blob: fbcb18651970c982501953847676bdee58513924 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
17#include <linux/config.h>
18#include <linux/kernel.h>
19#include <linux/compiler.h>
20#include <linux/time.h>
21#include <linux/cache.h>
22
23#include <asm/atomic.h>
24#include <asm/types.h>
25#include <linux/spinlock.h>
26#include <linux/mm.h>
27#include <linux/highmem.h>
28#include <linux/poll.h>
29#include <linux/net.h>
Thomas Graf3fc7e8a2005-06-23 21:00:17 -070030#include <linux/textsearch.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070031#include <net/checksum.h>
32
33#define HAVE_ALLOC_SKB /* For the drivers to know */
34#define HAVE_ALIGNABLE_SKB /* Ditto 8) */
35#define SLAB_SKB /* Slabified skbuffs */
36
37#define CHECKSUM_NONE 0
38#define CHECKSUM_HW 1
39#define CHECKSUM_UNNECESSARY 2
40
41#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43#define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \
44 sizeof(struct skb_shared_info)) & \
45 ~(SMP_CACHE_BYTES - 1))
46#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
47#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
48
49/* A. Checksumming of received packets by device.
50 *
51 * NONE: device failed to checksum this packet.
52 * skb->csum is undefined.
53 *
54 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
55 * skb->csum is undefined.
56 * It is bad option, but, unfortunately, many of vendors do this.
57 * Apparently with secret goal to sell you new device, when you
58 * will add new protocol to your host. F.e. IPv6. 8)
59 *
60 * HW: the most generic way. Device supplied checksum of _all_
61 * the packet as seen by netif_rx in skb->csum.
62 * NOTE: Even if device supports only some protocols, but
63 * is able to produce some skb->csum, it MUST use HW,
64 * not UNNECESSARY.
65 *
66 * B. Checksumming on output.
67 *
68 * NONE: skb is checksummed by protocol or csum is not required.
69 *
70 * HW: device is required to csum packet as seen by hard_start_xmit
71 * from skb->h.raw to the end and to record the checksum
72 * at skb->h.raw+skb->csum.
73 *
74 * Device must show its capabilities in dev->features, set
75 * at device setup time.
76 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
77 * everything.
78 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
79 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
80 * TCP/UDP over IPv4. Sigh. Vendors like this
81 * way by an unknown reason. Though, see comment above
82 * about CHECKSUM_UNNECESSARY. 8)
83 *
84 * Any questions? No questions, good. --ANK
85 */
86
Linus Torvalds1da177e2005-04-16 15:20:36 -070087struct net_device;
88
89#ifdef CONFIG_NETFILTER
90struct nf_conntrack {
91 atomic_t use;
92 void (*destroy)(struct nf_conntrack *);
93};
94
95#ifdef CONFIG_BRIDGE_NETFILTER
96struct nf_bridge_info {
97 atomic_t use;
98 struct net_device *physindev;
99 struct net_device *physoutdev;
100#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
101 struct net_device *netoutdev;
102#endif
103 unsigned int mask;
104 unsigned long data[32 / sizeof(unsigned long)];
105};
106#endif
107
108#endif
109
110struct sk_buff_head {
111 /* These two members must be first. */
112 struct sk_buff *next;
113 struct sk_buff *prev;
114
115 __u32 qlen;
116 spinlock_t lock;
117};
118
119struct sk_buff;
120
121/* To allow 64K frame to be packed as single skb without frag_list */
122#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
123
124typedef struct skb_frag_struct skb_frag_t;
125
126struct skb_frag_struct {
127 struct page *page;
128 __u16 page_offset;
129 __u16 size;
130};
131
132/* This data is invariant across clones and lives at
133 * the end of the header data, ie. at skb->end.
134 */
135struct skb_shared_info {
136 atomic_t dataref;
137 unsigned int nr_frags;
138 unsigned short tso_size;
139 unsigned short tso_segs;
140 struct sk_buff *frag_list;
141 skb_frag_t frags[MAX_SKB_FRAGS];
142};
143
144/* We divide dataref into two halves. The higher 16 bits hold references
145 * to the payload part of skb->data. The lower 16 bits hold references to
146 * the entire skb->data. It is up to the users of the skb to agree on
147 * where the payload starts.
148 *
149 * All users must obey the rule that the skb->data reference count must be
150 * greater than or equal to the payload reference count.
151 *
152 * Holding a reference to the payload part means that the user does not
153 * care about modifications to the header part of skb->data.
154 */
155#define SKB_DATAREF_SHIFT 16
156#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
157
158/**
159 * struct sk_buff - socket buffer
160 * @next: Next buffer in list
161 * @prev: Previous buffer in list
162 * @list: List we are on
163 * @sk: Socket we are owned by
164 * @stamp: Time we arrived
165 * @dev: Device we arrived on/are leaving by
166 * @input_dev: Device we arrived on
167 * @real_dev: The real device we are using
168 * @h: Transport layer header
169 * @nh: Network layer header
170 * @mac: Link layer header
Martin Waitz67be2dd2005-05-01 08:59:26 -0700171 * @dst: destination entry
172 * @sp: the security path, used for xfrm
Linus Torvalds1da177e2005-04-16 15:20:36 -0700173 * @cb: Control buffer. Free for use by every layer. Put private vars here
174 * @len: Length of actual data
175 * @data_len: Data length
176 * @mac_len: Length of link layer header
177 * @csum: Checksum
Martin Waitz67be2dd2005-05-01 08:59:26 -0700178 * @local_df: allow local fragmentation
Linus Torvalds1da177e2005-04-16 15:20:36 -0700179 * @cloned: Head may be cloned (check refcnt to be sure)
180 * @nohdr: Payload reference only, must not modify header
181 * @pkt_type: Packet class
182 * @ip_summed: Driver fed us an IP checksum
183 * @priority: Packet queueing priority
184 * @users: User count - see {datagram,tcp}.c
185 * @protocol: Packet protocol from driver
186 * @security: Security level of packet
187 * @truesize: Buffer size
188 * @head: Head of buffer
189 * @data: Data head pointer
190 * @tail: Tail pointer
191 * @end: End pointer
192 * @destructor: Destruct function
193 * @nfmark: Can be used for communication between hooks
194 * @nfcache: Cache info
195 * @nfct: Associated connection, if any
196 * @nfctinfo: Relationship of this skb to the connection
Linus Torvalds1da177e2005-04-16 15:20:36 -0700197 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
198 * @private: Data which is private to the HIPPI implementation
199 * @tc_index: Traffic control index
200 * @tc_verd: traffic control verdict
201 * @tc_classid: traffic control classid
202 */
203
204struct sk_buff {
205 /* These two members must be first. */
206 struct sk_buff *next;
207 struct sk_buff *prev;
208
209 struct sk_buff_head *list;
210 struct sock *sk;
211 struct timeval stamp;
212 struct net_device *dev;
213 struct net_device *input_dev;
214 struct net_device *real_dev;
215
216 union {
217 struct tcphdr *th;
218 struct udphdr *uh;
219 struct icmphdr *icmph;
220 struct igmphdr *igmph;
221 struct iphdr *ipiph;
222 struct ipv6hdr *ipv6h;
223 unsigned char *raw;
224 } h;
225
226 union {
227 struct iphdr *iph;
228 struct ipv6hdr *ipv6h;
229 struct arphdr *arph;
230 unsigned char *raw;
231 } nh;
232
233 union {
234 unsigned char *raw;
235 } mac;
236
237 struct dst_entry *dst;
238 struct sec_path *sp;
239
240 /*
241 * This is the control buffer. It is free to use for every
242 * layer. Please put your private variables there. If you
243 * want to keep them across layers you have to do a skb_clone()
244 * first. This is owned by whoever has the skb queued ATM.
245 */
246 char cb[40];
247
248 unsigned int len,
249 data_len,
250 mac_len,
251 csum;
252 unsigned char local_df,
253 cloned:1,
254 nohdr:1,
255 pkt_type,
256 ip_summed;
257 __u32 priority;
258 unsigned short protocol,
259 security;
260
261 void (*destructor)(struct sk_buff *skb);
262#ifdef CONFIG_NETFILTER
263 unsigned long nfmark;
264 __u32 nfcache;
265 __u32 nfctinfo;
266 struct nf_conntrack *nfct;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700267#ifdef CONFIG_BRIDGE_NETFILTER
268 struct nf_bridge_info *nf_bridge;
269#endif
270#endif /* CONFIG_NETFILTER */
271#if defined(CONFIG_HIPPI)
272 union {
273 __u32 ifield;
274 } private;
275#endif
276#ifdef CONFIG_NET_SCHED
277 __u32 tc_index; /* traffic control index */
278#ifdef CONFIG_NET_CLS_ACT
279 __u32 tc_verd; /* traffic control verdict */
280 __u32 tc_classid; /* traffic control classid */
281#endif
282
283#endif
284
285
286 /* These elements must be at the end, see alloc_skb() for details. */
287 unsigned int truesize;
288 atomic_t users;
289 unsigned char *head,
290 *data,
291 *tail,
292 *end;
293};
294
295#ifdef __KERNEL__
296/*
297 * Handling routines are only of interest to the kernel
298 */
299#include <linux/slab.h>
300
301#include <asm/system.h>
302
303extern void __kfree_skb(struct sk_buff *skb);
304extern struct sk_buff *alloc_skb(unsigned int size, int priority);
305extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
306 unsigned int size, int priority);
307extern void kfree_skbmem(struct sk_buff *skb);
308extern struct sk_buff *skb_clone(struct sk_buff *skb, int priority);
309extern struct sk_buff *skb_copy(const struct sk_buff *skb, int priority);
310extern struct sk_buff *pskb_copy(struct sk_buff *skb, int gfp_mask);
311extern int pskb_expand_head(struct sk_buff *skb,
312 int nhead, int ntail, int gfp_mask);
313extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
314 unsigned int headroom);
315extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
316 int newheadroom, int newtailroom,
317 int priority);
318extern struct sk_buff * skb_pad(struct sk_buff *skb, int pad);
319#define dev_kfree_skb(a) kfree_skb(a)
320extern void skb_over_panic(struct sk_buff *skb, int len,
321 void *here);
322extern void skb_under_panic(struct sk_buff *skb, int len,
323 void *here);
324
Thomas Graf677e90e2005-06-23 20:59:51 -0700325struct skb_seq_state
326{
327 __u32 lower_offset;
328 __u32 upper_offset;
329 __u32 frag_idx;
330 __u32 stepped_offset;
331 struct sk_buff *root_skb;
332 struct sk_buff *cur_skb;
333 __u8 *frag_data;
334};
335
336extern void skb_prepare_seq_read(struct sk_buff *skb,
337 unsigned int from, unsigned int to,
338 struct skb_seq_state *st);
339extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
340 struct skb_seq_state *st);
341extern void skb_abort_seq_read(struct skb_seq_state *st);
342
Thomas Graf3fc7e8a2005-06-23 21:00:17 -0700343extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
344 unsigned int to, struct ts_config *config,
345 struct ts_state *state);
346
Linus Torvalds1da177e2005-04-16 15:20:36 -0700347/* Internal */
348#define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
349
350/**
351 * skb_queue_empty - check if a queue is empty
352 * @list: queue head
353 *
354 * Returns true if the queue is empty, false otherwise.
355 */
356static inline int skb_queue_empty(const struct sk_buff_head *list)
357{
358 return list->next == (struct sk_buff *)list;
359}
360
361/**
362 * skb_get - reference buffer
363 * @skb: buffer to reference
364 *
365 * Makes another reference to a socket buffer and returns a pointer
366 * to the buffer.
367 */
368static inline struct sk_buff *skb_get(struct sk_buff *skb)
369{
370 atomic_inc(&skb->users);
371 return skb;
372}
373
374/*
375 * If users == 1, we are the only owner and are can avoid redundant
376 * atomic change.
377 */
378
379/**
380 * kfree_skb - free an sk_buff
381 * @skb: buffer to free
382 *
383 * Drop a reference to the buffer and free it if the usage count has
384 * hit zero.
385 */
386static inline void kfree_skb(struct sk_buff *skb)
387{
388 if (likely(atomic_read(&skb->users) == 1))
389 smp_rmb();
390 else if (likely(!atomic_dec_and_test(&skb->users)))
391 return;
392 __kfree_skb(skb);
393}
394
395/**
396 * skb_cloned - is the buffer a clone
397 * @skb: buffer to check
398 *
399 * Returns true if the buffer was generated with skb_clone() and is
400 * one of multiple shared copies of the buffer. Cloned buffers are
401 * shared data so must not be written to under normal circumstances.
402 */
403static inline int skb_cloned(const struct sk_buff *skb)
404{
405 return skb->cloned &&
406 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
407}
408
409/**
410 * skb_header_cloned - is the header a clone
411 * @skb: buffer to check
412 *
413 * Returns true if modifying the header part of the buffer requires
414 * the data to be copied.
415 */
416static inline int skb_header_cloned(const struct sk_buff *skb)
417{
418 int dataref;
419
420 if (!skb->cloned)
421 return 0;
422
423 dataref = atomic_read(&skb_shinfo(skb)->dataref);
424 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
425 return dataref != 1;
426}
427
428/**
429 * skb_header_release - release reference to header
430 * @skb: buffer to operate on
431 *
432 * Drop a reference to the header part of the buffer. This is done
433 * by acquiring a payload reference. You must not read from the header
434 * part of skb->data after this.
435 */
436static inline void skb_header_release(struct sk_buff *skb)
437{
438 BUG_ON(skb->nohdr);
439 skb->nohdr = 1;
440 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
441}
442
443/**
444 * skb_shared - is the buffer shared
445 * @skb: buffer to check
446 *
447 * Returns true if more than one person has a reference to this
448 * buffer.
449 */
450static inline int skb_shared(const struct sk_buff *skb)
451{
452 return atomic_read(&skb->users) != 1;
453}
454
455/**
456 * skb_share_check - check if buffer is shared and if so clone it
457 * @skb: buffer to check
458 * @pri: priority for memory allocation
459 *
460 * If the buffer is shared the buffer is cloned and the old copy
461 * drops a reference. A new clone with a single reference is returned.
462 * If the buffer is not shared the original buffer is returned. When
463 * being called from interrupt status or with spinlocks held pri must
464 * be GFP_ATOMIC.
465 *
466 * NULL is returned on a memory allocation failure.
467 */
468static inline struct sk_buff *skb_share_check(struct sk_buff *skb, int pri)
469{
470 might_sleep_if(pri & __GFP_WAIT);
471 if (skb_shared(skb)) {
472 struct sk_buff *nskb = skb_clone(skb, pri);
473 kfree_skb(skb);
474 skb = nskb;
475 }
476 return skb;
477}
478
479/*
480 * Copy shared buffers into a new sk_buff. We effectively do COW on
481 * packets to handle cases where we have a local reader and forward
482 * and a couple of other messy ones. The normal one is tcpdumping
483 * a packet thats being forwarded.
484 */
485
486/**
487 * skb_unshare - make a copy of a shared buffer
488 * @skb: buffer to check
489 * @pri: priority for memory allocation
490 *
491 * If the socket buffer is a clone then this function creates a new
492 * copy of the data, drops a reference count on the old copy and returns
493 * the new copy with the reference count at 1. If the buffer is not a clone
494 * the original buffer is returned. When called with a spinlock held or
495 * from interrupt state @pri must be %GFP_ATOMIC
496 *
497 * %NULL is returned on a memory allocation failure.
498 */
499static inline struct sk_buff *skb_unshare(struct sk_buff *skb, int pri)
500{
501 might_sleep_if(pri & __GFP_WAIT);
502 if (skb_cloned(skb)) {
503 struct sk_buff *nskb = skb_copy(skb, pri);
504 kfree_skb(skb); /* Free our shared copy */
505 skb = nskb;
506 }
507 return skb;
508}
509
510/**
511 * skb_peek
512 * @list_: list to peek at
513 *
514 * Peek an &sk_buff. Unlike most other operations you _MUST_
515 * be careful with this one. A peek leaves the buffer on the
516 * list and someone else may run off with it. You must hold
517 * the appropriate locks or have a private queue to do this.
518 *
519 * Returns %NULL for an empty list or a pointer to the head element.
520 * The reference count is not incremented and the reference is therefore
521 * volatile. Use with caution.
522 */
523static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
524{
525 struct sk_buff *list = ((struct sk_buff *)list_)->next;
526 if (list == (struct sk_buff *)list_)
527 list = NULL;
528 return list;
529}
530
531/**
532 * skb_peek_tail
533 * @list_: list to peek at
534 *
535 * Peek an &sk_buff. Unlike most other operations you _MUST_
536 * be careful with this one. A peek leaves the buffer on the
537 * list and someone else may run off with it. You must hold
538 * the appropriate locks or have a private queue to do this.
539 *
540 * Returns %NULL for an empty list or a pointer to the tail element.
541 * The reference count is not incremented and the reference is therefore
542 * volatile. Use with caution.
543 */
544static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
545{
546 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
547 if (list == (struct sk_buff *)list_)
548 list = NULL;
549 return list;
550}
551
552/**
553 * skb_queue_len - get queue length
554 * @list_: list to measure
555 *
556 * Return the length of an &sk_buff queue.
557 */
558static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
559{
560 return list_->qlen;
561}
562
563static inline void skb_queue_head_init(struct sk_buff_head *list)
564{
565 spin_lock_init(&list->lock);
566 list->prev = list->next = (struct sk_buff *)list;
567 list->qlen = 0;
568}
569
570/*
571 * Insert an sk_buff at the start of a list.
572 *
573 * The "__skb_xxxx()" functions are the non-atomic ones that
574 * can only be called with interrupts disabled.
575 */
576
577/**
578 * __skb_queue_head - queue a buffer at the list head
579 * @list: list to use
580 * @newsk: buffer to queue
581 *
582 * Queue a buffer at the start of a list. This function takes no locks
583 * and you must therefore hold required locks before calling it.
584 *
585 * A buffer cannot be placed on two lists at the same time.
586 */
587extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
588static inline void __skb_queue_head(struct sk_buff_head *list,
589 struct sk_buff *newsk)
590{
591 struct sk_buff *prev, *next;
592
593 newsk->list = list;
594 list->qlen++;
595 prev = (struct sk_buff *)list;
596 next = prev->next;
597 newsk->next = next;
598 newsk->prev = prev;
599 next->prev = prev->next = newsk;
600}
601
602/**
603 * __skb_queue_tail - queue a buffer at the list tail
604 * @list: list to use
605 * @newsk: buffer to queue
606 *
607 * Queue a buffer at the end of a list. This function takes no locks
608 * and you must therefore hold required locks before calling it.
609 *
610 * A buffer cannot be placed on two lists at the same time.
611 */
612extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
613static inline void __skb_queue_tail(struct sk_buff_head *list,
614 struct sk_buff *newsk)
615{
616 struct sk_buff *prev, *next;
617
618 newsk->list = list;
619 list->qlen++;
620 next = (struct sk_buff *)list;
621 prev = next->prev;
622 newsk->next = next;
623 newsk->prev = prev;
624 next->prev = prev->next = newsk;
625}
626
627
628/**
629 * __skb_dequeue - remove from the head of the queue
630 * @list: list to dequeue from
631 *
632 * Remove the head of the list. This function does not take any locks
633 * so must be used with appropriate locks held only. The head item is
634 * returned or %NULL if the list is empty.
635 */
636extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
637static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
638{
639 struct sk_buff *next, *prev, *result;
640
641 prev = (struct sk_buff *) list;
642 next = prev->next;
643 result = NULL;
644 if (next != prev) {
645 result = next;
646 next = next->next;
647 list->qlen--;
648 next->prev = prev;
649 prev->next = next;
650 result->next = result->prev = NULL;
651 result->list = NULL;
652 }
653 return result;
654}
655
656
657/*
658 * Insert a packet on a list.
659 */
660extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk);
661static inline void __skb_insert(struct sk_buff *newsk,
662 struct sk_buff *prev, struct sk_buff *next,
663 struct sk_buff_head *list)
664{
665 newsk->next = next;
666 newsk->prev = prev;
667 next->prev = prev->next = newsk;
668 newsk->list = list;
669 list->qlen++;
670}
671
672/*
673 * Place a packet after a given packet in a list.
674 */
675extern void skb_append(struct sk_buff *old, struct sk_buff *newsk);
676static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk)
677{
678 __skb_insert(newsk, old, old->next, old->list);
679}
680
681/*
682 * remove sk_buff from list. _Must_ be called atomically, and with
683 * the list known..
684 */
685extern void skb_unlink(struct sk_buff *skb);
686static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
687{
688 struct sk_buff *next, *prev;
689
690 list->qlen--;
691 next = skb->next;
692 prev = skb->prev;
693 skb->next = skb->prev = NULL;
694 skb->list = NULL;
695 next->prev = prev;
696 prev->next = next;
697}
698
699
700/* XXX: more streamlined implementation */
701
702/**
703 * __skb_dequeue_tail - remove from the tail of the queue
704 * @list: list to dequeue from
705 *
706 * Remove the tail of the list. This function does not take any locks
707 * so must be used with appropriate locks held only. The tail item is
708 * returned or %NULL if the list is empty.
709 */
710extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
711static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
712{
713 struct sk_buff *skb = skb_peek_tail(list);
714 if (skb)
715 __skb_unlink(skb, list);
716 return skb;
717}
718
719
720static inline int skb_is_nonlinear(const struct sk_buff *skb)
721{
722 return skb->data_len;
723}
724
725static inline unsigned int skb_headlen(const struct sk_buff *skb)
726{
727 return skb->len - skb->data_len;
728}
729
730static inline int skb_pagelen(const struct sk_buff *skb)
731{
732 int i, len = 0;
733
734 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
735 len += skb_shinfo(skb)->frags[i].size;
736 return len + skb_headlen(skb);
737}
738
739static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
740 struct page *page, int off, int size)
741{
742 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
743
744 frag->page = page;
745 frag->page_offset = off;
746 frag->size = size;
747 skb_shinfo(skb)->nr_frags = i + 1;
748}
749
750#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
751#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
752#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
753
754/*
755 * Add data to an sk_buff
756 */
757static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
758{
759 unsigned char *tmp = skb->tail;
760 SKB_LINEAR_ASSERT(skb);
761 skb->tail += len;
762 skb->len += len;
763 return tmp;
764}
765
766/**
767 * skb_put - add data to a buffer
768 * @skb: buffer to use
769 * @len: amount of data to add
770 *
771 * This function extends the used data area of the buffer. If this would
772 * exceed the total buffer size the kernel will panic. A pointer to the
773 * first byte of the extra data is returned.
774 */
775static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
776{
777 unsigned char *tmp = skb->tail;
778 SKB_LINEAR_ASSERT(skb);
779 skb->tail += len;
780 skb->len += len;
781 if (unlikely(skb->tail>skb->end))
782 skb_over_panic(skb, len, current_text_addr());
783 return tmp;
784}
785
786static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
787{
788 skb->data -= len;
789 skb->len += len;
790 return skb->data;
791}
792
793/**
794 * skb_push - add data to the start of a buffer
795 * @skb: buffer to use
796 * @len: amount of data to add
797 *
798 * This function extends the used data area of the buffer at the buffer
799 * start. If this would exceed the total buffer headroom the kernel will
800 * panic. A pointer to the first byte of the extra data is returned.
801 */
802static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
803{
804 skb->data -= len;
805 skb->len += len;
806 if (unlikely(skb->data<skb->head))
807 skb_under_panic(skb, len, current_text_addr());
808 return skb->data;
809}
810
811static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
812{
813 skb->len -= len;
814 BUG_ON(skb->len < skb->data_len);
815 return skb->data += len;
816}
817
818/**
819 * skb_pull - remove data from the start of a buffer
820 * @skb: buffer to use
821 * @len: amount of data to remove
822 *
823 * This function removes data from the start of a buffer, returning
824 * the memory to the headroom. A pointer to the next data in the buffer
825 * is returned. Once the data has been pulled future pushes will overwrite
826 * the old data.
827 */
828static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
829{
830 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
831}
832
833extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
834
835static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
836{
837 if (len > skb_headlen(skb) &&
838 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
839 return NULL;
840 skb->len -= len;
841 return skb->data += len;
842}
843
844static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
845{
846 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
847}
848
849static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
850{
851 if (likely(len <= skb_headlen(skb)))
852 return 1;
853 if (unlikely(len > skb->len))
854 return 0;
855 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
856}
857
858/**
859 * skb_headroom - bytes at buffer head
860 * @skb: buffer to check
861 *
862 * Return the number of bytes of free space at the head of an &sk_buff.
863 */
864static inline int skb_headroom(const struct sk_buff *skb)
865{
866 return skb->data - skb->head;
867}
868
869/**
870 * skb_tailroom - bytes at buffer end
871 * @skb: buffer to check
872 *
873 * Return the number of bytes of free space at the tail of an sk_buff
874 */
875static inline int skb_tailroom(const struct sk_buff *skb)
876{
877 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
878}
879
880/**
881 * skb_reserve - adjust headroom
882 * @skb: buffer to alter
883 * @len: bytes to move
884 *
885 * Increase the headroom of an empty &sk_buff by reducing the tail
886 * room. This is only allowed for an empty buffer.
887 */
888static inline void skb_reserve(struct sk_buff *skb, unsigned int len)
889{
890 skb->data += len;
891 skb->tail += len;
892}
893
894/*
895 * CPUs often take a performance hit when accessing unaligned memory
896 * locations. The actual performance hit varies, it can be small if the
897 * hardware handles it or large if we have to take an exception and fix it
898 * in software.
899 *
900 * Since an ethernet header is 14 bytes network drivers often end up with
901 * the IP header at an unaligned offset. The IP header can be aligned by
902 * shifting the start of the packet by 2 bytes. Drivers should do this
903 * with:
904 *
905 * skb_reserve(NET_IP_ALIGN);
906 *
907 * The downside to this alignment of the IP header is that the DMA is now
908 * unaligned. On some architectures the cost of an unaligned DMA is high
909 * and this cost outweighs the gains made by aligning the IP header.
910 *
911 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
912 * to be overridden.
913 */
914#ifndef NET_IP_ALIGN
915#define NET_IP_ALIGN 2
916#endif
917
918extern int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc);
919
920static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
921{
922 if (!skb->data_len) {
923 skb->len = len;
924 skb->tail = skb->data + len;
925 } else
926 ___pskb_trim(skb, len, 0);
927}
928
929/**
930 * skb_trim - remove end from a buffer
931 * @skb: buffer to alter
932 * @len: new length
933 *
934 * Cut the length of a buffer down by removing data from the tail. If
935 * the buffer is already under the length specified it is not modified.
936 */
937static inline void skb_trim(struct sk_buff *skb, unsigned int len)
938{
939 if (skb->len > len)
940 __skb_trim(skb, len);
941}
942
943
944static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
945{
946 if (!skb->data_len) {
947 skb->len = len;
948 skb->tail = skb->data+len;
949 return 0;
950 }
951 return ___pskb_trim(skb, len, 1);
952}
953
954static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
955{
956 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
957}
958
959/**
960 * skb_orphan - orphan a buffer
961 * @skb: buffer to orphan
962 *
963 * If a buffer currently has an owner then we call the owner's
964 * destructor function and make the @skb unowned. The buffer continues
965 * to exist but is no longer charged to its former owner.
966 */
967static inline void skb_orphan(struct sk_buff *skb)
968{
969 if (skb->destructor)
970 skb->destructor(skb);
971 skb->destructor = NULL;
972 skb->sk = NULL;
973}
974
975/**
976 * __skb_queue_purge - empty a list
977 * @list: list to empty
978 *
979 * Delete all buffers on an &sk_buff list. Each buffer is removed from
980 * the list and one reference dropped. This function does not take the
981 * list lock and the caller must hold the relevant locks to use it.
982 */
983extern void skb_queue_purge(struct sk_buff_head *list);
984static inline void __skb_queue_purge(struct sk_buff_head *list)
985{
986 struct sk_buff *skb;
987 while ((skb = __skb_dequeue(list)) != NULL)
988 kfree_skb(skb);
989}
990
Pavel Pisa4dc3b162005-05-01 08:59:25 -0700991#ifndef CONFIG_HAVE_ARCH_DEV_ALLOC_SKB
Linus Torvalds1da177e2005-04-16 15:20:36 -0700992/**
993 * __dev_alloc_skb - allocate an skbuff for sending
994 * @length: length to allocate
995 * @gfp_mask: get_free_pages mask, passed to alloc_skb
996 *
997 * Allocate a new &sk_buff and assign it a usage count of one. The
998 * buffer has unspecified headroom built in. Users should allocate
999 * the headroom they think they need without accounting for the
1000 * built in space. The built in space is used for optimisations.
1001 *
1002 * %NULL is returned in there is no free memory.
1003 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001004static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1005 int gfp_mask)
1006{
1007 struct sk_buff *skb = alloc_skb(length + 16, gfp_mask);
1008 if (likely(skb))
1009 skb_reserve(skb, 16);
1010 return skb;
1011}
1012#else
1013extern struct sk_buff *__dev_alloc_skb(unsigned int length, int gfp_mask);
1014#endif
1015
1016/**
1017 * dev_alloc_skb - allocate an skbuff for sending
1018 * @length: length to allocate
1019 *
1020 * Allocate a new &sk_buff and assign it a usage count of one. The
1021 * buffer has unspecified headroom built in. Users should allocate
1022 * the headroom they think they need without accounting for the
1023 * built in space. The built in space is used for optimisations.
1024 *
1025 * %NULL is returned in there is no free memory. Although this function
1026 * allocates memory it can be called from an interrupt.
1027 */
1028static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1029{
1030 return __dev_alloc_skb(length, GFP_ATOMIC);
1031}
1032
1033/**
1034 * skb_cow - copy header of skb when it is required
1035 * @skb: buffer to cow
1036 * @headroom: needed headroom
1037 *
1038 * If the skb passed lacks sufficient headroom or its data part
1039 * is shared, data is reallocated. If reallocation fails, an error
1040 * is returned and original skb is not changed.
1041 *
1042 * The result is skb with writable area skb->head...skb->tail
1043 * and at least @headroom of space at head.
1044 */
1045static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1046{
1047 int delta = (headroom > 16 ? headroom : 16) - skb_headroom(skb);
1048
1049 if (delta < 0)
1050 delta = 0;
1051
1052 if (delta || skb_cloned(skb))
1053 return pskb_expand_head(skb, (delta + 15) & ~15, 0, GFP_ATOMIC);
1054 return 0;
1055}
1056
1057/**
1058 * skb_padto - pad an skbuff up to a minimal size
1059 * @skb: buffer to pad
1060 * @len: minimal length
1061 *
1062 * Pads up a buffer to ensure the trailing bytes exist and are
1063 * blanked. If the buffer already contains sufficient data it
1064 * is untouched. Returns the buffer, which may be a replacement
1065 * for the original, or NULL for out of memory - in which case
1066 * the original buffer is still freed.
1067 */
1068
1069static inline struct sk_buff *skb_padto(struct sk_buff *skb, unsigned int len)
1070{
1071 unsigned int size = skb->len;
1072 if (likely(size >= len))
1073 return skb;
1074 return skb_pad(skb, len-size);
1075}
1076
1077static inline int skb_add_data(struct sk_buff *skb,
1078 char __user *from, int copy)
1079{
1080 const int off = skb->len;
1081
1082 if (skb->ip_summed == CHECKSUM_NONE) {
1083 int err = 0;
1084 unsigned int csum = csum_and_copy_from_user(from,
1085 skb_put(skb, copy),
1086 copy, 0, &err);
1087 if (!err) {
1088 skb->csum = csum_block_add(skb->csum, csum, off);
1089 return 0;
1090 }
1091 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1092 return 0;
1093
1094 __skb_trim(skb, off);
1095 return -EFAULT;
1096}
1097
1098static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1099 struct page *page, int off)
1100{
1101 if (i) {
1102 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1103
1104 return page == frag->page &&
1105 off == frag->page_offset + frag->size;
1106 }
1107 return 0;
1108}
1109
1110/**
1111 * skb_linearize - convert paged skb to linear one
1112 * @skb: buffer to linarize
1113 * @gfp: allocation mode
1114 *
1115 * If there is no free memory -ENOMEM is returned, otherwise zero
1116 * is returned and the old skb data released.
1117 */
1118extern int __skb_linearize(struct sk_buff *skb, int gfp);
1119static inline int skb_linearize(struct sk_buff *skb, int gfp)
1120{
1121 return __skb_linearize(skb, gfp);
1122}
1123
1124/**
1125 * skb_postpull_rcsum - update checksum for received skb after pull
1126 * @skb: buffer to update
1127 * @start: start of data before pull
1128 * @len: length of data pulled
1129 *
1130 * After doing a pull on a received packet, you need to call this to
1131 * update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE
1132 * so that it can be recomputed from scratch.
1133 */
1134
1135static inline void skb_postpull_rcsum(struct sk_buff *skb,
1136 const void *start, int len)
1137{
1138 if (skb->ip_summed == CHECKSUM_HW)
1139 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1140}
1141
1142/**
1143 * pskb_trim_rcsum - trim received skb and update checksum
1144 * @skb: buffer to trim
1145 * @len: new length
1146 *
1147 * This is exactly the same as pskb_trim except that it ensures the
1148 * checksum of received packets are still valid after the operation.
1149 */
1150
1151static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1152{
1153 if (len >= skb->len)
1154 return 0;
1155 if (skb->ip_summed == CHECKSUM_HW)
1156 skb->ip_summed = CHECKSUM_NONE;
1157 return __pskb_trim(skb, len);
1158}
1159
1160static inline void *kmap_skb_frag(const skb_frag_t *frag)
1161{
1162#ifdef CONFIG_HIGHMEM
1163 BUG_ON(in_irq());
1164
1165 local_bh_disable();
1166#endif
1167 return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1168}
1169
1170static inline void kunmap_skb_frag(void *vaddr)
1171{
1172 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1173#ifdef CONFIG_HIGHMEM
1174 local_bh_enable();
1175#endif
1176}
1177
1178#define skb_queue_walk(queue, skb) \
1179 for (skb = (queue)->next; \
1180 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1181 skb = skb->next)
1182
1183
1184extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1185 int noblock, int *err);
1186extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1187 struct poll_table_struct *wait);
1188extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1189 int offset, struct iovec *to,
1190 int size);
1191extern int skb_copy_and_csum_datagram_iovec(const
1192 struct sk_buff *skb,
1193 int hlen,
1194 struct iovec *iov);
1195extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1196extern unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1197 int len, unsigned int csum);
1198extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1199 void *to, int len);
Herbert Xu357b40a2005-04-19 22:30:14 -07001200extern int skb_store_bits(const struct sk_buff *skb, int offset,
1201 void *from, int len);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001202extern unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb,
1203 int offset, u8 *to, int len,
1204 unsigned int csum);
1205extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1206extern void skb_split(struct sk_buff *skb,
1207 struct sk_buff *skb1, const u32 len);
1208
1209static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1210 int len, void *buffer)
1211{
1212 int hlen = skb_headlen(skb);
1213
Patrick McHardy55820ee2005-07-05 14:08:10 -07001214 if (hlen - offset >= len)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001215 return skb->data + offset;
1216
1217 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1218 return NULL;
1219
1220 return buffer;
1221}
1222
1223extern void skb_init(void);
1224extern void skb_add_mtu(int mtu);
1225
1226#ifdef CONFIG_NETFILTER
1227static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1228{
1229 if (nfct && atomic_dec_and_test(&nfct->use))
1230 nfct->destroy(nfct);
1231}
1232static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1233{
1234 if (nfct)
1235 atomic_inc(&nfct->use);
1236}
1237static inline void nf_reset(struct sk_buff *skb)
1238{
1239 nf_conntrack_put(skb->nfct);
1240 skb->nfct = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001241}
1242
1243#ifdef CONFIG_BRIDGE_NETFILTER
1244static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1245{
1246 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1247 kfree(nf_bridge);
1248}
1249static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1250{
1251 if (nf_bridge)
1252 atomic_inc(&nf_bridge->use);
1253}
1254#endif /* CONFIG_BRIDGE_NETFILTER */
1255#else /* CONFIG_NETFILTER */
1256static inline void nf_reset(struct sk_buff *skb) {}
1257#endif /* CONFIG_NETFILTER */
1258
1259#endif /* __KERNEL__ */
1260#endif /* _LINUX_SKBUFF_H */