blob: ed82631b0017256747e798e5b69350269576f05b [file] [log] [blame]
Ralf Baechle0004a9d2006-10-31 03:45:07 +00001/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2006 by Ralf Baechle (ralf@linux-mips.org)
7 */
8#ifndef __ASM_BARRIER_H
9#define __ASM_BARRIER_H
10
11/*
12 * read_barrier_depends - Flush all pending reads that subsequents reads
13 * depend on.
14 *
15 * No data-dependent reads from memory-like regions are ever reordered
16 * over this barrier. All reads preceding this primitive are guaranteed
17 * to access memory (but not necessarily other CPUs' caches) before any
18 * reads following this primitive that depend on the data return by
19 * any of the preceding reads. This primitive is much lighter weight than
20 * rmb() on most CPUs, and is never heavier weight than is
21 * rmb().
22 *
23 * These ordering constraints are respected by both the local CPU
24 * and the compiler.
25 *
26 * Ordering is not guaranteed by anything other than these primitives,
27 * not even by data dependencies. See the documentation for
28 * memory_barrier() for examples and URLs to more information.
29 *
30 * For example, the following code would force ordering (the initial
31 * value of "a" is zero, "b" is one, and "p" is "&a"):
32 *
33 * <programlisting>
34 * CPU 0 CPU 1
35 *
36 * b = 2;
37 * memory_barrier();
38 * p = &b; q = p;
39 * read_barrier_depends();
40 * d = *q;
41 * </programlisting>
42 *
43 * because the read of "*q" depends on the read of "p" and these
44 * two reads are separated by a read_barrier_depends(). However,
45 * the following code, with the same initial values for "a" and "b":
46 *
47 * <programlisting>
48 * CPU 0 CPU 1
49 *
50 * a = 2;
51 * memory_barrier();
52 * b = 3; y = b;
53 * read_barrier_depends();
54 * x = a;
55 * </programlisting>
56 *
57 * does not enforce ordering, since there is no data dependency between
58 * the read of "a" and the read of "b". Therefore, on some CPUs, such
59 * as Alpha, "y" could be set to 3 and "x" to 0. Use rmb()
60 * in cases like this where there are no data dependencies.
61 */
62
63#define read_barrier_depends() do { } while(0)
64#define smp_read_barrier_depends() do { } while(0)
65
66#ifdef CONFIG_CPU_HAS_SYNC
67#define __sync() \
68 __asm__ __volatile__( \
69 ".set push\n\t" \
70 ".set noreorder\n\t" \
71 ".set mips2\n\t" \
72 "sync\n\t" \
73 ".set pop" \
74 : /* no output */ \
75 : /* no input */ \
76 : "memory")
77#else
78#define __sync() do { } while(0)
79#endif
80
81#define __fast_iob() \
82 __asm__ __volatile__( \
83 ".set push\n\t" \
84 ".set noreorder\n\t" \
85 "lw $0,%0\n\t" \
86 "nop\n\t" \
87 ".set pop" \
88 : /* no output */ \
89 : "m" (*(int *)CKSEG1) \
90 : "memory")
91
92#define fast_wmb() __sync()
93#define fast_rmb() __sync()
94#define fast_mb() __sync()
95#define fast_iob() \
96 do { \
97 __sync(); \
98 __fast_iob(); \
99 } while (0)
100
101#ifdef CONFIG_CPU_HAS_WB
102
103#include <asm/wbflush.h>
104
105#define wmb() fast_wmb()
106#define rmb() fast_rmb()
107#define mb() wbflush()
108#define iob() wbflush()
109
110#else /* !CONFIG_CPU_HAS_WB */
111
112#define wmb() fast_wmb()
113#define rmb() fast_rmb()
114#define mb() fast_mb()
115#define iob() fast_iob()
116
117#endif /* !CONFIG_CPU_HAS_WB */
118
119#if defined(CONFIG_WEAK_ORDERING) && defined(CONFIG_SMP)
120#define __WEAK_ORDERING_MB " sync \n"
121#else
122#define __WEAK_ORDERING_MB " \n"
123#endif
124
125#define smp_mb() __asm__ __volatile__(__WEAK_ORDERING_MB : : :"memory")
126#define smp_rmb() __asm__ __volatile__(__WEAK_ORDERING_MB : : :"memory")
127#define smp_wmb() __asm__ __volatile__(__WEAK_ORDERING_MB : : :"memory")
128
129#define set_mb(var, value) \
130 do { var = value; smp_mb(); } while (0)
131
132#endif /* __ASM_BARRIER_H */