blob: 3ed36d3056de0a4a9e932ac50e778c9ae6d82ff9 [file] [log] [blame]
Mike Turquetteb24764902012-03-15 23:11:19 -07001/*
2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * Standard functionality for the common clock API. See Documentation/clk.txt
10 */
11
12#include <linux/clk-private.h>
13#include <linux/module.h>
14#include <linux/mutex.h>
15#include <linux/spinlock.h>
16#include <linux/err.h>
17#include <linux/list.h>
18#include <linux/slab.h>
19
20static DEFINE_SPINLOCK(enable_lock);
21static DEFINE_MUTEX(prepare_lock);
22
23static HLIST_HEAD(clk_root_list);
24static HLIST_HEAD(clk_orphan_list);
25static LIST_HEAD(clk_notifier_list);
26
27/*** debugfs support ***/
28
29#ifdef CONFIG_COMMON_CLK_DEBUG
30#include <linux/debugfs.h>
31
32static struct dentry *rootdir;
33static struct dentry *orphandir;
34static int inited = 0;
35
36/* caller must hold prepare_lock */
37static int clk_debug_create_one(struct clk *clk, struct dentry *pdentry)
38{
39 struct dentry *d;
40 int ret = -ENOMEM;
41
42 if (!clk || !pdentry) {
43 ret = -EINVAL;
44 goto out;
45 }
46
47 d = debugfs_create_dir(clk->name, pdentry);
48 if (!d)
49 goto out;
50
51 clk->dentry = d;
52
53 d = debugfs_create_u32("clk_rate", S_IRUGO, clk->dentry,
54 (u32 *)&clk->rate);
55 if (!d)
56 goto err_out;
57
58 d = debugfs_create_x32("clk_flags", S_IRUGO, clk->dentry,
59 (u32 *)&clk->flags);
60 if (!d)
61 goto err_out;
62
63 d = debugfs_create_u32("clk_prepare_count", S_IRUGO, clk->dentry,
64 (u32 *)&clk->prepare_count);
65 if (!d)
66 goto err_out;
67
68 d = debugfs_create_u32("clk_enable_count", S_IRUGO, clk->dentry,
69 (u32 *)&clk->enable_count);
70 if (!d)
71 goto err_out;
72
73 d = debugfs_create_u32("clk_notifier_count", S_IRUGO, clk->dentry,
74 (u32 *)&clk->notifier_count);
75 if (!d)
76 goto err_out;
77
78 ret = 0;
79 goto out;
80
81err_out:
82 debugfs_remove(clk->dentry);
83out:
84 return ret;
85}
86
87/* caller must hold prepare_lock */
88static int clk_debug_create_subtree(struct clk *clk, struct dentry *pdentry)
89{
90 struct clk *child;
91 struct hlist_node *tmp;
92 int ret = -EINVAL;;
93
94 if (!clk || !pdentry)
95 goto out;
96
97 ret = clk_debug_create_one(clk, pdentry);
98
99 if (ret)
100 goto out;
101
102 hlist_for_each_entry(child, tmp, &clk->children, child_node)
103 clk_debug_create_subtree(child, clk->dentry);
104
105 ret = 0;
106out:
107 return ret;
108}
109
110/**
111 * clk_debug_register - add a clk node to the debugfs clk tree
112 * @clk: the clk being added to the debugfs clk tree
113 *
114 * Dynamically adds a clk to the debugfs clk tree if debugfs has been
115 * initialized. Otherwise it bails out early since the debugfs clk tree
116 * will be created lazily by clk_debug_init as part of a late_initcall.
117 *
118 * Caller must hold prepare_lock. Only clk_init calls this function (so
119 * far) so this is taken care.
120 */
121static int clk_debug_register(struct clk *clk)
122{
123 struct clk *parent;
124 struct dentry *pdentry;
125 int ret = 0;
126
127 if (!inited)
128 goto out;
129
130 parent = clk->parent;
131
132 /*
133 * Check to see if a clk is a root clk. Also check that it is
134 * safe to add this clk to debugfs
135 */
136 if (!parent)
137 if (clk->flags & CLK_IS_ROOT)
138 pdentry = rootdir;
139 else
140 pdentry = orphandir;
141 else
142 if (parent->dentry)
143 pdentry = parent->dentry;
144 else
145 goto out;
146
147 ret = clk_debug_create_subtree(clk, pdentry);
148
149out:
150 return ret;
151}
152
153/**
154 * clk_debug_init - lazily create the debugfs clk tree visualization
155 *
156 * clks are often initialized very early during boot before memory can
157 * be dynamically allocated and well before debugfs is setup.
158 * clk_debug_init walks the clk tree hierarchy while holding
159 * prepare_lock and creates the topology as part of a late_initcall,
160 * thus insuring that clks initialized very early will still be
161 * represented in the debugfs clk tree. This function should only be
162 * called once at boot-time, and all other clks added dynamically will
163 * be done so with clk_debug_register.
164 */
165static int __init clk_debug_init(void)
166{
167 struct clk *clk;
168 struct hlist_node *tmp;
169
170 rootdir = debugfs_create_dir("clk", NULL);
171
172 if (!rootdir)
173 return -ENOMEM;
174
175 orphandir = debugfs_create_dir("orphans", rootdir);
176
177 if (!orphandir)
178 return -ENOMEM;
179
180 mutex_lock(&prepare_lock);
181
182 hlist_for_each_entry(clk, tmp, &clk_root_list, child_node)
183 clk_debug_create_subtree(clk, rootdir);
184
185 hlist_for_each_entry(clk, tmp, &clk_orphan_list, child_node)
186 clk_debug_create_subtree(clk, orphandir);
187
188 inited = 1;
189
190 mutex_unlock(&prepare_lock);
191
192 return 0;
193}
194late_initcall(clk_debug_init);
195#else
196static inline int clk_debug_register(struct clk *clk) { return 0; }
197#endif /* CONFIG_COMMON_CLK_DEBUG */
198
199#ifdef CONFIG_COMMON_CLK_DISABLE_UNUSED
200/* caller must hold prepare_lock */
201static void clk_disable_unused_subtree(struct clk *clk)
202{
203 struct clk *child;
204 struct hlist_node *tmp;
205 unsigned long flags;
206
207 if (!clk)
208 goto out;
209
210 hlist_for_each_entry(child, tmp, &clk->children, child_node)
211 clk_disable_unused_subtree(child);
212
213 spin_lock_irqsave(&enable_lock, flags);
214
215 if (clk->enable_count)
216 goto unlock_out;
217
218 if (clk->flags & CLK_IGNORE_UNUSED)
219 goto unlock_out;
220
221 if (__clk_is_enabled(clk) && clk->ops->disable)
222 clk->ops->disable(clk->hw);
223
224unlock_out:
225 spin_unlock_irqrestore(&enable_lock, flags);
226
227out:
228 return;
229}
230
231static int clk_disable_unused(void)
232{
233 struct clk *clk;
234 struct hlist_node *tmp;
235
236 mutex_lock(&prepare_lock);
237
238 hlist_for_each_entry(clk, tmp, &clk_root_list, child_node)
239 clk_disable_unused_subtree(clk);
240
241 hlist_for_each_entry(clk, tmp, &clk_orphan_list, child_node)
242 clk_disable_unused_subtree(clk);
243
244 mutex_unlock(&prepare_lock);
245
246 return 0;
247}
248late_initcall(clk_disable_unused);
249#else
250static inline int clk_disable_unused(struct clk *clk) { return 0; }
251#endif /* CONFIG_COMMON_CLK_DISABLE_UNUSED */
252
253/*** helper functions ***/
254
255inline const char *__clk_get_name(struct clk *clk)
256{
257 return !clk ? NULL : clk->name;
258}
259
260inline struct clk_hw *__clk_get_hw(struct clk *clk)
261{
262 return !clk ? NULL : clk->hw;
263}
264
265inline u8 __clk_get_num_parents(struct clk *clk)
266{
267 return !clk ? -EINVAL : clk->num_parents;
268}
269
270inline struct clk *__clk_get_parent(struct clk *clk)
271{
272 return !clk ? NULL : clk->parent;
273}
274
275inline int __clk_get_enable_count(struct clk *clk)
276{
277 return !clk ? -EINVAL : clk->enable_count;
278}
279
280inline int __clk_get_prepare_count(struct clk *clk)
281{
282 return !clk ? -EINVAL : clk->prepare_count;
283}
284
285unsigned long __clk_get_rate(struct clk *clk)
286{
287 unsigned long ret;
288
289 if (!clk) {
290 ret = -EINVAL;
291 goto out;
292 }
293
294 ret = clk->rate;
295
296 if (clk->flags & CLK_IS_ROOT)
297 goto out;
298
299 if (!clk->parent)
300 ret = -ENODEV;
301
302out:
303 return ret;
304}
305
306inline unsigned long __clk_get_flags(struct clk *clk)
307{
308 return !clk ? -EINVAL : clk->flags;
309}
310
311int __clk_is_enabled(struct clk *clk)
312{
313 int ret;
314
315 if (!clk)
316 return -EINVAL;
317
318 /*
319 * .is_enabled is only mandatory for clocks that gate
320 * fall back to software usage counter if .is_enabled is missing
321 */
322 if (!clk->ops->is_enabled) {
323 ret = clk->enable_count ? 1 : 0;
324 goto out;
325 }
326
327 ret = clk->ops->is_enabled(clk->hw);
328out:
329 return ret;
330}
331
332static struct clk *__clk_lookup_subtree(const char *name, struct clk *clk)
333{
334 struct clk *child;
335 struct clk *ret;
336 struct hlist_node *tmp;
337
338 if (!strcmp(clk->name, name))
339 return clk;
340
341 hlist_for_each_entry(child, tmp, &clk->children, child_node) {
342 ret = __clk_lookup_subtree(name, child);
343 if (ret)
344 return ret;
345 }
346
347 return NULL;
348}
349
350struct clk *__clk_lookup(const char *name)
351{
352 struct clk *root_clk;
353 struct clk *ret;
354 struct hlist_node *tmp;
355
356 if (!name)
357 return NULL;
358
359 /* search the 'proper' clk tree first */
360 hlist_for_each_entry(root_clk, tmp, &clk_root_list, child_node) {
361 ret = __clk_lookup_subtree(name, root_clk);
362 if (ret)
363 return ret;
364 }
365
366 /* if not found, then search the orphan tree */
367 hlist_for_each_entry(root_clk, tmp, &clk_orphan_list, child_node) {
368 ret = __clk_lookup_subtree(name, root_clk);
369 if (ret)
370 return ret;
371 }
372
373 return NULL;
374}
375
376/*** clk api ***/
377
378void __clk_unprepare(struct clk *clk)
379{
380 if (!clk)
381 return;
382
383 if (WARN_ON(clk->prepare_count == 0))
384 return;
385
386 if (--clk->prepare_count > 0)
387 return;
388
389 WARN_ON(clk->enable_count > 0);
390
391 if (clk->ops->unprepare)
392 clk->ops->unprepare(clk->hw);
393
394 __clk_unprepare(clk->parent);
395}
396
397/**
398 * clk_unprepare - undo preparation of a clock source
399 * @clk: the clk being unprepare
400 *
401 * clk_unprepare may sleep, which differentiates it from clk_disable. In a
402 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
403 * if the operation may sleep. One example is a clk which is accessed over
404 * I2c. In the complex case a clk gate operation may require a fast and a slow
405 * part. It is this reason that clk_unprepare and clk_disable are not mutually
406 * exclusive. In fact clk_disable must be called before clk_unprepare.
407 */
408void clk_unprepare(struct clk *clk)
409{
410 mutex_lock(&prepare_lock);
411 __clk_unprepare(clk);
412 mutex_unlock(&prepare_lock);
413}
414EXPORT_SYMBOL_GPL(clk_unprepare);
415
416int __clk_prepare(struct clk *clk)
417{
418 int ret = 0;
419
420 if (!clk)
421 return 0;
422
423 if (clk->prepare_count == 0) {
424 ret = __clk_prepare(clk->parent);
425 if (ret)
426 return ret;
427
428 if (clk->ops->prepare) {
429 ret = clk->ops->prepare(clk->hw);
430 if (ret) {
431 __clk_unprepare(clk->parent);
432 return ret;
433 }
434 }
435 }
436
437 clk->prepare_count++;
438
439 return 0;
440}
441
442/**
443 * clk_prepare - prepare a clock source
444 * @clk: the clk being prepared
445 *
446 * clk_prepare may sleep, which differentiates it from clk_enable. In a simple
447 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
448 * operation may sleep. One example is a clk which is accessed over I2c. In
449 * the complex case a clk ungate operation may require a fast and a slow part.
450 * It is this reason that clk_prepare and clk_enable are not mutually
451 * exclusive. In fact clk_prepare must be called before clk_enable.
452 * Returns 0 on success, -EERROR otherwise.
453 */
454int clk_prepare(struct clk *clk)
455{
456 int ret;
457
458 mutex_lock(&prepare_lock);
459 ret = __clk_prepare(clk);
460 mutex_unlock(&prepare_lock);
461
462 return ret;
463}
464EXPORT_SYMBOL_GPL(clk_prepare);
465
466static void __clk_disable(struct clk *clk)
467{
468 if (!clk)
469 return;
470
471 if (WARN_ON(clk->enable_count == 0))
472 return;
473
474 if (--clk->enable_count > 0)
475 return;
476
477 if (clk->ops->disable)
478 clk->ops->disable(clk->hw);
479
480 __clk_disable(clk->parent);
481}
482
483/**
484 * clk_disable - gate a clock
485 * @clk: the clk being gated
486 *
487 * clk_disable must not sleep, which differentiates it from clk_unprepare. In
488 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
489 * clk if the operation is fast and will never sleep. One example is a
490 * SoC-internal clk which is controlled via simple register writes. In the
491 * complex case a clk gate operation may require a fast and a slow part. It is
492 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
493 * In fact clk_disable must be called before clk_unprepare.
494 */
495void clk_disable(struct clk *clk)
496{
497 unsigned long flags;
498
499 spin_lock_irqsave(&enable_lock, flags);
500 __clk_disable(clk);
501 spin_unlock_irqrestore(&enable_lock, flags);
502}
503EXPORT_SYMBOL_GPL(clk_disable);
504
505static int __clk_enable(struct clk *clk)
506{
507 int ret = 0;
508
509 if (!clk)
510 return 0;
511
512 if (WARN_ON(clk->prepare_count == 0))
513 return -ESHUTDOWN;
514
515 if (clk->enable_count == 0) {
516 ret = __clk_enable(clk->parent);
517
518 if (ret)
519 return ret;
520
521 if (clk->ops->enable) {
522 ret = clk->ops->enable(clk->hw);
523 if (ret) {
524 __clk_disable(clk->parent);
525 return ret;
526 }
527 }
528 }
529
530 clk->enable_count++;
531 return 0;
532}
533
534/**
535 * clk_enable - ungate a clock
536 * @clk: the clk being ungated
537 *
538 * clk_enable must not sleep, which differentiates it from clk_prepare. In a
539 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
540 * if the operation will never sleep. One example is a SoC-internal clk which
541 * is controlled via simple register writes. In the complex case a clk ungate
542 * operation may require a fast and a slow part. It is this reason that
543 * clk_enable and clk_prepare are not mutually exclusive. In fact clk_prepare
544 * must be called before clk_enable. Returns 0 on success, -EERROR
545 * otherwise.
546 */
547int clk_enable(struct clk *clk)
548{
549 unsigned long flags;
550 int ret;
551
552 spin_lock_irqsave(&enable_lock, flags);
553 ret = __clk_enable(clk);
554 spin_unlock_irqrestore(&enable_lock, flags);
555
556 return ret;
557}
558EXPORT_SYMBOL_GPL(clk_enable);
559
560/**
561 * clk_get_rate - return the rate of clk
562 * @clk: the clk whose rate is being returned
563 *
564 * Simply returns the cached rate of the clk. Does not query the hardware. If
565 * clk is NULL then returns -EINVAL.
566 */
567unsigned long clk_get_rate(struct clk *clk)
568{
569 unsigned long rate;
570
571 mutex_lock(&prepare_lock);
572 rate = __clk_get_rate(clk);
573 mutex_unlock(&prepare_lock);
574
575 return rate;
576}
577EXPORT_SYMBOL_GPL(clk_get_rate);
578
579/**
580 * __clk_round_rate - round the given rate for a clk
581 * @clk: round the rate of this clock
582 *
583 * Caller must hold prepare_lock. Useful for clk_ops such as .set_rate
584 */
585unsigned long __clk_round_rate(struct clk *clk, unsigned long rate)
586{
587 unsigned long unused;
588
589 if (!clk)
590 return -EINVAL;
591
592 if (!clk->ops->round_rate)
593 return clk->rate;
594
595 if (clk->flags & CLK_SET_RATE_PARENT)
596 return clk->ops->round_rate(clk->hw, rate, &unused);
597 else
598 return clk->ops->round_rate(clk->hw, rate, NULL);
599}
600
601/**
602 * clk_round_rate - round the given rate for a clk
603 * @clk: the clk for which we are rounding a rate
604 * @rate: the rate which is to be rounded
605 *
606 * Takes in a rate as input and rounds it to a rate that the clk can actually
607 * use which is then returned. If clk doesn't support round_rate operation
608 * then the parent rate is returned.
609 */
610long clk_round_rate(struct clk *clk, unsigned long rate)
611{
612 unsigned long ret;
613
614 mutex_lock(&prepare_lock);
615 ret = __clk_round_rate(clk, rate);
616 mutex_unlock(&prepare_lock);
617
618 return ret;
619}
620EXPORT_SYMBOL_GPL(clk_round_rate);
621
622/**
623 * __clk_notify - call clk notifier chain
624 * @clk: struct clk * that is changing rate
625 * @msg: clk notifier type (see include/linux/clk.h)
626 * @old_rate: old clk rate
627 * @new_rate: new clk rate
628 *
629 * Triggers a notifier call chain on the clk rate-change notification
630 * for 'clk'. Passes a pointer to the struct clk and the previous
631 * and current rates to the notifier callback. Intended to be called by
632 * internal clock code only. Returns NOTIFY_DONE from the last driver
633 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
634 * a driver returns that.
635 */
636static int __clk_notify(struct clk *clk, unsigned long msg,
637 unsigned long old_rate, unsigned long new_rate)
638{
639 struct clk_notifier *cn;
640 struct clk_notifier_data cnd;
641 int ret = NOTIFY_DONE;
642
643 cnd.clk = clk;
644 cnd.old_rate = old_rate;
645 cnd.new_rate = new_rate;
646
647 list_for_each_entry(cn, &clk_notifier_list, node) {
648 if (cn->clk == clk) {
649 ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
650 &cnd);
651 break;
652 }
653 }
654
655 return ret;
656}
657
658/**
659 * __clk_recalc_rates
660 * @clk: first clk in the subtree
661 * @msg: notification type (see include/linux/clk.h)
662 *
663 * Walks the subtree of clks starting with clk and recalculates rates as it
664 * goes. Note that if a clk does not implement the .recalc_rate callback then
665 * it is assumed that the clock will take on the rate of it's parent.
666 *
667 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
668 * if necessary.
669 *
670 * Caller must hold prepare_lock.
671 */
672static void __clk_recalc_rates(struct clk *clk, unsigned long msg)
673{
674 unsigned long old_rate;
675 unsigned long parent_rate = 0;
676 struct hlist_node *tmp;
677 struct clk *child;
678
679 old_rate = clk->rate;
680
681 if (clk->parent)
682 parent_rate = clk->parent->rate;
683
684 if (clk->ops->recalc_rate)
685 clk->rate = clk->ops->recalc_rate(clk->hw, parent_rate);
686 else
687 clk->rate = parent_rate;
688
689 /*
690 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
691 * & ABORT_RATE_CHANGE notifiers
692 */
693 if (clk->notifier_count && msg)
694 __clk_notify(clk, msg, old_rate, clk->rate);
695
696 hlist_for_each_entry(child, tmp, &clk->children, child_node)
697 __clk_recalc_rates(child, msg);
698}
699
700/**
701 * __clk_speculate_rates
702 * @clk: first clk in the subtree
703 * @parent_rate: the "future" rate of clk's parent
704 *
705 * Walks the subtree of clks starting with clk, speculating rates as it
706 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
707 *
708 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
709 * pre-rate change notifications and returns early if no clks in the
710 * subtree have subscribed to the notifications. Note that if a clk does not
711 * implement the .recalc_rate callback then it is assumed that the clock will
712 * take on the rate of it's parent.
713 *
714 * Caller must hold prepare_lock.
715 */
716static int __clk_speculate_rates(struct clk *clk, unsigned long parent_rate)
717{
718 struct hlist_node *tmp;
719 struct clk *child;
720 unsigned long new_rate;
721 int ret = NOTIFY_DONE;
722
723 if (clk->ops->recalc_rate)
724 new_rate = clk->ops->recalc_rate(clk->hw, parent_rate);
725 else
726 new_rate = parent_rate;
727
728 /* abort the rate change if a driver returns NOTIFY_BAD */
729 if (clk->notifier_count)
730 ret = __clk_notify(clk, PRE_RATE_CHANGE, clk->rate, new_rate);
731
732 if (ret == NOTIFY_BAD)
733 goto out;
734
735 hlist_for_each_entry(child, tmp, &clk->children, child_node) {
736 ret = __clk_speculate_rates(child, new_rate);
737 if (ret == NOTIFY_BAD)
738 break;
739 }
740
741out:
742 return ret;
743}
744
745static void clk_calc_subtree(struct clk *clk, unsigned long new_rate)
746{
747 struct clk *child;
748 struct hlist_node *tmp;
749
750 clk->new_rate = new_rate;
751
752 hlist_for_each_entry(child, tmp, &clk->children, child_node) {
753 if (child->ops->recalc_rate)
754 child->new_rate = child->ops->recalc_rate(child->hw, new_rate);
755 else
756 child->new_rate = new_rate;
757 clk_calc_subtree(child, child->new_rate);
758 }
759}
760
761/*
762 * calculate the new rates returning the topmost clock that has to be
763 * changed.
764 */
765static struct clk *clk_calc_new_rates(struct clk *clk, unsigned long rate)
766{
767 struct clk *top = clk;
768 unsigned long best_parent_rate = clk->parent->rate;
769 unsigned long new_rate;
770
771 if (!clk->ops->round_rate && !(clk->flags & CLK_SET_RATE_PARENT)) {
772 clk->new_rate = clk->rate;
773 return NULL;
774 }
775
776 if (!clk->ops->round_rate && (clk->flags & CLK_SET_RATE_PARENT)) {
777 top = clk_calc_new_rates(clk->parent, rate);
778 new_rate = clk->new_rate = clk->parent->new_rate;
779
780 goto out;
781 }
782
783 if (clk->flags & CLK_SET_RATE_PARENT)
784 new_rate = clk->ops->round_rate(clk->hw, rate, &best_parent_rate);
785 else
786 new_rate = clk->ops->round_rate(clk->hw, rate, NULL);
787
788 if (best_parent_rate != clk->parent->rate) {
789 top = clk_calc_new_rates(clk->parent, best_parent_rate);
790
791 goto out;
792 }
793
794out:
795 clk_calc_subtree(clk, new_rate);
796
797 return top;
798}
799
800/*
801 * Notify about rate changes in a subtree. Always walk down the whole tree
802 * so that in case of an error we can walk down the whole tree again and
803 * abort the change.
804 */
805static struct clk *clk_propagate_rate_change(struct clk *clk, unsigned long event)
806{
807 struct hlist_node *tmp;
808 struct clk *child, *fail_clk = NULL;
809 int ret = NOTIFY_DONE;
810
811 if (clk->rate == clk->new_rate)
812 return 0;
813
814 if (clk->notifier_count) {
815 ret = __clk_notify(clk, event, clk->rate, clk->new_rate);
816 if (ret == NOTIFY_BAD)
817 fail_clk = clk;
818 }
819
820 hlist_for_each_entry(child, tmp, &clk->children, child_node) {
821 clk = clk_propagate_rate_change(child, event);
822 if (clk)
823 fail_clk = clk;
824 }
825
826 return fail_clk;
827}
828
829/*
830 * walk down a subtree and set the new rates notifying the rate
831 * change on the way
832 */
833static void clk_change_rate(struct clk *clk)
834{
835 struct clk *child;
836 unsigned long old_rate;
837 struct hlist_node *tmp;
838
839 old_rate = clk->rate;
840
841 if (clk->ops->set_rate)
842 clk->ops->set_rate(clk->hw, clk->new_rate);
843
844 if (clk->ops->recalc_rate)
845 clk->rate = clk->ops->recalc_rate(clk->hw,
846 clk->parent->rate);
847 else
848 clk->rate = clk->parent->rate;
849
850 if (clk->notifier_count && old_rate != clk->rate)
851 __clk_notify(clk, POST_RATE_CHANGE, old_rate, clk->rate);
852
853 hlist_for_each_entry(child, tmp, &clk->children, child_node)
854 clk_change_rate(child);
855}
856
857/**
858 * clk_set_rate - specify a new rate for clk
859 * @clk: the clk whose rate is being changed
860 * @rate: the new rate for clk
861 *
Mike Turquette5654dc92012-03-26 11:51:34 -0700862 * In the simplest case clk_set_rate will only adjust the rate of clk.
Mike Turquetteb24764902012-03-15 23:11:19 -0700863 *
Mike Turquette5654dc92012-03-26 11:51:34 -0700864 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
865 * propagate up to clk's parent; whether or not this happens depends on the
866 * outcome of clk's .round_rate implementation. If *parent_rate is unchanged
867 * after calling .round_rate then upstream parent propagation is ignored. If
868 * *parent_rate comes back with a new rate for clk's parent then we propagate
869 * up to clk's parent and set it's rate. Upward propagation will continue
870 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
871 * .round_rate stops requesting changes to clk's parent_rate.
Mike Turquetteb24764902012-03-15 23:11:19 -0700872 *
Mike Turquette5654dc92012-03-26 11:51:34 -0700873 * Rate changes are accomplished via tree traversal that also recalculates the
874 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
Mike Turquetteb24764902012-03-15 23:11:19 -0700875 *
876 * Returns 0 on success, -EERROR otherwise.
877 */
878int clk_set_rate(struct clk *clk, unsigned long rate)
879{
880 struct clk *top, *fail_clk;
881 int ret = 0;
882
883 /* prevent racing with updates to the clock topology */
884 mutex_lock(&prepare_lock);
885
886 /* bail early if nothing to do */
887 if (rate == clk->rate)
888 goto out;
889
890 /* calculate new rates and get the topmost changed clock */
891 top = clk_calc_new_rates(clk, rate);
892 if (!top) {
893 ret = -EINVAL;
894 goto out;
895 }
896
897 /* notify that we are about to change rates */
898 fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
899 if (fail_clk) {
900 pr_warn("%s: failed to set %s rate\n", __func__,
901 fail_clk->name);
902 clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
903 ret = -EBUSY;
904 goto out;
905 }
906
907 /* change the rates */
908 clk_change_rate(top);
909
910 mutex_unlock(&prepare_lock);
911
912 return 0;
913out:
914 mutex_unlock(&prepare_lock);
915
916 return ret;
917}
918EXPORT_SYMBOL_GPL(clk_set_rate);
919
920/**
921 * clk_get_parent - return the parent of a clk
922 * @clk: the clk whose parent gets returned
923 *
924 * Simply returns clk->parent. Returns NULL if clk is NULL.
925 */
926struct clk *clk_get_parent(struct clk *clk)
927{
928 struct clk *parent;
929
930 mutex_lock(&prepare_lock);
931 parent = __clk_get_parent(clk);
932 mutex_unlock(&prepare_lock);
933
934 return parent;
935}
936EXPORT_SYMBOL_GPL(clk_get_parent);
937
938/*
939 * .get_parent is mandatory for clocks with multiple possible parents. It is
940 * optional for single-parent clocks. Always call .get_parent if it is
941 * available and WARN if it is missing for multi-parent clocks.
942 *
943 * For single-parent clocks without .get_parent, first check to see if the
944 * .parents array exists, and if so use it to avoid an expensive tree
945 * traversal. If .parents does not exist then walk the tree with __clk_lookup.
946 */
947static struct clk *__clk_init_parent(struct clk *clk)
948{
949 struct clk *ret = NULL;
950 u8 index;
951
952 /* handle the trivial cases */
953
954 if (!clk->num_parents)
955 goto out;
956
957 if (clk->num_parents == 1) {
958 if (IS_ERR_OR_NULL(clk->parent))
959 ret = clk->parent = __clk_lookup(clk->parent_names[0]);
960 ret = clk->parent;
961 goto out;
962 }
963
964 if (!clk->ops->get_parent) {
965 WARN(!clk->ops->get_parent,
966 "%s: multi-parent clocks must implement .get_parent\n",
967 __func__);
968 goto out;
969 };
970
971 /*
972 * Do our best to cache parent clocks in clk->parents. This prevents
973 * unnecessary and expensive calls to __clk_lookup. We don't set
974 * clk->parent here; that is done by the calling function
975 */
976
977 index = clk->ops->get_parent(clk->hw);
978
979 if (!clk->parents)
980 clk->parents =
981 kmalloc((sizeof(struct clk*) * clk->num_parents),
982 GFP_KERNEL);
983
984 if (!clk->parents)
985 ret = __clk_lookup(clk->parent_names[index]);
986 else if (!clk->parents[index])
987 ret = clk->parents[index] =
988 __clk_lookup(clk->parent_names[index]);
989 else
990 ret = clk->parents[index];
991
992out:
993 return ret;
994}
995
996void __clk_reparent(struct clk *clk, struct clk *new_parent)
997{
998#ifdef CONFIG_COMMON_CLK_DEBUG
999 struct dentry *d;
1000 struct dentry *new_parent_d;
1001#endif
1002
1003 if (!clk || !new_parent)
1004 return;
1005
1006 hlist_del(&clk->child_node);
1007
1008 if (new_parent)
1009 hlist_add_head(&clk->child_node, &new_parent->children);
1010 else
1011 hlist_add_head(&clk->child_node, &clk_orphan_list);
1012
1013#ifdef CONFIG_COMMON_CLK_DEBUG
1014 if (!inited)
1015 goto out;
1016
1017 if (new_parent)
1018 new_parent_d = new_parent->dentry;
1019 else
1020 new_parent_d = orphandir;
1021
1022 d = debugfs_rename(clk->dentry->d_parent, clk->dentry,
1023 new_parent_d, clk->name);
1024 if (d)
1025 clk->dentry = d;
1026 else
1027 pr_debug("%s: failed to rename debugfs entry for %s\n",
1028 __func__, clk->name);
1029out:
1030#endif
1031
1032 clk->parent = new_parent;
1033
1034 __clk_recalc_rates(clk, POST_RATE_CHANGE);
1035}
1036
1037static int __clk_set_parent(struct clk *clk, struct clk *parent)
1038{
1039 struct clk *old_parent;
1040 unsigned long flags;
1041 int ret = -EINVAL;
1042 u8 i;
1043
1044 old_parent = clk->parent;
1045
1046 /* find index of new parent clock using cached parent ptrs */
1047 for (i = 0; i < clk->num_parents; i++)
1048 if (clk->parents[i] == parent)
1049 break;
1050
1051 /*
1052 * find index of new parent clock using string name comparison
1053 * also try to cache the parent to avoid future calls to __clk_lookup
1054 */
1055 if (i == clk->num_parents)
1056 for (i = 0; i < clk->num_parents; i++)
1057 if (!strcmp(clk->parent_names[i], parent->name)) {
1058 clk->parents[i] = __clk_lookup(parent->name);
1059 break;
1060 }
1061
1062 if (i == clk->num_parents) {
1063 pr_debug("%s: clock %s is not a possible parent of clock %s\n",
1064 __func__, parent->name, clk->name);
1065 goto out;
1066 }
1067
1068 /* migrate prepare and enable */
1069 if (clk->prepare_count)
1070 __clk_prepare(parent);
1071
1072 /* FIXME replace with clk_is_enabled(clk) someday */
1073 spin_lock_irqsave(&enable_lock, flags);
1074 if (clk->enable_count)
1075 __clk_enable(parent);
1076 spin_unlock_irqrestore(&enable_lock, flags);
1077
1078 /* change clock input source */
1079 ret = clk->ops->set_parent(clk->hw, i);
1080
1081 /* clean up old prepare and enable */
1082 spin_lock_irqsave(&enable_lock, flags);
1083 if (clk->enable_count)
1084 __clk_disable(old_parent);
1085 spin_unlock_irqrestore(&enable_lock, flags);
1086
1087 if (clk->prepare_count)
1088 __clk_unprepare(old_parent);
1089
1090out:
1091 return ret;
1092}
1093
1094/**
1095 * clk_set_parent - switch the parent of a mux clk
1096 * @clk: the mux clk whose input we are switching
1097 * @parent: the new input to clk
1098 *
1099 * Re-parent clk to use parent as it's new input source. If clk has the
1100 * CLK_SET_PARENT_GATE flag set then clk must be gated for this
1101 * operation to succeed. After successfully changing clk's parent
1102 * clk_set_parent will update the clk topology, sysfs topology and
1103 * propagate rate recalculation via __clk_recalc_rates. Returns 0 on
1104 * success, -EERROR otherwise.
1105 */
1106int clk_set_parent(struct clk *clk, struct clk *parent)
1107{
1108 int ret = 0;
1109
1110 if (!clk || !clk->ops)
1111 return -EINVAL;
1112
1113 if (!clk->ops->set_parent)
1114 return -ENOSYS;
1115
1116 /* prevent racing with updates to the clock topology */
1117 mutex_lock(&prepare_lock);
1118
1119 if (clk->parent == parent)
1120 goto out;
1121
1122 /* propagate PRE_RATE_CHANGE notifications */
1123 if (clk->notifier_count)
1124 ret = __clk_speculate_rates(clk, parent->rate);
1125
1126 /* abort if a driver objects */
1127 if (ret == NOTIFY_STOP)
1128 goto out;
1129
1130 /* only re-parent if the clock is not in use */
1131 if ((clk->flags & CLK_SET_PARENT_GATE) && clk->prepare_count)
1132 ret = -EBUSY;
1133 else
1134 ret = __clk_set_parent(clk, parent);
1135
1136 /* propagate ABORT_RATE_CHANGE if .set_parent failed */
1137 if (ret) {
1138 __clk_recalc_rates(clk, ABORT_RATE_CHANGE);
1139 goto out;
1140 }
1141
1142 /* propagate rate recalculation downstream */
1143 __clk_reparent(clk, parent);
1144
1145out:
1146 mutex_unlock(&prepare_lock);
1147
1148 return ret;
1149}
1150EXPORT_SYMBOL_GPL(clk_set_parent);
1151
1152/**
1153 * __clk_init - initialize the data structures in a struct clk
1154 * @dev: device initializing this clk, placeholder for now
1155 * @clk: clk being initialized
1156 *
1157 * Initializes the lists in struct clk, queries the hardware for the
1158 * parent and rate and sets them both.
1159 *
1160 * Any struct clk passed into __clk_init must have the following members
1161 * populated:
1162 * .name
1163 * .ops
1164 * .hw
1165 * .parent_names
1166 * .num_parents
1167 * .flags
1168 *
1169 * Essentially, everything that would normally be passed into clk_register is
1170 * assumed to be initialized already in __clk_init. The other members may be
1171 * populated, but are optional.
1172 *
1173 * __clk_init is only exposed via clk-private.h and is intended for use with
1174 * very large numbers of clocks that need to be statically initialized. It is
1175 * a layering violation to include clk-private.h from any code which implements
1176 * a clock's .ops; as such any statically initialized clock data MUST be in a
1177 * separate C file from the logic that implements it's operations.
1178 */
1179void __clk_init(struct device *dev, struct clk *clk)
1180{
1181 int i;
1182 struct clk *orphan;
1183 struct hlist_node *tmp, *tmp2;
1184
1185 if (!clk)
1186 return;
1187
1188 mutex_lock(&prepare_lock);
1189
1190 /* check to see if a clock with this name is already registered */
1191 if (__clk_lookup(clk->name))
1192 goto out;
1193
1194 /* throw a WARN if any entries in parent_names are NULL */
1195 for (i = 0; i < clk->num_parents; i++)
1196 WARN(!clk->parent_names[i],
1197 "%s: invalid NULL in %s's .parent_names\n",
1198 __func__, clk->name);
1199
1200 /*
1201 * Allocate an array of struct clk *'s to avoid unnecessary string
1202 * look-ups of clk's possible parents. This can fail for clocks passed
1203 * in to clk_init during early boot; thus any access to clk->parents[]
1204 * must always check for a NULL pointer and try to populate it if
1205 * necessary.
1206 *
1207 * If clk->parents is not NULL we skip this entire block. This allows
1208 * for clock drivers to statically initialize clk->parents.
1209 */
1210 if (clk->num_parents && !clk->parents) {
1211 clk->parents = kmalloc((sizeof(struct clk*) * clk->num_parents),
1212 GFP_KERNEL);
1213 /*
1214 * __clk_lookup returns NULL for parents that have not been
1215 * clk_init'd; thus any access to clk->parents[] must check
1216 * for a NULL pointer. We can always perform lazy lookups for
1217 * missing parents later on.
1218 */
1219 if (clk->parents)
1220 for (i = 0; i < clk->num_parents; i++)
1221 clk->parents[i] =
1222 __clk_lookup(clk->parent_names[i]);
1223 }
1224
1225 clk->parent = __clk_init_parent(clk);
1226
1227 /*
1228 * Populate clk->parent if parent has already been __clk_init'd. If
1229 * parent has not yet been __clk_init'd then place clk in the orphan
1230 * list. If clk has set the CLK_IS_ROOT flag then place it in the root
1231 * clk list.
1232 *
1233 * Every time a new clk is clk_init'd then we walk the list of orphan
1234 * clocks and re-parent any that are children of the clock currently
1235 * being clk_init'd.
1236 */
1237 if (clk->parent)
1238 hlist_add_head(&clk->child_node,
1239 &clk->parent->children);
1240 else if (clk->flags & CLK_IS_ROOT)
1241 hlist_add_head(&clk->child_node, &clk_root_list);
1242 else
1243 hlist_add_head(&clk->child_node, &clk_orphan_list);
1244
1245 /*
1246 * Set clk's rate. The preferred method is to use .recalc_rate. For
1247 * simple clocks and lazy developers the default fallback is to use the
1248 * parent's rate. If a clock doesn't have a parent (or is orphaned)
1249 * then rate is set to zero.
1250 */
1251 if (clk->ops->recalc_rate)
1252 clk->rate = clk->ops->recalc_rate(clk->hw,
1253 __clk_get_rate(clk->parent));
1254 else if (clk->parent)
1255 clk->rate = clk->parent->rate;
1256 else
1257 clk->rate = 0;
1258
1259 /*
1260 * walk the list of orphan clocks and reparent any that are children of
1261 * this clock
1262 */
1263 hlist_for_each_entry_safe(orphan, tmp, tmp2, &clk_orphan_list, child_node)
1264 for (i = 0; i < orphan->num_parents; i++)
1265 if (!strcmp(clk->name, orphan->parent_names[i])) {
1266 __clk_reparent(orphan, clk);
1267 break;
1268 }
1269
1270 /*
1271 * optional platform-specific magic
1272 *
1273 * The .init callback is not used by any of the basic clock types, but
1274 * exists for weird hardware that must perform initialization magic.
1275 * Please consider other ways of solving initialization problems before
1276 * using this callback, as it's use is discouraged.
1277 */
1278 if (clk->ops->init)
1279 clk->ops->init(clk->hw);
1280
1281 clk_debug_register(clk);
1282
1283out:
1284 mutex_unlock(&prepare_lock);
1285
1286 return;
1287}
1288
1289/**
1290 * clk_register - allocate a new clock, register it and return an opaque cookie
1291 * @dev: device that is registering this clock
1292 * @name: clock name
1293 * @ops: operations this clock supports
1294 * @hw: link to hardware-specific clock data
1295 * @parent_names: array of string names for all possible parents
1296 * @num_parents: number of possible parents
1297 * @flags: framework-level hints and quirks
1298 *
1299 * clk_register is the primary interface for populating the clock tree with new
1300 * clock nodes. It returns a pointer to the newly allocated struct clk which
1301 * cannot be dereferenced by driver code but may be used in conjuction with the
1302 * rest of the clock API.
1303 */
1304struct clk *clk_register(struct device *dev, const char *name,
1305 const struct clk_ops *ops, struct clk_hw *hw,
1306 char **parent_names, u8 num_parents, unsigned long flags)
1307{
1308 struct clk *clk;
1309
1310 clk = kzalloc(sizeof(*clk), GFP_KERNEL);
1311 if (!clk)
1312 return NULL;
1313
1314 clk->name = name;
1315 clk->ops = ops;
1316 clk->hw = hw;
1317 clk->flags = flags;
1318 clk->parent_names = parent_names;
1319 clk->num_parents = num_parents;
1320 hw->clk = clk;
1321
1322 __clk_init(dev, clk);
1323
1324 return clk;
1325}
1326EXPORT_SYMBOL_GPL(clk_register);
1327
1328/*** clk rate change notifiers ***/
1329
1330/**
1331 * clk_notifier_register - add a clk rate change notifier
1332 * @clk: struct clk * to watch
1333 * @nb: struct notifier_block * with callback info
1334 *
1335 * Request notification when clk's rate changes. This uses an SRCU
1336 * notifier because we want it to block and notifier unregistrations are
1337 * uncommon. The callbacks associated with the notifier must not
1338 * re-enter into the clk framework by calling any top-level clk APIs;
1339 * this will cause a nested prepare_lock mutex.
1340 *
1341 * Pre-change notifier callbacks will be passed the current, pre-change
1342 * rate of the clk via struct clk_notifier_data.old_rate. The new,
1343 * post-change rate of the clk is passed via struct
1344 * clk_notifier_data.new_rate.
1345 *
1346 * Post-change notifiers will pass the now-current, post-change rate of
1347 * the clk in both struct clk_notifier_data.old_rate and struct
1348 * clk_notifier_data.new_rate.
1349 *
1350 * Abort-change notifiers are effectively the opposite of pre-change
1351 * notifiers: the original pre-change clk rate is passed in via struct
1352 * clk_notifier_data.new_rate and the failed post-change rate is passed
1353 * in via struct clk_notifier_data.old_rate.
1354 *
1355 * clk_notifier_register() must be called from non-atomic context.
1356 * Returns -EINVAL if called with null arguments, -ENOMEM upon
1357 * allocation failure; otherwise, passes along the return value of
1358 * srcu_notifier_chain_register().
1359 */
1360int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
1361{
1362 struct clk_notifier *cn;
1363 int ret = -ENOMEM;
1364
1365 if (!clk || !nb)
1366 return -EINVAL;
1367
1368 mutex_lock(&prepare_lock);
1369
1370 /* search the list of notifiers for this clk */
1371 list_for_each_entry(cn, &clk_notifier_list, node)
1372 if (cn->clk == clk)
1373 break;
1374
1375 /* if clk wasn't in the notifier list, allocate new clk_notifier */
1376 if (cn->clk != clk) {
1377 cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
1378 if (!cn)
1379 goto out;
1380
1381 cn->clk = clk;
1382 srcu_init_notifier_head(&cn->notifier_head);
1383
1384 list_add(&cn->node, &clk_notifier_list);
1385 }
1386
1387 ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
1388
1389 clk->notifier_count++;
1390
1391out:
1392 mutex_unlock(&prepare_lock);
1393
1394 return ret;
1395}
1396EXPORT_SYMBOL_GPL(clk_notifier_register);
1397
1398/**
1399 * clk_notifier_unregister - remove a clk rate change notifier
1400 * @clk: struct clk *
1401 * @nb: struct notifier_block * with callback info
1402 *
1403 * Request no further notification for changes to 'clk' and frees memory
1404 * allocated in clk_notifier_register.
1405 *
1406 * Returns -EINVAL if called with null arguments; otherwise, passes
1407 * along the return value of srcu_notifier_chain_unregister().
1408 */
1409int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
1410{
1411 struct clk_notifier *cn = NULL;
1412 int ret = -EINVAL;
1413
1414 if (!clk || !nb)
1415 return -EINVAL;
1416
1417 mutex_lock(&prepare_lock);
1418
1419 list_for_each_entry(cn, &clk_notifier_list, node)
1420 if (cn->clk == clk)
1421 break;
1422
1423 if (cn->clk == clk) {
1424 ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
1425
1426 clk->notifier_count--;
1427
1428 /* XXX the notifier code should handle this better */
1429 if (!cn->notifier_head.head) {
1430 srcu_cleanup_notifier_head(&cn->notifier_head);
1431 kfree(cn);
1432 }
1433
1434 } else {
1435 ret = -ENOENT;
1436 }
1437
1438 mutex_unlock(&prepare_lock);
1439
1440 return ret;
1441}
1442EXPORT_SYMBOL_GPL(clk_notifier_unregister);