Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Cryptographic API. |
| 3 | * |
| 4 | * AES Cipher Algorithm. |
| 5 | * |
| 6 | * Based on Brian Gladman's code. |
| 7 | * |
| 8 | * Linux developers: |
| 9 | * Alexander Kjeldaas <astor@fast.no> |
| 10 | * Herbert Valerio Riedel <hvr@hvrlab.org> |
| 11 | * Kyle McMartin <kyle@debian.org> |
| 12 | * Adam J. Richter <adam@yggdrasil.com> (conversion to 2.5 API). |
| 13 | * |
| 14 | * This program is free software; you can redistribute it and/or modify |
| 15 | * it under the terms of the GNU General Public License as published by |
| 16 | * the Free Software Foundation; either version 2 of the License, or |
| 17 | * (at your option) any later version. |
| 18 | * |
| 19 | * --------------------------------------------------------------------------- |
| 20 | * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK. |
| 21 | * All rights reserved. |
| 22 | * |
| 23 | * LICENSE TERMS |
| 24 | * |
| 25 | * The free distribution and use of this software in both source and binary |
| 26 | * form is allowed (with or without changes) provided that: |
| 27 | * |
| 28 | * 1. distributions of this source code include the above copyright |
| 29 | * notice, this list of conditions and the following disclaimer; |
| 30 | * |
| 31 | * 2. distributions in binary form include the above copyright |
| 32 | * notice, this list of conditions and the following disclaimer |
| 33 | * in the documentation and/or other associated materials; |
| 34 | * |
| 35 | * 3. the copyright holder's name is not used to endorse products |
| 36 | * built using this software without specific written permission. |
| 37 | * |
| 38 | * ALTERNATIVELY, provided that this notice is retained in full, this product |
| 39 | * may be distributed under the terms of the GNU General Public License (GPL), |
| 40 | * in which case the provisions of the GPL apply INSTEAD OF those given above. |
| 41 | * |
| 42 | * DISCLAIMER |
| 43 | * |
| 44 | * This software is provided 'as is' with no explicit or implied warranties |
| 45 | * in respect of its properties, including, but not limited to, correctness |
| 46 | * and/or fitness for purpose. |
| 47 | * --------------------------------------------------------------------------- |
| 48 | */ |
| 49 | |
| 50 | /* Some changes from the Gladman version: |
| 51 | s/RIJNDAEL(e_key)/E_KEY/g |
| 52 | s/RIJNDAEL(d_key)/D_KEY/g |
| 53 | */ |
| 54 | |
| 55 | #include <linux/module.h> |
| 56 | #include <linux/init.h> |
| 57 | #include <linux/types.h> |
| 58 | #include <linux/errno.h> |
| 59 | #include <linux/crypto.h> |
| 60 | #include <asm/byteorder.h> |
| 61 | |
| 62 | #define AES_MIN_KEY_SIZE 16 |
| 63 | #define AES_MAX_KEY_SIZE 32 |
| 64 | |
| 65 | #define AES_BLOCK_SIZE 16 |
| 66 | |
| 67 | /* |
| 68 | * #define byte(x, nr) ((unsigned char)((x) >> (nr*8))) |
| 69 | */ |
Jesper Juhl | 77933d7 | 2005-07-27 11:46:09 -0700 | [diff] [blame] | 70 | static inline u8 |
Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 71 | byte(const u32 x, const unsigned n) |
| 72 | { |
| 73 | return x >> (n << 3); |
| 74 | } |
| 75 | |
| 76 | #define u32_in(x) le32_to_cpu(*(const u32 *)(x)) |
| 77 | #define u32_out(to, from) (*(u32 *)(to) = cpu_to_le32(from)) |
| 78 | |
| 79 | struct aes_ctx { |
| 80 | int key_length; |
| 81 | u32 E[60]; |
| 82 | u32 D[60]; |
| 83 | }; |
| 84 | |
| 85 | #define E_KEY ctx->E |
| 86 | #define D_KEY ctx->D |
| 87 | |
| 88 | static u8 pow_tab[256] __initdata; |
| 89 | static u8 log_tab[256] __initdata; |
| 90 | static u8 sbx_tab[256] __initdata; |
| 91 | static u8 isb_tab[256] __initdata; |
| 92 | static u32 rco_tab[10]; |
| 93 | static u32 ft_tab[4][256]; |
| 94 | static u32 it_tab[4][256]; |
| 95 | |
| 96 | static u32 fl_tab[4][256]; |
| 97 | static u32 il_tab[4][256]; |
| 98 | |
| 99 | static inline u8 __init |
| 100 | f_mult (u8 a, u8 b) |
| 101 | { |
| 102 | u8 aa = log_tab[a], cc = aa + log_tab[b]; |
| 103 | |
| 104 | return pow_tab[cc + (cc < aa ? 1 : 0)]; |
| 105 | } |
| 106 | |
| 107 | #define ff_mult(a,b) (a && b ? f_mult(a, b) : 0) |
| 108 | |
| 109 | #define f_rn(bo, bi, n, k) \ |
| 110 | bo[n] = ft_tab[0][byte(bi[n],0)] ^ \ |
| 111 | ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \ |
| 112 | ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ |
| 113 | ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n) |
| 114 | |
| 115 | #define i_rn(bo, bi, n, k) \ |
| 116 | bo[n] = it_tab[0][byte(bi[n],0)] ^ \ |
| 117 | it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \ |
| 118 | it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ |
| 119 | it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n) |
| 120 | |
| 121 | #define ls_box(x) \ |
| 122 | ( fl_tab[0][byte(x, 0)] ^ \ |
| 123 | fl_tab[1][byte(x, 1)] ^ \ |
| 124 | fl_tab[2][byte(x, 2)] ^ \ |
| 125 | fl_tab[3][byte(x, 3)] ) |
| 126 | |
| 127 | #define f_rl(bo, bi, n, k) \ |
| 128 | bo[n] = fl_tab[0][byte(bi[n],0)] ^ \ |
| 129 | fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \ |
| 130 | fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ |
| 131 | fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n) |
| 132 | |
| 133 | #define i_rl(bo, bi, n, k) \ |
| 134 | bo[n] = il_tab[0][byte(bi[n],0)] ^ \ |
| 135 | il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \ |
| 136 | il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \ |
| 137 | il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n) |
| 138 | |
| 139 | static void __init |
| 140 | gen_tabs (void) |
| 141 | { |
| 142 | u32 i, t; |
| 143 | u8 p, q; |
| 144 | |
| 145 | /* log and power tables for GF(2**8) finite field with |
| 146 | 0x011b as modular polynomial - the simplest primitive |
| 147 | root is 0x03, used here to generate the tables */ |
| 148 | |
| 149 | for (i = 0, p = 1; i < 256; ++i) { |
| 150 | pow_tab[i] = (u8) p; |
| 151 | log_tab[p] = (u8) i; |
| 152 | |
| 153 | p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0); |
| 154 | } |
| 155 | |
| 156 | log_tab[1] = 0; |
| 157 | |
| 158 | for (i = 0, p = 1; i < 10; ++i) { |
| 159 | rco_tab[i] = p; |
| 160 | |
| 161 | p = (p << 1) ^ (p & 0x80 ? 0x01b : 0); |
| 162 | } |
| 163 | |
| 164 | for (i = 0; i < 256; ++i) { |
| 165 | p = (i ? pow_tab[255 - log_tab[i]] : 0); |
| 166 | q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2)); |
| 167 | p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2)); |
| 168 | sbx_tab[i] = p; |
| 169 | isb_tab[p] = (u8) i; |
| 170 | } |
| 171 | |
| 172 | for (i = 0; i < 256; ++i) { |
| 173 | p = sbx_tab[i]; |
| 174 | |
| 175 | t = p; |
| 176 | fl_tab[0][i] = t; |
| 177 | fl_tab[1][i] = rol32(t, 8); |
| 178 | fl_tab[2][i] = rol32(t, 16); |
| 179 | fl_tab[3][i] = rol32(t, 24); |
| 180 | |
| 181 | t = ((u32) ff_mult (2, p)) | |
| 182 | ((u32) p << 8) | |
| 183 | ((u32) p << 16) | ((u32) ff_mult (3, p) << 24); |
| 184 | |
| 185 | ft_tab[0][i] = t; |
| 186 | ft_tab[1][i] = rol32(t, 8); |
| 187 | ft_tab[2][i] = rol32(t, 16); |
| 188 | ft_tab[3][i] = rol32(t, 24); |
| 189 | |
| 190 | p = isb_tab[i]; |
| 191 | |
| 192 | t = p; |
| 193 | il_tab[0][i] = t; |
| 194 | il_tab[1][i] = rol32(t, 8); |
| 195 | il_tab[2][i] = rol32(t, 16); |
| 196 | il_tab[3][i] = rol32(t, 24); |
| 197 | |
| 198 | t = ((u32) ff_mult (14, p)) | |
| 199 | ((u32) ff_mult (9, p) << 8) | |
| 200 | ((u32) ff_mult (13, p) << 16) | |
| 201 | ((u32) ff_mult (11, p) << 24); |
| 202 | |
| 203 | it_tab[0][i] = t; |
| 204 | it_tab[1][i] = rol32(t, 8); |
| 205 | it_tab[2][i] = rol32(t, 16); |
| 206 | it_tab[3][i] = rol32(t, 24); |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b) |
| 211 | |
| 212 | #define imix_col(y,x) \ |
| 213 | u = star_x(x); \ |
| 214 | v = star_x(u); \ |
| 215 | w = star_x(v); \ |
| 216 | t = w ^ (x); \ |
| 217 | (y) = u ^ v ^ w; \ |
| 218 | (y) ^= ror32(u ^ t, 8) ^ \ |
| 219 | ror32(v ^ t, 16) ^ \ |
| 220 | ror32(t,24) |
| 221 | |
| 222 | /* initialise the key schedule from the user supplied key */ |
| 223 | |
| 224 | #define loop4(i) \ |
| 225 | { t = ror32(t, 8); t = ls_box(t) ^ rco_tab[i]; \ |
| 226 | t ^= E_KEY[4 * i]; E_KEY[4 * i + 4] = t; \ |
| 227 | t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t; \ |
| 228 | t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t; \ |
| 229 | t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t; \ |
| 230 | } |
| 231 | |
| 232 | #define loop6(i) \ |
| 233 | { t = ror32(t, 8); t = ls_box(t) ^ rco_tab[i]; \ |
| 234 | t ^= E_KEY[6 * i]; E_KEY[6 * i + 6] = t; \ |
| 235 | t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t; \ |
| 236 | t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t; \ |
| 237 | t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t; \ |
| 238 | t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t; \ |
| 239 | t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t; \ |
| 240 | } |
| 241 | |
| 242 | #define loop8(i) \ |
| 243 | { t = ror32(t, 8); ; t = ls_box(t) ^ rco_tab[i]; \ |
| 244 | t ^= E_KEY[8 * i]; E_KEY[8 * i + 8] = t; \ |
| 245 | t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t; \ |
| 246 | t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t; \ |
| 247 | t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t; \ |
| 248 | t = E_KEY[8 * i + 4] ^ ls_box(t); \ |
| 249 | E_KEY[8 * i + 12] = t; \ |
| 250 | t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t; \ |
| 251 | t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t; \ |
| 252 | t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t; \ |
| 253 | } |
| 254 | |
| 255 | static int |
| 256 | aes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len, u32 *flags) |
| 257 | { |
| 258 | struct aes_ctx *ctx = ctx_arg; |
| 259 | u32 i, t, u, v, w; |
| 260 | |
| 261 | if (key_len != 16 && key_len != 24 && key_len != 32) { |
| 262 | *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; |
| 263 | return -EINVAL; |
| 264 | } |
| 265 | |
| 266 | ctx->key_length = key_len; |
| 267 | |
| 268 | E_KEY[0] = u32_in (in_key); |
| 269 | E_KEY[1] = u32_in (in_key + 4); |
| 270 | E_KEY[2] = u32_in (in_key + 8); |
| 271 | E_KEY[3] = u32_in (in_key + 12); |
| 272 | |
| 273 | switch (key_len) { |
| 274 | case 16: |
| 275 | t = E_KEY[3]; |
| 276 | for (i = 0; i < 10; ++i) |
| 277 | loop4 (i); |
| 278 | break; |
| 279 | |
| 280 | case 24: |
| 281 | E_KEY[4] = u32_in (in_key + 16); |
| 282 | t = E_KEY[5] = u32_in (in_key + 20); |
| 283 | for (i = 0; i < 8; ++i) |
| 284 | loop6 (i); |
| 285 | break; |
| 286 | |
| 287 | case 32: |
| 288 | E_KEY[4] = u32_in (in_key + 16); |
| 289 | E_KEY[5] = u32_in (in_key + 20); |
| 290 | E_KEY[6] = u32_in (in_key + 24); |
| 291 | t = E_KEY[7] = u32_in (in_key + 28); |
| 292 | for (i = 0; i < 7; ++i) |
| 293 | loop8 (i); |
| 294 | break; |
| 295 | } |
| 296 | |
| 297 | D_KEY[0] = E_KEY[0]; |
| 298 | D_KEY[1] = E_KEY[1]; |
| 299 | D_KEY[2] = E_KEY[2]; |
| 300 | D_KEY[3] = E_KEY[3]; |
| 301 | |
| 302 | for (i = 4; i < key_len + 24; ++i) { |
| 303 | imix_col (D_KEY[i], E_KEY[i]); |
| 304 | } |
| 305 | |
| 306 | return 0; |
| 307 | } |
| 308 | |
| 309 | /* encrypt a block of text */ |
| 310 | |
| 311 | #define f_nround(bo, bi, k) \ |
| 312 | f_rn(bo, bi, 0, k); \ |
| 313 | f_rn(bo, bi, 1, k); \ |
| 314 | f_rn(bo, bi, 2, k); \ |
| 315 | f_rn(bo, bi, 3, k); \ |
| 316 | k += 4 |
| 317 | |
| 318 | #define f_lround(bo, bi, k) \ |
| 319 | f_rl(bo, bi, 0, k); \ |
| 320 | f_rl(bo, bi, 1, k); \ |
| 321 | f_rl(bo, bi, 2, k); \ |
| 322 | f_rl(bo, bi, 3, k) |
| 323 | |
| 324 | static void aes_encrypt(void *ctx_arg, u8 *out, const u8 *in) |
| 325 | { |
| 326 | const struct aes_ctx *ctx = ctx_arg; |
| 327 | u32 b0[4], b1[4]; |
| 328 | const u32 *kp = E_KEY + 4; |
| 329 | |
| 330 | b0[0] = u32_in (in) ^ E_KEY[0]; |
| 331 | b0[1] = u32_in (in + 4) ^ E_KEY[1]; |
| 332 | b0[2] = u32_in (in + 8) ^ E_KEY[2]; |
| 333 | b0[3] = u32_in (in + 12) ^ E_KEY[3]; |
| 334 | |
| 335 | if (ctx->key_length > 24) { |
| 336 | f_nround (b1, b0, kp); |
| 337 | f_nround (b0, b1, kp); |
| 338 | } |
| 339 | |
| 340 | if (ctx->key_length > 16) { |
| 341 | f_nround (b1, b0, kp); |
| 342 | f_nround (b0, b1, kp); |
| 343 | } |
| 344 | |
| 345 | f_nround (b1, b0, kp); |
| 346 | f_nround (b0, b1, kp); |
| 347 | f_nround (b1, b0, kp); |
| 348 | f_nround (b0, b1, kp); |
| 349 | f_nround (b1, b0, kp); |
| 350 | f_nround (b0, b1, kp); |
| 351 | f_nround (b1, b0, kp); |
| 352 | f_nround (b0, b1, kp); |
| 353 | f_nround (b1, b0, kp); |
| 354 | f_lround (b0, b1, kp); |
| 355 | |
| 356 | u32_out (out, b0[0]); |
| 357 | u32_out (out + 4, b0[1]); |
| 358 | u32_out (out + 8, b0[2]); |
| 359 | u32_out (out + 12, b0[3]); |
| 360 | } |
| 361 | |
| 362 | /* decrypt a block of text */ |
| 363 | |
| 364 | #define i_nround(bo, bi, k) \ |
| 365 | i_rn(bo, bi, 0, k); \ |
| 366 | i_rn(bo, bi, 1, k); \ |
| 367 | i_rn(bo, bi, 2, k); \ |
| 368 | i_rn(bo, bi, 3, k); \ |
| 369 | k -= 4 |
| 370 | |
| 371 | #define i_lround(bo, bi, k) \ |
| 372 | i_rl(bo, bi, 0, k); \ |
| 373 | i_rl(bo, bi, 1, k); \ |
| 374 | i_rl(bo, bi, 2, k); \ |
| 375 | i_rl(bo, bi, 3, k) |
| 376 | |
| 377 | static void aes_decrypt(void *ctx_arg, u8 *out, const u8 *in) |
| 378 | { |
| 379 | const struct aes_ctx *ctx = ctx_arg; |
| 380 | u32 b0[4], b1[4]; |
| 381 | const int key_len = ctx->key_length; |
| 382 | const u32 *kp = D_KEY + key_len + 20; |
| 383 | |
| 384 | b0[0] = u32_in (in) ^ E_KEY[key_len + 24]; |
| 385 | b0[1] = u32_in (in + 4) ^ E_KEY[key_len + 25]; |
| 386 | b0[2] = u32_in (in + 8) ^ E_KEY[key_len + 26]; |
| 387 | b0[3] = u32_in (in + 12) ^ E_KEY[key_len + 27]; |
| 388 | |
| 389 | if (key_len > 24) { |
| 390 | i_nround (b1, b0, kp); |
| 391 | i_nround (b0, b1, kp); |
| 392 | } |
| 393 | |
| 394 | if (key_len > 16) { |
| 395 | i_nround (b1, b0, kp); |
| 396 | i_nround (b0, b1, kp); |
| 397 | } |
| 398 | |
| 399 | i_nround (b1, b0, kp); |
| 400 | i_nround (b0, b1, kp); |
| 401 | i_nround (b1, b0, kp); |
| 402 | i_nround (b0, b1, kp); |
| 403 | i_nround (b1, b0, kp); |
| 404 | i_nround (b0, b1, kp); |
| 405 | i_nround (b1, b0, kp); |
| 406 | i_nround (b0, b1, kp); |
| 407 | i_nround (b1, b0, kp); |
| 408 | i_lround (b0, b1, kp); |
| 409 | |
| 410 | u32_out (out, b0[0]); |
| 411 | u32_out (out + 4, b0[1]); |
| 412 | u32_out (out + 8, b0[2]); |
| 413 | u32_out (out + 12, b0[3]); |
| 414 | } |
| 415 | |
| 416 | |
| 417 | static struct crypto_alg aes_alg = { |
| 418 | .cra_name = "aes", |
| 419 | .cra_flags = CRYPTO_ALG_TYPE_CIPHER, |
| 420 | .cra_blocksize = AES_BLOCK_SIZE, |
| 421 | .cra_ctxsize = sizeof(struct aes_ctx), |
| 422 | .cra_module = THIS_MODULE, |
| 423 | .cra_list = LIST_HEAD_INIT(aes_alg.cra_list), |
| 424 | .cra_u = { |
| 425 | .cipher = { |
| 426 | .cia_min_keysize = AES_MIN_KEY_SIZE, |
| 427 | .cia_max_keysize = AES_MAX_KEY_SIZE, |
| 428 | .cia_setkey = aes_set_key, |
| 429 | .cia_encrypt = aes_encrypt, |
| 430 | .cia_decrypt = aes_decrypt |
| 431 | } |
| 432 | } |
| 433 | }; |
| 434 | |
| 435 | static int __init aes_init(void) |
| 436 | { |
| 437 | gen_tabs(); |
| 438 | return crypto_register_alg(&aes_alg); |
| 439 | } |
| 440 | |
| 441 | static void __exit aes_fini(void) |
| 442 | { |
| 443 | crypto_unregister_alg(&aes_alg); |
| 444 | } |
| 445 | |
| 446 | module_init(aes_init); |
| 447 | module_exit(aes_fini); |
| 448 | |
| 449 | MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm"); |
| 450 | MODULE_LICENSE("Dual BSD/GPL"); |
| 451 | |