blob: 28ca90ff223c0a89fc870dcdee7046e397a91928 [file] [log] [blame]
Andy Walls29f8a0a2009-09-26 23:17:30 -03001/*
2 * Driver for the Conexant CX23885/7/8 PCIe bridge
3 *
4 * CX23888 Integrated Consumer Infrared Controller
5 *
Andy Walls6afdeaf2010-05-23 18:53:35 -03006 * Copyright (C) 2009 Andy Walls <awalls@md.metrocast.net>
Andy Walls29f8a0a2009-09-26 23:17:30 -03007 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * 02110-1301, USA.
22 */
23
Andy Walls1a0b9d82009-09-27 18:31:37 -030024#include <linux/kfifo.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090025#include <linux/slab.h>
Andy Walls1a0b9d82009-09-27 18:31:37 -030026
Andy Walls29f8a0a2009-09-26 23:17:30 -030027#include <media/v4l2-device.h>
28#include <media/v4l2-chip-ident.h>
29
30#include "cx23885.h"
31
Andy Walls1a0b9d82009-09-27 18:31:37 -030032static unsigned int ir_888_debug;
33module_param(ir_888_debug, int, 0644);
34MODULE_PARM_DESC(ir_888_debug, "enable debug messages [CX23888 IR controller]");
35
Andy Walls29f8a0a2009-09-26 23:17:30 -030036#define CX23888_IR_REG_BASE 0x170000
37/*
38 * These CX23888 register offsets have a straightforward one to one mapping
39 * to the CX23885 register offsets of 0x200 through 0x218
40 */
41#define CX23888_IR_CNTRL_REG 0x170000
Andy Walls1a0b9d82009-09-27 18:31:37 -030042#define CNTRL_WIN_3_3 0x00000000
43#define CNTRL_WIN_4_3 0x00000001
44#define CNTRL_WIN_3_4 0x00000002
45#define CNTRL_WIN_4_4 0x00000003
46#define CNTRL_WIN 0x00000003
47#define CNTRL_EDG_NONE 0x00000000
48#define CNTRL_EDG_FALL 0x00000004
49#define CNTRL_EDG_RISE 0x00000008
50#define CNTRL_EDG_BOTH 0x0000000C
51#define CNTRL_EDG 0x0000000C
52#define CNTRL_DMD 0x00000010
53#define CNTRL_MOD 0x00000020
54#define CNTRL_RFE 0x00000040
55#define CNTRL_TFE 0x00000080
56#define CNTRL_RXE 0x00000100
57#define CNTRL_TXE 0x00000200
58#define CNTRL_RIC 0x00000400
59#define CNTRL_TIC 0x00000800
60#define CNTRL_CPL 0x00001000
61#define CNTRL_LBM 0x00002000
62#define CNTRL_R 0x00004000
Andy Walls5a28d9a2010-07-18 19:57:25 -030063/* CX23888 specific control flag */
64#define CNTRL_IVO 0x00008000
Andy Walls1a0b9d82009-09-27 18:31:37 -030065
Andy Walls29f8a0a2009-09-26 23:17:30 -030066#define CX23888_IR_TXCLK_REG 0x170004
Andy Walls1a0b9d82009-09-27 18:31:37 -030067#define TXCLK_TCD 0x0000FFFF
68
Andy Walls29f8a0a2009-09-26 23:17:30 -030069#define CX23888_IR_RXCLK_REG 0x170008
Andy Walls1a0b9d82009-09-27 18:31:37 -030070#define RXCLK_RCD 0x0000FFFF
71
Andy Walls29f8a0a2009-09-26 23:17:30 -030072#define CX23888_IR_CDUTY_REG 0x17000C
Andy Walls1a0b9d82009-09-27 18:31:37 -030073#define CDUTY_CDC 0x0000000F
74
Andy Walls29f8a0a2009-09-26 23:17:30 -030075#define CX23888_IR_STATS_REG 0x170010
Andy Walls1a0b9d82009-09-27 18:31:37 -030076#define STATS_RTO 0x00000001
77#define STATS_ROR 0x00000002
78#define STATS_RBY 0x00000004
79#define STATS_TBY 0x00000008
80#define STATS_RSR 0x00000010
81#define STATS_TSR 0x00000020
82
Andy Walls29f8a0a2009-09-26 23:17:30 -030083#define CX23888_IR_IRQEN_REG 0x170014
Andy Walls1a0b9d82009-09-27 18:31:37 -030084#define IRQEN_RTE 0x00000001
85#define IRQEN_ROE 0x00000002
86#define IRQEN_RSE 0x00000010
87#define IRQEN_TSE 0x00000020
88
Andy Walls29f8a0a2009-09-26 23:17:30 -030089#define CX23888_IR_FILTR_REG 0x170018
Andy Walls1a0b9d82009-09-27 18:31:37 -030090#define FILTR_LPF 0x0000FFFF
91
Andy Walls29f8a0a2009-09-26 23:17:30 -030092/* This register doesn't follow the pattern; it's 0x23C on a CX23885 */
93#define CX23888_IR_FIFO_REG 0x170040
Andy Walls1a0b9d82009-09-27 18:31:37 -030094#define FIFO_RXTX 0x0000FFFF
95#define FIFO_RXTX_LVL 0x00010000
96#define FIFO_RXTX_RTO 0x0001FFFF
97#define FIFO_RX_NDV 0x00020000
98#define FIFO_RX_DEPTH 8
99#define FIFO_TX_DEPTH 8
Andy Walls29f8a0a2009-09-26 23:17:30 -0300100
101/* CX23888 unique registers */
102#define CX23888_IR_SEEDP_REG 0x17001C
103#define CX23888_IR_TIMOL_REG 0x170020
104#define CX23888_IR_WAKE0_REG 0x170024
105#define CX23888_IR_WAKE1_REG 0x170028
106#define CX23888_IR_WAKE2_REG 0x17002C
107#define CX23888_IR_MASK0_REG 0x170030
108#define CX23888_IR_MASK1_REG 0x170034
109#define CX23888_IR_MAKS2_REG 0x170038
110#define CX23888_IR_DPIPG_REG 0x17003C
111#define CX23888_IR_LEARN_REG 0x170044
112
Andy Walls1a0b9d82009-09-27 18:31:37 -0300113#define CX23888_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */
Andy Walls928213a2009-10-29 22:24:34 -0300114#define CX23888_IR_REFCLK_FREQ (CX23888_VIDCLK_FREQ / 2)
Andy Walls1a0b9d82009-09-27 18:31:37 -0300115
116#define CX23888_IR_RX_KFIFO_SIZE (512 * sizeof(u32))
117#define CX23888_IR_TX_KFIFO_SIZE (512 * sizeof(u32))
Andy Walls29f8a0a2009-09-26 23:17:30 -0300118
119struct cx23888_ir_state {
120 struct v4l2_subdev sd;
121 struct cx23885_dev *dev;
122 u32 id;
123 u32 rev;
Andy Walls1a0b9d82009-09-27 18:31:37 -0300124
125 struct v4l2_subdev_ir_parameters rx_params;
126 struct mutex rx_params_lock;
127 atomic_t rxclk_divider;
128 atomic_t rx_invert;
129
Stefani Seibold7801edb2009-12-21 14:37:33 -0800130 struct kfifo rx_kfifo;
Andy Walls1a0b9d82009-09-27 18:31:37 -0300131 spinlock_t rx_kfifo_lock;
132
133 struct v4l2_subdev_ir_parameters tx_params;
134 struct mutex tx_params_lock;
135 atomic_t txclk_divider;
Andy Walls29f8a0a2009-09-26 23:17:30 -0300136};
137
138static inline struct cx23888_ir_state *to_state(struct v4l2_subdev *sd)
139{
140 return v4l2_get_subdevdata(sd);
141}
142
Andy Walls1a0b9d82009-09-27 18:31:37 -0300143/*
144 * IR register block read and write functions
145 */
Andy Walls29f8a0a2009-09-26 23:17:30 -0300146static
147inline int cx23888_ir_write4(struct cx23885_dev *dev, u32 addr, u32 value)
148{
149 cx_write(addr, value);
150 return 0;
151}
152
Andy Walls29f8a0a2009-09-26 23:17:30 -0300153static inline u32 cx23888_ir_read4(struct cx23885_dev *dev, u32 addr)
154{
155 return cx_read(addr);
156}
157
Andy Walls29f8a0a2009-09-26 23:17:30 -0300158static inline int cx23888_ir_and_or4(struct cx23885_dev *dev, u32 addr,
159 u32 and_mask, u32 or_value)
160{
Andy Walls1a0b9d82009-09-27 18:31:37 -0300161 cx_andor(addr, ~and_mask, or_value);
Andy Walls29f8a0a2009-09-26 23:17:30 -0300162 return 0;
163}
164
Andy Walls1a0b9d82009-09-27 18:31:37 -0300165/*
166 * Rx and Tx Clock Divider register computations
167 *
168 * Note the largest clock divider value of 0xffff corresponds to:
169 * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
170 * which fits in 21 bits, so we'll use unsigned int for time arguments.
171 */
172static inline u16 count_to_clock_divider(unsigned int d)
173{
Andy Walls928213a2009-10-29 22:24:34 -0300174 if (d > RXCLK_RCD + 1)
Andy Walls1a0b9d82009-09-27 18:31:37 -0300175 d = RXCLK_RCD;
176 else if (d < 2)
177 d = 1;
178 else
179 d--;
180 return (u16) d;
181}
182
183static inline u16 ns_to_clock_divider(unsigned int ns)
184{
185 return count_to_clock_divider(
Andy Walls928213a2009-10-29 22:24:34 -0300186 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
Andy Walls1a0b9d82009-09-27 18:31:37 -0300187}
188
189static inline unsigned int clock_divider_to_ns(unsigned int divider)
190{
191 /* Period of the Rx or Tx clock in ns */
192 return DIV_ROUND_CLOSEST((divider + 1) * 1000,
Andy Walls928213a2009-10-29 22:24:34 -0300193 CX23888_IR_REFCLK_FREQ / 1000000);
Andy Walls1a0b9d82009-09-27 18:31:37 -0300194}
195
196static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
197{
198 return count_to_clock_divider(
199 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * 16));
200}
201
202static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
203{
204 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, (divider + 1) * 16);
205}
206
207static inline u16 freq_to_clock_divider(unsigned int freq,
208 unsigned int rollovers)
209{
210 return count_to_clock_divider(
211 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * rollovers));
212}
213
214static inline unsigned int clock_divider_to_freq(unsigned int divider,
215 unsigned int rollovers)
216{
217 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ,
218 (divider + 1) * rollovers);
219}
220
221/*
222 * Low Pass Filter register calculations
223 *
224 * Note the largest count value of 0xffff corresponds to:
225 * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
226 * which fits in 21 bits, so we'll use unsigned int for time arguments.
227 */
228static inline u16 count_to_lpf_count(unsigned int d)
229{
230 if (d > FILTR_LPF)
231 d = FILTR_LPF;
232 else if (d < 4)
233 d = 0;
234 return (u16) d;
235}
236
237static inline u16 ns_to_lpf_count(unsigned int ns)
238{
239 return count_to_lpf_count(
Andy Walls928213a2009-10-29 22:24:34 -0300240 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
Andy Walls1a0b9d82009-09-27 18:31:37 -0300241}
242
243static inline unsigned int lpf_count_to_ns(unsigned int count)
244{
245 /* Duration of the Low Pass Filter rejection window in ns */
Andy Walls928213a2009-10-29 22:24:34 -0300246 return DIV_ROUND_CLOSEST(count * 1000,
247 CX23888_IR_REFCLK_FREQ / 1000000);
Andy Walls1a0b9d82009-09-27 18:31:37 -0300248}
249
250static inline unsigned int lpf_count_to_us(unsigned int count)
251{
252 /* Duration of the Low Pass Filter rejection window in us */
Andy Walls928213a2009-10-29 22:24:34 -0300253 return DIV_ROUND_CLOSEST(count, CX23888_IR_REFCLK_FREQ / 1000000);
Andy Walls1a0b9d82009-09-27 18:31:37 -0300254}
255
256/*
257 * FIFO register pulse width count compuations
258 */
259static u32 clock_divider_to_resolution(u16 divider)
260{
261 /*
262 * Resolution is the duration of 1 tick of the readable portion of
263 * of the pulse width counter as read from the FIFO. The two lsb's are
264 * not readable, hence the << 2. This function returns ns.
265 */
266 return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000,
Andy Walls928213a2009-10-29 22:24:34 -0300267 CX23888_IR_REFCLK_FREQ / 1000000);
Andy Walls1a0b9d82009-09-27 18:31:37 -0300268}
269
270static u64 pulse_width_count_to_ns(u16 count, u16 divider)
271{
272 u64 n;
273 u32 rem;
274
275 /*
276 * The 2 lsb's of the pulse width timer count are not readable, hence
277 * the (count << 2) | 0x3
278 */
279 n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
Andy Walls928213a2009-10-29 22:24:34 -0300280 rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */
281 if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
Andy Walls1a0b9d82009-09-27 18:31:37 -0300282 n++;
283 return n;
284}
285
286static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
287{
288 u64 n;
289 u32 rem;
290
291 /*
292 * The 2 lsb's of the pulse width timer count are not readable, hence
293 * the (count << 2) | 0x3
294 */
Andy Walls928213a2009-10-29 22:24:34 -0300295 n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */
296 rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
297 if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
Andy Walls1a0b9d82009-09-27 18:31:37 -0300298 n++;
299 return (unsigned int) n;
300}
301
302/*
303 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
304 *
305 * The total pulse clock count is an 18 bit pulse width timer count as the most
306 * significant part and (up to) 16 bit clock divider count as a modulus.
307 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
308 * width timer count's least significant bit.
309 */
310static u64 ns_to_pulse_clocks(u32 ns)
311{
312 u64 clocks;
313 u32 rem;
Andy Walls928213a2009-10-29 22:24:34 -0300314 clocks = CX23888_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */
Andy Walls1a0b9d82009-09-27 18:31:37 -0300315 rem = do_div(clocks, 1000); /* /1000 = cycles */
Andy Walls928213a2009-10-29 22:24:34 -0300316 if (rem >= 1000 / 2)
Andy Walls1a0b9d82009-09-27 18:31:37 -0300317 clocks++;
318 return clocks;
319}
320
321static u16 pulse_clocks_to_clock_divider(u64 count)
322{
323 u32 rem;
324
325 rem = do_div(count, (FIFO_RXTX << 2) | 0x3);
326
327 /* net result needs to be rounded down and decremented by 1 */
Andy Walls928213a2009-10-29 22:24:34 -0300328 if (count > RXCLK_RCD + 1)
Andy Walls1a0b9d82009-09-27 18:31:37 -0300329 count = RXCLK_RCD;
330 else if (count < 2)
331 count = 1;
332 else
333 count--;
334 return (u16) count;
335}
336
337/*
338 * IR Control Register helpers
339 */
340enum tx_fifo_watermark {
341 TX_FIFO_HALF_EMPTY = 0,
342 TX_FIFO_EMPTY = CNTRL_TIC,
343};
344
345enum rx_fifo_watermark {
346 RX_FIFO_HALF_FULL = 0,
347 RX_FIFO_NOT_EMPTY = CNTRL_RIC,
348};
349
350static inline void control_tx_irq_watermark(struct cx23885_dev *dev,
351 enum tx_fifo_watermark level)
352{
353 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_TIC, level);
354}
355
356static inline void control_rx_irq_watermark(struct cx23885_dev *dev,
357 enum rx_fifo_watermark level)
358{
359 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_RIC, level);
360}
361
362static inline void control_tx_enable(struct cx23885_dev *dev, bool enable)
363{
364 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
365 enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
366}
367
368static inline void control_rx_enable(struct cx23885_dev *dev, bool enable)
369{
370 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
371 enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
372}
373
374static inline void control_tx_modulation_enable(struct cx23885_dev *dev,
375 bool enable)
376{
377 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_MOD,
378 enable ? CNTRL_MOD : 0);
379}
380
381static inline void control_rx_demodulation_enable(struct cx23885_dev *dev,
382 bool enable)
383{
384 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_DMD,
385 enable ? CNTRL_DMD : 0);
386}
387
388static inline void control_rx_s_edge_detection(struct cx23885_dev *dev,
389 u32 edge_types)
390{
391 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
392 edge_types & CNTRL_EDG_BOTH);
393}
394
395static void control_rx_s_carrier_window(struct cx23885_dev *dev,
396 unsigned int carrier,
397 unsigned int *carrier_range_low,
398 unsigned int *carrier_range_high)
399{
400 u32 v;
401 unsigned int c16 = carrier * 16;
402
403 if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
404 v = CNTRL_WIN_3_4;
405 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
406 } else {
407 v = CNTRL_WIN_3_3;
408 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
409 }
410
411 if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
412 v |= CNTRL_WIN_4_3;
413 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
414 } else {
415 v |= CNTRL_WIN_3_3;
416 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
417 }
418 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_WIN, v);
419}
420
421static inline void control_tx_polarity_invert(struct cx23885_dev *dev,
422 bool invert)
423{
424 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_CPL,
425 invert ? CNTRL_CPL : 0);
426}
427
Andy Walls5a28d9a2010-07-18 19:57:25 -0300428static inline void control_tx_level_invert(struct cx23885_dev *dev,
429 bool invert)
430{
431 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_IVO,
432 invert ? CNTRL_IVO : 0);
433}
434
Andy Walls1a0b9d82009-09-27 18:31:37 -0300435/*
436 * IR Rx & Tx Clock Register helpers
437 */
438static unsigned int txclk_tx_s_carrier(struct cx23885_dev *dev,
439 unsigned int freq,
440 u16 *divider)
441{
442 *divider = carrier_freq_to_clock_divider(freq);
443 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
444 return clock_divider_to_carrier_freq(*divider);
445}
446
447static unsigned int rxclk_rx_s_carrier(struct cx23885_dev *dev,
448 unsigned int freq,
449 u16 *divider)
450{
451 *divider = carrier_freq_to_clock_divider(freq);
452 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
453 return clock_divider_to_carrier_freq(*divider);
454}
455
456static u32 txclk_tx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
457 u16 *divider)
458{
459 u64 pulse_clocks;
460
461 if (ns > V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS)
462 ns = V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS;
463 pulse_clocks = ns_to_pulse_clocks(ns);
464 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
465 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
466 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
467}
468
469static u32 rxclk_rx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
470 u16 *divider)
471{
472 u64 pulse_clocks;
473
474 if (ns > V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS)
475 ns = V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS;
476 pulse_clocks = ns_to_pulse_clocks(ns);
477 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
478 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
479 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
480}
481
482/*
483 * IR Tx Carrier Duty Cycle register helpers
484 */
485static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev *dev,
486 unsigned int duty_cycle)
487{
488 u32 n;
489 n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
490 if (n != 0)
491 n--;
492 if (n > 15)
493 n = 15;
494 cx23888_ir_write4(dev, CX23888_IR_CDUTY_REG, n);
Andy Walls928213a2009-10-29 22:24:34 -0300495 return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
Andy Walls1a0b9d82009-09-27 18:31:37 -0300496}
497
498/*
499 * IR Filter Register helpers
500 */
501static u32 filter_rx_s_min_width(struct cx23885_dev *dev, u32 min_width_ns)
502{
503 u32 count = ns_to_lpf_count(min_width_ns);
504 cx23888_ir_write4(dev, CX23888_IR_FILTR_REG, count);
505 return lpf_count_to_ns(count);
506}
507
508/*
509 * IR IRQ Enable Register helpers
510 */
511static inline void irqenable_rx(struct cx23885_dev *dev, u32 mask)
512{
513 mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
514 cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG,
515 ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
516}
517
518static inline void irqenable_tx(struct cx23885_dev *dev, u32 mask)
519{
520 mask &= IRQEN_TSE;
521 cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG, ~IRQEN_TSE, mask);
522}
523
524/*
525 * V4L2 Subdevice IR Ops
526 */
527static int cx23888_ir_irq_handler(struct v4l2_subdev *sd, u32 status,
528 bool *handled)
529{
530 struct cx23888_ir_state *state = to_state(sd);
531 struct cx23885_dev *dev = state->dev;
Stefani Seibold7801edb2009-12-21 14:37:33 -0800532 unsigned long flags;
Andy Walls1a0b9d82009-09-27 18:31:37 -0300533
534 u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
535 u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
536 u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
537
538 u32 rx_data[FIFO_RX_DEPTH];
539 int i, j, k;
540 u32 events, v;
541 int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
542
543 tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
544 rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
545 rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
546 ror = stats & STATS_ROR; /* Rx FIFO Over Run */
547
548 tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
549 rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */
550 rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
551 roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
552
553 *handled = false;
554 v4l2_dbg(2, ir_888_debug, sd, "IRQ Status: %s %s %s %s %s %s\n",
555 tsr ? "tsr" : " ", rsr ? "rsr" : " ",
556 rto ? "rto" : " ", ror ? "ror" : " ",
557 stats & STATS_TBY ? "tby" : " ",
558 stats & STATS_RBY ? "rby" : " ");
559
560 v4l2_dbg(2, ir_888_debug, sd, "IRQ Enables: %s %s %s %s\n",
561 tse ? "tse" : " ", rse ? "rse" : " ",
562 rte ? "rte" : " ", roe ? "roe" : " ");
563
564 /*
565 * Transmitter interrupt service
566 */
567 if (tse && tsr) {
568 /*
569 * TODO:
570 * Check the watermark threshold setting
571 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
572 * Push the data to the hardware FIFO.
573 * If there was nothing more to send in the tx_kfifo, disable
574 * the TSR IRQ and notify the v4l2_device.
575 * If there was something in the tx_kfifo, check the tx_kfifo
576 * level and notify the v4l2_device, if it is low.
577 */
578 /* For now, inhibit TSR interrupt until Tx is implemented */
579 irqenable_tx(dev, 0);
580 events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
581 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
582 *handled = true;
583 }
584
585 /*
586 * Receiver interrupt service
587 */
588 kror = 0;
589 if ((rse && rsr) || (rte && rto)) {
590 /*
591 * Receive data on RSR to clear the STATS_RSR.
592 * Receive data on RTO, since we may not have yet hit the RSR
593 * watermark when we receive the RTO.
594 */
595 for (i = 0, v = FIFO_RX_NDV;
596 (v & FIFO_RX_NDV) && !kror; i = 0) {
597 for (j = 0;
598 (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
599 v = cx23888_ir_read4(dev, CX23888_IR_FIFO_REG);
600 rx_data[i++] = v & ~FIFO_RX_NDV;
601 }
602 if (i == 0)
603 break;
604 j = i * sizeof(u32);
Stefani Seibold7801edb2009-12-21 14:37:33 -0800605 k = kfifo_in_locked(&state->rx_kfifo,
606 (unsigned char *) rx_data, j,
607 &state->rx_kfifo_lock);
Andy Walls1a0b9d82009-09-27 18:31:37 -0300608 if (k != j)
609 kror++; /* rx_kfifo over run */
610 }
611 *handled = true;
612 }
613
614 events = 0;
615 v = 0;
616 if (kror) {
617 events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
618 v4l2_err(sd, "IR receiver software FIFO overrun\n");
619 }
620 if (roe && ror) {
621 /*
622 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
623 * the Rx FIFO Over Run status (STATS_ROR)
624 */
625 v |= CNTRL_RFE;
626 events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
627 v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
628 }
629 if (rte && rto) {
630 /*
631 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
632 * the Rx Pulse Width Timer Time Out (STATS_RTO)
633 */
634 v |= CNTRL_RXE;
635 events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
636 }
637 if (v) {
638 /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
639 cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl & ~v);
640 cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl);
641 *handled = true;
642 }
Stefani Seibold7801edb2009-12-21 14:37:33 -0800643
644 spin_lock_irqsave(&state->rx_kfifo_lock, flags);
645 if (kfifo_len(&state->rx_kfifo) >= CX23888_IR_RX_KFIFO_SIZE / 2)
Andy Walls1a0b9d82009-09-27 18:31:37 -0300646 events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
Stefani Seibold7801edb2009-12-21 14:37:33 -0800647 spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
Andy Walls1a0b9d82009-09-27 18:31:37 -0300648
649 if (events)
650 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
651 return 0;
652}
653
654/* Receiver */
655static int cx23888_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
656 ssize_t *num)
657{
658 struct cx23888_ir_state *state = to_state(sd);
659 bool invert = (bool) atomic_read(&state->rx_invert);
660 u16 divider = (u16) atomic_read(&state->rxclk_divider);
661
662 unsigned int i, n;
663 u32 *p;
664 u32 u, v;
665
666 n = count / sizeof(u32) * sizeof(u32);
667 if (n == 0) {
668 *num = 0;
669 return 0;
670 }
671
Stefani Seibold7801edb2009-12-21 14:37:33 -0800672 n = kfifo_out_locked(&state->rx_kfifo, buf, n, &state->rx_kfifo_lock);
Andy Walls1a0b9d82009-09-27 18:31:37 -0300673
674 n /= sizeof(u32);
675 *num = n * sizeof(u32);
676
677 for (p = (u32 *) buf, i = 0; i < n; p++, i++) {
678 if ((*p & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
679 *p = V4L2_SUBDEV_IR_PULSE_RX_SEQ_END;
680 v4l2_dbg(2, ir_888_debug, sd, "rx read: end of rx\n");
681 continue;
682 }
683
684 u = (*p & FIFO_RXTX_LVL) ? V4L2_SUBDEV_IR_PULSE_LEVEL_MASK : 0;
685 if (invert)
686 u = u ? 0 : V4L2_SUBDEV_IR_PULSE_LEVEL_MASK;
687
688 v = (u32) pulse_width_count_to_ns((u16) (*p & FIFO_RXTX),
689 divider);
690 if (v >= V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS)
691 v = V4L2_SUBDEV_IR_PULSE_MAX_WIDTH_NS - 1;
692
693 *p = u | v;
694
695 v4l2_dbg(2, ir_888_debug, sd, "rx read: %10u ns %s\n",
696 v, u ? "mark" : "space");
697 }
698 return 0;
699}
700
701static int cx23888_ir_rx_g_parameters(struct v4l2_subdev *sd,
702 struct v4l2_subdev_ir_parameters *p)
703{
704 struct cx23888_ir_state *state = to_state(sd);
705 mutex_lock(&state->rx_params_lock);
706 memcpy(p, &state->rx_params, sizeof(struct v4l2_subdev_ir_parameters));
707 mutex_unlock(&state->rx_params_lock);
708 return 0;
709}
710
711static int cx23888_ir_rx_shutdown(struct v4l2_subdev *sd)
712{
713 struct cx23888_ir_state *state = to_state(sd);
714 struct cx23885_dev *dev = state->dev;
715
716 mutex_lock(&state->rx_params_lock);
717
718 /* Disable or slow down all IR Rx circuits and counters */
719 irqenable_rx(dev, 0);
720 control_rx_enable(dev, false);
721 control_rx_demodulation_enable(dev, false);
722 control_rx_s_edge_detection(dev, CNTRL_EDG_NONE);
723 filter_rx_s_min_width(dev, 0);
724 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, RXCLK_RCD);
725
726 state->rx_params.shutdown = true;
727
728 mutex_unlock(&state->rx_params_lock);
729 return 0;
730}
731
732static int cx23888_ir_rx_s_parameters(struct v4l2_subdev *sd,
733 struct v4l2_subdev_ir_parameters *p)
734{
735 struct cx23888_ir_state *state = to_state(sd);
736 struct cx23885_dev *dev = state->dev;
737 struct v4l2_subdev_ir_parameters *o = &state->rx_params;
738 u16 rxclk_divider;
739
740 if (p->shutdown)
741 return cx23888_ir_rx_shutdown(sd);
742
743 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
744 return -ENOSYS;
745
746 mutex_lock(&state->rx_params_lock);
747
748 o->shutdown = p->shutdown;
749
750 o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
751
752 o->bytes_per_data_element = p->bytes_per_data_element = sizeof(u32);
753
754 /* Before we tweak the hardware, we have to disable the receiver */
755 irqenable_rx(dev, 0);
756 control_rx_enable(dev, false);
757
758 control_rx_demodulation_enable(dev, p->modulation);
759 o->modulation = p->modulation;
760
761 if (p->modulation) {
762 p->carrier_freq = rxclk_rx_s_carrier(dev, p->carrier_freq,
763 &rxclk_divider);
764
765 o->carrier_freq = p->carrier_freq;
766
767 o->duty_cycle = p->duty_cycle = 50;
768
769 control_rx_s_carrier_window(dev, p->carrier_freq,
770 &p->carrier_range_lower,
771 &p->carrier_range_upper);
772 o->carrier_range_lower = p->carrier_range_lower;
773 o->carrier_range_upper = p->carrier_range_upper;
774 } else {
775 p->max_pulse_width =
776 rxclk_rx_s_max_pulse_width(dev, p->max_pulse_width,
777 &rxclk_divider);
778 o->max_pulse_width = p->max_pulse_width;
779 }
780 atomic_set(&state->rxclk_divider, rxclk_divider);
781
782 p->noise_filter_min_width =
783 filter_rx_s_min_width(dev, p->noise_filter_min_width);
784 o->noise_filter_min_width = p->noise_filter_min_width;
785
786 p->resolution = clock_divider_to_resolution(rxclk_divider);
787 o->resolution = p->resolution;
788
789 /* FIXME - make this dependent on resolution for better performance */
790 control_rx_irq_watermark(dev, RX_FIFO_HALF_FULL);
791
792 control_rx_s_edge_detection(dev, CNTRL_EDG_BOTH);
793
Andy Walls5a28d9a2010-07-18 19:57:25 -0300794 o->invert_level = p->invert_level;
795 atomic_set(&state->rx_invert, p->invert_level);
Andy Walls1a0b9d82009-09-27 18:31:37 -0300796
797 o->interrupt_enable = p->interrupt_enable;
798 o->enable = p->enable;
799 if (p->enable) {
Stefani Seibold7801edb2009-12-21 14:37:33 -0800800 unsigned long flags;
801
802 spin_lock_irqsave(&state->rx_kfifo_lock, flags);
803 kfifo_reset(&state->rx_kfifo);
804 /* reset tx_fifo too if there is one... */
805 spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
Andy Walls1a0b9d82009-09-27 18:31:37 -0300806 if (p->interrupt_enable)
807 irqenable_rx(dev, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
808 control_rx_enable(dev, p->enable);
809 }
810
811 mutex_unlock(&state->rx_params_lock);
812 return 0;
813}
814
815/* Transmitter */
816static int cx23888_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
817 ssize_t *num)
818{
819 struct cx23888_ir_state *state = to_state(sd);
820 struct cx23885_dev *dev = state->dev;
821 /* For now enable the Tx FIFO Service interrupt & pretend we did work */
822 irqenable_tx(dev, IRQEN_TSE);
823 *num = count;
824 return 0;
825}
826
827static int cx23888_ir_tx_g_parameters(struct v4l2_subdev *sd,
828 struct v4l2_subdev_ir_parameters *p)
829{
830 struct cx23888_ir_state *state = to_state(sd);
831 mutex_lock(&state->tx_params_lock);
832 memcpy(p, &state->tx_params, sizeof(struct v4l2_subdev_ir_parameters));
833 mutex_unlock(&state->tx_params_lock);
834 return 0;
835}
836
837static int cx23888_ir_tx_shutdown(struct v4l2_subdev *sd)
838{
839 struct cx23888_ir_state *state = to_state(sd);
840 struct cx23885_dev *dev = state->dev;
841
842 mutex_lock(&state->tx_params_lock);
843
844 /* Disable or slow down all IR Tx circuits and counters */
845 irqenable_tx(dev, 0);
846 control_tx_enable(dev, false);
847 control_tx_modulation_enable(dev, false);
848 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, TXCLK_TCD);
849
850 state->tx_params.shutdown = true;
851
852 mutex_unlock(&state->tx_params_lock);
853 return 0;
854}
855
856static int cx23888_ir_tx_s_parameters(struct v4l2_subdev *sd,
857 struct v4l2_subdev_ir_parameters *p)
858{
859 struct cx23888_ir_state *state = to_state(sd);
860 struct cx23885_dev *dev = state->dev;
861 struct v4l2_subdev_ir_parameters *o = &state->tx_params;
862 u16 txclk_divider;
863
864 if (p->shutdown)
865 return cx23888_ir_tx_shutdown(sd);
866
867 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
868 return -ENOSYS;
869
870 mutex_lock(&state->tx_params_lock);
871
872 o->shutdown = p->shutdown;
873
874 o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
875
876 o->bytes_per_data_element = p->bytes_per_data_element = sizeof(u32);
877
878 /* Before we tweak the hardware, we have to disable the transmitter */
879 irqenable_tx(dev, 0);
880 control_tx_enable(dev, false);
881
882 control_tx_modulation_enable(dev, p->modulation);
883 o->modulation = p->modulation;
884
885 if (p->modulation) {
886 p->carrier_freq = txclk_tx_s_carrier(dev, p->carrier_freq,
887 &txclk_divider);
888 o->carrier_freq = p->carrier_freq;
889
890 p->duty_cycle = cduty_tx_s_duty_cycle(dev, p->duty_cycle);
891 o->duty_cycle = p->duty_cycle;
892 } else {
893 p->max_pulse_width =
894 txclk_tx_s_max_pulse_width(dev, p->max_pulse_width,
895 &txclk_divider);
896 o->max_pulse_width = p->max_pulse_width;
897 }
898 atomic_set(&state->txclk_divider, txclk_divider);
899
900 p->resolution = clock_divider_to_resolution(txclk_divider);
901 o->resolution = p->resolution;
902
903 /* FIXME - make this dependent on resolution for better performance */
904 control_tx_irq_watermark(dev, TX_FIFO_HALF_EMPTY);
905
Andy Walls5a28d9a2010-07-18 19:57:25 -0300906 control_tx_polarity_invert(dev, p->invert_carrier_sense);
907 o->invert_carrier_sense = p->invert_carrier_sense;
908
909 control_tx_level_invert(dev, p->invert_level);
910 o->invert_level = p->invert_level;
Andy Walls1a0b9d82009-09-27 18:31:37 -0300911
912 o->interrupt_enable = p->interrupt_enable;
913 o->enable = p->enable;
914 if (p->enable) {
Andy Walls1a0b9d82009-09-27 18:31:37 -0300915 if (p->interrupt_enable)
916 irqenable_tx(dev, IRQEN_TSE);
917 control_tx_enable(dev, p->enable);
918 }
919
920 mutex_unlock(&state->tx_params_lock);
921 return 0;
922}
923
924
925/*
926 * V4L2 Subdevice Core Ops
927 */
Andy Walls29f8a0a2009-09-26 23:17:30 -0300928static int cx23888_ir_log_status(struct v4l2_subdev *sd)
929{
930 struct cx23888_ir_state *state = to_state(sd);
931 struct cx23885_dev *dev = state->dev;
Andy Walls1a0b9d82009-09-27 18:31:37 -0300932 char *s;
933 int i, j;
934
935 u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
936 u32 txclk = cx23888_ir_read4(dev, CX23888_IR_TXCLK_REG) & TXCLK_TCD;
937 u32 rxclk = cx23888_ir_read4(dev, CX23888_IR_RXCLK_REG) & RXCLK_RCD;
938 u32 cduty = cx23888_ir_read4(dev, CX23888_IR_CDUTY_REG) & CDUTY_CDC;
939 u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
940 u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
941 u32 filtr = cx23888_ir_read4(dev, CX23888_IR_FILTR_REG) & FILTR_LPF;
942
943 v4l2_info(sd, "IR Receiver:\n");
944 v4l2_info(sd, "\tEnabled: %s\n",
945 cntrl & CNTRL_RXE ? "yes" : "no");
946 v4l2_info(sd, "\tDemodulation from a carrier: %s\n",
947 cntrl & CNTRL_DMD ? "enabled" : "disabled");
948 v4l2_info(sd, "\tFIFO: %s\n",
949 cntrl & CNTRL_RFE ? "enabled" : "disabled");
950 switch (cntrl & CNTRL_EDG) {
951 case CNTRL_EDG_NONE:
952 s = "disabled";
953 break;
954 case CNTRL_EDG_FALL:
955 s = "falling edge";
956 break;
957 case CNTRL_EDG_RISE:
958 s = "rising edge";
959 break;
960 case CNTRL_EDG_BOTH:
961 s = "rising & falling edges";
962 break;
963 default:
964 s = "??? edge";
965 break;
966 }
967 v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s);
968 v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
969 cntrl & CNTRL_R ? "not loaded" : "overflow marker");
970 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
971 cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
972 v4l2_info(sd, "\tLoopback mode: %s\n",
973 cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
974 if (cntrl & CNTRL_DMD) {
975 v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n",
976 clock_divider_to_carrier_freq(rxclk));
977 switch (cntrl & CNTRL_WIN) {
978 case CNTRL_WIN_3_3:
979 i = 3;
980 j = 3;
981 break;
982 case CNTRL_WIN_4_3:
983 i = 4;
984 j = 3;
985 break;
986 case CNTRL_WIN_3_4:
987 i = 3;
988 j = 4;
989 break;
990 case CNTRL_WIN_4_4:
991 i = 4;
992 j = 4;
993 break;
994 default:
995 i = 0;
996 j = 0;
997 break;
998 }
999 v4l2_info(sd, "\tNext carrier edge window: 16 clocks "
1000 "-%1d/+%1d, %u to %u Hz\n", i, j,
1001 clock_divider_to_freq(rxclk, 16 + j),
1002 clock_divider_to_freq(rxclk, 16 - i));
1003 } else {
1004 v4l2_info(sd, "\tMax measurable pulse width: %u us, "
1005 "%llu ns\n",
1006 pulse_width_count_to_us(FIFO_RXTX, rxclk),
1007 pulse_width_count_to_ns(FIFO_RXTX, rxclk));
1008 }
1009 v4l2_info(sd, "\tLow pass filter: %s\n",
1010 filtr ? "enabled" : "disabled");
1011 if (filtr)
1012 v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, "
1013 "%u ns\n",
1014 lpf_count_to_us(filtr),
1015 lpf_count_to_ns(filtr));
1016 v4l2_info(sd, "\tPulse width timer timed-out: %s\n",
1017 stats & STATS_RTO ? "yes" : "no");
1018 v4l2_info(sd, "\tPulse width timer time-out intr: %s\n",
1019 irqen & IRQEN_RTE ? "enabled" : "disabled");
1020 v4l2_info(sd, "\tFIFO overrun: %s\n",
1021 stats & STATS_ROR ? "yes" : "no");
1022 v4l2_info(sd, "\tFIFO overrun interrupt: %s\n",
1023 irqen & IRQEN_ROE ? "enabled" : "disabled");
1024 v4l2_info(sd, "\tBusy: %s\n",
1025 stats & STATS_RBY ? "yes" : "no");
1026 v4l2_info(sd, "\tFIFO service requested: %s\n",
1027 stats & STATS_RSR ? "yes" : "no");
1028 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1029 irqen & IRQEN_RSE ? "enabled" : "disabled");
1030
1031 v4l2_info(sd, "IR Transmitter:\n");
1032 v4l2_info(sd, "\tEnabled: %s\n",
1033 cntrl & CNTRL_TXE ? "yes" : "no");
1034 v4l2_info(sd, "\tModulation onto a carrier: %s\n",
1035 cntrl & CNTRL_MOD ? "enabled" : "disabled");
1036 v4l2_info(sd, "\tFIFO: %s\n",
1037 cntrl & CNTRL_TFE ? "enabled" : "disabled");
1038 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
1039 cntrl & CNTRL_TIC ? "not empty" : "half full or less");
Andy Walls5a28d9a2010-07-18 19:57:25 -03001040 v4l2_info(sd, "\tOutput pin level inversion %s\n",
1041 cntrl & CNTRL_IVO ? "yes" : "no");
1042 v4l2_info(sd, "\tCarrier polarity: %s\n",
1043 cntrl & CNTRL_CPL ? "space:burst mark:noburst"
1044 : "space:noburst mark:burst");
Andy Walls1a0b9d82009-09-27 18:31:37 -03001045 if (cntrl & CNTRL_MOD) {
1046 v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n",
1047 clock_divider_to_carrier_freq(txclk));
1048 v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n",
1049 cduty + 1);
1050 } else {
1051 v4l2_info(sd, "\tMax pulse width: %u us, "
1052 "%llu ns\n",
1053 pulse_width_count_to_us(FIFO_RXTX, txclk),
1054 pulse_width_count_to_ns(FIFO_RXTX, txclk));
1055 }
1056 v4l2_info(sd, "\tBusy: %s\n",
1057 stats & STATS_TBY ? "yes" : "no");
1058 v4l2_info(sd, "\tFIFO service requested: %s\n",
1059 stats & STATS_TSR ? "yes" : "no");
1060 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1061 irqen & IRQEN_TSE ? "enabled" : "disabled");
1062
Andy Walls29f8a0a2009-09-26 23:17:30 -03001063 return 0;
1064}
1065
1066static inline int cx23888_ir_dbg_match(const struct v4l2_dbg_match *match)
1067{
1068 return match->type == V4L2_CHIP_MATCH_HOST && match->addr == 2;
1069}
1070
1071static int cx23888_ir_g_chip_ident(struct v4l2_subdev *sd,
1072 struct v4l2_dbg_chip_ident *chip)
1073{
1074 struct cx23888_ir_state *state = to_state(sd);
1075
1076 if (cx23888_ir_dbg_match(&chip->match)) {
1077 chip->ident = state->id;
1078 chip->revision = state->rev;
1079 }
1080 return 0;
1081}
1082
1083#ifdef CONFIG_VIDEO_ADV_DEBUG
1084static int cx23888_ir_g_register(struct v4l2_subdev *sd,
1085 struct v4l2_dbg_register *reg)
1086{
1087 struct cx23888_ir_state *state = to_state(sd);
1088 u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1089
1090 if (!cx23888_ir_dbg_match(&reg->match))
1091 return -EINVAL;
1092 if ((addr & 0x3) != 0)
1093 return -EINVAL;
1094 if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1095 return -EINVAL;
1096 if (!capable(CAP_SYS_ADMIN))
1097 return -EPERM;
1098 reg->size = 4;
1099 reg->val = cx23888_ir_read4(state->dev, addr);
1100 return 0;
1101}
1102
1103static int cx23888_ir_s_register(struct v4l2_subdev *sd,
1104 struct v4l2_dbg_register *reg)
1105{
1106 struct cx23888_ir_state *state = to_state(sd);
1107 u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1108
1109 if (!cx23888_ir_dbg_match(&reg->match))
1110 return -EINVAL;
1111 if ((addr & 0x3) != 0)
1112 return -EINVAL;
1113 if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1114 return -EINVAL;
1115 if (!capable(CAP_SYS_ADMIN))
1116 return -EPERM;
1117 cx23888_ir_write4(state->dev, addr, reg->val);
1118 return 0;
1119}
1120#endif
1121
1122static const struct v4l2_subdev_core_ops cx23888_ir_core_ops = {
1123 .g_chip_ident = cx23888_ir_g_chip_ident,
1124 .log_status = cx23888_ir_log_status,
1125#ifdef CONFIG_VIDEO_ADV_DEBUG
1126 .g_register = cx23888_ir_g_register,
1127 .s_register = cx23888_ir_s_register,
1128#endif
1129};
1130
Andy Walls1a0b9d82009-09-27 18:31:37 -03001131static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops = {
1132 .interrupt_service_routine = cx23888_ir_irq_handler,
1133
1134 .rx_read = cx23888_ir_rx_read,
1135 .rx_g_parameters = cx23888_ir_rx_g_parameters,
1136 .rx_s_parameters = cx23888_ir_rx_s_parameters,
1137
1138 .tx_write = cx23888_ir_tx_write,
1139 .tx_g_parameters = cx23888_ir_tx_g_parameters,
1140 .tx_s_parameters = cx23888_ir_tx_s_parameters,
1141};
1142
Andy Walls29f8a0a2009-09-26 23:17:30 -03001143static const struct v4l2_subdev_ops cx23888_ir_controller_ops = {
1144 .core = &cx23888_ir_core_ops,
Andy Walls1a0b9d82009-09-27 18:31:37 -03001145 .ir = &cx23888_ir_ir_ops,
1146};
1147
1148static const struct v4l2_subdev_ir_parameters default_rx_params = {
1149 .bytes_per_data_element = sizeof(u32),
1150 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1151
1152 .enable = false,
1153 .interrupt_enable = false,
1154 .shutdown = true,
1155
1156 .modulation = true,
1157 .carrier_freq = 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */
1158
1159 /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1160 /* RC-6A: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1161 .noise_filter_min_width = 333333, /* ns */
1162 .carrier_range_lower = 35000,
1163 .carrier_range_upper = 37000,
Andy Walls5a28d9a2010-07-18 19:57:25 -03001164 .invert_level = false,
Andy Walls1a0b9d82009-09-27 18:31:37 -03001165};
1166
1167static const struct v4l2_subdev_ir_parameters default_tx_params = {
1168 .bytes_per_data_element = sizeof(u32),
1169 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1170
1171 .enable = false,
1172 .interrupt_enable = false,
1173 .shutdown = true,
1174
1175 .modulation = true,
1176 .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1177 .duty_cycle = 25, /* 25 % - RC-5 carrier */
Andy Walls5a28d9a2010-07-18 19:57:25 -03001178 .invert_level = false,
1179 .invert_carrier_sense = false,
Andy Walls29f8a0a2009-09-26 23:17:30 -03001180};
1181
1182int cx23888_ir_probe(struct cx23885_dev *dev)
1183{
1184 struct cx23888_ir_state *state;
1185 struct v4l2_subdev *sd;
Andy Walls1a0b9d82009-09-27 18:31:37 -03001186 struct v4l2_subdev_ir_parameters default_params;
1187 int ret;
Andy Walls29f8a0a2009-09-26 23:17:30 -03001188
1189 state = kzalloc(sizeof(struct cx23888_ir_state), GFP_KERNEL);
1190 if (state == NULL)
1191 return -ENOMEM;
1192
Andy Walls1a0b9d82009-09-27 18:31:37 -03001193 spin_lock_init(&state->rx_kfifo_lock);
Stefani Seibold7801edb2009-12-21 14:37:33 -08001194 if (kfifo_alloc(&state->rx_kfifo, CX23888_IR_RX_KFIFO_SIZE, GFP_KERNEL))
Andy Walls1a0b9d82009-09-27 18:31:37 -03001195 return -ENOMEM;
1196
Andy Walls29f8a0a2009-09-26 23:17:30 -03001197 state->dev = dev;
1198 state->id = V4L2_IDENT_CX23888_IR;
1199 state->rev = 0;
1200 sd = &state->sd;
1201
1202 v4l2_subdev_init(sd, &cx23888_ir_controller_ops);
1203 v4l2_set_subdevdata(sd, state);
1204 /* FIXME - fix the formatting of dev->v4l2_dev.name and use it */
1205 snprintf(sd->name, sizeof(sd->name), "%s/888-ir", dev->name);
1206 sd->grp_id = CX23885_HW_888_IR;
Andy Walls1a0b9d82009-09-27 18:31:37 -03001207
1208 ret = v4l2_device_register_subdev(&dev->v4l2_dev, sd);
1209 if (ret == 0) {
1210 /*
1211 * Ensure no interrupts arrive from '888 specific conditions,
1212 * since we ignore them in this driver to have commonality with
1213 * similar IR controller cores.
1214 */
1215 cx23888_ir_write4(dev, CX23888_IR_IRQEN_REG, 0);
1216
1217 mutex_init(&state->rx_params_lock);
1218 memcpy(&default_params, &default_rx_params,
1219 sizeof(struct v4l2_subdev_ir_parameters));
1220 v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1221
1222 mutex_init(&state->tx_params_lock);
1223 memcpy(&default_params, &default_tx_params,
1224 sizeof(struct v4l2_subdev_ir_parameters));
1225 v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1226 } else {
Stefani Seibold7801edb2009-12-21 14:37:33 -08001227 kfifo_free(&state->rx_kfifo);
Andy Walls1a0b9d82009-09-27 18:31:37 -03001228 }
1229 return ret;
Andy Walls29f8a0a2009-09-26 23:17:30 -03001230}
1231
1232int cx23888_ir_remove(struct cx23885_dev *dev)
1233{
1234 struct v4l2_subdev *sd;
1235 struct cx23888_ir_state *state;
1236
1237 sd = cx23885_find_hw(dev, CX23885_HW_888_IR);
1238 if (sd == NULL)
1239 return -ENODEV;
1240
Andy Walls1a0b9d82009-09-27 18:31:37 -03001241 cx23888_ir_rx_shutdown(sd);
1242 cx23888_ir_tx_shutdown(sd);
Andy Walls29f8a0a2009-09-26 23:17:30 -03001243
1244 state = to_state(sd);
1245 v4l2_device_unregister_subdev(sd);
Stefani Seibold7801edb2009-12-21 14:37:33 -08001246 kfifo_free(&state->rx_kfifo);
Andy Walls29f8a0a2009-09-26 23:17:30 -03001247 kfree(state);
1248 /* Nothing more to free() as state held the actual v4l2_subdev object */
1249 return 0;
1250}