multiply Fused Add |
| 29 | * Double Floating-point Multiply Negate Fused Add |
| 30 | * Single Floating-point Multiply Fused Add |
| 31 | * Single Floating-point Multiply Negate Fused Add |
| 32 | * |
| 33 | * External Interfaces: |
| 34 | * dbl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr) |
| 35 | * dbl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr) |
| 36 | * sgl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr) |
| 37 | * sgl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr) |
| 38 | * |
| 39 | * Internal Interfaces: |
| 40 | * |
| 41 | * Theory: |
| 42 | * <<please update with a overview of the operation of this file>> |
| 43 | * |
| 44 | * END_DESC |
| 45 | */ |
| 46 | |
| 47 | |
| 48 | #include "float.h" |
| 49 | #include "sgl_float.h" |
| 50 | #include "dbl_float.h" |
| 51 | |
| 52 | |
| 53 | /* |
| 54 | * Double Floating-point Multiply Fused Add |
| 55 | */ |
| 56 | |
| 57 | int |
| 58 | dbl_fmpyfadd( |
| 59 | dbl_floating_point *src1ptr, |
| 60 | dbl_floating_point *src2ptr, |
| 61 | dbl_floating_point *src3ptr, |
| 62 | unsigned int *status, |
| 63 | dbl_floating_point *dstptr) |
| 64 | { |
| 65 | unsigned int opnd1p1, opnd1p2, opnd2p1, opnd2p2, opnd3p1, opnd3p2; |
| 66 | register unsigned int tmpresp1, tmpresp2, tmpresp3, tmpresp4; |
| 67 | unsigned int rightp1, rightp2, rightp3, rightp4; |
| 68 | unsigned int resultp1, resultp2 = 0, resultp3 = 0, resultp4 = 0; |
| 69 | register int mpy_exponent, add_exponent, count; |
| 70 | boolean inexact = FALSE, is_tiny = FALSE; |
| 71 | |
| 72 | unsigned int signlessleft1, signlessright1, save; |
| 73 | register int result_exponent, diff_exponent; |
| 74 | int sign_save, jumpsize; |
| 75 | |
| 76 | Dbl_copyfromptr(src1ptr,opnd1p1,opnd1p2); |
| 77 | Dbl_copyfromptr(src2ptr,opnd2p1,opnd2p2); |
| 78 | Dbl_copyfromptr(src3ptr,opnd3p1,opnd3p2); |
| 79 | |
| 80 | /* |
| 81 | * set sign bit of result of multiply |
| 82 | */ |
| 83 | if (Dbl_sign(opnd1p1) ^ Dbl_sign(opnd2p1)) |
| 84 | Dbl_setnegativezerop1(resultp1); |
| 85 | else Dbl_setzerop1(resultp1); |
| 86 | |
| 87 | /* |
| 88 | * Generate multiply exponent |
| 89 | */ |
| 90 | mpy_exponent = Dbl_exponent(opnd1p1) + Dbl_exponent(opnd2p1) - DBL_BIAS; |
| 91 | |
| 92 | /* |
| 93 | * check first operand for NaN's or infinity |
| 94 | */ |
| 95 | if (Dbl_isinfinity_exponent(opnd1p1)) { |
| 96 | if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { |
| 97 | if (Dbl_isnotnan(opnd2p1,opnd2p2) && |
| 98 | Dbl_isnotnan(opnd3p1,opnd3p2)) { |
| 99 | if (Dbl_iszero_exponentmantissa(opnd2p1,opnd2p2)) { |
| 100 | /* |
| 101 | * invalid since operands are infinity |
| 102 | * and zero |
| 103 | */ |
| 104 | if (Is_invalidtrap_enabled()) |
| 105 | return(OPC_2E_INVALIDEXCEPTION); |
| 106 | Set_invalidflag(); |
| 107 | Dbl_makequietnan(resultp1,resultp2); |
| 108 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 109 | return(NOEXCEPTION); |
| 110 | } |
| 111 | /* |
| 112 | * Check third operand for infinity with a |
| 113 | * sign opposite of the multiply result |
| 114 | */ |
| 115 | if (Dbl_isinfinity(opnd3p1,opnd3p2) && |
| 116 | (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { |
| 117 | /* |
| 118 | * invalid since attempting a magnitude |
| 119 | * subtraction of infinities |
| 120 | */ |
| 121 | if (Is_invalidtrap_enabled()) |
| 122 | return(OPC_2E_INVALIDEXCEPTION); |
| 123 | Set_invalidflag(); |
| 124 | Dbl_makequietnan(resultp1,resultp2); |
| 125 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 126 | return(NOEXCEPTION); |
| 127 | } |
| 128 | |
| 129 | /* |
| 130 | * return infinity |
| 131 | */ |
| 132 | Dbl_setinfinity_exponentmantissa(resultp1,resultp2); |
| 133 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 134 | return(NOEXCEPTION); |
| 135 | } |
| 136 | } |
| 137 | else { |
| 138 | /* |
| 139 | * is NaN; signaling or quiet? |
| 140 | */ |
| 141 | if (Dbl_isone_signaling(opnd1p1)) { |
| 142 | /* trap if INVALIDTRAP enabled */ |
| 143 | if (Is_invalidtrap_enabled()) |
| 144 | return(OPC_2E_INVALIDEXCEPTION); |
| 145 | /* make NaN quiet */ |
| 146 | Set_invalidflag(); |
| 147 | Dbl_set_quiet(opnd1p1); |
| 148 | } |
| 149 | /* |
| 150 | * is second operand a signaling NaN? |
| 151 | */ |
| 152 | else if (Dbl_is_signalingnan(opnd2p1)) { |
| 153 | /* trap if INVALIDTRAP enabled */ |
| 154 | if (Is_invalidtrap_enabled()) |
| 155 | return(OPC_2E_INVALIDEXCEPTION); |
| 156 | /* make NaN quiet */ |
| 157 | Set_invalidflag(); |
| 158 | Dbl_set_quiet(opnd2p1); |
| 159 | Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); |
| 160 | return(NOEXCEPTION); |
| 161 | } |
| 162 | /* |
| 163 | * is third operand a signaling NaN? |
| 164 | */ |
| 165 | else if (Dbl_is_signalingnan(opnd3p1)) { |
| 166 | /* trap if INVALIDTRAP enabled */ |
| 167 | if (Is_invalidtrap_enabled()) |
| 168 | return(OPC_2E_INVALIDEXCEPTION); |
| 169 | /* make NaN quiet */ |
| 170 | Set_invalidflag(); |
| 171 | Dbl_set_quiet(opnd3p1); |
| 172 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 173 | return(NOEXCEPTION); |
| 174 | } |
| 175 | /* |
| 176 | * return quiet NaN |
| 177 | */ |
| 178 | Dbl_copytoptr(opnd1p1,opnd1p2,dstptr); |
| 179 | return(NOEXCEPTION); |
| 180 | } |
| 181 | } |
| 182 | |
| 183 | /* |
| 184 | * check second operand for NaN's or infinity |
| 185 | */ |
| 186 | if (Dbl_isinfinity_exponent(opnd2p1)) { |
| 187 | if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { |
| 188 | if (Dbl_isnotnan(opnd3p1,opnd3p2)) { |
| 189 | if (Dbl_iszero_exponentmantissa(opnd1p1,opnd1p2)) { |
| 190 | /* |
| 191 | * invalid since multiply operands are |
| 192 | * zero & infinity |
| 193 | */ |
| 194 | if (Is_invalidtrap_enabled()) |
| 195 | return(OPC_2E_INVALIDEXCEPTION); |
| 196 | Set_invalidflag(); |
| 197 | Dbl_makequietnan(opnd2p1,opnd2p2); |
| 198 | Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); |
| 199 | return(NOEXCEPTION); |
| 200 | } |
| 201 | |
| 202 | /* |
| 203 | * Check third operand for infinity with a |
| 204 | * sign opposite of the multiply result |
| 205 | */ |
| 206 | if (Dbl_isinfinity(opnd3p1,opnd3p2) && |
| 207 | (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { |
| 208 | /* |
| 209 | * invalid since attempting a magnitude |
| 210 | * subtraction of infinities |
| 211 | */ |
| 212 | if (Is_invalidtrap_enabled()) |
| 213 | return(OPC_2E_INVALIDEXCEPTION); |
| 214 | Set_invalidflag(); |
| 215 | Dbl_makequietnan(resultp1,resultp2); |
| 216 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 217 | return(NOEXCEPTION); |
| 218 | } |
| 219 | |
| 220 | /* |
| 221 | * return infinity |
| 222 | */ |
| 223 | Dbl_setinfinity_exponentmantissa(resultp1,resultp2); |
| 224 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 225 | return(NOEXCEPTION); |
| 226 | } |
| 227 | } |
| 228 | else { |
| 229 | /* |
| 230 | * is NaN; signaling or quiet? |
| 231 | */ |
| 232 | if (Dbl_isone_signaling(opnd2p1)) { |
| 233 | /* trap if INVALIDTRAP enabled */ |
| 234 | if (Is_invalidtrap_enabled()) |
| 235 | return(OPC_2E_INVALIDEXCEPTION); |
| 236 | /* make NaN quiet */ |
| 237 | Set_invalidflag(); |
| 238 | Dbl_set_quiet(opnd2p1); |
| 239 | } |
| 240 | /* |
| 241 | * is third operand a signaling NaN? |
| 242 | */ |
| 243 | else if (Dbl_is_signalingnan(opnd3p1)) { |
| 244 | /* trap if INVALIDTRAP enabled */ |
| 245 | if (Is_invalidtrap_enabled()) |
| 246 | return(OPC_2E_INVALIDEXCEPTION); |
| 247 | /* make NaN quiet */ |
| 248 | Set_invalidflag(); |
| 249 | Dbl_set_quiet(opnd3p1); |
| 250 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 251 | return(NOEXCEPTION); |
| 252 | } |
| 253 | /* |
| 254 | * return quiet NaN |
| 255 | */ |
| 256 | Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); |
| 257 | return(NOEXCEPTION); |
| 258 | } |
| 259 | } |
| 260 | |
| 261 | /* |
| 262 | * check third operand for NaN's or infinity |
| 263 | */ |
| 264 | if (Dbl_isinfinity_exponent(opnd3p1)) { |
| 265 | if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) { |
| 266 | /* return infinity */ |
| 267 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 268 | return(NOEXCEPTION); |
| 269 | } else { |
| 270 | /* |
| 271 | * is NaN; signaling or quiet? |
| 272 | */ |
| 273 | if (Dbl_isone_signaling(opnd3p1)) { |
| 274 | /* trap if INVALIDTRAP enabled */ |
| 275 | if (Is_invalidtrap_enabled()) |
| 276 | return(OPC_2E_INVALIDEXCEPTION); |
| 277 | /* make NaN quiet */ |
| 278 | Set_invalidflag(); |
| 279 | Dbl_set_quiet(opnd3p1); |
| 280 | } |
| 281 | /* |
| 282 | * return quiet NaN |
| 283 | */ |
| 284 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 285 | return(NOEXCEPTION); |
| 286 | } |
| 287 | } |
| 288 | |
| 289 | /* |
| 290 | * Generate multiply mantissa |
| 291 | */ |
| 292 | if (Dbl_isnotzero_exponent(opnd1p1)) { |
| 293 | /* set hidden bit */ |
| 294 | Dbl_clear_signexponent_set_hidden(opnd1p1); |
| 295 | } |
| 296 | else { |
| 297 | /* check for zero */ |
| 298 | if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { |
| 299 | /* |
| 300 | * Perform the add opnd3 with zero here. |
| 301 | */ |
| 302 | if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) { |
| 303 | if (Is_rounding_mode(ROUNDMINUS)) { |
| 304 | Dbl_or_signs(opnd3p1,resultp1); |
| 305 | } else { |
| 306 | Dbl_and_signs(opnd3p1,resultp1); |
| 307 | } |
| 308 | } |
| 309 | /* |
| 310 | * Now let's check for trapped underflow case. |
| 311 | */ |
| 312 | else if (Dbl_iszero_exponent(opnd3p1) && |
| 313 | Is_underflowtrap_enabled()) { |
| 314 | /* need to normalize results mantissa */ |
| 315 | sign_save = Dbl_signextendedsign(opnd3p1); |
| 316 | result_exponent = 0; |
| 317 | Dbl_leftshiftby1(opnd3p1,opnd3p2); |
| 318 | Dbl_normalize(opnd3p1,opnd3p2,result_exponent); |
| 319 | Dbl_set_sign(opnd3p1,/*using*/sign_save); |
| 320 | Dbl_setwrapped_exponent(opnd3p1,result_exponent, |
| 321 | unfl); |
| 322 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 323 | /* inexact = FALSE */ |
| 324 | return(OPC_2E_UNDERFLOWEXCEPTION); |
| 325 | } |
| 326 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 327 | return(NOEXCEPTION); |
| 328 | } |
| 329 | /* is denormalized, adjust exponent */ |
| 330 | Dbl_clear_signexponent(opnd1p1); |
| 331 | Dbl_leftshiftby1(opnd1p1,opnd1p2); |
| 332 | Dbl_normalize(opnd1p1,opnd1p2,mpy_exponent); |
| 333 | } |
| 334 | /* opnd2 needs to have hidden bit set with msb in hidden bit */ |
| 335 | if (Dbl_isnotzero_exponent(opnd2p1)) { |
| 336 | Dbl_clear_signexponent_set_hidden(opnd2p1); |
| 337 | } |
| 338 | else { |
| 339 | /* check for zero */ |
| 340 | if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { |
| 341 | /* |
| 342 | * Perform the add opnd3 with zero here. |
| 343 | */ |
| 344 | if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) { |
| 345 | if (Is_rounding_mode(ROUNDMINUS)) { |
| 346 | Dbl_or_signs(opnd3p1,resultp1); |
| 347 | } else { |
| 348 | Dbl_and_signs(opnd3p1,resultp1); |
| 349 | } |
| 350 | } |
| 351 | /* |
| 352 | * Now let's check for trapped underflow case. |
| 353 | */ |
| 354 | else if (Dbl_iszero_exponent(opnd3p1) && |
| 355 | Is_underflowtrap_enabled()) { |
| 356 | /* need to normalize results mantissa */ |
| 357 | sign_save = Dbl_signextendedsign(opnd3p1); |
| 358 | result_exponent = 0; |
| 359 | Dbl_leftshiftby1(opnd3p1,opnd3p2); |
| 360 | Dbl_normalize(opnd3p1,opnd3p2,result_exponent); |
| 361 | Dbl_set_sign(opnd3p1,/*using*/sign_save); |
| 362 | Dbl_setwrapped_exponent(opnd3p1,result_exponent, |
| 363 | unfl); |
| 364 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 365 | /* inexact = FALSE */ |
| 366 | return(OPC_2E_UNDERFLOWEXCEPTION); |
| 367 | } |
| 368 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 369 | return(NOEXCEPTION); |
| 370 | } |
| 371 | /* is denormalized; want to normalize */ |
| 372 | Dbl_clear_signexponent(opnd2p1); |
| 373 | Dbl_leftshiftby1(opnd2p1,opnd2p2); |
| 374 | Dbl_normalize(opnd2p1,opnd2p2,mpy_exponent); |
| 375 | } |
| 376 | |
| 377 | /* Multiply the first two source mantissas together */ |
| 378 | |
| 379 | /* |
| 380 | * The intermediate result will be kept in tmpres, |
| 381 | * which needs enough room for 106 bits of mantissa, |
| 382 | * so lets call it a Double extended. |
| 383 | */ |
| 384 | Dblext_setzero(tmpresp1,tmpresp2,tmpresp3,tmpresp4); |
| 385 | |
| 386 | /* |
| 387 | * Four bits at a time are inspected in each loop, and a |
| 388 | * simple shift and add multiply algorithm is used. |
| 389 | */ |
| 390 | for (count = DBL_P-1; count >= 0; count -= 4) { |
| 391 | Dblext_rightshiftby4(tmpresp1,tmpresp2,tmpresp3,tmpresp4); |
| 392 | if (Dbit28p2(opnd1p2)) { |
| 393 | /* Fourword_add should be an ADD followed by 3 ADDC's */ |
| 394 | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, |
| 395 | opnd2p1<<3 | opnd2p2>>29, opnd2p2<<3, 0, 0); |
| 396 | } |
| 397 | if (Dbit29p2(opnd1p2)) { |
| 398 | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, |
| 399 | opnd2p1<<2 | opnd2p2>>30, opnd2p2<<2, 0, 0); |
| 400 | } |
| 401 | if (Dbit30p2(opnd1p2)) { |
| 402 | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, |
| 403 | opnd2p1<<1 | opnd2p2>>31, opnd2p2<<1, 0, 0); |
| 404 | } |
| 405 | if (Dbit31p2(opnd1p2)) { |
| 406 | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, |
| 407 | opnd2p1, opnd2p2, 0, 0); |
| 408 | } |
| 409 | Dbl_rightshiftby4(opnd1p1,opnd1p2); |
| 410 | } |
| 411 | if (Is_dexthiddenoverflow(tmpresp1)) { |
| 412 | /* result mantissa >= 2 (mantissa overflow) */ |
| 413 | mpy_exponent++; |
| 414 | Dblext_rightshiftby1(tmpresp1,tmpresp2,tmpresp3,tmpresp4); |
| 415 | } |
| 416 | |
| 417 | /* |
| 418 | * Restore the sign of the mpy result which was saved in resultp1. |
| 419 | * The exponent will continue to be kept in mpy_exponent. |
| 420 | */ |
| 421 | Dblext_set_sign(tmpresp1,Dbl_sign(resultp1)); |
| 422 | |
| 423 | /* |
| 424 | * No rounding is required, since the result of the multiply |
| 425 | * is exact in the extended format. |
| 426 | */ |
| 427 | |
| 428 | /* |
| 429 | * Now we are ready to perform the add portion of the operation. |
| 430 | * |
| 431 | * The exponents need to be kept as integers for now, since the |
| 432 | * multiply result might not fit into the exponent field. We |
| 433 | * can't overflow or underflow because of this yet, since the |
| 434 | * add could bring the final result back into range. |
| 435 | */ |
| 436 | add_exponent = Dbl_exponent(opnd3p1); |
| 437 | |
| 438 | /* |
| 439 | * Check for denormalized or zero add operand. |
| 440 | */ |
| 441 | if (add_exponent == 0) { |
| 442 | /* check for zero */ |
| 443 | if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) { |
| 444 | /* right is zero */ |
| 445 | /* Left can't be zero and must be result. |
| 446 | * |
| 447 | * The final result is now in tmpres and mpy_exponent, |
| 448 | * and needs to be rounded and squeezed back into |
| 449 | * double precision format from double extended. |
| 450 | */ |
| 451 | result_exponent = mpy_exponent; |
| 452 | Dblext_copy(tmpresp1,tmpresp2,tmpresp3,tmpresp4, |
| 453 | resultp1,resultp2,resultp3,resultp4); |
| 454 | sign_save = Dbl_signextendedsign(resultp1);/*save sign*/ |
| 455 | goto round; |
| 456 | } |
| 457 | |
| 458 | /* |
| 459 | * Neither are zeroes. |
| 460 | * Adjust exponent and normalize add operand. |
| 461 | */ |
| 462 | sign_save = Dbl_signextendedsign(opnd3p1); /* save sign */ |
| 463 | Dbl_clear_signexponent(opnd3p1); |
| 464 | Dbl_leftshiftby1(opnd3p1,opnd3p2); |
| 465 | Dbl_normalize(opnd3p1,opnd3p2,add_exponent); |
| 466 | Dbl_set_sign(opnd3p1,sign_save); /* restore sign */ |
| 467 | } else { |
| 468 | Dbl_clear_exponent_set_hidden(opnd3p1); |
| 469 | } |
| 470 | /* |
| 471 | * Copy opnd3 to the double extended variable called right. |
| 472 | */ |
| 473 | Dbl_copyto_dblext(opnd3p1,opnd3p2,rightp1,rightp2,rightp3,rightp4); |
| 474 | |
| 475 | /* |
| 476 | * A zero "save" helps discover equal operands (for later), |
| 477 | * and is used in swapping operands (if needed). |
| 478 | */ |
| 479 | Dblext_xortointp1(tmpresp1,rightp1,/*to*/save); |
| 480 | |
| 481 | /* |
| 482 | * Compare magnitude of operands. |
| 483 | */ |
| 484 | Dblext_copytoint_exponentmantissap1(tmpresp1,signlessleft1); |
| 485 | Dblext_copytoint_exponentmantissap1(rightp1,signlessright1); |
| 486 | if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && |
| 487 | Dblext_ismagnitudeless(tmpresp2,rightp2,signlessleft1,signlessright1)){ |
| 488 | /* |
| 489 | * Set the left operand to the larger one by XOR swap. |
| 490 | * First finish the first word "save". |
| 491 | */ |
| 492 | Dblext_xorfromintp1(save,rightp1,/*to*/rightp1); |
| 493 | Dblext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); |
| 494 | Dblext_swap_lower(tmpresp2,tmpresp3,tmpresp4, |
| 495 | rightp2,rightp3,rightp4); |
| 496 | /* also setup exponents used in rest of routine */ |
| 497 | diff_exponent = add_exponent - mpy_exponent; |
| 498 | result_exponent = add_exponent; |
| 499 | } else { |
| 500 | /* also setup exponents used in rest of routine */ |
| 501 | diff_exponent = mpy_exponent - add_exponent; |
| 502 | result_exponent = mpy_exponent; |
| 503 | } |
| 504 | /* Invariant: left is not smaller than right. */ |
| 505 | |
| 506 | /* |
| 507 | * Special case alignment of operands that would force alignment |
| 508 | * beyond the extent of the extension. A further optimization |
| 509 | * could special case this but only reduces the path length for |
| 510 | * this infrequent case. |
| 511 | */ |
| 512 | if (diff_exponent > DBLEXT_THRESHOLD) { |
| 513 | diff_exponent = DBLEXT_THRESHOLD; |
| 514 | } |
| 515 | |
| 516 | /* Align right operand by shifting it to the right */ |
| 517 | Dblext_clear_sign(rightp1); |
| 518 | Dblext_right_align(rightp1,rightp2,rightp3,rightp4, |
| 519 | /*shifted by*/diff_exponent); |
| 520 | |
| 521 | /* Treat sum and difference of the operands separately. */ |
| 522 | if ((int)save < 0) { |
| 523 | /* |
| 524 | * Difference of the two operands. Overflow can occur if the |
| 525 | * multiply overflowed. A borrow can occur out of the hidden |
| 526 | * bit and force a post normalization phase. |
| 527 | */ |
| 528 | Dblext_subtract(tmpresp1,tmpresp2,tmpresp3,tmpresp4, |
| 529 | rightp1,rightp2,rightp3,rightp4, |
| 530 | resultp1,resultp2,resultp3,resultp4); |
| 531 | sign_save = Dbl_signextendedsign(resultp1); |
| 532 | if (Dbl_iszero_hidden(resultp1)) { |
| 533 | /* Handle normalization */ |
| 534 | /* A straight foward algorithm would now shift the |
| 535 | * result and extension left until the hidden bit |
| 536 | * becomes one. Not all of the extension bits need |
| 537 | * participate in the shift. Only the two most |
| 538 | * significant bits (round and guard) are needed. |
| 539 | * If only a single shift is needed then the guard |
| 540 | * bit becomes a significant low order bit and the |
| 541 | * extension must participate in the rounding. |
| 542 | * If more than a single shift is needed, then all |
| 543 | * bits to the right of the guard bit are zeros, |
| 544 | * and the guard bit may or may not be zero. */ |
| 545 | Dblext_leftshiftby1(resultp1,resultp2,resultp3, |
| 546 | resultp4); |
| 547 | |
| 548 | /* Need to check for a zero result. The sign and |
| 549 | * exponent fields have already been zeroed. The more |
| 550 | * efficient test of the full object can be used. |
| 551 | */ |
| 552 | if(Dblext_iszero(resultp1,resultp2,resultp3,resultp4)){ |
| 553 | /* Must have been "x-x" or "x+(-x)". */ |
| 554 | if (Is_rounding_mode(ROUNDMINUS)) |
| 555 | Dbl_setone_sign(resultp1); |
| 556 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 557 | return(NOEXCEPTION); |
| 558 | } |
| 559 | result_exponent--; |
| 560 | |
| 561 | /* Look to see if normalization is finished. */ |
| 562 | if (Dbl_isone_hidden(resultp1)) { |
| 563 | /* No further normalization is needed */ |
| 564 | goto round; |
| 565 | } |
| 566 | |
| 567 | /* Discover first one bit to determine shift amount. |
| 568 | * Use a modified binary search. We have already |
| 569 | * shifted the result one position right and still |
| 570 | * not found a one so the remainder of the extension |
| 571 | * must be zero and simplifies rounding. */ |
| 572 | /* Scan bytes */ |
| 573 | while (Dbl_iszero_hiddenhigh7mantissa(resultp1)) { |
| 574 | Dblext_leftshiftby8(resultp1,resultp2,resultp3,resultp4); |
| 575 | result_exponent -= 8; |
| 576 | } |
| 577 | /* Now narrow it down to the nibble */ |
| 578 | if (Dbl_iszero_hiddenhigh3mantissa(resultp1)) { |
| 579 | /* The lower nibble contains the |
| 580 | * normalizing one */ |
| 581 | Dblext_leftshiftby4(resultp1,resultp2,resultp3,resultp4); |
| 582 | result_exponent -= 4; |
| 583 | } |
| 584 | /* Select case where first bit is set (already |
| 585 | * normalized) otherwise select the proper shift. */ |
| 586 | jumpsize = Dbl_hiddenhigh3mantissa(resultp1); |
| 587 | if (jumpsize <= 7) switch(jumpsize) { |
| 588 | case 1: |
| 589 | Dblext_leftshiftby3(resultp1,resultp2,resultp3, |
| 590 | resultp4); |
| 591 | result_exponent -= 3; |
| 592 | break; |
| 593 | case 2: |
| 594 | case 3: |
| 595 | Dblext_leftshiftby2(resultp1,resultp2,resultp3, |
| 596 | resultp4); |
| 597 | result_exponent -= 2; |
| 598 | break; |
| 599 | case 4: |
| 600 | case 5: |
| 601 | case 6: |
| 602 | case 7: |
| 603 | Dblext_leftshiftby1(resultp1,resultp2,resultp3, |
| 604 | resultp4); |
| 605 | result_exponent -= 1; |
| 606 | break; |
| 607 | } |
| 608 | } /* end if (hidden...)... */ |
| 609 | /* Fall through and round */ |
| 610 | } /* end if (save < 0)... */ |
| 611 | else { |
| 612 | /* Add magnitudes */ |
| 613 | Dblext_addition(tmpresp1,tmpresp2,tmpresp3,tmpresp4, |
| 614 | rightp1,rightp2,rightp3,rightp4, |
| 615 | /*to*/resultp1,resultp2,resultp3,resultp4); |
| 616 | sign_save = Dbl_signextendedsign(resultp1); |
| 617 | if (Dbl_isone_hiddenoverflow(resultp1)) { |
| 618 | /* Prenormalization required. */ |
| 619 | Dblext_arithrightshiftby1(resultp1,resultp2,resultp3, |
| 620 | resultp4); |
| 621 | result_exponent++; |
| 622 | } /* end if hiddenoverflow... */ |
| 623 | } /* end else ...add magnitudes... */ |
| 624 | |
| 625 | /* Round the result. If the extension and lower two words are |
| 626 | * all zeros, then the result is exact. Otherwise round in the |
| 627 | * correct direction. Underflow is possible. If a postnormalization |
| 628 | * is necessary, then the mantissa is all zeros so no shift is needed. |
| 629 | */ |
| 630 | round: |
| 631 | if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { |
| 632 | Dblext_denormalize(resultp1,resultp2,resultp3,resultp4, |
| 633 | result_exponent,is_tiny); |
| 634 | } |
| 635 | Dbl_set_sign(resultp1,/*using*/sign_save); |
| 636 | if (Dblext_isnotzero_mantissap3(resultp3) || |
| 637 | Dblext_isnotzero_mantissap4(resultp4)) { |
| 638 | inexact = TRUE; |
| 639 | switch(Rounding_mode()) { |
| 640 | case ROUNDNEAREST: /* The default. */ |
| 641 | if (Dblext_isone_highp3(resultp3)) { |
| 642 | /* at least 1/2 ulp */ |
| 643 | if (Dblext_isnotzero_low31p3(resultp3) || |
| 644 | Dblext_isnotzero_mantissap4(resultp4) || |
| 645 | Dblext_isone_lowp2(resultp2)) { |
| 646 | /* either exactly half way and odd or |
| 647 | * more than 1/2ulp */ |
| 648 | Dbl_increment(resultp1,resultp2); |
| 649 | } |
| 650 | } |
| 651 | break; |
| 652 | |
| 653 | case ROUNDPLUS: |
| 654 | if (Dbl_iszero_sign(resultp1)) { |
| 655 | /* Round up positive results */ |
| 656 | Dbl_increment(resultp1,resultp2); |
| 657 | } |
| 658 | break; |
| 659 | |
| 660 | case ROUNDMINUS: |
| 661 | if (Dbl_isone_sign(resultp1)) { |
| 662 | /* Round down negative results */ |
| 663 | Dbl_increment(resultp1,resultp2); |
| 664 | } |
| 665 | |
| 666 | case ROUNDZERO:; |
| 667 | /* truncate is simple */ |
| 668 | } /* end switch... */ |
| 669 | if (Dbl_isone_hiddenoverflow(resultp1)) result_exponent++; |
| 670 | } |
| 671 | if (result_exponent >= DBL_INFINITY_EXPONENT) { |
| 672 | /* trap if OVERFLOWTRAP enabled */ |
| 673 | if (Is_overflowtrap_enabled()) { |
| 674 | /* |
| 675 | * Adjust bias of result |
| 676 | */ |
| 677 | Dbl_setwrapped_exponent(resultp1,result_exponent,ovfl); |
| 678 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 679 | if (inexact) |
| 680 | if (Is_inexacttrap_enabled()) |
| 681 | return (OPC_2E_OVERFLOWEXCEPTION | |
| 682 | OPC_2E_INEXACTEXCEPTION); |
| 683 | else Set_inexactflag(); |
| 684 | return (OPC_2E_OVERFLOWEXCEPTION); |
| 685 | } |
| 686 | inexact = TRUE; |
| 687 | Set_overflowflag(); |
| 688 | /* set result to infinity or largest number */ |
| 689 | Dbl_setoverflow(resultp1,resultp2); |
| 690 | |
| 691 | } else if (result_exponent <= 0) { /* underflow case */ |
| 692 | if (Is_underflowtrap_enabled()) { |
| 693 | /* |
| 694 | * Adjust bias of result |
| 695 | */ |
| 696 | Dbl_setwrapped_exponent(resultp1,result_exponent,unfl); |
| 697 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 698 | if (inexact) |
| 699 | if (Is_inexacttrap_enabled()) |
| 700 | return (OPC_2E_UNDERFLOWEXCEPTION | |
| 701 | OPC_2E_INEXACTEXCEPTION); |
| 702 | else Set_inexactflag(); |
| 703 | return(OPC_2E_UNDERFLOWEXCEPTION); |
| 704 | } |
| 705 | else if (inexact && is_tiny) Set_underflowflag(); |
| 706 | } |
| 707 | else Dbl_set_exponent(resultp1,result_exponent); |
| 708 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 709 | if (inexact) |
| 710 | if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); |
| 711 | else Set_inexactflag(); |
| 712 | return(NOEXCEPTION); |
| 713 | } |
| 714 | |
| 715 | /* |
| 716 | * Double Floating-point Multiply Negate Fused Add |
| 717 | */ |
| 718 | |
| 719 | dbl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr) |
| 720 | |
| 721 | dbl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr; |
| 722 | unsigned int *status; |
| 723 | { |
| 724 | unsigned int opnd1p1, opnd1p2, opnd2p1, opnd2p2, opnd3p1, opnd3p2; |
| 725 | register unsigned int tmpresp1, tmpresp2, tmpresp3, tmpresp4; |
| 726 | unsigned int rightp1, rightp2, rightp3, rightp4; |
| 727 | unsigned int resultp1, resultp2 = 0, resultp3 = 0, resultp4 = 0; |
| 728 | register int mpy_exponent, add_exponent, count; |
| 729 | boolean inexact = FALSE, is_tiny = FALSE; |
| 730 | |
| 731 | unsigned int signlessleft1, signlessright1, save; |
| 732 | register int result_exponent, diff_exponent; |
| 733 | int sign_save, jumpsize; |
| 734 | |
| 735 | Dbl_copyfromptr(src1ptr,opnd1p1,opnd1p2); |
| 736 | Dbl_copyfromptr(src2ptr,opnd2p1,opnd2p2); |
| 737 | Dbl_copyfromptr(src3ptr,opnd3p1,opnd3p2); |
| 738 | |
| 739 | /* |
| 740 | * set sign bit of result of multiply |
| 741 | */ |
| 742 | if (Dbl_sign(opnd1p1) ^ Dbl_sign(opnd2p1)) |
| 743 | Dbl_setzerop1(resultp1); |
| 744 | else |
| 745 | Dbl_setnegativezerop1(resultp1); |
| 746 | |
| 747 | /* |
| 748 | * Generate multiply exponent |
| 749 | */ |
| 750 | mpy_exponent = Dbl_exponent(opnd1p1) + Dbl_exponent(opnd2p1) - DBL_BIAS; |
| 751 | |
| 752 | /* |
| 753 | * check first operand for NaN's or infinity |
| 754 | */ |
| 755 | if (Dbl_isinfinity_exponent(opnd1p1)) { |
| 756 | if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { |
| 757 | if (Dbl_isnotnan(opnd2p1,opnd2p2) && |
| 758 | Dbl_isnotnan(opnd3p1,opnd3p2)) { |
| 759 | if (Dbl_iszero_exponentmantissa(opnd2p1,opnd2p2)) { |
| 760 | /* |
| 761 | * invalid since operands are infinity |
| 762 | * and zero |
| 763 | */ |
| 764 | if (Is_invalidtrap_enabled()) |
| 765 | return(OPC_2E_INVALIDEXCEPTION); |
| 766 | Set_invalidflag(); |
| 767 | Dbl_makequietnan(resultp1,resultp2); |
| 768 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 769 | return(NOEXCEPTION); |
| 770 | } |
| 771 | /* |
| 772 | * Check third operand for infinity with a |
| 773 | * sign opposite of the multiply result |
| 774 | */ |
| 775 | if (Dbl_isinfinity(opnd3p1,opnd3p2) && |
| 776 | (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { |
| 777 | /* |
| 778 | * invalid since attempting a magnitude |
| 779 | * subtraction of infinities |
| 780 | */ |
| 781 | if (Is_invalidtrap_enabled()) |
| 782 | return(OPC_2E_INVALIDEXCEPTION); |
| 783 | Set_invalidflag(); |
| 784 | Dbl_makequietnan(resultp1,resultp2); |
| 785 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 786 | return(NOEXCEPTION); |
| 787 | } |
| 788 | |
| 789 | /* |
| 790 | * return infinity |
| 791 | */ |
| 792 | Dbl_setinfinity_exponentmantissa(resultp1,resultp2); |
| 793 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 794 | return(NOEXCEPTION); |
| 795 | } |
| 796 | } |
| 797 | else { |
| 798 | /* |
| 799 | * is NaN; signaling or quiet? |
| 800 | */ |
| 801 | if (Dbl_isone_signaling(opnd1p1)) { |
| 802 | /* trap if INVALIDTRAP enabled */ |
| 803 | if (Is_invalidtrap_enabled()) |
| 804 | return(OPC_2E_INVALIDEXCEPTION); |
| 805 | /* make NaN quiet */ |
| 806 | Set_invalidflag(); |
| 807 | Dbl_set_quiet(opnd1p1); |
| 808 | } |
| 809 | /* |
| 810 | * is second operand a signaling NaN? |
| 811 | */ |
| 812 | else if (Dbl_is_signalingnan(opnd2p1)) { |
| 813 | /* trap if INVALIDTRAP enabled */ |
| 814 | if (Is_invalidtrap_enabled()) |
| 815 | return(OPC_2E_INVALIDEXCEPTION); |
| 816 | /* make NaN quiet */ |
| 817 | Set_invalidflag(); |
| 818 | Dbl_set_quiet(opnd2p1); |
| 819 | Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); |
| 820 | return(NOEXCEPTION); |
| 821 | } |
| 822 | /* |
| 823 | * is third operand a signaling NaN? |
| 824 | */ |
| 825 | else if (Dbl_is_signalingnan(opnd3p1)) { |
| 826 | /* trap if INVALIDTRAP enabled */ |
| 827 | if (Is_invalidtrap_enabled()) |
| 828 | return(OPC_2E_INVALIDEXCEPTION); |
| 829 | /* make NaN quiet */ |
| 830 | Set_invalidflag(); |
| 831 | Dbl_set_quiet(opnd3p1); |
| 832 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 833 | return(NOEXCEPTION); |
| 834 | } |
| 835 | /* |
| 836 | * return quiet NaN |
| 837 | */ |
| 838 | Dbl_copytoptr(opnd1p1,opnd1p2,dstptr); |
| 839 | return(NOEXCEPTION); |
| 840 | } |
| 841 | } |
| 842 | |
| 843 | /* |
| 844 | * check second operand for NaN's or infinity |
| 845 | */ |
| 846 | if (Dbl_isinfinity_exponent(opnd2p1)) { |
| 847 | if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { |
| 848 | if (Dbl_isnotnan(opnd3p1,opnd3p2)) { |
| 849 | if (Dbl_iszero_exponentmantissa(opnd1p1,opnd1p2)) { |
| 850 | /* |
| 851 | * invalid since multiply operands are |
| 852 | * zero & infinity |
| 853 | */ |
| 854 | if (Is_invalidtrap_enabled()) |
| 855 | return(OPC_2E_INVALIDEXCEPTION); |
| 856 | Set_invalidflag(); |
| 857 | Dbl_makequietnan(opnd2p1,opnd2p2); |
| 858 | Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); |
| 859 | return(NOEXCEPTION); |
| 860 | } |
| 861 | |
| 862 | /* |
| 863 | * Check third operand for infinity with a |
| 864 | * sign opposite of the multiply result |
| 865 | */ |
| 866 | if (Dbl_isinfinity(opnd3p1,opnd3p2) && |
| 867 | (Dbl_sign(resultp1) ^ Dbl_sign(opnd3p1))) { |
| 868 | /* |
| 869 | * invalid since attempting a magnitude |
| 870 | * subtraction of infinities |
| 871 | */ |
| 872 | if (Is_invalidtrap_enabled()) |
| 873 | return(OPC_2E_INVALIDEXCEPTION); |
| 874 | Set_invalidflag(); |
| 875 | Dbl_makequietnan(resultp1,resultp2); |
| 876 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 877 | return(NOEXCEPTION); |
| 878 | } |
| 879 | |
| 880 | /* |
| 881 | * return infinity |
| 882 | */ |
| 883 | Dbl_setinfinity_exponentmantissa(resultp1,resultp2); |
| 884 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 885 | return(NOEXCEPTION); |
| 886 | } |
| 887 | } |
| 888 | else { |
| 889 | /* |
| 890 | * is NaN; signaling or quiet? |
| 891 | */ |
| 892 | if (Dbl_isone_signaling(opnd2p1)) { |
| 893 | /* trap if INVALIDTRAP enabled */ |
| 894 | if (Is_invalidtrap_enabled()) |
| 895 | return(OPC_2E_INVALIDEXCEPTION); |
| 896 | /* make NaN quiet */ |
| 897 | Set_invalidflag(); |
| 898 | Dbl_set_quiet(opnd2p1); |
| 899 | } |
| 900 | /* |
| 901 | * is third operand a signaling NaN? |
| 902 | */ |
| 903 | else if (Dbl_is_signalingnan(opnd3p1)) { |
| 904 | /* trap if INVALIDTRAP enabled */ |
| 905 | if (Is_invalidtrap_enabled()) |
| 906 | return(OPC_2E_INVALIDEXCEPTION); |
| 907 | /* make NaN quiet */ |
| 908 | Set_invalidflag(); |
| 909 | Dbl_set_quiet(opnd3p1); |
| 910 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 911 | return(NOEXCEPTION); |
| 912 | } |
| 913 | /* |
| 914 | * return quiet NaN |
| 915 | */ |
| 916 | Dbl_copytoptr(opnd2p1,opnd2p2,dstptr); |
| 917 | return(NOEXCEPTION); |
| 918 | } |
| 919 | } |
| 920 | |
| 921 | /* |
| 922 | * check third operand for NaN's or infinity |
| 923 | */ |
| 924 | if (Dbl_isinfinity_exponent(opnd3p1)) { |
| 925 | if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) { |
| 926 | /* return infinity */ |
| 927 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 928 | return(NOEXCEPTION); |
| 929 | } else { |
| 930 | /* |
| 931 | * is NaN; signaling or quiet? |
| 932 | */ |
| 933 | if (Dbl_isone_signaling(opnd3p1)) { |
| 934 | /* trap if INVALIDTRAP enabled */ |
| 935 | if (Is_invalidtrap_enabled()) |
| 936 | return(OPC_2E_INVALIDEXCEPTION); |
| 937 | /* make NaN quiet */ |
| 938 | Set_invalidflag(); |
| 939 | Dbl_set_quiet(opnd3p1); |
| 940 | } |
| 941 | /* |
| 942 | * return quiet NaN |
| 943 | */ |
| 944 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 945 | return(NOEXCEPTION); |
| 946 | } |
| 947 | } |
| 948 | |
| 949 | /* |
| 950 | * Generate multiply mantissa |
| 951 | */ |
| 952 | if (Dbl_isnotzero_exponent(opnd1p1)) { |
| 953 | /* set hidden bit */ |
| 954 | Dbl_clear_signexponent_set_hidden(opnd1p1); |
| 955 | } |
| 956 | else { |
| 957 | /* check for zero */ |
| 958 | if (Dbl_iszero_mantissa(opnd1p1,opnd1p2)) { |
| 959 | /* |
| 960 | * Perform the add opnd3 with zero here. |
| 961 | */ |
| 962 | if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) { |
| 963 | if (Is_rounding_mode(ROUNDMINUS)) { |
| 964 | Dbl_or_signs(opnd3p1,resultp1); |
| 965 | } else { |
| 966 | Dbl_and_signs(opnd3p1,resultp1); |
| 967 | } |
| 968 | } |
| 969 | /* |
| 970 | * Now let's check for trapped underflow case. |
| 971 | */ |
| 972 | else if (Dbl_iszero_exponent(opnd3p1) && |
| 973 | Is_underflowtrap_enabled()) { |
| 974 | /* need to normalize results mantissa */ |
| 975 | sign_save = Dbl_signextendedsign(opnd3p1); |
| 976 | result_exponent = 0; |
| 977 | Dbl_leftshiftby1(opnd3p1,opnd3p2); |
| 978 | Dbl_normalize(opnd3p1,opnd3p2,result_exponent); |
| 979 | Dbl_set_sign(opnd3p1,/*using*/sign_save); |
| 980 | Dbl_setwrapped_exponent(opnd3p1,result_exponent, |
| 981 | unfl); |
| 982 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 983 | /* inexact = FALSE */ |
| 984 | return(OPC_2E_UNDERFLOWEXCEPTION); |
| 985 | } |
| 986 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 987 | return(NOEXCEPTION); |
| 988 | } |
| 989 | /* is denormalized, adjust exponent */ |
| 990 | Dbl_clear_signexponent(opnd1p1); |
| 991 | Dbl_leftshiftby1(opnd1p1,opnd1p2); |
| 992 | Dbl_normalize(opnd1p1,opnd1p2,mpy_exponent); |
| 993 | } |
| 994 | /* opnd2 needs to have hidden bit set with msb in hidden bit */ |
| 995 | if (Dbl_isnotzero_exponent(opnd2p1)) { |
| 996 | Dbl_clear_signexponent_set_hidden(opnd2p1); |
| 997 | } |
| 998 | else { |
| 999 | /* check for zero */ |
| 1000 | if (Dbl_iszero_mantissa(opnd2p1,opnd2p2)) { |
| 1001 | /* |
| 1002 | * Perform the add opnd3 with zero here. |
| 1003 | */ |
| 1004 | if (Dbl_iszero_exponentmantissa(opnd3p1,opnd3p2)) { |
| 1005 | if (Is_rounding_mode(ROUNDMINUS)) { |
| 1006 | Dbl_or_signs(opnd3p1,resultp1); |
| 1007 | } else { |
| 1008 | Dbl_and_signs(opnd3p1,resultp1); |
| 1009 | } |
| 1010 | } |
| 1011 | /* |
| 1012 | * Now let's check for trapped underflow case. |
| 1013 | */ |
| 1014 | else if (Dbl_iszero_exponent(opnd3p1) && |
| 1015 | Is_underflowtrap_enabled()) { |
| 1016 | /* need to normalize results mantissa */ |
| 1017 | sign_save = Dbl_signextendedsign(opnd3p1); |
| 1018 | result_exponent = 0; |
| 1019 | Dbl_leftshiftby1(opnd3p1,opnd3p2); |
| 1020 | Dbl_normalize(opnd3p1,opnd3p2,result_exponent); |
| 1021 | Dbl_set_sign(opnd3p1,/*using*/sign_save); |
| 1022 | Dbl_setwrapped_exponent(opnd3p1,result_exponent, |
| 1023 | unfl); |
| 1024 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 1025 | /* inexact = FALSE */ |
| 1026 | return(OPC_2E_UNDERFLOWEXCEPTION); |
| 1027 | } |
| 1028 | Dbl_copytoptr(opnd3p1,opnd3p2,dstptr); |
| 1029 | return(NOEXCEPTION); |
| 1030 | } |
| 1031 | /* is denormalized; want to normalize */ |
| 1032 | Dbl_clear_signexponent(opnd2p1); |
| 1033 | Dbl_leftshiftby1(opnd2p1,opnd2p2); |
| 1034 | Dbl_normalize(opnd2p1,opnd2p2,mpy_exponent); |
| 1035 | } |
| 1036 | |
| 1037 | /* Multiply the first two source mantissas together */ |
| 1038 | |
| 1039 | /* |
| 1040 | * The intermediate result will be kept in tmpres, |
| 1041 | * which needs enough room for 106 bits of mantissa, |
| 1042 | * so lets call it a Double extended. |
| 1043 | */ |
| 1044 | Dblext_setzero(tmpresp1,tmpresp2,tmpresp3,tmpresp4); |
| 1045 | |
| 1046 | /* |
| 1047 | * Four bits at a time are inspected in each loop, and a |
| 1048 | * simple shift and add multiply algorithm is used. |
| 1049 | */ |
| 1050 | for (count = DBL_P-1; count >= 0; count -= 4) { |
| 1051 | Dblext_rightshiftby4(tmpresp1,tmpresp2,tmpresp3,tmpresp4); |
| 1052 | if (Dbit28p2(opnd1p2)) { |
| 1053 | /* Fourword_add should be an ADD followed by 3 ADDC's */ |
| 1054 | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, |
| 1055 | opnd2p1<<3 | opnd2p2>>29, opnd2p2<<3, 0, 0); |
| 1056 | } |
| 1057 | if (Dbit29p2(opnd1p2)) { |
| 1058 | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, |
| 1059 | opnd2p1<<2 | opnd2p2>>30, opnd2p2<<2, 0, 0); |
| 1060 | } |
| 1061 | if (Dbit30p2(opnd1p2)) { |
| 1062 | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, |
| 1063 | opnd2p1<<1 | opnd2p2>>31, opnd2p2<<1, 0, 0); |
| 1064 | } |
| 1065 | if (Dbit31p2(opnd1p2)) { |
| 1066 | Fourword_add(tmpresp1, tmpresp2, tmpresp3, tmpresp4, |
| 1067 | opnd2p1, opnd2p2, 0, 0); |
| 1068 | } |
| 1069 | Dbl_rightshiftby4(opnd1p1,opnd1p2); |
| 1070 | } |
| 1071 | if (Is_dexthiddenoverflow(tmpresp1)) { |
| 1072 | /* result mantissa >= 2 (mantissa overflow) */ |
| 1073 | mpy_exponent++; |
| 1074 | Dblext_rightshiftby1(tmpresp1,tmpresp2,tmpresp3,tmpresp4); |
| 1075 | } |
| 1076 | |
| 1077 | /* |
| 1078 | * Restore the sign of the mpy result which was saved in resultp1. |
| 1079 | * The exponent will continue to be kept in mpy_exponent. |
| 1080 | */ |
| 1081 | Dblext_set_sign(tmpresp1,Dbl_sign(resultp1)); |
| 1082 | |
| 1083 | /* |
| 1084 | * No rounding is required, since the result of the multiply |
| 1085 | * is exact in the extended format. |
| 1086 | */ |
| 1087 | |
| 1088 | /* |
| 1089 | * Now we are ready to perform the add portion of the operation. |
| 1090 | * |
| 1091 | * The exponents need to be kept as integers for now, since the |
| 1092 | * multiply result might not fit into the exponent field. We |
| 1093 | * can't overflow or underflow because of this yet, since the |
| 1094 | * add could bring the final result back into range. |
| 1095 | */ |
| 1096 | add_exponent = Dbl_exponent(opnd3p1); |
| 1097 | |
| 1098 | /* |
| 1099 | * Check for denormalized or zero add operand. |
| 1100 | */ |
| 1101 | if (add_exponent == 0) { |
| 1102 | /* check for zero */ |
| 1103 | if (Dbl_iszero_mantissa(opnd3p1,opnd3p2)) { |
| 1104 | /* right is zero */ |
| 1105 | /* Left can't be zero and must be result. |
| 1106 | * |
| 1107 | * The final result is now in tmpres and mpy_exponent, |
| 1108 | * and needs to be rounded and squeezed back into |
| 1109 | * double precision format from double extended. |
| 1110 | */ |
| 1111 | result_exponent = mpy_exponent; |
| 1112 | Dblext_copy(tmpresp1,tmpresp2,tmpresp3,tmpresp4, |
| 1113 | resultp1,resultp2,resultp3,resultp4); |
| 1114 | sign_save = Dbl_signextendedsign(resultp1);/*save sign*/ |
| 1115 | goto round; |
| 1116 | } |
| 1117 | |
| 1118 | /* |
| 1119 | * Neither are zeroes. |
| 1120 | * Adjust exponent and normalize add operand. |
| 1121 | */ |
| 1122 | sign_save = Dbl_signextendedsign(opnd3p1); /* save sign */ |
| 1123 | Dbl_clear_signexponent(opnd3p1); |
| 1124 | Dbl_leftshiftby1(opnd3p1,opnd3p2); |
| 1125 | Dbl_normalize(opnd3p1,opnd3p2,add_exponent); |
| 1126 | Dbl_set_sign(opnd3p1,sign_save); /* restore sign */ |
| 1127 | } else { |
| 1128 | Dbl_clear_exponent_set_hidden(opnd3p1); |
| 1129 | } |
| 1130 | /* |
| 1131 | * Copy opnd3 to the double extended variable called right. |
| 1132 | */ |
| 1133 | Dbl_copyto_dblext(opnd3p1,opnd3p2,rightp1,rightp2,rightp3,rightp4); |
| 1134 | |
| 1135 | /* |
| 1136 | * A zero "save" helps discover equal operands (for later), |
| 1137 | * and is used in swapping operands (if needed). |
| 1138 | */ |
| 1139 | Dblext_xortointp1(tmpresp1,rightp1,/*to*/save); |
| 1140 | |
| 1141 | /* |
| 1142 | * Compare magnitude of operands. |
| 1143 | */ |
| 1144 | Dblext_copytoint_exponentmantissap1(tmpresp1,signlessleft1); |
| 1145 | Dblext_copytoint_exponentmantissap1(rightp1,signlessright1); |
| 1146 | if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && |
| 1147 | Dblext_ismagnitudeless(tmpresp2,rightp2,signlessleft1,signlessright1)){ |
| 1148 | /* |
| 1149 | * Set the left operand to the larger one by XOR swap. |
| 1150 | * First finish the first word "save". |
| 1151 | */ |
| 1152 | Dblext_xorfromintp1(save,rightp1,/*to*/rightp1); |
| 1153 | Dblext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); |
| 1154 | Dblext_swap_lower(tmpresp2,tmpresp3,tmpresp4, |
| 1155 | rightp2,rightp3,rightp4); |
| 1156 | /* also setup exponents used in rest of routine */ |
| 1157 | diff_exponent = add_exponent - mpy_exponent; |
| 1158 | result_exponent = add_exponent; |
| 1159 | } else { |
| 1160 | /* also setup exponents used in rest of routine */ |
| 1161 | diff_exponent = mpy_exponent - add_exponent; |
| 1162 | result_exponent = mpy_exponent; |
| 1163 | } |
| 1164 | /* Invariant: left is not smaller than right. */ |
| 1165 | |
| 1166 | /* |
| 1167 | * Special case alignment of operands that would force alignment |
| 1168 | * beyond the extent of the extension. A further optimization |
| 1169 | * could special case this but only reduces the path length for |
| 1170 | * this infrequent case. |
| 1171 | */ |
| 1172 | if (diff_exponent > DBLEXT_THRESHOLD) { |
| 1173 | diff_exponent = DBLEXT_THRESHOLD; |
| 1174 | } |
| 1175 | |
| 1176 | /* Align right operand by shifting it to the right */ |
| 1177 | Dblext_clear_sign(rightp1); |
| 1178 | Dblext_right_align(rightp1,rightp2,rightp3,rightp4, |
| 1179 | /*shifted by*/diff_exponent); |
| 1180 | |
| 1181 | /* Treat sum and difference of the operands separately. */ |
| 1182 | if ((int)save < 0) { |
| 1183 | /* |
| 1184 | * Difference of the two operands. Overflow can occur if the |
| 1185 | * multiply overflowed. A borrow can occur out of the hidden |
| 1186 | * bit and force a post normalization phase. |
| 1187 | */ |
| 1188 | Dblext_subtract(tmpresp1,tmpresp2,tmpresp3,tmpresp4, |
| 1189 | rightp1,rightp2,rightp3,rightp4, |
| 1190 | resultp1,resultp2,resultp3,resultp4); |
| 1191 | sign_save = Dbl_signextendedsign(resultp1); |
| 1192 | if (Dbl_iszero_hidden(resultp1)) { |
| 1193 | /* Handle normalization */ |
| 1194 | /* A straight foward algorithm would now shift the |
| 1195 | * result and extension left until the hidden bit |
| 1196 | * becomes one. Not all of the extension bits need |
| 1197 | * participate in the shift. Only the two most |
| 1198 | * significant bits (round and guard) are needed. |
| 1199 | * If only a single shift is needed then the guard |
| 1200 | * bit becomes a significant low order bit and the |
| 1201 | * extension must participate in the rounding. |
| 1202 | * If more than a single shift is needed, then all |
| 1203 | * bits to the right of the guard bit are zeros, |
| 1204 | * and the guard bit may or may not be zero. */ |
| 1205 | Dblext_leftshiftby1(resultp1,resultp2,resultp3, |
| 1206 | resultp4); |
| 1207 | |
| 1208 | /* Need to check for a zero result. The sign and |
| 1209 | * exponent fields have already been zeroed. The more |
| 1210 | * efficient test of the full object can be used. |
| 1211 | */ |
| 1212 | if (Dblext_iszero(resultp1,resultp2,resultp3,resultp4)) { |
| 1213 | /* Must have been "x-x" or "x+(-x)". */ |
| 1214 | if (Is_rounding_mode(ROUNDMINUS)) |
| 1215 | Dbl_setone_sign(resultp1); |
| 1216 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 1217 | return(NOEXCEPTION); |
| 1218 | } |
| 1219 | result_exponent--; |
| 1220 | |
| 1221 | /* Look to see if normalization is finished. */ |
| 1222 | if (Dbl_isone_hidden(resultp1)) { |
| 1223 | /* No further normalization is needed */ |
| 1224 | goto round; |
| 1225 | } |
| 1226 | |
| 1227 | /* Discover first one bit to determine shift amount. |
| 1228 | * Use a modified binary search. We have already |
| 1229 | * shifted the result one position right and still |
| 1230 | * not found a one so the remainder of the extension |
| 1231 | * must be zero and simplifies rounding. */ |
| 1232 | /* Scan bytes */ |
| 1233 | while (Dbl_iszero_hiddenhigh7mantissa(resultp1)) { |
| 1234 | Dblext_leftshiftby8(resultp1,resultp2,resultp3,resultp4); |
| 1235 | result_exponent -= 8; |
| 1236 | } |
| 1237 | /* Now narrow it down to the nibble */ |
| 1238 | if (Dbl_iszero_hiddenhigh3mantissa(resultp1)) { |
| 1239 | /* The lower nibble contains the |
| 1240 | * normalizing one */ |
| 1241 | Dblext_leftshiftby4(resultp1,resultp2,resultp3,resultp4); |
| 1242 | result_exponent -= 4; |
| 1243 | } |
| 1244 | /* Select case where first bit is set (already |
| 1245 | * normalized) otherwise select the proper shift. */ |
| 1246 | jumpsize = Dbl_hiddenhigh3mantissa(resultp1); |
| 1247 | if (jumpsize <= 7) switch(jumpsize) { |
| 1248 | case 1: |
| 1249 | Dblext_leftshiftby3(resultp1,resultp2,resultp3, |
| 1250 | resultp4); |
| 1251 | result_exponent -= 3; |
| 1252 | break; |
| 1253 | case 2: |
| 1254 | case 3: |
| 1255 | Dblext_leftshiftby2(resultp1,resultp2,resultp3, |
| 1256 | resultp4); |
| 1257 | result_exponent -= 2; |
| 1258 | break; |
| 1259 | case 4: |
| 1260 | case 5: |
| 1261 | case 6: |
| 1262 | case 7: |
| 1263 | Dblext_leftshiftby1(resultp1,resultp2,resultp3, |
| 1264 | resultp4); |
| 1265 | result_exponent -= 1; |
| 1266 | break; |
| 1267 | } |
| 1268 | } /* end if (hidden...)... */ |
| 1269 | /* Fall through and round */ |
| 1270 | } /* end if (save < 0)... */ |
| 1271 | else { |
| 1272 | /* Add magnitudes */ |
| 1273 | Dblext_addition(tmpresp1,tmpresp2,tmpresp3,tmpresp4, |
| 1274 | rightp1,rightp2,rightp3,rightp4, |
| 1275 | /*to*/resultp1,resultp2,resultp3,resultp4); |
| 1276 | sign_save = Dbl_signextendedsign(resultp1); |
| 1277 | if (Dbl_isone_hiddenoverflow(resultp1)) { |
| 1278 | /* Prenormalization required. */ |
| 1279 | Dblext_arithrightshiftby1(resultp1,resultp2,resultp3, |
| 1280 | resultp4); |
| 1281 | result_exponent++; |
| 1282 | } /* end if hiddenoverflow... */ |
| 1283 | } /* end else ...add magnitudes... */ |
| 1284 | |
| 1285 | /* Round the result. If the extension and lower two words are |
| 1286 | * all zeros, then the result is exact. Otherwise round in the |
| 1287 | * correct direction. Underflow is possible. If a postnormalization |
| 1288 | * is necessary, then the mantissa is all zeros so no shift is needed. |
| 1289 | */ |
| 1290 | round: |
| 1291 | if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { |
| 1292 | Dblext_denormalize(resultp1,resultp2,resultp3,resultp4, |
| 1293 | result_exponent,is_tiny); |
| 1294 | } |
| 1295 | Dbl_set_sign(resultp1,/*using*/sign_save); |
| 1296 | if (Dblext_isnotzero_mantissap3(resultp3) || |
| 1297 | Dblext_isnotzero_mantissap4(resultp4)) { |
| 1298 | inexact = TRUE; |
| 1299 | switch(Rounding_mode()) { |
| 1300 | case ROUNDNEAREST: /* The default. */ |
| 1301 | if (Dblext_isone_highp3(resultp3)) { |
| 1302 | /* at least 1/2 ulp */ |
| 1303 | if (Dblext_isnotzero_low31p3(resultp3) || |
| 1304 | Dblext_isnotzero_mantissap4(resultp4) || |
| 1305 | Dblext_isone_lowp2(resultp2)) { |
| 1306 | /* either exactly half way and odd or |
| 1307 | * more than 1/2ulp */ |
| 1308 | Dbl_increment(resultp1,resultp2); |
| 1309 | } |
| 1310 | } |
| 1311 | break; |
| 1312 | |
| 1313 | case ROUNDPLUS: |
| 1314 | if (Dbl_iszero_sign(resultp1)) { |
| 1315 | /* Round up positive results */ |
| 1316 | Dbl_increment(resultp1,resultp2); |
| 1317 | } |
| 1318 | break; |
| 1319 | |
| 1320 | case ROUNDMINUS: |
| 1321 | if (Dbl_isone_sign(resultp1)) { |
| 1322 | /* Round down negative results */ |
| 1323 | Dbl_increment(resultp1,resultp2); |
| 1324 | } |
| 1325 | |
| 1326 | case ROUNDZERO:; |
| 1327 | /* truncate is simple */ |
| 1328 | } /* end switch... */ |
| 1329 | if (Dbl_isone_hiddenoverflow(resultp1)) result_exponent++; |
| 1330 | } |
| 1331 | if (result_exponent >= DBL_INFINITY_EXPONENT) { |
| 1332 | /* Overflow */ |
| 1333 | if (Is_overflowtrap_enabled()) { |
| 1334 | /* |
| 1335 | * Adjust bias of result |
| 1336 | */ |
| 1337 | Dbl_setwrapped_exponent(resultp1,result_exponent,ovfl); |
| 1338 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 1339 | if (inexact) |
| 1340 | if (Is_inexacttrap_enabled()) |
| 1341 | return (OPC_2E_OVERFLOWEXCEPTION | |
| 1342 | OPC_2E_INEXACTEXCEPTION); |
| 1343 | else Set_inexactflag(); |
| 1344 | return (OPC_2E_OVERFLOWEXCEPTION); |
| 1345 | } |
| 1346 | inexact = TRUE; |
| 1347 | Set_overflowflag(); |
| 1348 | Dbl_setoverflow(resultp1,resultp2); |
| 1349 | } else if (result_exponent <= 0) { /* underflow case */ |
| 1350 | if (Is_underflowtrap_enabled()) { |
| 1351 | /* |
| 1352 | * Adjust bias of result |
| 1353 | */ |
| 1354 | Dbl_setwrapped_exponent(resultp1,result_exponent,unfl); |
| 1355 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 1356 | if (inexact) |
| 1357 | if (Is_inexacttrap_enabled()) |
| 1358 | return (OPC_2E_UNDERFLOWEXCEPTION | |
| 1359 | OPC_2E_INEXACTEXCEPTION); |
| 1360 | else Set_inexactflag(); |
| 1361 | return(OPC_2E_UNDERFLOWEXCEPTION); |
| 1362 | } |
| 1363 | else if (inexact && is_tiny) Set_underflowflag(); |
| 1364 | } |
| 1365 | else Dbl_set_exponent(resultp1,result_exponent); |
| 1366 | Dbl_copytoptr(resultp1,resultp2,dstptr); |
| 1367 | if (inexact) |
| 1368 | if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); |
| 1369 | else Set_inexactflag(); |
| 1370 | return(NOEXCEPTION); |
| 1371 | } |
| 1372 | |
| 1373 | /* |
| 1374 | * Single Floating-point Multiply Fused Add |
| 1375 | */ |
| 1376 | |
| 1377 | sgl_fmpyfadd(src1ptr,src2ptr,src3ptr,status,dstptr) |
| 1378 | |
| 1379 | sgl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr; |
| 1380 | unsigned int *status; |
| 1381 | { |
| 1382 | unsigned int opnd1, opnd2, opnd3; |
| 1383 | register unsigned int tmpresp1, tmpresp2; |
| 1384 | unsigned int rightp1, rightp2; |
| 1385 | unsigned int resultp1, resultp2 = 0; |
| 1386 | register int mpy_exponent, add_exponent, count; |
| 1387 | boolean inexact = FALSE, is_tiny = FALSE; |
| 1388 | |
| 1389 | unsigned int signlessleft1, signlessright1, save; |
| 1390 | register int result_exponent, diff_exponent; |
| 1391 | int sign_save, jumpsize; |
| 1392 | |
| 1393 | Sgl_copyfromptr(src1ptr,opnd1); |
| 1394 | Sgl_copyfromptr(src2ptr,opnd2); |
| 1395 | Sgl_copyfromptr(src3ptr,opnd3); |
| 1396 | |
| 1397 | /* |
| 1398 | * set sign bit of result of multiply |
| 1399 | */ |
| 1400 | if (Sgl_sign(opnd1) ^ Sgl_sign(opnd2)) |
| 1401 | Sgl_setnegativezero(resultp1); |
| 1402 | else Sgl_setzero(resultp1); |
| 1403 | |
| 1404 | /* |
| 1405 | * Generate multiply exponent |
| 1406 | */ |
| 1407 | mpy_exponent = Sgl_exponent(opnd1) + Sgl_exponent(opnd2) - SGL_BIAS; |
| 1408 | |
| 1409 | /* |
| 1410 | * check first operand for NaN's or infinity |
| 1411 | */ |
| 1412 | if (Sgl_isinfinity_exponent(opnd1)) { |
| 1413 | if (Sgl_iszero_mantissa(opnd1)) { |
| 1414 | if (Sgl_isnotnan(opnd2) && Sgl_isnotnan(opnd3)) { |
| 1415 | if (Sgl_iszero_exponentmantissa(opnd2)) { |
| 1416 | /* |
| 1417 | * invalid since operands are infinity |
| 1418 | * and zero |
| 1419 | */ |
| 1420 | if (Is_invalidtrap_enabled()) |
| 1421 | return(OPC_2E_INVALIDEXCEPTION); |
| 1422 | Set_invalidflag(); |
| 1423 | Sgl_makequietnan(resultp1); |
| 1424 | Sgl_copytoptr(resultp1,dstptr); |
| 1425 | return(NOEXCEPTION); |
| 1426 | } |
| 1427 | /* |
| 1428 | * Check third operand for infinity with a |
| 1429 | * sign opposite of the multiply result |
| 1430 | */ |
| 1431 | if (Sgl_isinfinity(opnd3) && |
| 1432 | (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { |
| 1433 | /* |
| 1434 | * invalid since attempting a magnitude |
| 1435 | * subtraction of infinities |
| 1436 | */ |
| 1437 | if (Is_invalidtrap_enabled()) |
| 1438 | return(OPC_2E_INVALIDEXCEPTION); |
| 1439 | Set_invalidflag(); |
| 1440 | Sgl_makequietnan(resultp1); |
| 1441 | Sgl_copytoptr(resultp1,dstptr); |
| 1442 | return(NOEXCEPTION); |
| 1443 | } |
| 1444 | |
| 1445 | /* |
| 1446 | * return infinity |
| 1447 | */ |
| 1448 | Sgl_setinfinity_exponentmantissa(resultp1); |
| 1449 | Sgl_copytoptr(resultp1,dstptr); |
| 1450 | return(NOEXCEPTION); |
| 1451 | } |
| 1452 | } |
| 1453 | else { |
| 1454 | /* |
| 1455 | * is NaN; signaling or quiet? |
| 1456 | */ |
| 1457 | if (Sgl_isone_signaling(opnd1)) { |
| 1458 | /* trap if INVALIDTRAP enabled */ |
| 1459 | if (Is_invalidtrap_enabled()) |
| 1460 | return(OPC_2E_INVALIDEXCEPTION); |
| 1461 | /* make NaN quiet */ |
| 1462 | Set_invalidflag(); |
| 1463 | Sgl_set_quiet(opnd1); |
| 1464 | } |
| 1465 | /* |
| 1466 | * is second operand a signaling NaN? |
| 1467 | */ |
| 1468 | else if (Sgl_is_signalingnan(opnd2)) { |
| 1469 | /* trap if INVALIDTRAP enabled */ |
| 1470 | if (Is_invalidtrap_enabled()) |
| 1471 | return(OPC_2E_INVALIDEXCEPTION); |
| 1472 | /* make NaN quiet */ |
| 1473 | Set_invalidflag(); |
| 1474 | Sgl_set_quiet(opnd2); |
| 1475 | Sgl_copytoptr(opnd2,dstptr); |
| 1476 | return(NOEXCEPTION); |
| 1477 | } |
| 1478 | /* |
| 1479 | * is third operand a signaling NaN? |
| 1480 | */ |
| 1481 | else if (Sgl_is_signalingnan(opnd3)) { |
| 1482 | /* trap if INVALIDTRAP enabled */ |
| 1483 | if (Is_invalidtrap_enabled()) |
| 1484 | return(OPC_2E_INVALIDEXCEPTION); |
| 1485 | /* make NaN quiet */ |
| 1486 | Set_invalidflag(); |
| 1487 | Sgl_set_quiet(opnd3); |
| 1488 | Sgl_copytoptr(opnd3,dstptr); |
| 1489 | return(NOEXCEPTION); |
| 1490 | } |
| 1491 | /* |
| 1492 | * return quiet NaN |
| 1493 | */ |
| 1494 | Sgl_copytoptr(opnd1,dstptr); |
| 1495 | return(NOEXCEPTION); |
| 1496 | } |
| 1497 | } |
| 1498 | |
| 1499 | /* |
| 1500 | * check second operand for NaN's or infinity |
| 1501 | */ |
| 1502 | if (Sgl_isinfinity_exponent(opnd2)) { |
| 1503 | if (Sgl_iszero_mantissa(opnd2)) { |
| 1504 | if (Sgl_isnotnan(opnd3)) { |
| 1505 | if (Sgl_iszero_exponentmantissa(opnd1)) { |
| 1506 | /* |
| 1507 | * invalid since multiply operands are |
| 1508 | * zero & infinity |
| 1509 | */ |
| 1510 | if (Is_invalidtrap_enabled()) |
| 1511 | return(OPC_2E_INVALIDEXCEPTION); |
| 1512 | Set_invalidflag(); |
| 1513 | Sgl_makequietnan(opnd2); |
| 1514 | Sgl_copytoptr(opnd2,dstptr); |
| 1515 | return(NOEXCEPTION); |
| 1516 | } |
| 1517 | |
| 1518 | /* |
| 1519 | * Check third operand for infinity with a |
| 1520 | * sign opposite of the multiply result |
| 1521 | */ |
| 1522 | if (Sgl_isinfinity(opnd3) && |
| 1523 | (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { |
| 1524 | /* |
| 1525 | * invalid since attempting a magnitude |
| 1526 | * subtraction of infinities |
| 1527 | */ |
| 1528 | if (Is_invalidtrap_enabled()) |
| 1529 | return(OPC_2E_INVALIDEXCEPTION); |
| 1530 | Set_invalidflag(); |
| 1531 | Sgl_makequietnan(resultp1); |
| 1532 | Sgl_copytoptr(resultp1,dstptr); |
| 1533 | return(NOEXCEPTION); |
| 1534 | } |
| 1535 | |
| 1536 | /* |
| 1537 | * return infinity |
| 1538 | */ |
| 1539 | Sgl_setinfinity_exponentmantissa(resultp1); |
| 1540 | Sgl_copytoptr(resultp1,dstptr); |
| 1541 | return(NOEXCEPTION); |
| 1542 | } |
| 1543 | } |
| 1544 | else { |
| 1545 | /* |
| 1546 | * is NaN; signaling or quiet? |
| 1547 | */ |
| 1548 | if (Sgl_isone_signaling(opnd2)) { |
| 1549 | /* trap if INVALIDTRAP enabled */ |
| 1550 | if (Is_invalidtrap_enabled()) |
| 1551 | return(OPC_2E_INVALIDEXCEPTION); |
| 1552 | /* make NaN quiet */ |
| 1553 | Set_invalidflag(); |
| 1554 | Sgl_set_quiet(opnd2); |
| 1555 | } |
| 1556 | /* |
| 1557 | * is third operand a signaling NaN? |
| 1558 | */ |
| 1559 | else if (Sgl_is_signalingnan(opnd3)) { |
| 1560 | /* trap if INVALIDTRAP enabled */ |
| 1561 | if (Is_invalidtrap_enabled()) |
| 1562 | return(OPC_2E_INVALIDEXCEPTION); |
| 1563 | /* make NaN quiet */ |
| 1564 | Set_invalidflag(); |
| 1565 | Sgl_set_quiet(opnd3); |
| 1566 | Sgl_copytoptr(opnd3,dstptr); |
| 1567 | return(NOEXCEPTION); |
| 1568 | } |
| 1569 | /* |
| 1570 | * return quiet NaN |
| 1571 | */ |
| 1572 | Sgl_copytoptr(opnd2,dstptr); |
| 1573 | return(NOEXCEPTION); |
| 1574 | } |
| 1575 | } |
| 1576 | |
| 1577 | /* |
| 1578 | * check third operand for NaN's or infinity |
| 1579 | */ |
| 1580 | if (Sgl_isinfinity_exponent(opnd3)) { |
| 1581 | if (Sgl_iszero_mantissa(opnd3)) { |
| 1582 | /* return infinity */ |
| 1583 | Sgl_copytoptr(opnd3,dstptr); |
| 1584 | return(NOEXCEPTION); |
| 1585 | } else { |
| 1586 | /* |
| 1587 | * is NaN; signaling or quiet? |
| 1588 | */ |
| 1589 | if (Sgl_isone_signaling(opnd3)) { |
| 1590 | /* trap if INVALIDTRAP enabled */ |
| 1591 | if (Is_invalidtrap_enabled()) |
| 1592 | return(OPC_2E_INVALIDEXCEPTION); |
| 1593 | /* make NaN quiet */ |
| 1594 | Set_invalidflag(); |
| 1595 | Sgl_set_quiet(opnd3); |
| 1596 | } |
| 1597 | /* |
| 1598 | * return quiet NaN |
| 1599 | */ |
| 1600 | Sgl_copytoptr(opnd3,dstptr); |
| 1601 | return(NOEXCEPTION); |
| 1602 | } |
| 1603 | } |
| 1604 | |
| 1605 | /* |
| 1606 | * Generate multiply mantissa |
| 1607 | */ |
| 1608 | if (Sgl_isnotzero_exponent(opnd1)) { |
| 1609 | /* set hidden bit */ |
| 1610 | Sgl_clear_signexponent_set_hidden(opnd1); |
| 1611 | } |
| 1612 | else { |
| 1613 | /* check for zero */ |
| 1614 | if (Sgl_iszero_mantissa(opnd1)) { |
| 1615 | /* |
| 1616 | * Perform the add opnd3 with zero here. |
| 1617 | */ |
| 1618 | if (Sgl_iszero_exponentmantissa(opnd3)) { |
| 1619 | if (Is_rounding_mode(ROUNDMINUS)) { |
| 1620 | Sgl_or_signs(opnd3,resultp1); |
| 1621 | } else { |
| 1622 | Sgl_and_signs(opnd3,resultp1); |
| 1623 | } |
| 1624 | } |
| 1625 | /* |
| 1626 | * Now let's check for trapped underflow case. |
| 1627 | */ |
| 1628 | else if (Sgl_iszero_exponent(opnd3) && |
| 1629 | Is_underflowtrap_enabled()) { |
| 1630 | /* need to normalize results mantissa */ |
| 1631 | sign_save = Sgl_signextendedsign(opnd3); |
| 1632 | result_exponent = 0; |
| 1633 | Sgl_leftshiftby1(opnd3); |
| 1634 | Sgl_normalize(opnd3,result_exponent); |
| 1635 | Sgl_set_sign(opnd3,/*using*/sign_save); |
| 1636 | Sgl_setwrapped_exponent(opnd3,result_exponent, |
| 1637 | unfl); |
| 1638 | Sgl_copytoptr(opnd3,dstptr); |
| 1639 | /* inexact = FALSE */ |
| 1640 | return(OPC_2E_UNDERFLOWEXCEPTION); |
| 1641 | } |
| 1642 | Sgl_copytoptr(opnd3,dstptr); |
| 1643 | return(NOEXCEPTION); |
| 1644 | } |
| 1645 | /* is denormalized, adjust exponent */ |
| 1646 | Sgl_clear_signexponent(opnd1); |
| 1647 | Sgl_leftshiftby1(opnd1); |
| 1648 | Sgl_normalize(opnd1,mpy_exponent); |
| 1649 | } |
| 1650 | /* opnd2 needs to have hidden bit set with msb in hidden bit */ |
| 1651 | if (Sgl_isnotzero_exponent(opnd2)) { |
| 1652 | Sgl_clear_signexponent_set_hidden(opnd2); |
| 1653 | } |
| 1654 | else { |
| 1655 | /* check for zero */ |
| 1656 | if (Sgl_iszero_mantissa(opnd2)) { |
| 1657 | /* |
| 1658 | * Perform the add opnd3 with zero here. |
| 1659 | */ |
| 1660 | if (Sgl_iszero_exponentmantissa(opnd3)) { |
| 1661 | if (Is_rounding_mode(ROUNDMINUS)) { |
| 1662 | Sgl_or_signs(opnd3,resultp1); |
| 1663 | } else { |
| 1664 | Sgl_and_signs(opnd3,resultp1); |
| 1665 | } |
| 1666 | } |
| 1667 | /* |
| 1668 | * Now let's check for trapped underflow case. |
| 1669 | */ |
| 1670 | else if (Sgl_iszero_exponent(opnd3) && |
| 1671 | Is_underflowtrap_enabled()) { |
| 1672 | /* need to normalize results mantissa */ |
| 1673 | sign_save = Sgl_signextendedsign(opnd3); |
| 1674 | result_exponent = 0; |
| 1675 | Sgl_leftshiftby1(opnd3); |
| 1676 | Sgl_normalize(opnd3,result_exponent); |
| 1677 | Sgl_set_sign(opnd3,/*using*/sign_save); |
| 1678 | Sgl_setwrapped_exponent(opnd3,result_exponent, |
| 1679 | unfl); |
| 1680 | Sgl_copytoptr(opnd3,dstptr); |
| 1681 | /* inexact = FALSE */ |
| 1682 | return(OPC_2E_UNDERFLOWEXCEPTION); |
| 1683 | } |
| 1684 | Sgl_copytoptr(opnd3,dstptr); |
| 1685 | return(NOEXCEPTION); |
| 1686 | } |
| 1687 | /* is denormalized; want to normalize */ |
| 1688 | Sgl_clear_signexponent(opnd2); |
| 1689 | Sgl_leftshiftby1(opnd2); |
| 1690 | Sgl_normalize(opnd2,mpy_exponent); |
| 1691 | } |
| 1692 | |
| 1693 | /* Multiply the first two source mantissas together */ |
| 1694 | |
| 1695 | /* |
| 1696 | * The intermediate result will be kept in tmpres, |
| 1697 | * which needs enough room for 106 bits of mantissa, |
| 1698 | * so lets call it a Double extended. |
| 1699 | */ |
| 1700 | Sglext_setzero(tmpresp1,tmpresp2); |
| 1701 | |
| 1702 | /* |
| 1703 | * Four bits at a time are inspected in each loop, and a |
| 1704 | * simple shift and add multiply algorithm is used. |
| 1705 | */ |
| 1706 | for (count = SGL_P-1; count >= 0; count -= 4) { |
| 1707 | Sglext_rightshiftby4(tmpresp1,tmpresp2); |
| 1708 | if (Sbit28(opnd1)) { |
| 1709 | /* Twoword_add should be an ADD followed by 2 ADDC's */ |
| 1710 | Twoword_add(tmpresp1, tmpresp2, opnd2<<3, 0); |
| 1711 | } |
| 1712 | if (Sbit29(opnd1)) { |
| 1713 | Twoword_add(tmpresp1, tmpresp2, opnd2<<2, 0); |
| 1714 | } |
| 1715 | if (Sbit30(opnd1)) { |
| 1716 | Twoword_add(tmpresp1, tmpresp2, opnd2<<1, 0); |
| 1717 | } |
| 1718 | if (Sbit31(opnd1)) { |
| 1719 | Twoword_add(tmpresp1, tmpresp2, opnd2, 0); |
| 1720 | } |
| 1721 | Sgl_rightshiftby4(opnd1); |
| 1722 | } |
| 1723 | if (Is_sexthiddenoverflow(tmpresp1)) { |
| 1724 | /* result mantissa >= 2 (mantissa overflow) */ |
| 1725 | mpy_exponent++; |
| 1726 | Sglext_rightshiftby4(tmpresp1,tmpresp2); |
| 1727 | } else { |
| 1728 | Sglext_rightshiftby3(tmpresp1,tmpresp2); |
| 1729 | } |
| 1730 | |
| 1731 | /* |
| 1732 | * Restore the sign of the mpy result which was saved in resultp1. |
| 1733 | * The exponent will continue to be kept in mpy_exponent. |
| 1734 | */ |
| 1735 | Sglext_set_sign(tmpresp1,Sgl_sign(resultp1)); |
| 1736 | |
| 1737 | /* |
| 1738 | * No rounding is required, since the result of the multiply |
| 1739 | * is exact in the extended format. |
| 1740 | */ |
| 1741 | |
| 1742 | /* |
| 1743 | * Now we are ready to perform the add portion of the operation. |
| 1744 | * |
| 1745 | * The exponents need to be kept as integers for now, since the |
| 1746 | * multiply result might not fit into the exponent field. We |
| 1747 | * can't overflow or underflow because of this yet, since the |
| 1748 | * add could bring the final result back into range. |
| 1749 | */ |
| 1750 | add_exponent = Sgl_exponent(opnd3); |
| 1751 | |
| 1752 | /* |
| 1753 | * Check for denormalized or zero add operand. |
| 1754 | */ |
| 1755 | if (add_exponent == 0) { |
| 1756 | /* check for zero */ |
| 1757 | if (Sgl_iszero_mantissa(opnd3)) { |
| 1758 | /* right is zero */ |
| 1759 | /* Left can't be zero and must be result. |
| 1760 | * |
| 1761 | * The final result is now in tmpres and mpy_exponent, |
| 1762 | * and needs to be rounded and squeezed back into |
| 1763 | * double precision format from double extended. |
| 1764 | */ |
| 1765 | result_exponent = mpy_exponent; |
| 1766 | Sglext_copy(tmpresp1,tmpresp2,resultp1,resultp2); |
| 1767 | sign_save = Sgl_signextendedsign(resultp1);/*save sign*/ |
| 1768 | goto round; |
| 1769 | } |
| 1770 | |
| 1771 | /* |
| 1772 | * Neither are zeroes. |
| 1773 | * Adjust exponent and normalize add operand. |
| 1774 | */ |
| 1775 | sign_save = Sgl_signextendedsign(opnd3); /* save sign */ |
| 1776 | Sgl_clear_signexponent(opnd3); |
| 1777 | Sgl_leftshiftby1(opnd3); |
| 1778 | Sgl_normalize(opnd3,add_exponent); |
| 1779 | Sgl_set_sign(opnd3,sign_save); /* restore sign */ |
| 1780 | } else { |
| 1781 | Sgl_clear_exponent_set_hidden(opnd3); |
| 1782 | } |
| 1783 | /* |
| 1784 | * Copy opnd3 to the double extended variable called right. |
| 1785 | */ |
| 1786 | Sgl_copyto_sglext(opnd3,rightp1,rightp2); |
| 1787 | |
| 1788 | /* |
| 1789 | * A zero "save" helps discover equal operands (for later), |
| 1790 | * and is used in swapping operands (if needed). |
| 1791 | */ |
| 1792 | Sglext_xortointp1(tmpresp1,rightp1,/*to*/save); |
| 1793 | |
| 1794 | /* |
| 1795 | * Compare magnitude of operands. |
| 1796 | */ |
| 1797 | Sglext_copytoint_exponentmantissa(tmpresp1,signlessleft1); |
| 1798 | Sglext_copytoint_exponentmantissa(rightp1,signlessright1); |
| 1799 | if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && |
| 1800 | Sglext_ismagnitudeless(signlessleft1,signlessright1)) { |
| 1801 | /* |
| 1802 | * Set the left operand to the larger one by XOR swap. |
| 1803 | * First finish the first word "save". |
| 1804 | */ |
| 1805 | Sglext_xorfromintp1(save,rightp1,/*to*/rightp1); |
| 1806 | Sglext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); |
| 1807 | Sglext_swap_lower(tmpresp2,rightp2); |
| 1808 | /* also setup exponents used in rest of routine */ |
| 1809 | diff_exponent = add_exponent - mpy_exponent; |
| 1810 | result_exponent = add_exponent; |
| 1811 | } else { |
| 1812 | /* also setup exponents used in rest of routine */ |
| 1813 | diff_exponent = mpy_exponent - add_exponent; |
| 1814 | result_exponent = mpy_exponent; |
| 1815 | } |
| 1816 | /* Invariant: left is not smaller than right. */ |
| 1817 | |
| 1818 | /* |
| 1819 | * Special case alignment of operands that would force alignment |
| 1820 | * beyond the extent of the extension. A further optimization |
| 1821 | * could special case this but only reduces the path length for |
| 1822 | * this infrequent case. |
| 1823 | */ |
| 1824 | if (diff_exponent > SGLEXT_THRESHOLD) { |
| 1825 | diff_exponent = SGLEXT_THRESHOLD; |
| 1826 | } |
| 1827 | |
| 1828 | /* Align right operand by shifting it to the right */ |
| 1829 | Sglext_clear_sign(rightp1); |
| 1830 | Sglext_right_align(rightp1,rightp2,/*shifted by*/diff_exponent); |
| 1831 | |
| 1832 | /* Treat sum and difference of the operands separately. */ |
| 1833 | if ((int)save < 0) { |
| 1834 | /* |
| 1835 | * Difference of the two operands. Overflow can occur if the |
| 1836 | * multiply overflowed. A borrow can occur out of the hidden |
| 1837 | * bit and force a post normalization phase. |
| 1838 | */ |
| 1839 | Sglext_subtract(tmpresp1,tmpresp2, rightp1,rightp2, |
| 1840 | resultp1,resultp2); |
| 1841 | sign_save = Sgl_signextendedsign(resultp1); |
| 1842 | if (Sgl_iszero_hidden(resultp1)) { |
| 1843 | /* Handle normalization */ |
| 1844 | /* A straight foward algorithm would now shift the |
| 1845 | * result and extension left until the hidden bit |
| 1846 | * becomes one. Not all of the extension bits need |
| 1847 | * participate in the shift. Only the two most |
| 1848 | * significant bits (round and guard) are needed. |
| 1849 | * If only a single shift is needed then the guard |
| 1850 | * bit becomes a significant low order bit and the |
| 1851 | * extension must participate in the rounding. |
| 1852 | * If more than a single shift is needed, then all |
| 1853 | * bits to the right of the guard bit are zeros, |
| 1854 | * and the guard bit may or may not be zero. */ |
| 1855 | Sglext_leftshiftby1(resultp1,resultp2); |
| 1856 | |
| 1857 | /* Need to check for a zero result. The sign and |
| 1858 | * exponent fields have already been zeroed. The more |
| 1859 | * efficient test of the full object can be used. |
| 1860 | */ |
| 1861 | if (Sglext_iszero(resultp1,resultp2)) { |
| 1862 | /* Must have been "x-x" or "x+(-x)". */ |
| 1863 | if (Is_rounding_mode(ROUNDMINUS)) |
| 1864 | Sgl_setone_sign(resultp1); |
| 1865 | Sgl_copytoptr(resultp1,dstptr); |
| 1866 | return(NOEXCEPTION); |
| 1867 | } |
| 1868 | result_exponent--; |
| 1869 | |
| 1870 | /* Look to see if normalization is finished. */ |
| 1871 | if (Sgl_isone_hidden(resultp1)) { |
| 1872 | /* No further normalization is needed */ |
| 1873 | goto round; |
| 1874 | } |
| 1875 | |
| 1876 | /* Discover first one bit to determine shift amount. |
| 1877 | * Use a modified binary search. We have already |
| 1878 | * shifted the result one position right and still |
| 1879 | * not found a one so the remainder of the extension |
| 1880 | * must be zero and simplifies rounding. */ |
| 1881 | /* Scan bytes */ |
| 1882 | while (Sgl_iszero_hiddenhigh7mantissa(resultp1)) { |
| 1883 | Sglext_leftshiftby8(resultp1,resultp2); |
| 1884 | result_exponent -= 8; |
| 1885 | } |
| 1886 | /* Now narrow it down to the nibble */ |
| 1887 | if (Sgl_iszero_hiddenhigh3mantissa(resultp1)) { |
| 1888 | /* The lower nibble contains the |
| 1889 | * normalizing one */ |
| 1890 | Sglext_leftshiftby4(resultp1,resultp2); |
| 1891 | result_exponent -= 4; |
| 1892 | } |
| 1893 | /* Select case where first bit is set (already |
| 1894 | * normalized) otherwise select the proper shift. */ |
| 1895 | jumpsize = Sgl_hiddenhigh3mantissa(resultp1); |
| 1896 | if (jumpsize <= 7) switch(jumpsize) { |
| 1897 | case 1: |
| 1898 | Sglext_leftshiftby3(resultp1,resultp2); |
| 1899 | result_exponent -= 3; |
| 1900 | break; |
| 1901 | case 2: |
| 1902 | case 3: |
| 1903 | Sglext_leftshiftby2(resultp1,resultp2); |
| 1904 | result_exponent -= 2; |
| 1905 | break; |
| 1906 | case 4: |
| 1907 | case 5: |
| 1908 | case 6: |
| 1909 | case 7: |
| 1910 | Sglext_leftshiftby1(resultp1,resultp2); |
| 1911 | result_exponent -= 1; |
| 1912 | break; |
| 1913 | } |
| 1914 | } /* end if (hidden...)... */ |
| 1915 | /* Fall through and round */ |
| 1916 | } /* end if (save < 0)... */ |
| 1917 | else { |
| 1918 | /* Add magnitudes */ |
| 1919 | Sglext_addition(tmpresp1,tmpresp2, |
| 1920 | rightp1,rightp2, /*to*/resultp1,resultp2); |
| 1921 | sign_save = Sgl_signextendedsign(resultp1); |
| 1922 | if (Sgl_isone_hiddenoverflow(resultp1)) { |
| 1923 | /* Prenormalization required. */ |
| 1924 | Sglext_arithrightshiftby1(resultp1,resultp2); |
| 1925 | result_exponent++; |
| 1926 | } /* end if hiddenoverflow... */ |
| 1927 | } /* end else ...add magnitudes... */ |
| 1928 | |
| 1929 | /* Round the result. If the extension and lower two words are |
| 1930 | * all zeros, then the result is exact. Otherwise round in the |
| 1931 | * correct direction. Underflow is possible. If a postnormalization |
| 1932 | * is necessary, then the mantissa is all zeros so no shift is needed. |
| 1933 | */ |
| 1934 | round: |
| 1935 | if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { |
| 1936 | Sglext_denormalize(resultp1,resultp2,result_exponent,is_tiny); |
| 1937 | } |
| 1938 | Sgl_set_sign(resultp1,/*using*/sign_save); |
| 1939 | if (Sglext_isnotzero_mantissap2(resultp2)) { |
| 1940 | inexact = TRUE; |
| 1941 | switch(Rounding_mode()) { |
| 1942 | case ROUNDNEAREST: /* The default. */ |
| 1943 | if (Sglext_isone_highp2(resultp2)) { |
| 1944 | /* at least 1/2 ulp */ |
| 1945 | if (Sglext_isnotzero_low31p2(resultp2) || |
| 1946 | Sglext_isone_lowp1(resultp1)) { |
| 1947 | /* either exactly half way and odd or |
| 1948 | * more than 1/2ulp */ |
| 1949 | Sgl_increment(resultp1); |
| 1950 | } |
| 1951 | } |
| 1952 | break; |
| 1953 | |
| 1954 | case ROUNDPLUS: |
| 1955 | if (Sgl_iszero_sign(resultp1)) { |
| 1956 | /* Round up positive results */ |
| 1957 | Sgl_increment(resultp1); |
| 1958 | } |
| 1959 | break; |
| 1960 | |
| 1961 | case ROUNDMINUS: |
| 1962 | if (Sgl_isone_sign(resultp1)) { |
| 1963 | /* Round down negative results */ |
| 1964 | Sgl_increment(resultp1); |
| 1965 | } |
| 1966 | |
| 1967 | case ROUNDZERO:; |
| 1968 | /* truncate is simple */ |
| 1969 | } /* end switch... */ |
| 1970 | if (Sgl_isone_hiddenoverflow(resultp1)) result_exponent++; |
| 1971 | } |
| 1972 | if (result_exponent >= SGL_INFINITY_EXPONENT) { |
| 1973 | /* Overflow */ |
| 1974 | if (Is_overflowtrap_enabled()) { |
| 1975 | /* |
| 1976 | * Adjust bias of result |
| 1977 | */ |
| 1978 | Sgl_setwrapped_exponent(resultp1,result_exponent,ovfl); |
| 1979 | Sgl_copytoptr(resultp1,dstptr); |
| 1980 | if (inexact) |
| 1981 | if (Is_inexacttrap_enabled()) |
| 1982 | return (OPC_2E_OVERFLOWEXCEPTION | |
| 1983 | OPC_2E_INEXACTEXCEPTION); |
| 1984 | else Set_inexactflag(); |
| 1985 | return (OPC_2E_OVERFLOWEXCEPTION); |
| 1986 | } |
| 1987 | inexact = TRUE; |
| 1988 | Set_overflowflag(); |
| 1989 | Sgl_setoverflow(resultp1); |
| 1990 | } else if (result_exponent <= 0) { /* underflow case */ |
| 1991 | if (Is_underflowtrap_enabled()) { |
| 1992 | /* |
| 1993 | * Adjust bias of result |
| 1994 | */ |
| 1995 | Sgl_setwrapped_exponent(resultp1,result_exponent,unfl); |
| 1996 | Sgl_copytoptr(resultp1,dstptr); |
| 1997 | if (inexact) |
| 1998 | if (Is_inexacttrap_enabled()) |
| 1999 | return (OPC_2E_UNDERFLOWEXCEPTION | |
| 2000 | OPC_2E_INEXACTEXCEPTION); |
| 2001 | else Set_inexactflag(); |
| 2002 | return(OPC_2E_UNDERFLOWEXCEPTION); |
| 2003 | } |
| 2004 | else if (inexact && is_tiny) Set_underflowflag(); |
| 2005 | } |
| 2006 | else Sgl_set_exponent(resultp1,result_exponent); |
| 2007 | Sgl_copytoptr(resultp1,dstptr); |
| 2008 | if (inexact) |
| 2009 | if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); |
| 2010 | else Set_inexactflag(); |
| 2011 | return(NOEXCEPTION); |
| 2012 | } |
| 2013 | |
| 2014 | /* |
| 2015 | * Single Floating-point Multiply Negate Fused Add |
| 2016 | */ |
| 2017 | |
| 2018 | sgl_fmpynfadd(src1ptr,src2ptr,src3ptr,status,dstptr) |
| 2019 | |
| 2020 | sgl_floating_point *src1ptr, *src2ptr, *src3ptr, *dstptr; |
| 2021 | unsigned int *status; |
| 2022 | { |
| 2023 | unsigned int opnd1, opnd2, opnd3; |
| 2024 | register unsigned int tmpresp1, tmpresp2; |
| 2025 | unsigned int rightp1, rightp2; |
| 2026 | unsigned int resultp1, resultp2 = 0; |
| 2027 | register int mpy_exponent, add_exponent, count; |
| 2028 | boolean inexact = FALSE, is_tiny = FALSE; |
| 2029 | |
| 2030 | unsigned int signlessleft1, signlessright1, save; |
| 2031 | register int result_exponent, diff_exponent; |
| 2032 | int sign_save, jumpsize; |
| 2033 | |
| 2034 | Sgl_copyfromptr(src1ptr,opnd1); |
| 2035 | Sgl_copyfromptr(src2ptr,opnd2); |
| 2036 | Sgl_copyfromptr(src3ptr,opnd3); |
| 2037 | |
| 2038 | /* |
| 2039 | * set sign bit of result of multiply |
| 2040 | */ |
| 2041 | if (Sgl_sign(opnd1) ^ Sgl_sign(opnd2)) |
| 2042 | Sgl_setzero(resultp1); |
| 2043 | else |
| 2044 | Sgl_setnegativezero(resultp1); |
| 2045 | |
| 2046 | /* |
| 2047 | * Generate multiply exponent |
| 2048 | */ |
| 2049 | mpy_exponent = Sgl_exponent(opnd1) + Sgl_exponent(opnd2) - SGL_BIAS; |
| 2050 | |
| 2051 | /* |
| 2052 | * check first operand for NaN's or infinity |
| 2053 | */ |
| 2054 | if (Sgl_isinfinity_exponent(opnd1)) { |
| 2055 | if (Sgl_iszero_mantissa(opnd1)) { |
| 2056 | if (Sgl_isnotnan(opnd2) && Sgl_isnotnan(opnd3)) { |
| 2057 | if (Sgl_iszero_exponentmantissa(opnd2)) { |
| 2058 | /* |
| 2059 | * invalid since operands are infinity |
| 2060 | * and zero |
| 2061 | */ |
| 2062 | if (Is_invalidtrap_enabled()) |
| 2063 | return(OPC_2E_INVALIDEXCEPTION); |
| 2064 | Set_invalidflag(); |
| 2065 | Sgl_makequietnan(resultp1); |
| 2066 | Sgl_copytoptr(resultp1,dstptr); |
| 2067 | return(NOEXCEPTION); |
| 2068 | } |
| 2069 | /* |
| 2070 | * Check third operand for infinity with a |
| 2071 | * sign opposite of the multiply result |
| 2072 | */ |
| 2073 | if (Sgl_isinfinity(opnd3) && |
| 2074 | (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { |
| 2075 | /* |
| 2076 | * invalid since attempting a magnitude |
| 2077 | * subtraction of infinities |
| 2078 | */ |
| 2079 | if (Is_invalidtrap_enabled()) |
| 2080 | return(OPC_2E_INVALIDEXCEPTION); |
| 2081 | Set_invalidflag(); |
| 2082 | Sgl_makequietnan(resultp1); |
| 2083 | Sgl_copytoptr(resultp1,dstptr); |
| 2084 | return(NOEXCEPTION); |
| 2085 | } |
| 2086 | |
| 2087 | /* |
| 2088 | * return infinity |
| 2089 | */ |
| 2090 | Sgl_setinfinity_exponentmantissa(resultp1); |
| 2091 | Sgl_copytoptr(resultp1,dstptr); |
| 2092 | return(NOEXCEPTION); |
| 2093 | } |
| 2094 | } |
| 2095 | else { |
| 2096 | /* |
| 2097 | * is NaN; signaling or quiet? |
| 2098 | */ |
| 2099 | if (Sgl_isone_signaling(opnd1)) { |
| 2100 | /* trap if INVALIDTRAP enabled */ |
| 2101 | if (Is_invalidtrap_enabled()) |
| 2102 | return(OPC_2E_INVALIDEXCEPTION); |
| 2103 | /* make NaN quiet */ |
| 2104 | Set_invalidflag(); |
| 2105 | Sgl_set_quiet(opnd1); |
| 2106 | } |
| 2107 | /* |
| 2108 | * is second operand a signaling NaN? |
| 2109 | */ |
| 2110 | else if (Sgl_is_signalingnan(opnd2)) { |
| 2111 | /* trap if INVALIDTRAP enabled */ |
| 2112 | if (Is_invalidtrap_enabled()) |
| 2113 | return(OPC_2E_INVALIDEXCEPTION); |
| 2114 | /* make NaN quiet */ |
| 2115 | Set_invalidflag(); |
| 2116 | Sgl_set_quiet(opnd2); |
| 2117 | Sgl_copytoptr(opnd2,dstptr); |
| 2118 | return(NOEXCEPTION); |
| 2119 | } |
| 2120 | /* |
| 2121 | * is third operand a signaling NaN? |
| 2122 | */ |
| 2123 | else if (Sgl_is_signalingnan(opnd3)) { |
| 2124 | /* trap if INVALIDTRAP enabled */ |
| 2125 | if (Is_invalidtrap_enabled()) |
| 2126 | return(OPC_2E_INVALIDEXCEPTION); |
| 2127 | /* make NaN quiet */ |
| 2128 | Set_invalidflag(); |
| 2129 | Sgl_set_quiet(opnd3); |
| 2130 | Sgl_copytoptr(opnd3,dstptr); |
| 2131 | return(NOEXCEPTION); |
| 2132 | } |
| 2133 | /* |
| 2134 | * return quiet NaN |
| 2135 | */ |
| 2136 | Sgl_copytoptr(opnd1,dstptr); |
| 2137 | return(NOEXCEPTION); |
| 2138 | } |
| 2139 | } |
| 2140 | |
| 2141 | /* |
| 2142 | * check second operand for NaN's or infinity |
| 2143 | */ |
| 2144 | if (Sgl_isinfinity_exponent(opnd2)) { |
| 2145 | if (Sgl_iszero_mantissa(opnd2)) { |
| 2146 | if (Sgl_isnotnan(opnd3)) { |
| 2147 | if (Sgl_iszero_exponentmantissa(opnd1)) { |
| 2148 | /* |
| 2149 | * invalid since multiply operands are |
| 2150 | * zero & infinity |
| 2151 | */ |
| 2152 | if (Is_invalidtrap_enabled()) |
| 2153 | return(OPC_2E_INVALIDEXCEPTION); |
| 2154 | Set_invalidflag(); |
| 2155 | Sgl_makequietnan(opnd2); |
| 2156 | Sgl_copytoptr(opnd2,dstptr); |
| 2157 | return(NOEXCEPTION); |
| 2158 | } |
| 2159 | |
| 2160 | /* |
| 2161 | * Check third operand for infinity with a |
| 2162 | * sign opposite of the multiply result |
| 2163 | */ |
| 2164 | if (Sgl_isinfinity(opnd3) && |
| 2165 | (Sgl_sign(resultp1) ^ Sgl_sign(opnd3))) { |
| 2166 | /* |
| 2167 | * invalid since attempting a magnitude |
| 2168 | * subtraction of infinities |
| 2169 | */ |
| 2170 | if (Is_invalidtrap_enabled()) |
| 2171 | return(OPC_2E_INVALIDEXCEPTION); |
| 2172 | Set_invalidflag(); |
| 2173 | Sgl_makequietnan(resultp1); |
| 2174 | Sgl_copytoptr(resultp1,dstptr); |
| 2175 | return(NOEXCEPTION); |
| 2176 | } |
| 2177 | |
| 2178 | /* |
| 2179 | * return infinity |
| 2180 | */ |
| 2181 | Sgl_setinfinity_exponentmantissa(resultp1); |
| 2182 | Sgl_copytoptr(resultp1,dstptr); |
| 2183 | return(NOEXCEPTION); |
| 2184 | } |
| 2185 | } |
| 2186 | else { |
| 2187 | /* |
| 2188 | * is NaN; signaling or quiet? |
| 2189 | */ |
| 2190 | if (Sgl_isone_signaling(opnd2)) { |
| 2191 | /* trap if INVALIDTRAP enabled */ |
| 2192 | if (Is_invalidtrap_enabled()) |
| 2193 | return(OPC_2E_INVALIDEXCEPTION); |
| 2194 | /* make NaN quiet */ |
| 2195 | Set_invalidflag(); |
| 2196 | Sgl_set_quiet(opnd2); |
| 2197 | } |
| 2198 | /* |
| 2199 | * is third operand a signaling NaN? |
| 2200 | */ |
| 2201 | else if (Sgl_is_signalingnan(opnd3)) { |
| 2202 | /* trap if INVALIDTRAP enabled */ |
| 2203 | if (Is_invalidtrap_enabled()) |
| 2204 | return(OPC_2E_INVALIDEXCEPTION); |
| 2205 | /* make NaN quiet */ |
| 2206 | Set_invalidflag(); |
| 2207 | Sgl_set_quiet(opnd3); |
| 2208 | Sgl_copytoptr(opnd3,dstptr); |
| 2209 | return(NOEXCEPTION); |
| 2210 | } |
| 2211 | /* |
| 2212 | * return quiet NaN |
| 2213 | */ |
| 2214 | Sgl_copytoptr(opnd2,dstptr); |
| 2215 | return(NOEXCEPTION); |
| 2216 | } |
| 2217 | } |
| 2218 | |
| 2219 | /* |
| 2220 | * check third operand for NaN's or infinity |
| 2221 | */ |
| 2222 | if (Sgl_isinfinity_exponent(opnd3)) { |
| 2223 | if (Sgl_iszero_mantissa(opnd3)) { |
| 2224 | /* return infinity */ |
| 2225 | Sgl_copytoptr(opnd3,dstptr); |
| 2226 | return(NOEXCEPTION); |
| 2227 | } else { |
| 2228 | /* |
| 2229 | * is NaN; signaling or quiet? |
| 2230 | */ |
| 2231 | if (Sgl_isone_signaling(opnd3)) { |
| 2232 | /* trap if INVALIDTRAP enabled */ |
| 2233 | if (Is_invalidtrap_enabled()) |
| 2234 | return(OPC_2E_INVALIDEXCEPTION); |
| 2235 | /* make NaN quiet */ |
| 2236 | Set_invalidflag(); |
| 2237 | Sgl_set_quiet(opnd3); |
| 2238 | } |
| 2239 | /* |
| 2240 | * return quiet NaN |
| 2241 | */ |
| 2242 | Sgl_copytoptr(opnd3,dstptr); |
| 2243 | return(NOEXCEPTION); |
| 2244 | } |
| 2245 | } |
| 2246 | |
| 2247 | /* |
| 2248 | * Generate multiply mantissa |
| 2249 | */ |
| 2250 | if (Sgl_isnotzero_exponent(opnd1)) { |
| 2251 | /* set hidden bit */ |
| 2252 | Sgl_clear_signexponent_set_hidden(opnd1); |
| 2253 | } |
| 2254 | else { |
| 2255 | /* check for zero */ |
| 2256 | if (Sgl_iszero_mantissa(opnd1)) { |
| 2257 | /* |
| 2258 | * Perform the add opnd3 with zero here. |
| 2259 | */ |
| 2260 | if (Sgl_iszero_exponentmantissa(opnd3)) { |
| 2261 | if (Is_rounding_mode(ROUNDMINUS)) { |
| 2262 | Sgl_or_signs(opnd3,resultp1); |
| 2263 | } else { |
| 2264 | Sgl_and_signs(opnd3,resultp1); |
| 2265 | } |
| 2266 | } |
| 2267 | /* |
| 2268 | * Now let's check for trapped underflow case. |
| 2269 | */ |
| 2270 | else if (Sgl_iszero_exponent(opnd3) && |
| 2271 | Is_underflowtrap_enabled()) { |
| 2272 | /* need to normalize results mantissa */ |
| 2273 | sign_save = Sgl_signextendedsign(opnd3); |
| 2274 | result_exponent = 0; |
| 2275 | Sgl_leftshiftby1(opnd3); |
| 2276 | Sgl_normalize(opnd3,result_exponent); |
| 2277 | Sgl_set_sign(opnd3,/*using*/sign_save); |
| 2278 | Sgl_setwrapped_exponent(opnd3,result_exponent, |
| 2279 | unfl); |
| 2280 | Sgl_copytoptr(opnd3,dstptr); |
| 2281 | /* inexact = FALSE */ |
| 2282 | return(OPC_2E_UNDERFLOWEXCEPTION); |
| 2283 | } |
| 2284 | Sgl_copytoptr(opnd3,dstptr); |
| 2285 | return(NOEXCEPTION); |
| 2286 | } |
| 2287 | /* is denormalized, adjust exponent */ |
| 2288 | Sgl_clear_signexponent(opnd1); |
| 2289 | Sgl_leftshiftby1(opnd1); |
| 2290 | Sgl_normalize(opnd1,mpy_exponent); |
| 2291 | } |
| 2292 | /* opnd2 needs to have hidden bit set with msb in hidden bit */ |
| 2293 | if (Sgl_isnotzero_exponent(opnd2)) { |
| 2294 | Sgl_clear_signexponent_set_hidden(opnd2); |
| 2295 | } |
| 2296 | else { |
| 2297 | /* check for zero */ |
| 2298 | if (Sgl_iszero_mantissa(opnd2)) { |
| 2299 | /* |
| 2300 | * Perform the add opnd3 with zero here. |
| 2301 | */ |
| 2302 | if (Sgl_iszero_exponentmantissa(opnd3)) { |
| 2303 | if (Is_rounding_mode(ROUNDMINUS)) { |
| 2304 | Sgl_or_signs(opnd3,resultp1); |
| 2305 | } else { |
| 2306 | Sgl_and_signs(opnd3,resultp1); |
| 2307 | } |
| 2308 | } |
| 2309 | /* |
| 2310 | * Now let's check for trapped underflow case. |
| 2311 | */ |
| 2312 | else if (Sgl_iszero_exponent(opnd3) && |
| 2313 | Is_underflowtrap_enabled()) { |
| 2314 | /* need to normalize results mantissa */ |
| 2315 | sign_save = Sgl_signextendedsign(opnd3); |
| 2316 | result_exponent = 0; |
| 2317 | Sgl_leftshiftby1(opnd3); |
| 2318 | Sgl_normalize(opnd3,result_exponent); |
| 2319 | Sgl_set_sign(opnd3,/*using*/sign_save); |
| 2320 | Sgl_setwrapped_exponent(opnd3,result_exponent, |
| 2321 | unfl); |
| 2322 | Sgl_copytoptr(opnd3,dstptr); |
| 2323 | /* inexact = FALSE */ |
| 2324 | return(OPC_2E_UNDERFLOWEXCEPTION); |
| 2325 | } |
| 2326 | Sgl_copytoptr(opnd3,dstptr); |
| 2327 | return(NOEXCEPTION); |
| 2328 | } |
| 2329 | /* is denormalized; want to normalize */ |
| 2330 | Sgl_clear_signexponent(opnd2); |
| 2331 | Sgl_leftshiftby1(opnd2); |
| 2332 | Sgl_normalize(opnd2,mpy_exponent); |
| 2333 | } |
| 2334 | |
| 2335 | /* Multiply the first two source mantissas together */ |
| 2336 | |
| 2337 | /* |
| 2338 | * The intermediate result will be kept in tmpres, |
| 2339 | * which needs enough room for 106 bits of mantissa, |
| 2340 | * so lets call it a Double extended. |
| 2341 | */ |
| 2342 | Sglext_setzero(tmpresp1,tmpresp2); |
| 2343 | |
| 2344 | /* |
| 2345 | * Four bits at a time are inspected in each loop, and a |
| 2346 | * simple shift and add multiply algorithm is used. |
| 2347 | */ |
| 2348 | for (count = SGL_P-1; count >= 0; count -= 4) { |
| 2349 | Sglext_rightshiftby4(tmpresp1,tmpresp2); |
| 2350 | if (Sbit28(opnd1)) { |
| 2351 | /* Twoword_add should be an ADD followed by 2 ADDC's */ |
| 2352 | Twoword_add(tmpresp1, tmpresp2, opnd2<<3, 0); |
| 2353 | } |
| 2354 | if (Sbit29(opnd1)) { |
| 2355 | Twoword_add(tmpresp1, tmpresp2, opnd2<<2, 0); |
| 2356 | } |
| 2357 | if (Sbit30(opnd1)) { |
| 2358 | Twoword_add(tmpresp1, tmpresp2, opnd2<<1, 0); |
| 2359 | } |
| 2360 | if (Sbit31(opnd1)) { |
| 2361 | Twoword_add(tmpresp1, tmpresp2, opnd2, 0); |
| 2362 | } |
| 2363 | Sgl_rightshiftby4(opnd1); |
| 2364 | } |
| 2365 | if (Is_sexthiddenoverflow(tmpresp1)) { |
| 2366 | /* result mantissa >= 2 (mantissa overflow) */ |
| 2367 | mpy_exponent++; |
| 2368 | Sglext_rightshiftby4(tmpresp1,tmpresp2); |
| 2369 | } else { |
| 2370 | Sglext_rightshiftby3(tmpresp1,tmpresp2); |
| 2371 | } |
| 2372 | |
| 2373 | /* |
| 2374 | * Restore the sign of the mpy result which was saved in resultp1. |
| 2375 | * The exponent will continue to be kept in mpy_exponent. |
| 2376 | */ |
| 2377 | Sglext_set_sign(tmpresp1,Sgl_sign(resultp1)); |
| 2378 | |
| 2379 | /* |
| 2380 | * No rounding is required, since the result of the multiply |
| 2381 | * is exact in the extended format. |
| 2382 | */ |
| 2383 | |
| 2384 | /* |
| 2385 | * Now we are ready to perform the add portion of the operation. |
| 2386 | * |
| 2387 | * The exponents need to be kept as integers for now, since the |
| 2388 | * multiply result might not fit into the exponent field. We |
| 2389 | * can't overflow or underflow because of this yet, since the |
| 2390 | * add could bring the final result back into range. |
| 2391 | */ |
| 2392 | add_exponent = Sgl_exponent(opnd3); |
| 2393 | |
| 2394 | /* |
| 2395 | * Check for denormalized or zero add operand. |
| 2396 | */ |
| 2397 | if (add_exponent == 0) { |
| 2398 | /* check for zero */ |
| 2399 | if (Sgl_iszero_mantissa(opnd3)) { |
| 2400 | /* right is zero */ |
| 2401 | /* Left can't be zero and must be result. |
| 2402 | * |
| 2403 | * The final result is now in tmpres and mpy_exponent, |
| 2404 | * and needs to be rounded and squeezed back into |
| 2405 | * double precision format from double extended. |
| 2406 | */ |
| 2407 | result_exponent = mpy_exponent; |
| 2408 | Sglext_copy(tmpresp1,tmpresp2,resultp1,resultp2); |
| 2409 | sign_save = Sgl_signextendedsign(resultp1);/*save sign*/ |
| 2410 | goto round; |
| 2411 | } |
| 2412 | |
| 2413 | /* |
| 2414 | * Neither are zeroes. |
| 2415 | * Adjust exponent and normalize add operand. |
| 2416 | */ |
| 2417 | sign_save = Sgl_signextendedsign(opnd3); /* save sign */ |
| 2418 | Sgl_clear_signexponent(opnd3); |
| 2419 | Sgl_leftshiftby1(opnd3); |
| 2420 | Sgl_normalize(opnd3,add_exponent); |
| 2421 | Sgl_set_sign(opnd3,sign_save); /* restore sign */ |
| 2422 | } else { |
| 2423 | Sgl_clear_exponent_set_hidden(opnd3); |
| 2424 | } |
| 2425 | /* |
| 2426 | * Copy opnd3 to the double extended variable called right. |
| 2427 | */ |
| 2428 | Sgl_copyto_sglext(opnd3,rightp1,rightp2); |
| 2429 | |
| 2430 | /* |
| 2431 | * A zero "save" helps discover equal operands (for later), |
| 2432 | * and is used in swapping operands (if needed). |
| 2433 | */ |
| 2434 | Sglext_xortointp1(tmpresp1,rightp1,/*to*/save); |
| 2435 | |
| 2436 | /* |
| 2437 | * Compare magnitude of operands. |
| 2438 | */ |
| 2439 | Sglext_copytoint_exponentmantissa(tmpresp1,signlessleft1); |
| 2440 | Sglext_copytoint_exponentmantissa(rightp1,signlessright1); |
| 2441 | if (mpy_exponent < add_exponent || mpy_exponent == add_exponent && |
| 2442 | Sglext_ismagnitudeless(signlessleft1,signlessright1)) { |
| 2443 | /* |
| 2444 | * Set the left operand to the larger one by XOR swap. |
| 2445 | * First finish the first word "save". |
| 2446 | */ |
| 2447 | Sglext_xorfromintp1(save,rightp1,/*to*/rightp1); |
| 2448 | Sglext_xorfromintp1(save,tmpresp1,/*to*/tmpresp1); |
| 2449 | Sglext_swap_lower(tmpresp2,rightp2); |
| 2450 | /* also setup exponents used in rest of routine */ |
| 2451 | diff_exponent = add_exponent - mpy_exponent; |
| 2452 | result_exponent = add_exponent; |
| 2453 | } else { |
| 2454 | /* also setup exponents used in rest of routine */ |
| 2455 | diff_exponent = mpy_exponent - add_exponent; |
| 2456 | result_exponent = mpy_exponent; |
| 2457 | } |
| 2458 | /* Invariant: left is not smaller than right. */ |
| 2459 | |
| 2460 | /* |
| 2461 | * Special case alignment of operands that would force alignment |
| 2462 | * beyond the extent of the extension. A further optimization |
| 2463 | * could special case this but only reduces the path length for |
| 2464 | * this infrequent case. |
| 2465 | */ |
| 2466 | if (diff_exponent > SGLEXT_THRESHOLD) { |
| 2467 | diff_exponent = SGLEXT_THRESHOLD; |
| 2468 | } |
| 2469 | |
| 2470 | /* Align right operand by shifting it to the right */ |
| 2471 | Sglext_clear_sign(rightp1); |
| 2472 | Sglext_right_align(rightp1,rightp2,/*shifted by*/diff_exponent); |
| 2473 | |
| 2474 | /* Treat sum and difference of the operands separately. */ |
| 2475 | if ((int)save < 0) { |
| 2476 | /* |
| 2477 | * Difference of the two operands. Overflow can occur if the |
| 2478 | * multiply overflowed. A borrow can occur out of the hidden |
| 2479 | * bit and force a post normalization phase. |
| 2480 | */ |
| 2481 | Sglext_subtract(tmpresp1,tmpresp2, rightp1,rightp2, |
| 2482 | resultp1,resultp2); |
| 2483 | sign_save = Sgl_signextendedsign(resultp1); |
| 2484 | if (Sgl_iszero_hidden(resultp1)) { |
| 2485 | /* Handle normalization */ |
| 2486 | /* A straight foward algorithm would now shift the |
| 2487 | * result and extension left until the hidden bit |
| 2488 | * becomes one. Not all of the extension bits need |
| 2489 | * participate in the shift. Only the two most |
| 2490 | * significant bits (round and guard) are needed. |
| 2491 | * If only a single shift is needed then the guard |
| 2492 | * bit becomes a significant low order bit and the |
| 2493 | * extension must participate in the rounding. |
| 2494 | * If more than a single shift is needed, then all |
| 2495 | * bits to the right of the guard bit are zeros, |
| 2496 | * and the guard bit may or may not be zero. */ |
| 2497 | Sglext_leftshiftby1(resultp1,resultp2); |
| 2498 | |
| 2499 | /* Need to check for a zero result. The sign and |
| 2500 | * exponent fields have already been zeroed. The more |
| 2501 | * efficient test of the full object can be used. |
| 2502 | */ |
| 2503 | if (Sglext_iszero(resultp1,resultp2)) { |
| 2504 | /* Must have been "x-x" or "x+(-x)". */ |
| 2505 | if (Is_rounding_mode(ROUNDMINUS)) |
| 2506 | Sgl_setone_sign(resultp1); |
| 2507 | Sgl_copytoptr(resultp1,dstptr); |
| 2508 | return(NOEXCEPTION); |
| 2509 | } |
| 2510 | result_exponent--; |
| 2511 | |
| 2512 | /* Look to see if normalization is finished. */ |
| 2513 | if (Sgl_isone_hidden(resultp1)) { |
| 2514 | /* No further normalization is needed */ |
| 2515 | goto round; |
| 2516 | } |
| 2517 | |
| 2518 | /* Discover first one bit to determine shift amount. |
| 2519 | * Use a modified binary search. We have already |
| 2520 | * shifted the result one position right and still |
| 2521 | * not found a one so the remainder of the extension |
| 2522 | * must be zero and simplifies rounding. */ |
| 2523 | /* Scan bytes */ |
| 2524 | while (Sgl_iszero_hiddenhigh7mantissa(resultp1)) { |
| 2525 | Sglext_leftshiftby8(resultp1,resultp2); |
| 2526 | result_exponent -= 8; |
| 2527 | } |
| 2528 | /* Now narrow it down to the nibble */ |
| 2529 | if (Sgl_iszero_hiddenhigh3mantissa(resultp1)) { |
| 2530 | /* The lower nibble contains the |
| 2531 | * normalizing one */ |
| 2532 | Sglext_leftshiftby4(resultp1,resultp2); |
| 2533 | result_exponent -= 4; |
| 2534 | } |
| 2535 | /* Select case where first bit is set (already |
| 2536 | * normalized) otherwise select the proper shift. */ |
| 2537 | jumpsize = Sgl_hiddenhigh3mantissa(resultp1); |
| 2538 | if (jumpsize <= 7) switch(jumpsize) { |
| 2539 | case 1: |
| 2540 | Sglext_leftshiftby3(resultp1,resultp2); |
| 2541 | result_exponent -= 3; |
| 2542 | break; |
| 2543 | case 2: |
| 2544 | case 3: |
| 2545 | Sglext_leftshiftby2(resultp1,resultp2); |
| 2546 | result_exponent -= 2; |
| 2547 | break; |
| 2548 | case 4: |
| 2549 | case 5: |
| 2550 | case 6: |
| 2551 | case 7: |
| 2552 | Sglext_leftshiftby1(resultp1,resultp2); |
| 2553 | result_exponent -= 1; |
| 2554 | break; |
| 2555 | } |
| 2556 | } /* end if (hidden...)... */ |
| 2557 | /* Fall through and round */ |
| 2558 | } /* end if (save < 0)... */ |
| 2559 | else { |
| 2560 | /* Add magnitudes */ |
| 2561 | Sglext_addition(tmpresp1,tmpresp2, |
| 2562 | rightp1,rightp2, /*to*/resultp1,resultp2); |
| 2563 | sign_save = Sgl_signextendedsign(resultp1); |
| 2564 | if (Sgl_isone_hiddenoverflow(resultp1)) { |
| 2565 | /* Prenormalization required. */ |
| 2566 | Sglext_arithrightshiftby1(resultp1,resultp2); |
| 2567 | result_exponent++; |
| 2568 | } /* end if hiddenoverflow... */ |
| 2569 | } /* end else ...add magnitudes... */ |
| 2570 | |
| 2571 | /* Round the result. If the extension and lower two words are |
| 2572 | * all zeros, then the result is exact. Otherwise round in the |
| 2573 | * correct direction. Underflow is possible. If a postnormalization |
| 2574 | * is necessary, then the mantissa is all zeros so no shift is needed. |
| 2575 | */ |
| 2576 | round: |
| 2577 | if (result_exponent <= 0 && !Is_underflowtrap_enabled()) { |
| 2578 | Sglext_denormalize(resultp1,resultp2,result_exponent,is_tiny); |
| 2579 | } |
| 2580 | Sgl_set_sign(resultp1,/*using*/sign_save); |
| 2581 | if (Sglext_isnotzero_mantissap2(resultp2)) { |
| 2582 | inexact = TRUE; |
| 2583 | switch(Rounding_mode()) { |
| 2584 | case ROUNDNEAREST: /* The default. */ |
| 2585 | if (Sglext_isone_highp2(resultp2)) { |
| 2586 | /* at least 1/2 ulp */ |
| 2587 | if (Sglext_isnotzero_low31p2(resultp2) || |
| 2588 | Sglext_isone_lowp1(resultp1)) { |
| 2589 | /* either exactly half way and odd or |
| 2590 | * more than 1/2ulp */ |
| 2591 | Sgl_increment(resultp1); |
| 2592 | } |
| 2593 | } |
| 2594 | break; |
| 2595 | |
| 2596 | case ROUNDPLUS: |
| 2597 | if (Sgl_iszero_sign(resultp1)) { |
| 2598 | /* Round up positive results */ |
| 2599 | Sgl_increment(resultp1); |
| 2600 | } |
| 2601 | break; |
| 2602 | |
| 2603 | case ROUNDMINUS: |
| 2604 | if (Sgl_isone_sign(resultp1)) { |
| 2605 | /* Round down negative results */ |
| 2606 | Sgl_increment(resultp1); |
| 2607 | } |
| 2608 | |
| 2609 | case ROUNDZERO:; |
| 2610 | /* truncate is simple */ |
| 2611 | } /* end switch... */ |
| 2612 | if (Sgl_isone_hiddenoverflow(resultp1)) result_exponent++; |
| 2613 | } |
| 2614 | if (result_exponent >= SGL_INFINITY_EXPONENT) { |
| 2615 | /* Overflow */ |
| 2616 | if (Is_overflowtrap_enabled()) { |
| 2617 | /* |
| 2618 | * Adjust bias of result |
| 2619 | */ |
| 2620 | Sgl_setwrapped_exponent(resultp1,result_exponent,ovfl); |
| 2621 | Sgl_copytoptr(resultp1,dstptr); |
| 2622 | if (inexact) |
| 2623 | if (Is_inexacttrap_enabled()) |
| 2624 | return (OPC_2E_OVERFLOWEXCEPTION | |
| 2625 | OPC_2E_INEXACTEXCEPTION); |
| 2626 | else Set_inexactflag(); |
| 2627 | return (OPC_2E_OVERFLOWEXCEPTION); |
| 2628 | } |
| 2629 | inexact = TRUE; |
| 2630 | Set_overflowflag(); |
| 2631 | Sgl_setoverflow(resultp1); |
| 2632 | } else if (result_exponent <= 0) { /* underflow case */ |
| 2633 | if (Is_underflowtrap_enabled()) { |
| 2634 | /* |
| 2635 | * Adjust bias of result |
| 2636 | */ |
| 2637 | Sgl_setwrapped_exponent(resultp1,result_exponent,unfl); |
| 2638 | Sgl_copytoptr(resultp1,dstptr); |
| 2639 | if (inexact) |
| 2640 | if (Is_inexacttrap_enabled()) |
| 2641 | return (OPC_2E_UNDERFLOWEXCEPTION | |
| 2642 | OPC_2E_INEXACTEXCEPTION); |
| 2643 | else Set_inexactflag(); |
| 2644 | return(OPC_2E_UNDERFLOWEXCEPTION); |
| 2645 | } |
| 2646 | else if (inexact && is_tiny) Set_underflowflag(); |
| 2647 | } |
| 2648 | else Sgl_set_exponent(resultp1,result_exponent); |
| 2649 | Sgl_copytoptr(resultp1,dstptr); |
| 2650 | if (inexact) |
| 2651 | if (Is_inexacttrap_enabled()) return(OPC_2E_INEXACTEXCEPTION); |
| 2652 | else Set_inexactflag(); |
| 2653 | return(NOEXCEPTION); |
| 2654 | } |
| 2655 | |