blob: 4ce0296575ebf531381f3375d5f86f499d97e874 [file] [log] [blame]
David S. Miller2809a20872012-04-15 20:06:27 -07001#include <linux/moduleloader.h>
2#include <linux/workqueue.h>
3#include <linux/netdevice.h>
4#include <linux/filter.h>
5#include <linux/cache.h>
6
7#include <asm/cacheflush.h>
8#include <asm/ptrace.h>
9
10#include "bpf_jit.h"
11
12int bpf_jit_enable __read_mostly;
13
David S. Miller2809a20872012-04-15 20:06:27 -070014static inline bool is_simm13(unsigned int value)
15{
16 return value + 0x1000 < 0x2000;
17}
18
19static void bpf_flush_icache(void *start_, void *end_)
20{
21#ifdef CONFIG_SPARC64
22 /* Cheetah's I-cache is fully coherent. */
23 if (tlb_type == spitfire) {
24 unsigned long start = (unsigned long) start_;
25 unsigned long end = (unsigned long) end_;
26
27 start &= ~7UL;
28 end = (end + 7UL) & ~7UL;
29 while (start < end) {
30 flushi(start);
31 start += 32;
32 }
33 }
34#endif
35}
36
37#define SEEN_DATAREF 1 /* might call external helpers */
38#define SEEN_XREG 2 /* ebx is used */
39#define SEEN_MEM 4 /* use mem[] for temporary storage */
40
41#define S13(X) ((X) & 0x1fff)
42#define IMMED 0x00002000
43#define RD(X) ((X) << 25)
44#define RS1(X) ((X) << 14)
45#define RS2(X) ((X))
46#define OP(X) ((X) << 30)
47#define OP2(X) ((X) << 22)
48#define OP3(X) ((X) << 19)
49#define COND(X) ((X) << 25)
50#define F1(X) OP(X)
51#define F2(X, Y) (OP(X) | OP2(Y))
52#define F3(X, Y) (OP(X) | OP3(Y))
53
David S. Miller584c5e22012-04-17 16:38:16 -040054#define CONDN COND(0x0)
55#define CONDE COND(0x1)
56#define CONDLE COND(0x2)
57#define CONDL COND(0x3)
58#define CONDLEU COND(0x4)
59#define CONDCS COND(0x5)
60#define CONDNEG COND(0x6)
61#define CONDVC COND(0x7)
62#define CONDA COND(0x8)
63#define CONDNE COND(0x9)
64#define CONDG COND(0xa)
65#define CONDGE COND(0xb)
66#define CONDGU COND(0xc)
67#define CONDCC COND(0xd)
68#define CONDPOS COND(0xe)
69#define CONDVS COND(0xf)
David S. Miller2809a20872012-04-15 20:06:27 -070070
71#define CONDGEU CONDCC
72#define CONDLU CONDCS
73
74#define WDISP22(X) (((X) >> 2) & 0x3fffff)
75
76#define BA (F2(0, 2) | CONDA)
77#define BGU (F2(0, 2) | CONDGU)
78#define BLEU (F2(0, 2) | CONDLEU)
79#define BGEU (F2(0, 2) | CONDGEU)
80#define BLU (F2(0, 2) | CONDLU)
81#define BE (F2(0, 2) | CONDE)
82#define BNE (F2(0, 2) | CONDNE)
83
84#ifdef CONFIG_SPARC64
85#define BNE_PTR (F2(0, 1) | CONDNE | (2 << 20))
86#else
87#define BNE_PTR BNE
88#endif
89
90#define SETHI(K, REG) \
91 (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
92#define OR_LO(K, REG) \
93 (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
94
95#define ADD F3(2, 0x00)
96#define AND F3(2, 0x01)
97#define ANDCC F3(2, 0x11)
98#define OR F3(2, 0x02)
99#define SUB F3(2, 0x04)
100#define SUBCC F3(2, 0x14)
101#define MUL F3(2, 0x0a) /* umul */
102#define DIV F3(2, 0x0e) /* udiv */
103#define SLL F3(2, 0x25)
104#define SRL F3(2, 0x26)
105#define JMPL F3(2, 0x38)
106#define CALL F1(1)
107#define BR F2(0, 0x01)
108#define RD_Y F3(2, 0x28)
109#define WR_Y F3(2, 0x30)
110
111#define LD32 F3(3, 0x00)
112#define LD8 F3(3, 0x01)
113#define LD16 F3(3, 0x02)
114#define LD64 F3(3, 0x0b)
115#define ST32 F3(3, 0x04)
116
117#ifdef CONFIG_SPARC64
118#define LDPTR LD64
119#define BASE_STACKFRAME 176
120#else
121#define LDPTR LD32
122#define BASE_STACKFRAME 96
123#endif
124
125#define LD32I (LD32 | IMMED)
126#define LD8I (LD8 | IMMED)
127#define LD16I (LD16 | IMMED)
128#define LD64I (LD64 | IMMED)
129#define LDPTRI (LDPTR | IMMED)
130#define ST32I (ST32 | IMMED)
131
132#define emit_nop() \
133do { \
134 *prog++ = SETHI(0, G0); \
135} while (0)
136
137#define emit_neg() \
138do { /* sub %g0, r_A, r_A */ \
139 *prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A); \
140} while (0)
141
142#define emit_reg_move(FROM, TO) \
143do { /* or %g0, FROM, TO */ \
144 *prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO); \
145} while (0)
146
147#define emit_clear(REG) \
148do { /* or %g0, %g0, REG */ \
149 *prog++ = OR | RS1(G0) | RS2(G0) | RD(REG); \
150} while (0)
151
152#define emit_set_const(K, REG) \
153do { /* sethi %hi(K), REG */ \
154 *prog++ = SETHI(K, REG); \
155 /* or REG, %lo(K), REG */ \
156 *prog++ = OR_LO(K, REG); \
157} while (0)
158
159 /* Emit
160 *
David S. Miller584c5e22012-04-17 16:38:16 -0400161 * OP r_A, r_X, r_A
David S. Miller2809a20872012-04-15 20:06:27 -0700162 */
163#define emit_alu_X(OPCODE) \
164do { \
165 seen |= SEEN_XREG; \
166 *prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A); \
167} while (0)
168
169 /* Emit either:
170 *
171 * OP r_A, K, r_A
172 *
173 * or
174 *
175 * sethi %hi(K), r_TMP
176 * or r_TMP, %lo(K), r_TMP
177 * OP r_A, r_TMP, r_A
178 *
179 * depending upon whether K fits in a signed 13-bit
180 * immediate instruction field. Emit nothing if K
181 * is zero.
182 */
183#define emit_alu_K(OPCODE, K) \
David S. Miller584c5e22012-04-17 16:38:16 -0400184do { \
David S. Miller2809a20872012-04-15 20:06:27 -0700185 if (K) { \
186 unsigned int _insn = OPCODE; \
187 _insn |= RS1(r_A) | RD(r_A); \
188 if (is_simm13(K)) { \
189 *prog++ = _insn | IMMED | S13(K); \
190 } else { \
191 emit_set_const(K, r_TMP); \
192 *prog++ = _insn | RS2(r_TMP); \
David S. Miller584c5e22012-04-17 16:38:16 -0400193 } \
David S. Miller2809a20872012-04-15 20:06:27 -0700194 } \
195} while (0)
196
197#define emit_loadimm(K, DEST) \
198do { \
199 if (is_simm13(K)) { \
200 /* or %g0, K, DEST */ \
201 *prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST); \
202 } else { \
203 emit_set_const(K, DEST); \
204 } \
205} while (0)
206
207#define emit_loadptr(BASE, STRUCT, FIELD, DEST) \
208do { unsigned int _off = offsetof(STRUCT, FIELD); \
209 BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(void *)); \
210 *prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST); \
David S. Miller584c5e22012-04-17 16:38:16 -0400211} while (0)
David S. Miller2809a20872012-04-15 20:06:27 -0700212
213#define emit_load32(BASE, STRUCT, FIELD, DEST) \
214do { unsigned int _off = offsetof(STRUCT, FIELD); \
215 BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u32)); \
216 *prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST); \
David S. Miller584c5e22012-04-17 16:38:16 -0400217} while (0)
David S. Miller2809a20872012-04-15 20:06:27 -0700218
219#define emit_load16(BASE, STRUCT, FIELD, DEST) \
220do { unsigned int _off = offsetof(STRUCT, FIELD); \
221 BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u16)); \
222 *prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST); \
David S. Miller584c5e22012-04-17 16:38:16 -0400223} while (0)
David S. Miller2809a20872012-04-15 20:06:27 -0700224
225#define __emit_load8(BASE, STRUCT, FIELD, DEST) \
226do { unsigned int _off = offsetof(STRUCT, FIELD); \
227 *prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST); \
David S. Miller584c5e22012-04-17 16:38:16 -0400228} while (0)
David S. Miller2809a20872012-04-15 20:06:27 -0700229
230#define emit_load8(BASE, STRUCT, FIELD, DEST) \
231do { BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u8)); \
232 __emit_load8(BASE, STRUCT, FIELD, DEST); \
David S. Miller584c5e22012-04-17 16:38:16 -0400233} while (0)
David S. Miller2809a20872012-04-15 20:06:27 -0700234
235#define emit_ldmem(OFF, DEST) \
236do { *prog++ = LD32I | RS1(FP) | S13(-(OFF)) | RD(DEST); \
David S. Miller584c5e22012-04-17 16:38:16 -0400237} while (0)
David S. Miller2809a20872012-04-15 20:06:27 -0700238
239#define emit_stmem(OFF, SRC) \
240do { *prog++ = LD32I | RS1(FP) | S13(-(OFF)) | RD(SRC); \
David S. Miller584c5e22012-04-17 16:38:16 -0400241} while (0)
David S. Miller2809a20872012-04-15 20:06:27 -0700242
243#define cpu_off offsetof(struct thread_info, cpu)
244
245#ifdef CONFIG_SMP
246#ifdef CONFIG_SPARC64
247#define emit_load_cpu(REG) \
248 emit_load16(G6, struct thread_info, cpu, REG)
249#else
250#define emit_load_cpu(REG) \
251 emit_load32(G6, struct thread_info, cpu, REG)
252#endif
253#else
254#define emit_load_cpu(REG) emit_clear(REG)
255#endif
256
257#define emit_skb_loadptr(FIELD, DEST) \
258 emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
259#define emit_skb_load32(FIELD, DEST) \
260 emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
261#define emit_skb_load16(FIELD, DEST) \
262 emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
263#define __emit_skb_load8(FIELD, DEST) \
264 __emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
265#define emit_skb_load8(FIELD, DEST) \
266 emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
267
268#define emit_jmpl(BASE, IMM_OFF, LREG) \
269 *prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
270
271#define emit_call(FUNC) \
272do { void *_here = image + addrs[i] - 8; \
273 unsigned int _off = (void *)(FUNC) - _here; \
274 *prog++ = CALL | (((_off) >> 2) & 0x3fffffff); \
275 emit_nop(); \
276} while (0)
277
278#define emit_branch(BR_OPC, DEST) \
279do { unsigned int _here = addrs[i] - 8; \
280 *prog++ = BR_OPC | WDISP22((DEST) - _here); \
David S. Miller584c5e22012-04-17 16:38:16 -0400281} while (0)
David S. Miller2809a20872012-04-15 20:06:27 -0700282
283#define emit_branch_off(BR_OPC, OFF) \
284do { *prog++ = BR_OPC | WDISP22(OFF); \
David S. Miller584c5e22012-04-17 16:38:16 -0400285} while (0)
David S. Miller2809a20872012-04-15 20:06:27 -0700286
287#define emit_jump(DEST) emit_branch(BA, DEST)
288
David S. Miller584c5e22012-04-17 16:38:16 -0400289#define emit_read_y(REG) *prog++ = RD_Y | RD(REG)
290#define emit_write_y(REG) *prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
David S. Miller2809a20872012-04-15 20:06:27 -0700291
292#define emit_cmp(R1, R2) \
293 *prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
294
295#define emit_cmpi(R1, IMM) \
296 *prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
297
298#define emit_btst(R1, R2) \
299 *prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
300
301#define emit_btsti(R1, IMM) \
302 *prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
303
304#define emit_sub(R1, R2, R3) \
305 *prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
306
307#define emit_subi(R1, IMM, R3) \
308 *prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
309
310#define emit_add(R1, R2, R3) \
311 *prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
312
313#define emit_addi(R1, IMM, R3) \
314 *prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
315
316#define emit_alloc_stack(SZ) \
317 *prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
318
319#define emit_release_stack(SZ) \
320 *prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
321
David S. Miller584c5e22012-04-17 16:38:16 -0400322/* A note about branch offset calculations. The addrs[] array,
323 * indexed by BPF instruction, records the address after all the
324 * sparc instructions emitted for that BPF instruction.
325 *
326 * The most common case is to emit a branch at the end of such
327 * a code sequence. So this would be two instructions, the
328 * branch and it's delay slot.
329 *
330 * Therefore by default the branch emitters calculate the branch
331 * offset field as:
332 *
333 * destination - (addrs[i] - 8)
334 *
335 * This "addrs[i] - 8" is the address of the branch itself or
336 * what "." would be in assembler notation. The "8" part is
337 * how we take into consideration the branch and it's delay
338 * slot mentioned above.
339 *
340 * Sometimes we need to emit a branch earlier in the code
341 * sequence. And in these situations we adjust "destination"
342 * to accomodate this difference. For example, if we needed
343 * to emit a branch (and it's delay slot) right before the
344 * final instruction emitted for a BPF opcode, we'd use
345 * "destination + 4" instead of just plain "destination" above.
346 *
347 * This is why you see all of these funny emit_branch() and
348 * emit_jump() calls with adjusted offsets.
349 */
350
David S. Miller2809a20872012-04-15 20:06:27 -0700351void bpf_jit_compile(struct sk_filter *fp)
352{
353 unsigned int cleanup_addr, proglen, oldproglen = 0;
354 u32 temp[8], *prog, *func, seen = 0, pass;
355 const struct sock_filter *filter = fp->insns;
356 int i, flen = fp->len, pc_ret0 = -1;
357 unsigned int *addrs;
358 void *image;
359
360 if (!bpf_jit_enable)
361 return;
362
363 addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
364 if (addrs == NULL)
365 return;
366
367 /* Before first pass, make a rough estimation of addrs[]
368 * each bpf instruction is translated to less than 64 bytes
369 */
370 for (proglen = 0, i = 0; i < flen; i++) {
371 proglen += 64;
372 addrs[i] = proglen;
373 }
374 cleanup_addr = proglen; /* epilogue address */
375 image = NULL;
376 for (pass = 0; pass < 10; pass++) {
377 u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
378
379 /* no prologue/epilogue for trivial filters (RET something) */
380 proglen = 0;
381 prog = temp;
382
383 /* Prologue */
384 if (seen_or_pass0) {
385 if (seen_or_pass0 & SEEN_MEM) {
386 unsigned int sz = BASE_STACKFRAME;
387 sz += BPF_MEMWORDS * sizeof(u32);
388 emit_alloc_stack(sz);
389 }
390
391 /* Make sure we dont leek kernel memory. */
392 if (seen_or_pass0 & SEEN_XREG)
393 emit_clear(r_X);
394
395 /* If this filter needs to access skb data,
David S. Miller7b56f762012-04-17 16:08:29 -0400396 * load %o4 and %o5 with:
David S. Miller2809a20872012-04-15 20:06:27 -0700397 * %o4 = skb->len - skb->data_len
398 * %o5 = skb->data
399 * And also back up %o7 into r_saved_O7 so we can
400 * invoke the stubs using 'call'.
401 */
402 if (seen_or_pass0 & SEEN_DATAREF) {
403 emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
404 emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
405 emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
406 emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
407 }
408 }
409 emit_reg_move(O7, r_saved_O7);
410
411 switch (filter[0].code) {
412 case BPF_S_RET_K:
413 case BPF_S_LD_W_LEN:
414 case BPF_S_ANC_PROTOCOL:
415 case BPF_S_ANC_PKTTYPE:
416 case BPF_S_ANC_IFINDEX:
417 case BPF_S_ANC_MARK:
418 case BPF_S_ANC_RXHASH:
419 case BPF_S_ANC_CPU:
420 case BPF_S_ANC_QUEUE:
421 case BPF_S_LD_W_ABS:
422 case BPF_S_LD_H_ABS:
423 case BPF_S_LD_B_ABS:
424 /* The first instruction sets the A register (or is
425 * a "RET 'constant'")
426 */
427 break;
428 default:
429 /* Make sure we dont leak kernel information to the
430 * user.
431 */
432 emit_clear(r_A); /* A = 0 */
433 }
434
435 for (i = 0; i < flen; i++) {
436 unsigned int K = filter[i].k;
437 unsigned int t_offset;
438 unsigned int f_offset;
439 u32 t_op, f_op;
440 int ilen;
441
442 switch (filter[i].code) {
443 case BPF_S_ALU_ADD_X: /* A += X; */
444 emit_alu_X(ADD);
445 break;
446 case BPF_S_ALU_ADD_K: /* A += K; */
447 emit_alu_K(ADD, K);
448 break;
449 case BPF_S_ALU_SUB_X: /* A -= X; */
450 emit_alu_X(SUB);
451 break;
452 case BPF_S_ALU_SUB_K: /* A -= K */
453 emit_alu_K(SUB, K);
454 break;
455 case BPF_S_ALU_AND_X: /* A &= X */
456 emit_alu_X(AND);
457 break;
458 case BPF_S_ALU_AND_K: /* A &= K */
459 emit_alu_K(AND, K);
460 break;
461 case BPF_S_ALU_OR_X: /* A |= X */
462 emit_alu_X(OR);
463 break;
464 case BPF_S_ALU_OR_K: /* A |= K */
465 emit_alu_K(OR, K);
466 break;
467 case BPF_S_ALU_LSH_X: /* A <<= X */
468 emit_alu_X(SLL);
469 break;
470 case BPF_S_ALU_LSH_K: /* A <<= K */
471 emit_alu_K(SLL, K);
472 break;
473 case BPF_S_ALU_RSH_X: /* A >>= X */
474 emit_alu_X(SRL);
475 break;
476 case BPF_S_ALU_RSH_K: /* A >>= K */
477 emit_alu_K(SRL, K);
478 break;
479 case BPF_S_ALU_MUL_X: /* A *= X; */
480 emit_alu_X(MUL);
481 break;
482 case BPF_S_ALU_MUL_K: /* A *= K */
483 emit_alu_K(MUL, K);
484 break;
485 case BPF_S_ALU_DIV_K: /* A /= K */
486 emit_alu_K(MUL, K);
487 emit_read_y(r_A);
488 break;
489 case BPF_S_ALU_DIV_X: /* A /= X; */
490 emit_cmpi(r_X, 0);
491 if (pc_ret0 > 0) {
492 t_offset = addrs[pc_ret0 - 1];
493#ifdef CONFIG_SPARC32
494 emit_branch(BE, t_offset + 20);
495#else
496 emit_branch(BE, t_offset + 8);
497#endif
498 emit_nop(); /* delay slot */
499 } else {
500 emit_branch_off(BNE, 16);
501 emit_nop();
502#ifdef CONFIG_SPARC32
503 emit_jump(cleanup_addr + 20);
504#else
505 emit_jump(cleanup_addr + 8);
506#endif
507 emit_clear(r_A);
508 }
509 emit_write_y(G0);
510#ifdef CONFIG_SPARC32
David S. Miller584c5e22012-04-17 16:38:16 -0400511 /* The Sparc v8 architecture requires
512 * three instructions between a %y
513 * register write and the first use.
514 */
David S. Miller2809a20872012-04-15 20:06:27 -0700515 emit_nop();
516 emit_nop();
517 emit_nop();
518#endif
519 emit_alu_X(DIV);
520 break;
521 case BPF_S_ALU_NEG:
522 emit_neg();
523 break;
524 case BPF_S_RET_K:
525 if (!K) {
526 if (pc_ret0 == -1)
527 pc_ret0 = i;
528 emit_clear(r_A);
529 } else {
530 emit_loadimm(K, r_A);
531 }
532 /* Fallthrough */
533 case BPF_S_RET_A:
534 if (seen_or_pass0) {
535 if (i != flen - 1) {
536 emit_jump(cleanup_addr);
537 emit_nop();
538 break;
539 }
540 if (seen_or_pass0 & SEEN_MEM) {
541 unsigned int sz = BASE_STACKFRAME;
542 sz += BPF_MEMWORDS * sizeof(u32);
543 emit_release_stack(sz);
544 }
545 }
546 /* jmpl %r_saved_O7 + 8, %g0 */
547 emit_jmpl(r_saved_O7, 8, G0);
548 emit_reg_move(r_A, O0); /* delay slot */
549 break;
550 case BPF_S_MISC_TAX:
551 seen |= SEEN_XREG;
552 emit_reg_move(r_A, r_X);
553 break;
554 case BPF_S_MISC_TXA:
555 seen |= SEEN_XREG;
556 emit_reg_move(r_X, r_A);
557 break;
558 case BPF_S_ANC_CPU:
559 emit_load_cpu(r_A);
560 break;
561 case BPF_S_ANC_PROTOCOL:
562 emit_skb_load16(protocol, r_A);
563 break;
564#if 0
565 /* GCC won't let us take the address of
566 * a bit field even though we very much
567 * know what we are doing here.
568 */
569 case BPF_S_ANC_PKTTYPE:
570 __emit_skb_load8(pkt_type, r_A);
571 emit_alu_K(SRL, 5);
572 break;
573#endif
574 case BPF_S_ANC_IFINDEX:
575 emit_skb_loadptr(dev, r_A);
576 emit_cmpi(r_A, 0);
577 emit_branch(BNE_PTR, cleanup_addr + 4);
578 emit_nop();
579 emit_load32(r_A, struct net_device, ifindex, r_A);
580 break;
581 case BPF_S_ANC_MARK:
582 emit_skb_load32(mark, r_A);
583 break;
584 case BPF_S_ANC_QUEUE:
585 emit_skb_load16(queue_mapping, r_A);
586 break;
587 case BPF_S_ANC_HATYPE:
588 emit_skb_loadptr(dev, r_A);
589 emit_cmpi(r_A, 0);
590 emit_branch(BNE_PTR, cleanup_addr + 4);
591 emit_nop();
592 emit_load16(r_A, struct net_device, type, r_A);
593 break;
594 case BPF_S_ANC_RXHASH:
595 emit_skb_load32(rxhash, r_A);
596 break;
597
598 case BPF_S_LD_IMM:
599 emit_loadimm(K, r_A);
600 break;
601 case BPF_S_LDX_IMM:
602 emit_loadimm(K, r_X);
603 break;
604 case BPF_S_LD_MEM:
605 emit_ldmem(K * 4, r_A);
606 break;
607 case BPF_S_LDX_MEM:
608 emit_ldmem(K * 4, r_X);
609 break;
610 case BPF_S_ST:
611 emit_stmem(K * 4, r_A);
612 break;
613 case BPF_S_STX:
614 emit_stmem(K * 4, r_X);
615 break;
616
617#define CHOOSE_LOAD_FUNC(K, func) \
618 ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
619
620 case BPF_S_LD_W_ABS:
621 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
622common_load: seen |= SEEN_DATAREF;
623 emit_loadimm(K, r_OFF);
624 emit_call(func);
625 break;
626 case BPF_S_LD_H_ABS:
627 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
628 goto common_load;
629 case BPF_S_LD_B_ABS:
630 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
631 goto common_load;
632 case BPF_S_LDX_B_MSH:
633 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
634 goto common_load;
635 case BPF_S_LD_W_IND:
636 func = bpf_jit_load_word;
637common_load_ind: seen |= SEEN_DATAREF | SEEN_XREG;
638 if (K) {
639 if (is_simm13(K)) {
640 emit_addi(r_X, K, r_OFF);
641 } else {
642 emit_loadimm(K, r_TMP);
643 emit_add(r_X, r_TMP, r_OFF);
644 }
645 } else {
646 emit_reg_move(r_X, r_OFF);
647 }
648 emit_call(func);
649 break;
650 case BPF_S_LD_H_IND:
651 func = bpf_jit_load_half;
652 goto common_load_ind;
653 case BPF_S_LD_B_IND:
654 func = bpf_jit_load_byte;
655 goto common_load_ind;
656 case BPF_S_JMP_JA:
657 emit_jump(addrs[i + K]);
658 emit_nop();
659 break;
660
661#define COND_SEL(CODE, TOP, FOP) \
662 case CODE: \
663 t_op = TOP; \
664 f_op = FOP; \
665 goto cond_branch
666
667 COND_SEL(BPF_S_JMP_JGT_K, BGU, BLEU);
668 COND_SEL(BPF_S_JMP_JGE_K, BGEU, BLU);
669 COND_SEL(BPF_S_JMP_JEQ_K, BE, BNE);
670 COND_SEL(BPF_S_JMP_JSET_K, BNE, BE);
671 COND_SEL(BPF_S_JMP_JGT_X, BGU, BLEU);
672 COND_SEL(BPF_S_JMP_JGE_X, BGEU, BLU);
673 COND_SEL(BPF_S_JMP_JEQ_X, BE, BNE);
674 COND_SEL(BPF_S_JMP_JSET_X, BNE, BE);
675
676cond_branch: f_offset = addrs[i + filter[i].jf];
677 t_offset = addrs[i + filter[i].jt];
678
679 /* same targets, can avoid doing the test :) */
680 if (filter[i].jt == filter[i].jf) {
681 emit_jump(t_offset);
682 emit_nop();
683 break;
684 }
685
686 switch (filter[i].code) {
687 case BPF_S_JMP_JGT_X:
688 case BPF_S_JMP_JGE_X:
689 case BPF_S_JMP_JEQ_X:
690 seen |= SEEN_XREG;
691 emit_cmp(r_A, r_X);
692 break;
693 case BPF_S_JMP_JSET_X:
694 seen |= SEEN_XREG;
695 emit_btst(r_A, r_X);
696 break;
697 case BPF_S_JMP_JEQ_K:
698 case BPF_S_JMP_JGT_K:
699 case BPF_S_JMP_JGE_K:
700 if (is_simm13(K)) {
701 emit_cmpi(r_A, K);
702 } else {
703 emit_loadimm(K, r_TMP);
704 emit_cmp(r_A, r_TMP);
705 }
706 break;
707 case BPF_S_JMP_JSET_K:
708 if (is_simm13(K)) {
709 emit_btsti(r_A, K);
710 } else {
711 emit_loadimm(K, r_TMP);
712 emit_btst(r_A, r_TMP);
713 }
714 break;
715 }
716 if (filter[i].jt != 0) {
717 if (filter[i].jf)
718 t_offset += 8;
719 emit_branch(t_op, t_offset);
720 emit_nop(); /* delay slot */
721 if (filter[i].jf) {
722 emit_jump(f_offset);
723 emit_nop();
724 }
725 break;
726 }
727 emit_branch(f_op, f_offset);
728 emit_nop(); /* delay slot */
729 break;
730
731 default:
732 /* hmm, too complex filter, give up with jit compiler */
733 goto out;
734 }
735 ilen = (void *) prog - (void *) temp;
736 if (image) {
737 if (unlikely(proglen + ilen > oldproglen)) {
738 pr_err("bpb_jit_compile fatal error\n");
739 kfree(addrs);
740 module_free(NULL, image);
741 return;
742 }
743 memcpy(image + proglen, temp, ilen);
744 }
745 proglen += ilen;
746 addrs[i] = proglen;
747 prog = temp;
748 }
749 /* last bpf instruction is always a RET :
750 * use it to give the cleanup instruction(s) addr
751 */
752 cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
753 if (seen_or_pass0 & SEEN_MEM)
754 cleanup_addr -= 4; /* add %sp, X, %sp; */
755
756 if (image) {
757 if (proglen != oldproglen)
758 pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
759 proglen, oldproglen);
760 break;
761 }
762 if (proglen == oldproglen) {
763 image = module_alloc(max_t(unsigned int,
764 proglen,
765 sizeof(struct work_struct)));
766 if (!image)
767 goto out;
768 }
769 oldproglen = proglen;
770 }
771
772 if (bpf_jit_enable > 1)
773 pr_err("flen=%d proglen=%u pass=%d image=%p\n",
774 flen, proglen, pass, image);
775
776 if (image) {
777 if (bpf_jit_enable > 1)
778 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_ADDRESS,
779 16, 1, image, proglen, false);
780 bpf_flush_icache(image, image + proglen);
781 fp->bpf_func = (void *)image;
782 }
783out:
784 kfree(addrs);
785 return;
786}
787
788static void jit_free_defer(struct work_struct *arg)
789{
790 module_free(NULL, arg);
791}
792
793/* run from softirq, we must use a work_struct to call
794 * module_free() from process context
795 */
796void bpf_jit_free(struct sk_filter *fp)
797{
798 if (fp->bpf_func != sk_run_filter) {
799 struct work_struct *work = (struct work_struct *)fp->bpf_func;
800
801 INIT_WORK(work, jit_free_defer);
802 schedule_work(work);
803 }
804}