blob: aaec186f7ba6f9c1e359fba2e54d2cb918a53700 [file] [log] [blame]
Kent Overstreetcafe5632013-03-23 16:11:31 -07001/*
2 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
3 *
4 * Uses a block device as cache for other block devices; optimized for SSDs.
5 * All allocation is done in buckets, which should match the erase block size
6 * of the device.
7 *
8 * Buckets containing cached data are kept on a heap sorted by priority;
9 * bucket priority is increased on cache hit, and periodically all the buckets
10 * on the heap have their priority scaled down. This currently is just used as
11 * an LRU but in the future should allow for more intelligent heuristics.
12 *
13 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
14 * counter. Garbage collection is used to remove stale pointers.
15 *
16 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
17 * as keys are inserted we only sort the pages that have not yet been written.
18 * When garbage collection is run, we resort the entire node.
19 *
20 * All configuration is done via sysfs; see Documentation/bcache.txt.
21 */
22
23#include "bcache.h"
24#include "btree.h"
25#include "debug.h"
26#include "request.h"
27
28#include <linux/slab.h>
29#include <linux/bitops.h>
30#include <linux/hash.h>
Geert Uytterhoevencd953ed2013-03-27 18:56:28 +010031#include <linux/prefetch.h>
Kent Overstreetcafe5632013-03-23 16:11:31 -070032#include <linux/random.h>
33#include <linux/rcupdate.h>
34#include <trace/events/bcache.h>
35
36/*
37 * Todo:
38 * register_bcache: Return errors out to userspace correctly
39 *
40 * Writeback: don't undirty key until after a cache flush
41 *
42 * Create an iterator for key pointers
43 *
44 * On btree write error, mark bucket such that it won't be freed from the cache
45 *
46 * Journalling:
47 * Check for bad keys in replay
48 * Propagate barriers
49 * Refcount journal entries in journal_replay
50 *
51 * Garbage collection:
52 * Finish incremental gc
53 * Gc should free old UUIDs, data for invalid UUIDs
54 *
55 * Provide a way to list backing device UUIDs we have data cached for, and
56 * probably how long it's been since we've seen them, and a way to invalidate
57 * dirty data for devices that will never be attached again
58 *
59 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
60 * that based on that and how much dirty data we have we can keep writeback
61 * from being starved
62 *
63 * Add a tracepoint or somesuch to watch for writeback starvation
64 *
65 * When btree depth > 1 and splitting an interior node, we have to make sure
66 * alloc_bucket() cannot fail. This should be true but is not completely
67 * obvious.
68 *
69 * Make sure all allocations get charged to the root cgroup
70 *
71 * Plugging?
72 *
73 * If data write is less than hard sector size of ssd, round up offset in open
74 * bucket to the next whole sector
75 *
76 * Also lookup by cgroup in get_open_bucket()
77 *
78 * Superblock needs to be fleshed out for multiple cache devices
79 *
80 * Add a sysfs tunable for the number of writeback IOs in flight
81 *
82 * Add a sysfs tunable for the number of open data buckets
83 *
84 * IO tracking: Can we track when one process is doing io on behalf of another?
85 * IO tracking: Don't use just an average, weigh more recent stuff higher
86 *
87 * Test module load/unload
88 */
89
90static const char * const op_types[] = {
91 "insert", "replace"
92};
93
94static const char *op_type(struct btree_op *op)
95{
96 return op_types[op->type];
97}
98
99#define MAX_NEED_GC 64
100#define MAX_SAVE_PRIO 72
101
102#define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
103
104#define PTR_HASH(c, k) \
105 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
106
107struct workqueue_struct *bch_gc_wq;
108static struct workqueue_struct *btree_io_wq;
109
110void bch_btree_op_init_stack(struct btree_op *op)
111{
112 memset(op, 0, sizeof(struct btree_op));
113 closure_init_stack(&op->cl);
114 op->lock = -1;
115 bch_keylist_init(&op->keys);
116}
117
118/* Btree key manipulation */
119
120static void bkey_put(struct cache_set *c, struct bkey *k, int level)
121{
122 if ((level && KEY_OFFSET(k)) || !level)
123 __bkey_put(c, k);
124}
125
126/* Btree IO */
127
128static uint64_t btree_csum_set(struct btree *b, struct bset *i)
129{
130 uint64_t crc = b->key.ptr[0];
131 void *data = (void *) i + 8, *end = end(i);
132
Kent Overstreet169ef1c2013-03-28 12:50:55 -0600133 crc = bch_crc64_update(crc, data, end - data);
Kent Overstreetc19ed232013-03-26 13:49:02 -0700134 return crc ^ 0xffffffffffffffffULL;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700135}
136
Kent Overstreet57943512013-04-25 13:58:35 -0700137void bch_btree_node_read_done(struct btree *b)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700138{
Kent Overstreetcafe5632013-03-23 16:11:31 -0700139 const char *err = "bad btree header";
Kent Overstreet57943512013-04-25 13:58:35 -0700140 struct bset *i = b->sets[0].data;
141 struct btree_iter *iter;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700142
Kent Overstreet57943512013-04-25 13:58:35 -0700143 iter = mempool_alloc(b->c->fill_iter, GFP_NOWAIT);
144 iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700145 iter->used = 0;
146
Kent Overstreet57943512013-04-25 13:58:35 -0700147 if (!i->seq)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700148 goto err;
149
150 for (;
151 b->written < btree_blocks(b) && i->seq == b->sets[0].data->seq;
152 i = write_block(b)) {
153 err = "unsupported bset version";
154 if (i->version > BCACHE_BSET_VERSION)
155 goto err;
156
157 err = "bad btree header";
158 if (b->written + set_blocks(i, b->c) > btree_blocks(b))
159 goto err;
160
161 err = "bad magic";
162 if (i->magic != bset_magic(b->c))
163 goto err;
164
165 err = "bad checksum";
166 switch (i->version) {
167 case 0:
168 if (i->csum != csum_set(i))
169 goto err;
170 break;
171 case BCACHE_BSET_VERSION:
172 if (i->csum != btree_csum_set(b, i))
173 goto err;
174 break;
175 }
176
177 err = "empty set";
178 if (i != b->sets[0].data && !i->keys)
179 goto err;
180
181 bch_btree_iter_push(iter, i->start, end(i));
182
183 b->written += set_blocks(i, b->c);
184 }
185
186 err = "corrupted btree";
187 for (i = write_block(b);
188 index(i, b) < btree_blocks(b);
189 i = ((void *) i) + block_bytes(b->c))
190 if (i->seq == b->sets[0].data->seq)
191 goto err;
192
193 bch_btree_sort_and_fix_extents(b, iter);
194
195 i = b->sets[0].data;
196 err = "short btree key";
197 if (b->sets[0].size &&
198 bkey_cmp(&b->key, &b->sets[0].end) < 0)
199 goto err;
200
201 if (b->written < btree_blocks(b))
202 bch_bset_init_next(b);
203out:
Kent Overstreet57943512013-04-25 13:58:35 -0700204 mempool_free(iter, b->c->fill_iter);
205 return;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700206err:
207 set_btree_node_io_error(b);
Kent Overstreet07e86cc2013-03-25 11:46:43 -0700208 bch_cache_set_error(b->c, "%s at bucket %zu, block %zu, %u keys",
Kent Overstreetcafe5632013-03-23 16:11:31 -0700209 err, PTR_BUCKET_NR(b->c, &b->key, 0),
210 index(i, b), i->keys);
211 goto out;
212}
213
Kent Overstreet57943512013-04-25 13:58:35 -0700214static void btree_node_read_endio(struct bio *bio, int error)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700215{
Kent Overstreet57943512013-04-25 13:58:35 -0700216 struct closure *cl = bio->bi_private;
217 closure_put(cl);
218}
Kent Overstreetcafe5632013-03-23 16:11:31 -0700219
Kent Overstreet57943512013-04-25 13:58:35 -0700220void bch_btree_node_read(struct btree *b)
221{
222 uint64_t start_time = local_clock();
223 struct closure cl;
224 struct bio *bio;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700225
Kent Overstreet57943512013-04-25 13:58:35 -0700226 closure_init_stack(&cl);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700227 pr_debug("%s", pbtree(b));
Kent Overstreetcafe5632013-03-23 16:11:31 -0700228
Kent Overstreet57943512013-04-25 13:58:35 -0700229 bio = bch_bbio_alloc(b->c);
230 bio->bi_rw = REQ_META|READ_SYNC;
231 bio->bi_size = KEY_SIZE(&b->key) << 9;
232 bio->bi_end_io = btree_node_read_endio;
233 bio->bi_private = &cl;
234
235 bch_bio_map(bio, b->sets[0].data);
236
237 trace_bcache_btree_read(bio);
238 bch_submit_bbio(bio, b->c, &b->key, 0);
239 closure_sync(&cl);
240
241 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
242 set_btree_node_io_error(b);
243
244 bch_bbio_free(bio, b->c);
245
246 if (btree_node_io_error(b))
247 goto err;
248
249 bch_btree_node_read_done(b);
250
251 spin_lock(&b->c->btree_read_time_lock);
252 bch_time_stats_update(&b->c->btree_read_time, start_time);
253 spin_unlock(&b->c->btree_read_time_lock);
254
255 return;
256err:
257 bch_cache_set_error(b->c, "io error reading bucket %lu",
258 PTR_BUCKET_NR(b->c, &b->key, 0));
Kent Overstreetcafe5632013-03-23 16:11:31 -0700259}
260
261static void btree_complete_write(struct btree *b, struct btree_write *w)
262{
263 if (w->prio_blocked &&
264 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
Kent Overstreet119ba0f2013-04-24 19:01:12 -0700265 wake_up_allocators(b->c);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700266
267 if (w->journal) {
268 atomic_dec_bug(w->journal);
269 __closure_wake_up(&b->c->journal.wait);
270 }
271
Kent Overstreetcafe5632013-03-23 16:11:31 -0700272 w->prio_blocked = 0;
273 w->journal = NULL;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700274}
275
Kent Overstreet57943512013-04-25 13:58:35 -0700276static void __btree_node_write_done(struct closure *cl)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700277{
278 struct btree *b = container_of(cl, struct btree, io.cl);
279 struct btree_write *w = btree_prev_write(b);
280
281 bch_bbio_free(b->bio, b->c);
282 b->bio = NULL;
283 btree_complete_write(b, w);
284
285 if (btree_node_dirty(b))
286 queue_delayed_work(btree_io_wq, &b->work,
287 msecs_to_jiffies(30000));
288
289 closure_return(cl);
290}
291
Kent Overstreet57943512013-04-25 13:58:35 -0700292static void btree_node_write_done(struct closure *cl)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700293{
294 struct btree *b = container_of(cl, struct btree, io.cl);
295 struct bio_vec *bv;
296 int n;
297
298 __bio_for_each_segment(bv, b->bio, n, 0)
299 __free_page(bv->bv_page);
300
Kent Overstreet57943512013-04-25 13:58:35 -0700301 __btree_node_write_done(cl);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700302}
303
Kent Overstreet57943512013-04-25 13:58:35 -0700304static void btree_node_write_endio(struct bio *bio, int error)
305{
306 struct closure *cl = bio->bi_private;
307 struct btree *b = container_of(cl, struct btree, io.cl);
308
309 if (error)
310 set_btree_node_io_error(b);
311
312 bch_bbio_count_io_errors(b->c, bio, error, "writing btree");
313 closure_put(cl);
314}
315
316static void do_btree_node_write(struct btree *b)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700317{
318 struct closure *cl = &b->io.cl;
319 struct bset *i = b->sets[b->nsets].data;
320 BKEY_PADDED(key) k;
321
322 i->version = BCACHE_BSET_VERSION;
323 i->csum = btree_csum_set(b, i);
324
Kent Overstreet57943512013-04-25 13:58:35 -0700325 BUG_ON(b->bio);
326 b->bio = bch_bbio_alloc(b->c);
327
328 b->bio->bi_end_io = btree_node_write_endio;
329 b->bio->bi_private = &b->io.cl;
Kent Overstreetcafe5632013-03-23 16:11:31 -0700330 b->bio->bi_rw = REQ_META|WRITE_SYNC;
331 b->bio->bi_size = set_blocks(i, b->c) * block_bytes(b->c);
Kent Overstreet169ef1c2013-03-28 12:50:55 -0600332 bch_bio_map(b->bio, i);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700333
334 bkey_copy(&k.key, &b->key);
335 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + bset_offset(b, i));
336
Kent Overstreet169ef1c2013-03-28 12:50:55 -0600337 if (!bch_bio_alloc_pages(b->bio, GFP_NOIO)) {
Kent Overstreetcafe5632013-03-23 16:11:31 -0700338 int j;
339 struct bio_vec *bv;
340 void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
341
342 bio_for_each_segment(bv, b->bio, j)
343 memcpy(page_address(bv->bv_page),
344 base + j * PAGE_SIZE, PAGE_SIZE);
345
346 trace_bcache_btree_write(b->bio);
347 bch_submit_bbio(b->bio, b->c, &k.key, 0);
348
Kent Overstreet57943512013-04-25 13:58:35 -0700349 continue_at(cl, btree_node_write_done, NULL);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700350 } else {
351 b->bio->bi_vcnt = 0;
Kent Overstreet169ef1c2013-03-28 12:50:55 -0600352 bch_bio_map(b->bio, i);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700353
354 trace_bcache_btree_write(b->bio);
355 bch_submit_bbio(b->bio, b->c, &k.key, 0);
356
357 closure_sync(cl);
Kent Overstreet57943512013-04-25 13:58:35 -0700358 __btree_node_write_done(cl);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700359 }
360}
361
Kent Overstreet57943512013-04-25 13:58:35 -0700362void bch_btree_node_write(struct btree *b, struct closure *parent)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700363{
364 struct bset *i = b->sets[b->nsets].data;
365
366 BUG_ON(current->bio_list);
Kent Overstreet57943512013-04-25 13:58:35 -0700367 BUG_ON(b->written >= btree_blocks(b));
368 BUG_ON(b->written && !i->keys);
369 BUG_ON(b->sets->data->seq != i->seq);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700370
Kent Overstreetcafe5632013-03-23 16:11:31 -0700371 cancel_delayed_work(&b->work);
372
Kent Overstreet57943512013-04-25 13:58:35 -0700373 /* If caller isn't waiting for write, parent refcount is cache set */
374 closure_lock(&b->io, parent ?: &b->c->cl);
375
Kent Overstreetcafe5632013-03-23 16:11:31 -0700376 clear_bit(BTREE_NODE_dirty, &b->flags);
377 change_bit(BTREE_NODE_write_idx, &b->flags);
378
379 bch_check_key_order(b, i);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700380
Kent Overstreet57943512013-04-25 13:58:35 -0700381 do_btree_node_write(b);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700382
383 pr_debug("%s block %i keys %i", pbtree(b), b->written, i->keys);
384
385 b->written += set_blocks(i, b->c);
386 atomic_long_add(set_blocks(i, b->c) * b->c->sb.block_size,
387 &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
388
389 bch_btree_sort_lazy(b);
390
391 if (b->written < btree_blocks(b))
392 bch_bset_init_next(b);
393}
394
Kent Overstreet57943512013-04-25 13:58:35 -0700395static void btree_node_write_work(struct work_struct *w)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700396{
397 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
398
Kent Overstreet57943512013-04-25 13:58:35 -0700399 rw_lock(true, b, b->level);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700400
401 if (btree_node_dirty(b))
Kent Overstreet57943512013-04-25 13:58:35 -0700402 bch_btree_node_write(b, NULL);
403 rw_unlock(true, b);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700404}
405
Kent Overstreet57943512013-04-25 13:58:35 -0700406static void bch_btree_leaf_dirty(struct btree *b, struct btree_op *op)
Kent Overstreetcafe5632013-03-23 16:11:31 -0700407{
408 struct bset *i = b->sets[b->nsets].data;
409 struct btree_write *w = btree_current_write(b);
410
Kent Overstreet57943512013-04-25 13:58:35 -0700411 BUG_ON(!b->written);
412 BUG_ON(!i->keys);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700413
Kent Overstreet57943512013-04-25 13:58:35 -0700414 if (!btree_node_dirty(b))
415 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700416
Kent Overstreet57943512013-04-25 13:58:35 -0700417 set_btree_node_dirty(b);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700418
Kent Overstreet57943512013-04-25 13:58:35 -0700419 if (op && op->journal) {
Kent Overstreetcafe5632013-03-23 16:11:31 -0700420 if (w->journal &&
421 journal_pin_cmp(b->c, w, op)) {
422 atomic_dec_bug(w->journal);
423 w->journal = NULL;
424 }
425
426 if (!w->journal) {
427 w->journal = op->journal;
428 atomic_inc(w->journal);
429 }
430 }
431
Kent Overstreetcafe5632013-03-23 16:11:31 -0700432 /* Force write if set is too big */
Kent Overstreet57943512013-04-25 13:58:35 -0700433 if (set_bytes(i) > PAGE_SIZE - 48 &&
434 !current->bio_list)
435 bch_btree_node_write(b, NULL);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700436}
437
438/*
439 * Btree in memory cache - allocation/freeing
440 * mca -> memory cache
441 */
442
443static void mca_reinit(struct btree *b)
444{
445 unsigned i;
446
447 b->flags = 0;
448 b->written = 0;
449 b->nsets = 0;
450
451 for (i = 0; i < MAX_BSETS; i++)
452 b->sets[i].size = 0;
453 /*
454 * Second loop starts at 1 because b->sets[0]->data is the memory we
455 * allocated
456 */
457 for (i = 1; i < MAX_BSETS; i++)
458 b->sets[i].data = NULL;
459}
460
461#define mca_reserve(c) (((c->root && c->root->level) \
462 ? c->root->level : 1) * 8 + 16)
463#define mca_can_free(c) \
464 max_t(int, 0, c->bucket_cache_used - mca_reserve(c))
465
466static void mca_data_free(struct btree *b)
467{
468 struct bset_tree *t = b->sets;
469 BUG_ON(!closure_is_unlocked(&b->io.cl));
470
471 if (bset_prev_bytes(b) < PAGE_SIZE)
472 kfree(t->prev);
473 else
474 free_pages((unsigned long) t->prev,
475 get_order(bset_prev_bytes(b)));
476
477 if (bset_tree_bytes(b) < PAGE_SIZE)
478 kfree(t->tree);
479 else
480 free_pages((unsigned long) t->tree,
481 get_order(bset_tree_bytes(b)));
482
483 free_pages((unsigned long) t->data, b->page_order);
484
485 t->prev = NULL;
486 t->tree = NULL;
487 t->data = NULL;
488 list_move(&b->list, &b->c->btree_cache_freed);
489 b->c->bucket_cache_used--;
490}
491
492static void mca_bucket_free(struct btree *b)
493{
494 BUG_ON(btree_node_dirty(b));
495
496 b->key.ptr[0] = 0;
497 hlist_del_init_rcu(&b->hash);
498 list_move(&b->list, &b->c->btree_cache_freeable);
499}
500
501static unsigned btree_order(struct bkey *k)
502{
503 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
504}
505
506static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
507{
508 struct bset_tree *t = b->sets;
509 BUG_ON(t->data);
510
511 b->page_order = max_t(unsigned,
512 ilog2(b->c->btree_pages),
513 btree_order(k));
514
515 t->data = (void *) __get_free_pages(gfp, b->page_order);
516 if (!t->data)
517 goto err;
518
519 t->tree = bset_tree_bytes(b) < PAGE_SIZE
520 ? kmalloc(bset_tree_bytes(b), gfp)
521 : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
522 if (!t->tree)
523 goto err;
524
525 t->prev = bset_prev_bytes(b) < PAGE_SIZE
526 ? kmalloc(bset_prev_bytes(b), gfp)
527 : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
528 if (!t->prev)
529 goto err;
530
531 list_move(&b->list, &b->c->btree_cache);
532 b->c->bucket_cache_used++;
533 return;
534err:
535 mca_data_free(b);
536}
537
538static struct btree *mca_bucket_alloc(struct cache_set *c,
539 struct bkey *k, gfp_t gfp)
540{
541 struct btree *b = kzalloc(sizeof(struct btree), gfp);
542 if (!b)
543 return NULL;
544
545 init_rwsem(&b->lock);
546 lockdep_set_novalidate_class(&b->lock);
547 INIT_LIST_HEAD(&b->list);
Kent Overstreet57943512013-04-25 13:58:35 -0700548 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700549 b->c = c;
550 closure_init_unlocked(&b->io);
551
552 mca_data_alloc(b, k, gfp);
553 return b;
554}
555
556static int mca_reap(struct btree *b, struct closure *cl, unsigned min_order)
557{
558 lockdep_assert_held(&b->c->bucket_lock);
559
560 if (!down_write_trylock(&b->lock))
561 return -ENOMEM;
562
563 if (b->page_order < min_order) {
564 rw_unlock(true, b);
565 return -ENOMEM;
566 }
567
568 BUG_ON(btree_node_dirty(b) && !b->sets[0].data);
569
570 if (cl && btree_node_dirty(b))
Kent Overstreet57943512013-04-25 13:58:35 -0700571 bch_btree_node_write(b, NULL);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700572
573 if (cl)
574 closure_wait_event_async(&b->io.wait, cl,
575 atomic_read(&b->io.cl.remaining) == -1);
576
577 if (btree_node_dirty(b) ||
578 !closure_is_unlocked(&b->io.cl) ||
579 work_pending(&b->work.work)) {
580 rw_unlock(true, b);
581 return -EAGAIN;
582 }
583
584 return 0;
585}
586
587static int bch_mca_shrink(struct shrinker *shrink, struct shrink_control *sc)
588{
589 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
590 struct btree *b, *t;
591 unsigned long i, nr = sc->nr_to_scan;
592
593 if (c->shrinker_disabled)
594 return 0;
595
596 if (c->try_harder)
597 return 0;
598
599 /*
600 * If nr == 0, we're supposed to return the number of items we have
601 * cached. Not allowed to return -1.
602 */
603 if (!nr)
604 return mca_can_free(c) * c->btree_pages;
605
606 /* Return -1 if we can't do anything right now */
607 if (sc->gfp_mask & __GFP_WAIT)
608 mutex_lock(&c->bucket_lock);
609 else if (!mutex_trylock(&c->bucket_lock))
610 return -1;
611
612 nr /= c->btree_pages;
613 nr = min_t(unsigned long, nr, mca_can_free(c));
614
615 i = 0;
616 list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
617 if (!nr)
618 break;
619
620 if (++i > 3 &&
621 !mca_reap(b, NULL, 0)) {
622 mca_data_free(b);
623 rw_unlock(true, b);
624 --nr;
625 }
626 }
627
628 /*
629 * Can happen right when we first start up, before we've read in any
630 * btree nodes
631 */
632 if (list_empty(&c->btree_cache))
633 goto out;
634
635 for (i = 0; nr && i < c->bucket_cache_used; i++) {
636 b = list_first_entry(&c->btree_cache, struct btree, list);
637 list_rotate_left(&c->btree_cache);
638
639 if (!b->accessed &&
640 !mca_reap(b, NULL, 0)) {
641 mca_bucket_free(b);
642 mca_data_free(b);
643 rw_unlock(true, b);
644 --nr;
645 } else
646 b->accessed = 0;
647 }
648out:
649 nr = mca_can_free(c) * c->btree_pages;
650 mutex_unlock(&c->bucket_lock);
651 return nr;
652}
653
654void bch_btree_cache_free(struct cache_set *c)
655{
656 struct btree *b;
657 struct closure cl;
658 closure_init_stack(&cl);
659
660 if (c->shrink.list.next)
661 unregister_shrinker(&c->shrink);
662
663 mutex_lock(&c->bucket_lock);
664
665#ifdef CONFIG_BCACHE_DEBUG
666 if (c->verify_data)
667 list_move(&c->verify_data->list, &c->btree_cache);
668#endif
669
670 list_splice(&c->btree_cache_freeable,
671 &c->btree_cache);
672
673 while (!list_empty(&c->btree_cache)) {
674 b = list_first_entry(&c->btree_cache, struct btree, list);
675
676 if (btree_node_dirty(b))
677 btree_complete_write(b, btree_current_write(b));
678 clear_bit(BTREE_NODE_dirty, &b->flags);
679
680 mca_data_free(b);
681 }
682
683 while (!list_empty(&c->btree_cache_freed)) {
684 b = list_first_entry(&c->btree_cache_freed,
685 struct btree, list);
686 list_del(&b->list);
687 cancel_delayed_work_sync(&b->work);
688 kfree(b);
689 }
690
691 mutex_unlock(&c->bucket_lock);
692}
693
694int bch_btree_cache_alloc(struct cache_set *c)
695{
696 unsigned i;
697
698 /* XXX: doesn't check for errors */
699
700 closure_init_unlocked(&c->gc);
701
702 for (i = 0; i < mca_reserve(c); i++)
703 mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
704
705 list_splice_init(&c->btree_cache,
706 &c->btree_cache_freeable);
707
708#ifdef CONFIG_BCACHE_DEBUG
709 mutex_init(&c->verify_lock);
710
711 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
712
713 if (c->verify_data &&
714 c->verify_data->sets[0].data)
715 list_del_init(&c->verify_data->list);
716 else
717 c->verify_data = NULL;
718#endif
719
720 c->shrink.shrink = bch_mca_shrink;
721 c->shrink.seeks = 4;
722 c->shrink.batch = c->btree_pages * 2;
723 register_shrinker(&c->shrink);
724
725 return 0;
726}
727
728/* Btree in memory cache - hash table */
729
730static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
731{
732 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
733}
734
735static struct btree *mca_find(struct cache_set *c, struct bkey *k)
736{
737 struct btree *b;
738
739 rcu_read_lock();
740 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
741 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
742 goto out;
743 b = NULL;
744out:
745 rcu_read_unlock();
746 return b;
747}
748
749static struct btree *mca_cannibalize(struct cache_set *c, struct bkey *k,
750 int level, struct closure *cl)
751{
752 int ret = -ENOMEM;
753 struct btree *i;
754
755 if (!cl)
756 return ERR_PTR(-ENOMEM);
757
758 /*
759 * Trying to free up some memory - i.e. reuse some btree nodes - may
760 * require initiating IO to flush the dirty part of the node. If we're
761 * running under generic_make_request(), that IO will never finish and
762 * we would deadlock. Returning -EAGAIN causes the cache lookup code to
763 * punt to workqueue and retry.
764 */
765 if (current->bio_list)
766 return ERR_PTR(-EAGAIN);
767
768 if (c->try_harder && c->try_harder != cl) {
769 closure_wait_event_async(&c->try_wait, cl, !c->try_harder);
770 return ERR_PTR(-EAGAIN);
771 }
772
773 /* XXX: tracepoint */
774 c->try_harder = cl;
775 c->try_harder_start = local_clock();
776retry:
777 list_for_each_entry_reverse(i, &c->btree_cache, list) {
778 int r = mca_reap(i, cl, btree_order(k));
779 if (!r)
780 return i;
781 if (r != -ENOMEM)
782 ret = r;
783 }
784
785 if (ret == -EAGAIN &&
786 closure_blocking(cl)) {
787 mutex_unlock(&c->bucket_lock);
788 closure_sync(cl);
789 mutex_lock(&c->bucket_lock);
790 goto retry;
791 }
792
793 return ERR_PTR(ret);
794}
795
796/*
797 * We can only have one thread cannibalizing other cached btree nodes at a time,
798 * or we'll deadlock. We use an open coded mutex to ensure that, which a
799 * cannibalize_bucket() will take. This means every time we unlock the root of
800 * the btree, we need to release this lock if we have it held.
801 */
802void bch_cannibalize_unlock(struct cache_set *c, struct closure *cl)
803{
804 if (c->try_harder == cl) {
Kent Overstreet169ef1c2013-03-28 12:50:55 -0600805 bch_time_stats_update(&c->try_harder_time, c->try_harder_start);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700806 c->try_harder = NULL;
807 __closure_wake_up(&c->try_wait);
808 }
809}
810
811static struct btree *mca_alloc(struct cache_set *c, struct bkey *k,
812 int level, struct closure *cl)
813{
814 struct btree *b;
815
816 lockdep_assert_held(&c->bucket_lock);
817
818 if (mca_find(c, k))
819 return NULL;
820
821 /* btree_free() doesn't free memory; it sticks the node on the end of
822 * the list. Check if there's any freed nodes there:
823 */
824 list_for_each_entry(b, &c->btree_cache_freeable, list)
825 if (!mca_reap(b, NULL, btree_order(k)))
826 goto out;
827
828 /* We never free struct btree itself, just the memory that holds the on
829 * disk node. Check the freed list before allocating a new one:
830 */
831 list_for_each_entry(b, &c->btree_cache_freed, list)
832 if (!mca_reap(b, NULL, 0)) {
833 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
834 if (!b->sets[0].data)
835 goto err;
836 else
837 goto out;
838 }
839
840 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
841 if (!b)
842 goto err;
843
844 BUG_ON(!down_write_trylock(&b->lock));
845 if (!b->sets->data)
846 goto err;
847out:
848 BUG_ON(!closure_is_unlocked(&b->io.cl));
849
850 bkey_copy(&b->key, k);
851 list_move(&b->list, &c->btree_cache);
852 hlist_del_init_rcu(&b->hash);
853 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
854
855 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
856 b->level = level;
857
858 mca_reinit(b);
859
860 return b;
861err:
862 if (b)
863 rw_unlock(true, b);
864
865 b = mca_cannibalize(c, k, level, cl);
866 if (!IS_ERR(b))
867 goto out;
868
869 return b;
870}
871
872/**
873 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
874 * in from disk if necessary.
875 *
876 * If IO is necessary, it uses the closure embedded in struct btree_op to wait;
877 * if that closure is in non blocking mode, will return -EAGAIN.
878 *
879 * The btree node will have either a read or a write lock held, depending on
880 * level and op->lock.
881 */
882struct btree *bch_btree_node_get(struct cache_set *c, struct bkey *k,
883 int level, struct btree_op *op)
884{
885 int i = 0;
886 bool write = level <= op->lock;
887 struct btree *b;
888
889 BUG_ON(level < 0);
890retry:
891 b = mca_find(c, k);
892
893 if (!b) {
Kent Overstreet57943512013-04-25 13:58:35 -0700894 if (current->bio_list)
895 return ERR_PTR(-EAGAIN);
896
Kent Overstreetcafe5632013-03-23 16:11:31 -0700897 mutex_lock(&c->bucket_lock);
898 b = mca_alloc(c, k, level, &op->cl);
899 mutex_unlock(&c->bucket_lock);
900
901 if (!b)
902 goto retry;
903 if (IS_ERR(b))
904 return b;
905
Kent Overstreet57943512013-04-25 13:58:35 -0700906 bch_btree_node_read(b);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700907
908 if (!write)
909 downgrade_write(&b->lock);
910 } else {
911 rw_lock(write, b, level);
912 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
913 rw_unlock(write, b);
914 goto retry;
915 }
916 BUG_ON(b->level != level);
917 }
918
919 b->accessed = 1;
920
921 for (; i <= b->nsets && b->sets[i].size; i++) {
922 prefetch(b->sets[i].tree);
923 prefetch(b->sets[i].data);
924 }
925
926 for (; i <= b->nsets; i++)
927 prefetch(b->sets[i].data);
928
Kent Overstreet57943512013-04-25 13:58:35 -0700929 if (btree_node_io_error(b)) {
Kent Overstreetcafe5632013-03-23 16:11:31 -0700930 rw_unlock(write, b);
Kent Overstreet57943512013-04-25 13:58:35 -0700931 return ERR_PTR(-EIO);
932 }
933
934 BUG_ON(!b->written);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700935
936 return b;
937}
938
939static void btree_node_prefetch(struct cache_set *c, struct bkey *k, int level)
940{
941 struct btree *b;
942
943 mutex_lock(&c->bucket_lock);
944 b = mca_alloc(c, k, level, NULL);
945 mutex_unlock(&c->bucket_lock);
946
947 if (!IS_ERR_OR_NULL(b)) {
Kent Overstreet57943512013-04-25 13:58:35 -0700948 bch_btree_node_read(b);
Kent Overstreetcafe5632013-03-23 16:11:31 -0700949 rw_unlock(true, b);
950 }
951}
952
953/* Btree alloc */
954
955static void btree_node_free(struct btree *b, struct btree_op *op)
956{
957 unsigned i;
958
959 /*
960 * The BUG_ON() in btree_node_get() implies that we must have a write
961 * lock on parent to free or even invalidate a node
962 */
963 BUG_ON(op->lock <= b->level);
964 BUG_ON(b == b->c->root);
965 pr_debug("bucket %s", pbtree(b));
966
967 if (btree_node_dirty(b))
968 btree_complete_write(b, btree_current_write(b));
969 clear_bit(BTREE_NODE_dirty, &b->flags);
970
Kent Overstreetcafe5632013-03-23 16:11:31 -0700971 cancel_delayed_work(&b->work);
972
973 mutex_lock(&b->c->bucket_lock);
974
975 for (i = 0; i < KEY_PTRS(&b->key); i++) {
976 BUG_ON(atomic_read(&PTR_BUCKET(b->c, &b->key, i)->pin));
977
978 bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
979 PTR_BUCKET(b->c, &b->key, i));
980 }
981
982 bch_bucket_free(b->c, &b->key);
983 mca_bucket_free(b);
984 mutex_unlock(&b->c->bucket_lock);
985}
986
987struct btree *bch_btree_node_alloc(struct cache_set *c, int level,
988 struct closure *cl)
989{
990 BKEY_PADDED(key) k;
991 struct btree *b = ERR_PTR(-EAGAIN);
992
993 mutex_lock(&c->bucket_lock);
994retry:
995 if (__bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, cl))
996 goto err;
997
998 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
999
1000 b = mca_alloc(c, &k.key, level, cl);
1001 if (IS_ERR(b))
1002 goto err_free;
1003
1004 if (!b) {
Kent Overstreetb1a67b02013-03-25 11:46:44 -07001005 cache_bug(c,
1006 "Tried to allocate bucket that was in btree cache");
Kent Overstreetcafe5632013-03-23 16:11:31 -07001007 __bkey_put(c, &k.key);
1008 goto retry;
1009 }
1010
Kent Overstreetcafe5632013-03-23 16:11:31 -07001011 b->accessed = 1;
1012 bch_bset_init_next(b);
1013
1014 mutex_unlock(&c->bucket_lock);
1015 return b;
1016err_free:
1017 bch_bucket_free(c, &k.key);
1018 __bkey_put(c, &k.key);
1019err:
1020 mutex_unlock(&c->bucket_lock);
1021 return b;
1022}
1023
1024static struct btree *btree_node_alloc_replacement(struct btree *b,
1025 struct closure *cl)
1026{
1027 struct btree *n = bch_btree_node_alloc(b->c, b->level, cl);
1028 if (!IS_ERR_OR_NULL(n))
1029 bch_btree_sort_into(b, n);
1030
1031 return n;
1032}
1033
1034/* Garbage collection */
1035
1036uint8_t __bch_btree_mark_key(struct cache_set *c, int level, struct bkey *k)
1037{
1038 uint8_t stale = 0;
1039 unsigned i;
1040 struct bucket *g;
1041
1042 /*
1043 * ptr_invalid() can't return true for the keys that mark btree nodes as
1044 * freed, but since ptr_bad() returns true we'll never actually use them
1045 * for anything and thus we don't want mark their pointers here
1046 */
1047 if (!bkey_cmp(k, &ZERO_KEY))
1048 return stale;
1049
1050 for (i = 0; i < KEY_PTRS(k); i++) {
1051 if (!ptr_available(c, k, i))
1052 continue;
1053
1054 g = PTR_BUCKET(c, k, i);
1055
1056 if (gen_after(g->gc_gen, PTR_GEN(k, i)))
1057 g->gc_gen = PTR_GEN(k, i);
1058
1059 if (ptr_stale(c, k, i)) {
1060 stale = max(stale, ptr_stale(c, k, i));
1061 continue;
1062 }
1063
1064 cache_bug_on(GC_MARK(g) &&
1065 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1066 c, "inconsistent ptrs: mark = %llu, level = %i",
1067 GC_MARK(g), level);
1068
1069 if (level)
1070 SET_GC_MARK(g, GC_MARK_METADATA);
1071 else if (KEY_DIRTY(k))
1072 SET_GC_MARK(g, GC_MARK_DIRTY);
1073
1074 /* guard against overflow */
1075 SET_GC_SECTORS_USED(g, min_t(unsigned,
1076 GC_SECTORS_USED(g) + KEY_SIZE(k),
1077 (1 << 14) - 1));
1078
1079 BUG_ON(!GC_SECTORS_USED(g));
1080 }
1081
1082 return stale;
1083}
1084
1085#define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1086
1087static int btree_gc_mark_node(struct btree *b, unsigned *keys,
1088 struct gc_stat *gc)
1089{
1090 uint8_t stale = 0;
1091 unsigned last_dev = -1;
1092 struct bcache_device *d = NULL;
1093 struct bkey *k;
1094 struct btree_iter iter;
1095 struct bset_tree *t;
1096
1097 gc->nodes++;
1098
1099 for_each_key_filter(b, k, &iter, bch_ptr_invalid) {
1100 if (last_dev != KEY_INODE(k)) {
1101 last_dev = KEY_INODE(k);
1102
1103 d = KEY_INODE(k) < b->c->nr_uuids
1104 ? b->c->devices[last_dev]
1105 : NULL;
1106 }
1107
1108 stale = max(stale, btree_mark_key(b, k));
1109
1110 if (bch_ptr_bad(b, k))
1111 continue;
1112
1113 *keys += bkey_u64s(k);
1114
1115 gc->key_bytes += bkey_u64s(k);
1116 gc->nkeys++;
1117
1118 gc->data += KEY_SIZE(k);
1119 if (KEY_DIRTY(k)) {
1120 gc->dirty += KEY_SIZE(k);
1121 if (d)
1122 d->sectors_dirty_gc += KEY_SIZE(k);
1123 }
1124 }
1125
1126 for (t = b->sets; t <= &b->sets[b->nsets]; t++)
1127 btree_bug_on(t->size &&
1128 bset_written(b, t) &&
1129 bkey_cmp(&b->key, &t->end) < 0,
1130 b, "found short btree key in gc");
1131
1132 return stale;
1133}
1134
1135static struct btree *btree_gc_alloc(struct btree *b, struct bkey *k,
1136 struct btree_op *op)
1137{
1138 /*
1139 * We block priorities from being written for the duration of garbage
1140 * collection, so we can't sleep in btree_alloc() ->
1141 * bch_bucket_alloc_set(), or we'd risk deadlock - so we don't pass it
1142 * our closure.
1143 */
1144 struct btree *n = btree_node_alloc_replacement(b, NULL);
1145
1146 if (!IS_ERR_OR_NULL(n)) {
1147 swap(b, n);
Kent Overstreet57943512013-04-25 13:58:35 -07001148 __bkey_put(b->c, &b->key);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001149
1150 memcpy(k->ptr, b->key.ptr,
1151 sizeof(uint64_t) * KEY_PTRS(&b->key));
1152
Kent Overstreetcafe5632013-03-23 16:11:31 -07001153 btree_node_free(n, op);
1154 up_write(&n->lock);
1155 }
1156
1157 return b;
1158}
1159
1160/*
1161 * Leaving this at 2 until we've got incremental garbage collection done; it
1162 * could be higher (and has been tested with 4) except that garbage collection
1163 * could take much longer, adversely affecting latency.
1164 */
1165#define GC_MERGE_NODES 2U
1166
1167struct gc_merge_info {
1168 struct btree *b;
1169 struct bkey *k;
1170 unsigned keys;
1171};
1172
1173static void btree_gc_coalesce(struct btree *b, struct btree_op *op,
1174 struct gc_stat *gc, struct gc_merge_info *r)
1175{
1176 unsigned nodes = 0, keys = 0, blocks;
1177 int i;
1178
1179 while (nodes < GC_MERGE_NODES && r[nodes].b)
1180 keys += r[nodes++].keys;
1181
1182 blocks = btree_default_blocks(b->c) * 2 / 3;
1183
1184 if (nodes < 2 ||
1185 __set_blocks(b->sets[0].data, keys, b->c) > blocks * (nodes - 1))
1186 return;
1187
1188 for (i = nodes - 1; i >= 0; --i) {
1189 if (r[i].b->written)
1190 r[i].b = btree_gc_alloc(r[i].b, r[i].k, op);
1191
1192 if (r[i].b->written)
1193 return;
1194 }
1195
1196 for (i = nodes - 1; i > 0; --i) {
1197 struct bset *n1 = r[i].b->sets->data;
1198 struct bset *n2 = r[i - 1].b->sets->data;
1199 struct bkey *k, *last = NULL;
1200
1201 keys = 0;
1202
1203 if (i == 1) {
1204 /*
1205 * Last node we're not getting rid of - we're getting
1206 * rid of the node at r[0]. Have to try and fit all of
1207 * the remaining keys into this node; we can't ensure
1208 * they will always fit due to rounding and variable
1209 * length keys (shouldn't be possible in practice,
1210 * though)
1211 */
1212 if (__set_blocks(n1, n1->keys + r->keys,
1213 b->c) > btree_blocks(r[i].b))
1214 return;
1215
1216 keys = n2->keys;
1217 last = &r->b->key;
1218 } else
1219 for (k = n2->start;
1220 k < end(n2);
1221 k = bkey_next(k)) {
1222 if (__set_blocks(n1, n1->keys + keys +
1223 bkey_u64s(k), b->c) > blocks)
1224 break;
1225
1226 last = k;
1227 keys += bkey_u64s(k);
1228 }
1229
1230 BUG_ON(__set_blocks(n1, n1->keys + keys,
1231 b->c) > btree_blocks(r[i].b));
1232
1233 if (last) {
1234 bkey_copy_key(&r[i].b->key, last);
1235 bkey_copy_key(r[i].k, last);
1236 }
1237
1238 memcpy(end(n1),
1239 n2->start,
1240 (void *) node(n2, keys) - (void *) n2->start);
1241
1242 n1->keys += keys;
1243
1244 memmove(n2->start,
1245 node(n2, keys),
1246 (void *) end(n2) - (void *) node(n2, keys));
1247
1248 n2->keys -= keys;
1249
1250 r[i].keys = n1->keys;
1251 r[i - 1].keys = n2->keys;
1252 }
1253
1254 btree_node_free(r->b, op);
1255 up_write(&r->b->lock);
1256
1257 pr_debug("coalesced %u nodes", nodes);
1258
1259 gc->nodes--;
1260 nodes--;
1261
1262 memmove(&r[0], &r[1], sizeof(struct gc_merge_info) * nodes);
1263 memset(&r[nodes], 0, sizeof(struct gc_merge_info));
1264}
1265
1266static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1267 struct closure *writes, struct gc_stat *gc)
1268{
1269 void write(struct btree *r)
1270 {
1271 if (!r->written)
Kent Overstreet57943512013-04-25 13:58:35 -07001272 bch_btree_node_write(r, &op->cl);
1273 else if (btree_node_dirty(r))
1274 bch_btree_node_write(r, writes);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001275
1276 up_write(&r->lock);
1277 }
1278
1279 int ret = 0, stale;
1280 unsigned i;
1281 struct gc_merge_info r[GC_MERGE_NODES];
1282
1283 memset(r, 0, sizeof(r));
1284
1285 while ((r->k = bch_next_recurse_key(b, &b->c->gc_done))) {
1286 r->b = bch_btree_node_get(b->c, r->k, b->level - 1, op);
1287
1288 if (IS_ERR(r->b)) {
1289 ret = PTR_ERR(r->b);
1290 break;
1291 }
1292
1293 r->keys = 0;
1294 stale = btree_gc_mark_node(r->b, &r->keys, gc);
1295
1296 if (!b->written &&
1297 (r->b->level || stale > 10 ||
1298 b->c->gc_always_rewrite))
1299 r->b = btree_gc_alloc(r->b, r->k, op);
1300
1301 if (r->b->level)
1302 ret = btree_gc_recurse(r->b, op, writes, gc);
1303
1304 if (ret) {
1305 write(r->b);
1306 break;
1307 }
1308
1309 bkey_copy_key(&b->c->gc_done, r->k);
1310
1311 if (!b->written)
1312 btree_gc_coalesce(b, op, gc, r);
1313
1314 if (r[GC_MERGE_NODES - 1].b)
1315 write(r[GC_MERGE_NODES - 1].b);
1316
1317 memmove(&r[1], &r[0],
1318 sizeof(struct gc_merge_info) * (GC_MERGE_NODES - 1));
1319
1320 /* When we've got incremental GC working, we'll want to do
1321 * if (should_resched())
1322 * return -EAGAIN;
1323 */
1324 cond_resched();
1325#if 0
1326 if (need_resched()) {
1327 ret = -EAGAIN;
1328 break;
1329 }
1330#endif
1331 }
1332
1333 for (i = 1; i < GC_MERGE_NODES && r[i].b; i++)
1334 write(r[i].b);
1335
1336 /* Might have freed some children, must remove their keys */
1337 if (!b->written)
1338 bch_btree_sort(b);
1339
1340 return ret;
1341}
1342
1343static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1344 struct closure *writes, struct gc_stat *gc)
1345{
1346 struct btree *n = NULL;
1347 unsigned keys = 0;
1348 int ret = 0, stale = btree_gc_mark_node(b, &keys, gc);
1349
1350 if (b->level || stale > 10)
1351 n = btree_node_alloc_replacement(b, NULL);
1352
1353 if (!IS_ERR_OR_NULL(n))
1354 swap(b, n);
1355
1356 if (b->level)
1357 ret = btree_gc_recurse(b, op, writes, gc);
1358
1359 if (!b->written || btree_node_dirty(b)) {
Kent Overstreet57943512013-04-25 13:58:35 -07001360 bch_btree_node_write(b, n ? &op->cl : NULL);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001361 }
1362
1363 if (!IS_ERR_OR_NULL(n)) {
1364 closure_sync(&op->cl);
1365 bch_btree_set_root(b);
1366 btree_node_free(n, op);
1367 rw_unlock(true, b);
1368 }
1369
1370 return ret;
1371}
1372
1373static void btree_gc_start(struct cache_set *c)
1374{
1375 struct cache *ca;
1376 struct bucket *b;
1377 struct bcache_device **d;
1378 unsigned i;
1379
1380 if (!c->gc_mark_valid)
1381 return;
1382
1383 mutex_lock(&c->bucket_lock);
1384
1385 c->gc_mark_valid = 0;
1386 c->gc_done = ZERO_KEY;
1387
1388 for_each_cache(ca, c, i)
1389 for_each_bucket(b, ca) {
1390 b->gc_gen = b->gen;
1391 if (!atomic_read(&b->pin))
1392 SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
1393 }
1394
1395 for (d = c->devices;
1396 d < c->devices + c->nr_uuids;
1397 d++)
1398 if (*d)
1399 (*d)->sectors_dirty_gc = 0;
1400
1401 mutex_unlock(&c->bucket_lock);
1402}
1403
1404size_t bch_btree_gc_finish(struct cache_set *c)
1405{
1406 size_t available = 0;
1407 struct bucket *b;
1408 struct cache *ca;
1409 struct bcache_device **d;
1410 unsigned i;
1411
1412 mutex_lock(&c->bucket_lock);
1413
1414 set_gc_sectors(c);
1415 c->gc_mark_valid = 1;
1416 c->need_gc = 0;
1417
1418 if (c->root)
1419 for (i = 0; i < KEY_PTRS(&c->root->key); i++)
1420 SET_GC_MARK(PTR_BUCKET(c, &c->root->key, i),
1421 GC_MARK_METADATA);
1422
1423 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1424 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1425 GC_MARK_METADATA);
1426
1427 for_each_cache(ca, c, i) {
1428 uint64_t *i;
1429
1430 ca->invalidate_needs_gc = 0;
1431
1432 for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1433 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1434
1435 for (i = ca->prio_buckets;
1436 i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1437 SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1438
1439 for_each_bucket(b, ca) {
1440 b->last_gc = b->gc_gen;
1441 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1442
1443 if (!atomic_read(&b->pin) &&
1444 GC_MARK(b) == GC_MARK_RECLAIMABLE) {
1445 available++;
1446 if (!GC_SECTORS_USED(b))
1447 bch_bucket_add_unused(ca, b);
1448 }
1449 }
1450 }
1451
1452 for (d = c->devices;
1453 d < c->devices + c->nr_uuids;
1454 d++)
1455 if (*d) {
1456 unsigned long last =
1457 atomic_long_read(&((*d)->sectors_dirty));
1458 long difference = (*d)->sectors_dirty_gc - last;
1459
1460 pr_debug("sectors dirty off by %li", difference);
1461
1462 (*d)->sectors_dirty_last += difference;
1463
1464 atomic_long_set(&((*d)->sectors_dirty),
1465 (*d)->sectors_dirty_gc);
1466 }
1467
1468 mutex_unlock(&c->bucket_lock);
1469 return available;
1470}
1471
1472static void bch_btree_gc(struct closure *cl)
1473{
1474 struct cache_set *c = container_of(cl, struct cache_set, gc.cl);
1475 int ret;
1476 unsigned long available;
1477 struct gc_stat stats;
1478 struct closure writes;
1479 struct btree_op op;
Kent Overstreetcafe5632013-03-23 16:11:31 -07001480 uint64_t start_time = local_clock();
Kent Overstreet57943512013-04-25 13:58:35 -07001481
Kent Overstreetcafe5632013-03-23 16:11:31 -07001482 trace_bcache_gc_start(c->sb.set_uuid);
1483 blktrace_msg_all(c, "Starting gc");
1484
1485 memset(&stats, 0, sizeof(struct gc_stat));
1486 closure_init_stack(&writes);
1487 bch_btree_op_init_stack(&op);
1488 op.lock = SHRT_MAX;
1489
1490 btree_gc_start(c);
1491
Kent Overstreet57943512013-04-25 13:58:35 -07001492 atomic_inc(&c->prio_blocked);
1493
Kent Overstreetcafe5632013-03-23 16:11:31 -07001494 ret = btree_root(gc_root, c, &op, &writes, &stats);
1495 closure_sync(&op.cl);
1496 closure_sync(&writes);
1497
1498 if (ret) {
1499 blktrace_msg_all(c, "Stopped gc");
1500 pr_warn("gc failed!");
1501
1502 continue_at(cl, bch_btree_gc, bch_gc_wq);
1503 }
1504
1505 /* Possibly wait for new UUIDs or whatever to hit disk */
1506 bch_journal_meta(c, &op.cl);
1507 closure_sync(&op.cl);
1508
1509 available = bch_btree_gc_finish(c);
1510
Kent Overstreet57943512013-04-25 13:58:35 -07001511 atomic_dec(&c->prio_blocked);
1512 wake_up_allocators(c);
1513
Kent Overstreet169ef1c2013-03-28 12:50:55 -06001514 bch_time_stats_update(&c->btree_gc_time, start_time);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001515
1516 stats.key_bytes *= sizeof(uint64_t);
1517 stats.dirty <<= 9;
1518 stats.data <<= 9;
1519 stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets;
1520 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
Kent Overstreetcafe5632013-03-23 16:11:31 -07001521
Kent Overstreet57943512013-04-25 13:58:35 -07001522 blktrace_msg_all(c, "Finished gc");
Kent Overstreetcafe5632013-03-23 16:11:31 -07001523 trace_bcache_gc_end(c->sb.set_uuid);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001524
1525 continue_at(cl, bch_moving_gc, bch_gc_wq);
1526}
1527
1528void bch_queue_gc(struct cache_set *c)
1529{
1530 closure_trylock_call(&c->gc.cl, bch_btree_gc, bch_gc_wq, &c->cl);
1531}
1532
1533/* Initial partial gc */
1534
1535static int bch_btree_check_recurse(struct btree *b, struct btree_op *op,
1536 unsigned long **seen)
1537{
1538 int ret;
1539 unsigned i;
1540 struct bkey *k;
1541 struct bucket *g;
1542 struct btree_iter iter;
1543
1544 for_each_key_filter(b, k, &iter, bch_ptr_invalid) {
1545 for (i = 0; i < KEY_PTRS(k); i++) {
1546 if (!ptr_available(b->c, k, i))
1547 continue;
1548
1549 g = PTR_BUCKET(b->c, k, i);
1550
1551 if (!__test_and_set_bit(PTR_BUCKET_NR(b->c, k, i),
1552 seen[PTR_DEV(k, i)]) ||
1553 !ptr_stale(b->c, k, i)) {
1554 g->gen = PTR_GEN(k, i);
1555
1556 if (b->level)
1557 g->prio = BTREE_PRIO;
1558 else if (g->prio == BTREE_PRIO)
1559 g->prio = INITIAL_PRIO;
1560 }
1561 }
1562
1563 btree_mark_key(b, k);
1564 }
1565
1566 if (b->level) {
1567 k = bch_next_recurse_key(b, &ZERO_KEY);
1568
1569 while (k) {
1570 struct bkey *p = bch_next_recurse_key(b, k);
1571 if (p)
1572 btree_node_prefetch(b->c, p, b->level - 1);
1573
1574 ret = btree(check_recurse, k, b, op, seen);
1575 if (ret)
1576 return ret;
1577
1578 k = p;
1579 }
1580 }
1581
1582 return 0;
1583}
1584
1585int bch_btree_check(struct cache_set *c, struct btree_op *op)
1586{
1587 int ret = -ENOMEM;
1588 unsigned i;
1589 unsigned long *seen[MAX_CACHES_PER_SET];
1590
1591 memset(seen, 0, sizeof(seen));
1592
1593 for (i = 0; c->cache[i]; i++) {
1594 size_t n = DIV_ROUND_UP(c->cache[i]->sb.nbuckets, 8);
1595 seen[i] = kmalloc(n, GFP_KERNEL);
1596 if (!seen[i])
1597 goto err;
1598
1599 /* Disables the seen array until prio_read() uses it too */
1600 memset(seen[i], 0xFF, n);
1601 }
1602
1603 ret = btree_root(check_recurse, c, op, seen);
1604err:
1605 for (i = 0; i < MAX_CACHES_PER_SET; i++)
1606 kfree(seen[i]);
1607 return ret;
1608}
1609
1610/* Btree insertion */
1611
1612static void shift_keys(struct btree *b, struct bkey *where, struct bkey *insert)
1613{
1614 struct bset *i = b->sets[b->nsets].data;
1615
1616 memmove((uint64_t *) where + bkey_u64s(insert),
1617 where,
1618 (void *) end(i) - (void *) where);
1619
1620 i->keys += bkey_u64s(insert);
1621 bkey_copy(where, insert);
1622 bch_bset_fix_lookup_table(b, where);
1623}
1624
1625static bool fix_overlapping_extents(struct btree *b,
1626 struct bkey *insert,
1627 struct btree_iter *iter,
1628 struct btree_op *op)
1629{
1630 void subtract_dirty(struct bkey *k, int sectors)
1631 {
1632 struct bcache_device *d = b->c->devices[KEY_INODE(k)];
1633
1634 if (KEY_DIRTY(k) && d)
1635 atomic_long_sub(sectors, &d->sectors_dirty);
1636 }
1637
1638 unsigned old_size, sectors_found = 0;
1639
1640 while (1) {
1641 struct bkey *k = bch_btree_iter_next(iter);
1642 if (!k ||
1643 bkey_cmp(&START_KEY(k), insert) >= 0)
1644 break;
1645
1646 if (bkey_cmp(k, &START_KEY(insert)) <= 0)
1647 continue;
1648
1649 old_size = KEY_SIZE(k);
1650
1651 /*
1652 * We might overlap with 0 size extents; we can't skip these
1653 * because if they're in the set we're inserting to we have to
1654 * adjust them so they don't overlap with the key we're
1655 * inserting. But we don't want to check them for BTREE_REPLACE
1656 * operations.
1657 */
1658
1659 if (op->type == BTREE_REPLACE &&
1660 KEY_SIZE(k)) {
1661 /*
1662 * k might have been split since we inserted/found the
1663 * key we're replacing
1664 */
1665 unsigned i;
1666 uint64_t offset = KEY_START(k) -
1667 KEY_START(&op->replace);
1668
1669 /* But it must be a subset of the replace key */
1670 if (KEY_START(k) < KEY_START(&op->replace) ||
1671 KEY_OFFSET(k) > KEY_OFFSET(&op->replace))
1672 goto check_failed;
1673
1674 /* We didn't find a key that we were supposed to */
1675 if (KEY_START(k) > KEY_START(insert) + sectors_found)
1676 goto check_failed;
1677
1678 if (KEY_PTRS(&op->replace) != KEY_PTRS(k))
1679 goto check_failed;
1680
1681 /* skip past gen */
1682 offset <<= 8;
1683
1684 BUG_ON(!KEY_PTRS(&op->replace));
1685
1686 for (i = 0; i < KEY_PTRS(&op->replace); i++)
1687 if (k->ptr[i] != op->replace.ptr[i] + offset)
1688 goto check_failed;
1689
1690 sectors_found = KEY_OFFSET(k) - KEY_START(insert);
1691 }
1692
1693 if (bkey_cmp(insert, k) < 0 &&
1694 bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) {
1695 /*
1696 * We overlapped in the middle of an existing key: that
1697 * means we have to split the old key. But we have to do
1698 * slightly different things depending on whether the
1699 * old key has been written out yet.
1700 */
1701
1702 struct bkey *top;
1703
1704 subtract_dirty(k, KEY_SIZE(insert));
1705
1706 if (bkey_written(b, k)) {
1707 /*
1708 * We insert a new key to cover the top of the
1709 * old key, and the old key is modified in place
1710 * to represent the bottom split.
1711 *
1712 * It's completely arbitrary whether the new key
1713 * is the top or the bottom, but it has to match
1714 * up with what btree_sort_fixup() does - it
1715 * doesn't check for this kind of overlap, it
1716 * depends on us inserting a new key for the top
1717 * here.
1718 */
1719 top = bch_bset_search(b, &b->sets[b->nsets],
1720 insert);
1721 shift_keys(b, top, k);
1722 } else {
1723 BKEY_PADDED(key) temp;
1724 bkey_copy(&temp.key, k);
1725 shift_keys(b, k, &temp.key);
1726 top = bkey_next(k);
1727 }
1728
1729 bch_cut_front(insert, top);
1730 bch_cut_back(&START_KEY(insert), k);
1731 bch_bset_fix_invalidated_key(b, k);
1732 return false;
1733 }
1734
1735 if (bkey_cmp(insert, k) < 0) {
1736 bch_cut_front(insert, k);
1737 } else {
1738 if (bkey_written(b, k) &&
1739 bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) {
1740 /*
1741 * Completely overwrote, so we don't have to
1742 * invalidate the binary search tree
1743 */
1744 bch_cut_front(k, k);
1745 } else {
1746 __bch_cut_back(&START_KEY(insert), k);
1747 bch_bset_fix_invalidated_key(b, k);
1748 }
1749 }
1750
1751 subtract_dirty(k, old_size - KEY_SIZE(k));
1752 }
1753
1754check_failed:
1755 if (op->type == BTREE_REPLACE) {
1756 if (!sectors_found) {
1757 op->insert_collision = true;
1758 return true;
1759 } else if (sectors_found < KEY_SIZE(insert)) {
1760 SET_KEY_OFFSET(insert, KEY_OFFSET(insert) -
1761 (KEY_SIZE(insert) - sectors_found));
1762 SET_KEY_SIZE(insert, sectors_found);
1763 }
1764 }
1765
1766 return false;
1767}
1768
1769static bool btree_insert_key(struct btree *b, struct btree_op *op,
1770 struct bkey *k)
1771{
1772 struct bset *i = b->sets[b->nsets].data;
1773 struct bkey *m, *prev;
1774 const char *status = "insert";
1775
1776 BUG_ON(bkey_cmp(k, &b->key) > 0);
1777 BUG_ON(b->level && !KEY_PTRS(k));
1778 BUG_ON(!b->level && !KEY_OFFSET(k));
1779
1780 if (!b->level) {
1781 struct btree_iter iter;
1782 struct bkey search = KEY(KEY_INODE(k), KEY_START(k), 0);
1783
1784 /*
1785 * bset_search() returns the first key that is strictly greater
1786 * than the search key - but for back merging, we want to find
1787 * the first key that is greater than or equal to KEY_START(k) -
1788 * unless KEY_START(k) is 0.
1789 */
1790 if (KEY_OFFSET(&search))
1791 SET_KEY_OFFSET(&search, KEY_OFFSET(&search) - 1);
1792
1793 prev = NULL;
1794 m = bch_btree_iter_init(b, &iter, &search);
1795
1796 if (fix_overlapping_extents(b, k, &iter, op))
1797 return false;
1798
1799 while (m != end(i) &&
1800 bkey_cmp(k, &START_KEY(m)) > 0)
1801 prev = m, m = bkey_next(m);
1802
1803 if (key_merging_disabled(b->c))
1804 goto insert;
1805
1806 /* prev is in the tree, if we merge we're done */
1807 status = "back merging";
1808 if (prev &&
1809 bch_bkey_try_merge(b, prev, k))
1810 goto merged;
1811
1812 status = "overwrote front";
1813 if (m != end(i) &&
1814 KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
1815 goto copy;
1816
1817 status = "front merge";
1818 if (m != end(i) &&
1819 bch_bkey_try_merge(b, k, m))
1820 goto copy;
1821 } else
1822 m = bch_bset_search(b, &b->sets[b->nsets], k);
1823
1824insert: shift_keys(b, m, k);
1825copy: bkey_copy(m, k);
1826merged:
1827 bch_check_keys(b, "%s for %s at %s: %s", status,
1828 op_type(op), pbtree(b), pkey(k));
1829 bch_check_key_order_msg(b, i, "%s for %s at %s: %s", status,
1830 op_type(op), pbtree(b), pkey(k));
1831
1832 if (b->level && !KEY_OFFSET(k))
Kent Overstreet57943512013-04-25 13:58:35 -07001833 btree_current_write(b)->prio_blocked++;
Kent Overstreetcafe5632013-03-23 16:11:31 -07001834
1835 pr_debug("%s for %s at %s: %s", status,
1836 op_type(op), pbtree(b), pkey(k));
1837
1838 return true;
1839}
1840
1841bool bch_btree_insert_keys(struct btree *b, struct btree_op *op)
1842{
1843 bool ret = false;
1844 struct bkey *k;
1845 unsigned oldsize = bch_count_data(b);
1846
1847 while ((k = bch_keylist_pop(&op->keys))) {
1848 bkey_put(b->c, k, b->level);
1849 ret |= btree_insert_key(b, op, k);
1850 }
1851
1852 BUG_ON(bch_count_data(b) < oldsize);
1853 return ret;
1854}
1855
1856bool bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
1857 struct bio *bio)
1858{
1859 bool ret = false;
1860 uint64_t btree_ptr = b->key.ptr[0];
1861 unsigned long seq = b->seq;
1862 BKEY_PADDED(k) tmp;
1863
1864 rw_unlock(false, b);
1865 rw_lock(true, b, b->level);
1866
1867 if (b->key.ptr[0] != btree_ptr ||
1868 b->seq != seq + 1 ||
1869 should_split(b))
1870 goto out;
1871
1872 op->replace = KEY(op->inode, bio_end(bio), bio_sectors(bio));
1873
1874 SET_KEY_PTRS(&op->replace, 1);
1875 get_random_bytes(&op->replace.ptr[0], sizeof(uint64_t));
1876
1877 SET_PTR_DEV(&op->replace, 0, PTR_CHECK_DEV);
1878
1879 bkey_copy(&tmp.k, &op->replace);
1880
1881 BUG_ON(op->type != BTREE_INSERT);
1882 BUG_ON(!btree_insert_key(b, op, &tmp.k));
Kent Overstreetcafe5632013-03-23 16:11:31 -07001883 ret = true;
1884out:
1885 downgrade_write(&b->lock);
1886 return ret;
1887}
1888
1889static int btree_split(struct btree *b, struct btree_op *op)
1890{
1891 bool split, root = b == b->c->root;
1892 struct btree *n1, *n2 = NULL, *n3 = NULL;
1893 uint64_t start_time = local_clock();
1894
1895 if (b->level)
1896 set_closure_blocking(&op->cl);
1897
1898 n1 = btree_node_alloc_replacement(b, &op->cl);
1899 if (IS_ERR(n1))
1900 goto err;
1901
1902 split = set_blocks(n1->sets[0].data, n1->c) > (btree_blocks(b) * 4) / 5;
1903
1904 pr_debug("%ssplitting at %s keys %i", split ? "" : "not ",
1905 pbtree(b), n1->sets[0].data->keys);
1906
1907 if (split) {
1908 unsigned keys = 0;
1909
1910 n2 = bch_btree_node_alloc(b->c, b->level, &op->cl);
1911 if (IS_ERR(n2))
1912 goto err_free1;
1913
1914 if (root) {
1915 n3 = bch_btree_node_alloc(b->c, b->level + 1, &op->cl);
1916 if (IS_ERR(n3))
1917 goto err_free2;
1918 }
1919
1920 bch_btree_insert_keys(n1, op);
1921
1922 /* Has to be a linear search because we don't have an auxiliary
1923 * search tree yet
1924 */
1925
1926 while (keys < (n1->sets[0].data->keys * 3) / 5)
1927 keys += bkey_u64s(node(n1->sets[0].data, keys));
1928
1929 bkey_copy_key(&n1->key, node(n1->sets[0].data, keys));
1930 keys += bkey_u64s(node(n1->sets[0].data, keys));
1931
1932 n2->sets[0].data->keys = n1->sets[0].data->keys - keys;
1933 n1->sets[0].data->keys = keys;
1934
1935 memcpy(n2->sets[0].data->start,
1936 end(n1->sets[0].data),
1937 n2->sets[0].data->keys * sizeof(uint64_t));
1938
1939 bkey_copy_key(&n2->key, &b->key);
1940
1941 bch_keylist_add(&op->keys, &n2->key);
Kent Overstreet57943512013-04-25 13:58:35 -07001942 bch_btree_node_write(n2, &op->cl);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001943 rw_unlock(true, n2);
1944 } else
1945 bch_btree_insert_keys(n1, op);
1946
1947 bch_keylist_add(&op->keys, &n1->key);
Kent Overstreet57943512013-04-25 13:58:35 -07001948 bch_btree_node_write(n1, &op->cl);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001949
1950 if (n3) {
1951 bkey_copy_key(&n3->key, &MAX_KEY);
1952 bch_btree_insert_keys(n3, op);
Kent Overstreet57943512013-04-25 13:58:35 -07001953 bch_btree_node_write(n3, &op->cl);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001954
1955 closure_sync(&op->cl);
1956 bch_btree_set_root(n3);
1957 rw_unlock(true, n3);
1958 } else if (root) {
1959 op->keys.top = op->keys.bottom;
1960 closure_sync(&op->cl);
1961 bch_btree_set_root(n1);
1962 } else {
1963 unsigned i;
1964
1965 bkey_copy(op->keys.top, &b->key);
1966 bkey_copy_key(op->keys.top, &ZERO_KEY);
1967
1968 for (i = 0; i < KEY_PTRS(&b->key); i++) {
1969 uint8_t g = PTR_BUCKET(b->c, &b->key, i)->gen + 1;
1970
1971 SET_PTR_GEN(op->keys.top, i, g);
1972 }
1973
1974 bch_keylist_push(&op->keys);
1975 closure_sync(&op->cl);
1976 atomic_inc(&b->c->prio_blocked);
1977 }
1978
1979 rw_unlock(true, n1);
1980 btree_node_free(b, op);
1981
Kent Overstreet169ef1c2013-03-28 12:50:55 -06001982 bch_time_stats_update(&b->c->btree_split_time, start_time);
Kent Overstreetcafe5632013-03-23 16:11:31 -07001983
1984 return 0;
1985err_free2:
1986 __bkey_put(n2->c, &n2->key);
1987 btree_node_free(n2, op);
1988 rw_unlock(true, n2);
1989err_free1:
1990 __bkey_put(n1->c, &n1->key);
1991 btree_node_free(n1, op);
1992 rw_unlock(true, n1);
1993err:
1994 if (n3 == ERR_PTR(-EAGAIN) ||
1995 n2 == ERR_PTR(-EAGAIN) ||
1996 n1 == ERR_PTR(-EAGAIN))
1997 return -EAGAIN;
1998
1999 pr_warn("couldn't split");
2000 return -ENOMEM;
2001}
2002
2003static int bch_btree_insert_recurse(struct btree *b, struct btree_op *op,
2004 struct keylist *stack_keys)
2005{
2006 if (b->level) {
2007 int ret;
2008 struct bkey *insert = op->keys.bottom;
2009 struct bkey *k = bch_next_recurse_key(b, &START_KEY(insert));
2010
2011 if (!k) {
2012 btree_bug(b, "no key to recurse on at level %i/%i",
2013 b->level, b->c->root->level);
2014
2015 op->keys.top = op->keys.bottom;
2016 return -EIO;
2017 }
2018
2019 if (bkey_cmp(insert, k) > 0) {
2020 unsigned i;
2021
2022 if (op->type == BTREE_REPLACE) {
2023 __bkey_put(b->c, insert);
2024 op->keys.top = op->keys.bottom;
2025 op->insert_collision = true;
2026 return 0;
2027 }
2028
2029 for (i = 0; i < KEY_PTRS(insert); i++)
2030 atomic_inc(&PTR_BUCKET(b->c, insert, i)->pin);
2031
2032 bkey_copy(stack_keys->top, insert);
2033
2034 bch_cut_back(k, insert);
2035 bch_cut_front(k, stack_keys->top);
2036
2037 bch_keylist_push(stack_keys);
2038 }
2039
2040 ret = btree(insert_recurse, k, b, op, stack_keys);
2041 if (ret)
2042 return ret;
2043 }
2044
2045 if (!bch_keylist_empty(&op->keys)) {
2046 if (should_split(b)) {
2047 if (op->lock <= b->c->root->level) {
2048 BUG_ON(b->level);
2049 op->lock = b->c->root->level + 1;
2050 return -EINTR;
2051 }
2052 return btree_split(b, op);
2053 }
2054
2055 BUG_ON(write_block(b) != b->sets[b->nsets].data);
2056
Kent Overstreet57943512013-04-25 13:58:35 -07002057 if (bch_btree_insert_keys(b, op)) {
2058 if (!b->level)
2059 bch_btree_leaf_dirty(b, op);
2060 else
2061 bch_btree_node_write(b, &op->cl);
2062 }
Kent Overstreetcafe5632013-03-23 16:11:31 -07002063 }
2064
2065 return 0;
2066}
2067
2068int bch_btree_insert(struct btree_op *op, struct cache_set *c)
2069{
2070 int ret = 0;
2071 struct keylist stack_keys;
2072
2073 /*
2074 * Don't want to block with the btree locked unless we have to,
2075 * otherwise we get deadlocks with try_harder and between split/gc
2076 */
2077 clear_closure_blocking(&op->cl);
2078
2079 BUG_ON(bch_keylist_empty(&op->keys));
2080 bch_keylist_copy(&stack_keys, &op->keys);
2081 bch_keylist_init(&op->keys);
2082
2083 while (!bch_keylist_empty(&stack_keys) ||
2084 !bch_keylist_empty(&op->keys)) {
2085 if (bch_keylist_empty(&op->keys)) {
2086 bch_keylist_add(&op->keys,
2087 bch_keylist_pop(&stack_keys));
2088 op->lock = 0;
2089 }
2090
2091 ret = btree_root(insert_recurse, c, op, &stack_keys);
2092
2093 if (ret == -EAGAIN) {
2094 ret = 0;
2095 closure_sync(&op->cl);
2096 } else if (ret) {
2097 struct bkey *k;
2098
2099 pr_err("error %i trying to insert key for %s",
2100 ret, op_type(op));
2101
2102 while ((k = bch_keylist_pop(&stack_keys) ?:
2103 bch_keylist_pop(&op->keys)))
2104 bkey_put(c, k, 0);
2105 }
2106 }
2107
2108 bch_keylist_free(&stack_keys);
2109
2110 if (op->journal)
2111 atomic_dec_bug(op->journal);
2112 op->journal = NULL;
2113 return ret;
2114}
2115
2116void bch_btree_set_root(struct btree *b)
2117{
2118 unsigned i;
2119
2120 BUG_ON(!b->written);
2121
2122 for (i = 0; i < KEY_PTRS(&b->key); i++)
2123 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2124
2125 mutex_lock(&b->c->bucket_lock);
2126 list_del_init(&b->list);
2127 mutex_unlock(&b->c->bucket_lock);
2128
2129 b->c->root = b;
2130 __bkey_put(b->c, &b->key);
2131
2132 bch_journal_meta(b->c, NULL);
2133 pr_debug("%s for %pf", pbtree(b), __builtin_return_address(0));
2134}
2135
2136/* Cache lookup */
2137
2138static int submit_partial_cache_miss(struct btree *b, struct btree_op *op,
2139 struct bkey *k)
2140{
2141 struct search *s = container_of(op, struct search, op);
2142 struct bio *bio = &s->bio.bio;
2143 int ret = 0;
2144
2145 while (!ret &&
2146 !op->lookup_done) {
2147 unsigned sectors = INT_MAX;
2148
2149 if (KEY_INODE(k) == op->inode) {
2150 if (KEY_START(k) <= bio->bi_sector)
2151 break;
2152
2153 sectors = min_t(uint64_t, sectors,
2154 KEY_START(k) - bio->bi_sector);
2155 }
2156
2157 ret = s->d->cache_miss(b, s, bio, sectors);
2158 }
2159
2160 return ret;
2161}
2162
2163/*
2164 * Read from a single key, handling the initial cache miss if the key starts in
2165 * the middle of the bio
2166 */
2167static int submit_partial_cache_hit(struct btree *b, struct btree_op *op,
2168 struct bkey *k)
2169{
2170 struct search *s = container_of(op, struct search, op);
2171 struct bio *bio = &s->bio.bio;
2172 unsigned ptr;
2173 struct bio *n;
2174
2175 int ret = submit_partial_cache_miss(b, op, k);
2176 if (ret || op->lookup_done)
2177 return ret;
2178
2179 /* XXX: figure out best pointer - for multiple cache devices */
2180 ptr = 0;
2181
2182 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
2183
2184 while (!op->lookup_done &&
2185 KEY_INODE(k) == op->inode &&
2186 bio->bi_sector < KEY_OFFSET(k)) {
2187 struct bkey *bio_key;
2188 sector_t sector = PTR_OFFSET(k, ptr) +
2189 (bio->bi_sector - KEY_START(k));
2190 unsigned sectors = min_t(uint64_t, INT_MAX,
2191 KEY_OFFSET(k) - bio->bi_sector);
2192
2193 n = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
2194 if (!n)
2195 return -EAGAIN;
2196
2197 if (n == bio)
2198 op->lookup_done = true;
2199
2200 bio_key = &container_of(n, struct bbio, bio)->key;
2201
2202 /*
2203 * The bucket we're reading from might be reused while our bio
2204 * is in flight, and we could then end up reading the wrong
2205 * data.
2206 *
2207 * We guard against this by checking (in cache_read_endio()) if
2208 * the pointer is stale again; if so, we treat it as an error
2209 * and reread from the backing device (but we don't pass that
2210 * error up anywhere).
2211 */
2212
2213 bch_bkey_copy_single_ptr(bio_key, k, ptr);
2214 SET_PTR_OFFSET(bio_key, 0, sector);
2215
2216 n->bi_end_io = bch_cache_read_endio;
2217 n->bi_private = &s->cl;
2218
2219 trace_bcache_cache_hit(n);
2220 __bch_submit_bbio(n, b->c);
2221 }
2222
2223 return 0;
2224}
2225
2226int bch_btree_search_recurse(struct btree *b, struct btree_op *op)
2227{
2228 struct search *s = container_of(op, struct search, op);
2229 struct bio *bio = &s->bio.bio;
2230
2231 int ret = 0;
2232 struct bkey *k;
2233 struct btree_iter iter;
2234 bch_btree_iter_init(b, &iter, &KEY(op->inode, bio->bi_sector, 0));
2235
2236 pr_debug("at %s searching for %u:%llu", pbtree(b), op->inode,
2237 (uint64_t) bio->bi_sector);
2238
2239 do {
2240 k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad);
2241 if (!k) {
2242 /*
2243 * b->key would be exactly what we want, except that
2244 * pointers to btree nodes have nonzero size - we
2245 * wouldn't go far enough
2246 */
2247
2248 ret = submit_partial_cache_miss(b, op,
2249 &KEY(KEY_INODE(&b->key),
2250 KEY_OFFSET(&b->key), 0));
2251 break;
2252 }
2253
2254 ret = b->level
2255 ? btree(search_recurse, k, b, op)
2256 : submit_partial_cache_hit(b, op, k);
2257 } while (!ret &&
2258 !op->lookup_done);
2259
2260 return ret;
2261}
2262
2263/* Keybuf code */
2264
2265static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2266{
2267 /* Overlapping keys compare equal */
2268 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2269 return -1;
2270 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2271 return 1;
2272 return 0;
2273}
2274
2275static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2276 struct keybuf_key *r)
2277{
2278 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2279}
2280
2281static int bch_btree_refill_keybuf(struct btree *b, struct btree_op *op,
2282 struct keybuf *buf, struct bkey *end)
2283{
2284 struct btree_iter iter;
2285 bch_btree_iter_init(b, &iter, &buf->last_scanned);
2286
2287 while (!array_freelist_empty(&buf->freelist)) {
2288 struct bkey *k = bch_btree_iter_next_filter(&iter, b,
2289 bch_ptr_bad);
2290
2291 if (!b->level) {
2292 if (!k) {
2293 buf->last_scanned = b->key;
2294 break;
2295 }
2296
2297 buf->last_scanned = *k;
2298 if (bkey_cmp(&buf->last_scanned, end) >= 0)
2299 break;
2300
2301 if (buf->key_predicate(buf, k)) {
2302 struct keybuf_key *w;
2303
2304 pr_debug("%s", pkey(k));
2305
2306 spin_lock(&buf->lock);
2307
2308 w = array_alloc(&buf->freelist);
2309
2310 w->private = NULL;
2311 bkey_copy(&w->key, k);
2312
2313 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2314 array_free(&buf->freelist, w);
2315
2316 spin_unlock(&buf->lock);
2317 }
2318 } else {
2319 if (!k)
2320 break;
2321
2322 btree(refill_keybuf, k, b, op, buf, end);
2323 /*
2324 * Might get an error here, but can't really do anything
2325 * and it'll get logged elsewhere. Just read what we
2326 * can.
2327 */
2328
2329 if (bkey_cmp(&buf->last_scanned, end) >= 0)
2330 break;
2331
2332 cond_resched();
2333 }
2334 }
2335
2336 return 0;
2337}
2338
2339void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2340 struct bkey *end)
2341{
2342 struct bkey start = buf->last_scanned;
2343 struct btree_op op;
2344 bch_btree_op_init_stack(&op);
2345
2346 cond_resched();
2347
2348 btree_root(refill_keybuf, c, &op, buf, end);
2349 closure_sync(&op.cl);
2350
2351 pr_debug("found %s keys from %llu:%llu to %llu:%llu",
2352 RB_EMPTY_ROOT(&buf->keys) ? "no" :
2353 array_freelist_empty(&buf->freelist) ? "some" : "a few",
2354 KEY_INODE(&start), KEY_OFFSET(&start),
2355 KEY_INODE(&buf->last_scanned), KEY_OFFSET(&buf->last_scanned));
2356
2357 spin_lock(&buf->lock);
2358
2359 if (!RB_EMPTY_ROOT(&buf->keys)) {
2360 struct keybuf_key *w;
2361 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2362 buf->start = START_KEY(&w->key);
2363
2364 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2365 buf->end = w->key;
2366 } else {
2367 buf->start = MAX_KEY;
2368 buf->end = MAX_KEY;
2369 }
2370
2371 spin_unlock(&buf->lock);
2372}
2373
2374static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2375{
2376 rb_erase(&w->node, &buf->keys);
2377 array_free(&buf->freelist, w);
2378}
2379
2380void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2381{
2382 spin_lock(&buf->lock);
2383 __bch_keybuf_del(buf, w);
2384 spin_unlock(&buf->lock);
2385}
2386
2387bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2388 struct bkey *end)
2389{
2390 bool ret = false;
2391 struct keybuf_key *p, *w, s;
2392 s.key = *start;
2393
2394 if (bkey_cmp(end, &buf->start) <= 0 ||
2395 bkey_cmp(start, &buf->end) >= 0)
2396 return false;
2397
2398 spin_lock(&buf->lock);
2399 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2400
2401 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2402 p = w;
2403 w = RB_NEXT(w, node);
2404
2405 if (p->private)
2406 ret = true;
2407 else
2408 __bch_keybuf_del(buf, p);
2409 }
2410
2411 spin_unlock(&buf->lock);
2412 return ret;
2413}
2414
2415struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2416{
2417 struct keybuf_key *w;
2418 spin_lock(&buf->lock);
2419
2420 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2421
2422 while (w && w->private)
2423 w = RB_NEXT(w, node);
2424
2425 if (w)
2426 w->private = ERR_PTR(-EINTR);
2427
2428 spin_unlock(&buf->lock);
2429 return w;
2430}
2431
2432struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2433 struct keybuf *buf,
2434 struct bkey *end)
2435{
2436 struct keybuf_key *ret;
2437
2438 while (1) {
2439 ret = bch_keybuf_next(buf);
2440 if (ret)
2441 break;
2442
2443 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2444 pr_debug("scan finished");
2445 break;
2446 }
2447
2448 bch_refill_keybuf(c, buf, end);
2449 }
2450
2451 return ret;
2452}
2453
2454void bch_keybuf_init(struct keybuf *buf, keybuf_pred_fn *fn)
2455{
2456 buf->key_predicate = fn;
2457 buf->last_scanned = MAX_KEY;
2458 buf->keys = RB_ROOT;
2459
2460 spin_lock_init(&buf->lock);
2461 array_allocator_init(&buf->freelist);
2462}
2463
2464void bch_btree_exit(void)
2465{
2466 if (btree_io_wq)
2467 destroy_workqueue(btree_io_wq);
2468 if (bch_gc_wq)
2469 destroy_workqueue(bch_gc_wq);
2470}
2471
2472int __init bch_btree_init(void)
2473{
2474 if (!(bch_gc_wq = create_singlethread_workqueue("bch_btree_gc")) ||
2475 !(btree_io_wq = create_singlethread_workqueue("bch_btree_io")))
2476 return -ENOMEM;
2477
2478 return 0;
2479}