blob: bfc4ee015c87a0f53acbc396005364e7ef19acf1 [file] [log] [blame]
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001/*
Ingo Molnar57c0c152009-09-21 12:20:38 +02002 * Performance events core code:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
Ingo Molnar57c0c152009-09-21 12:20:38 +02009 * For licensing details see kernel-base/COPYING
Ingo Molnarcdd6c482009-09-21 12:02:48 +020010 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/file.h>
17#include <linux/poll.h>
18#include <linux/sysfs.h>
19#include <linux/dcache.h>
20#include <linux/percpu.h>
21#include <linux/ptrace.h>
22#include <linux/vmstat.h>
Peter Zijlstra906010b2009-09-21 16:08:49 +020023#include <linux/vmalloc.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020024#include <linux/hardirq.h>
25#include <linux/rculist.h>
26#include <linux/uaccess.h>
27#include <linux/syscalls.h>
28#include <linux/anon_inodes.h>
29#include <linux/kernel_stat.h>
30#include <linux/perf_event.h>
Li Zefan6fb29152009-10-15 11:21:42 +080031#include <linux/ftrace_event.h>
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +020032#include <linux/hw_breakpoint.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020033
34#include <asm/irq_regs.h>
35
36/*
37 * Each CPU has a list of per CPU events:
38 */
Xiao Guangrongaa5452d2009-12-09 11:28:13 +080039static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +020040
41int perf_max_events __read_mostly = 1;
42static int perf_reserved_percpu __read_mostly;
43static int perf_overcommit __read_mostly = 1;
44
45static atomic_t nr_events __read_mostly;
46static atomic_t nr_mmap_events __read_mostly;
47static atomic_t nr_comm_events __read_mostly;
48static atomic_t nr_task_events __read_mostly;
49
50/*
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
56 */
57int sysctl_perf_event_paranoid __read_mostly = 1;
58
59static inline bool perf_paranoid_tracepoint_raw(void)
60{
61 return sysctl_perf_event_paranoid > -1;
62}
63
64static inline bool perf_paranoid_cpu(void)
65{
66 return sysctl_perf_event_paranoid > 0;
67}
68
69static inline bool perf_paranoid_kernel(void)
70{
71 return sysctl_perf_event_paranoid > 1;
72}
73
74int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75
76/*
77 * max perf event sample rate
78 */
79int sysctl_perf_event_sample_rate __read_mostly = 100000;
80
81static atomic64_t perf_event_id;
82
83/*
84 * Lock for (sysadmin-configurable) event reservations:
85 */
86static DEFINE_SPINLOCK(perf_resource_lock);
87
88/*
89 * Architecture provided APIs - weak aliases:
90 */
91extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
92{
93 return NULL;
94}
95
96void __weak hw_perf_disable(void) { barrier(); }
97void __weak hw_perf_enable(void) { barrier(); }
98
99void __weak hw_perf_event_setup(int cpu) { barrier(); }
100void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
101
102int __weak
103hw_perf_group_sched_in(struct perf_event *group_leader,
104 struct perf_cpu_context *cpuctx,
105 struct perf_event_context *ctx, int cpu)
106{
107 return 0;
108}
109
110void __weak perf_event_print_debug(void) { }
111
112static DEFINE_PER_CPU(int, perf_disable_count);
113
114void __perf_disable(void)
115{
116 __get_cpu_var(perf_disable_count)++;
117}
118
119bool __perf_enable(void)
120{
121 return !--__get_cpu_var(perf_disable_count);
122}
123
124void perf_disable(void)
125{
126 __perf_disable();
127 hw_perf_disable();
128}
129
130void perf_enable(void)
131{
132 if (__perf_enable())
133 hw_perf_enable();
134}
135
136static void get_ctx(struct perf_event_context *ctx)
137{
138 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139}
140
141static void free_ctx(struct rcu_head *head)
142{
143 struct perf_event_context *ctx;
144
145 ctx = container_of(head, struct perf_event_context, rcu_head);
146 kfree(ctx);
147}
148
149static void put_ctx(struct perf_event_context *ctx)
150{
151 if (atomic_dec_and_test(&ctx->refcount)) {
152 if (ctx->parent_ctx)
153 put_ctx(ctx->parent_ctx);
154 if (ctx->task)
155 put_task_struct(ctx->task);
156 call_rcu(&ctx->rcu_head, free_ctx);
157 }
158}
159
160static void unclone_ctx(struct perf_event_context *ctx)
161{
162 if (ctx->parent_ctx) {
163 put_ctx(ctx->parent_ctx);
164 ctx->parent_ctx = NULL;
165 }
166}
167
168/*
169 * If we inherit events we want to return the parent event id
170 * to userspace.
171 */
172static u64 primary_event_id(struct perf_event *event)
173{
174 u64 id = event->id;
175
176 if (event->parent)
177 id = event->parent->id;
178
179 return id;
180}
181
182/*
183 * Get the perf_event_context for a task and lock it.
184 * This has to cope with with the fact that until it is locked,
185 * the context could get moved to another task.
186 */
187static struct perf_event_context *
188perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189{
190 struct perf_event_context *ctx;
191
192 rcu_read_lock();
193 retry:
194 ctx = rcu_dereference(task->perf_event_ctxp);
195 if (ctx) {
196 /*
197 * If this context is a clone of another, it might
198 * get swapped for another underneath us by
199 * perf_event_task_sched_out, though the
200 * rcu_read_lock() protects us from any context
201 * getting freed. Lock the context and check if it
202 * got swapped before we could get the lock, and retry
203 * if so. If we locked the right context, then it
204 * can't get swapped on us any more.
205 */
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100206 raw_spin_lock_irqsave(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200207 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100208 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200209 goto retry;
210 }
211
212 if (!atomic_inc_not_zero(&ctx->refcount)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100213 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200214 ctx = NULL;
215 }
216 }
217 rcu_read_unlock();
218 return ctx;
219}
220
221/*
222 * Get the context for a task and increment its pin_count so it
223 * can't get swapped to another task. This also increments its
224 * reference count so that the context can't get freed.
225 */
226static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227{
228 struct perf_event_context *ctx;
229 unsigned long flags;
230
231 ctx = perf_lock_task_context(task, &flags);
232 if (ctx) {
233 ++ctx->pin_count;
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100234 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200235 }
236 return ctx;
237}
238
239static void perf_unpin_context(struct perf_event_context *ctx)
240{
241 unsigned long flags;
242
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100243 raw_spin_lock_irqsave(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200244 --ctx->pin_count;
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100245 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200246 put_ctx(ctx);
247}
248
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100249static inline u64 perf_clock(void)
250{
251 return cpu_clock(smp_processor_id());
252}
253
254/*
255 * Update the record of the current time in a context.
256 */
257static void update_context_time(struct perf_event_context *ctx)
258{
259 u64 now = perf_clock();
260
261 ctx->time += now - ctx->timestamp;
262 ctx->timestamp = now;
263}
264
265/*
266 * Update the total_time_enabled and total_time_running fields for a event.
267 */
268static void update_event_times(struct perf_event *event)
269{
270 struct perf_event_context *ctx = event->ctx;
271 u64 run_end;
272
273 if (event->state < PERF_EVENT_STATE_INACTIVE ||
274 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
275 return;
276
Peter Zijlstraacd1d7c2009-11-23 15:00:36 +0100277 if (ctx->is_active)
278 run_end = ctx->time;
279 else
280 run_end = event->tstamp_stopped;
281
282 event->total_time_enabled = run_end - event->tstamp_enabled;
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100283
284 if (event->state == PERF_EVENT_STATE_INACTIVE)
285 run_end = event->tstamp_stopped;
286 else
287 run_end = ctx->time;
288
289 event->total_time_running = run_end - event->tstamp_running;
290}
291
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100292static struct list_head *
293ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
294{
295 if (event->attr.pinned)
296 return &ctx->pinned_groups;
297 else
298 return &ctx->flexible_groups;
299}
300
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200301/*
302 * Add a event from the lists for its context.
303 * Must be called with ctx->mutex and ctx->lock held.
304 */
305static void
306list_add_event(struct perf_event *event, struct perf_event_context *ctx)
307{
308 struct perf_event *group_leader = event->group_leader;
309
310 /*
311 * Depending on whether it is a standalone or sibling event,
312 * add it straight to the context's event list, or to the group
313 * leader's sibling list:
314 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100315 if (group_leader == event) {
316 struct list_head *list;
317
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100318 if (is_software_event(event))
319 event->group_flags |= PERF_GROUP_SOFTWARE;
320
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100321 list = ctx_group_list(event, ctx);
322 list_add_tail(&event->group_entry, list);
323 } else {
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100324 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
325 !is_software_event(event))
326 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
327
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200328 list_add_tail(&event->group_entry, &group_leader->sibling_list);
329 group_leader->nr_siblings++;
330 }
331
332 list_add_rcu(&event->event_entry, &ctx->event_list);
333 ctx->nr_events++;
334 if (event->attr.inherit_stat)
335 ctx->nr_stat++;
336}
337
338/*
339 * Remove a event from the lists for its context.
340 * Must be called with ctx->mutex and ctx->lock held.
341 */
342static void
343list_del_event(struct perf_event *event, struct perf_event_context *ctx)
344{
345 struct perf_event *sibling, *tmp;
346
347 if (list_empty(&event->group_entry))
348 return;
349 ctx->nr_events--;
350 if (event->attr.inherit_stat)
351 ctx->nr_stat--;
352
353 list_del_init(&event->group_entry);
354 list_del_rcu(&event->event_entry);
355
356 if (event->group_leader != event)
357 event->group_leader->nr_siblings--;
358
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100359 update_event_times(event);
Stephane Eranianb2e74a22009-11-26 09:24:30 -0800360
361 /*
362 * If event was in error state, then keep it
363 * that way, otherwise bogus counts will be
364 * returned on read(). The only way to get out
365 * of error state is by explicit re-enabling
366 * of the event
367 */
368 if (event->state > PERF_EVENT_STATE_OFF)
369 event->state = PERF_EVENT_STATE_OFF;
Peter Zijlstra2e2af502009-11-23 11:37:25 +0100370
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200371 /*
372 * If this was a group event with sibling events then
373 * upgrade the siblings to singleton events by adding them
374 * to the context list directly:
375 */
376 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100377 struct list_head *list;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200378
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100379 list = ctx_group_list(event, ctx);
380 list_move_tail(&sibling->group_entry, list);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200381 sibling->group_leader = sibling;
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100382
383 /* Inherit group flags from the previous leader */
384 sibling->group_flags = event->group_flags;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200385 }
386}
387
388static void
389event_sched_out(struct perf_event *event,
390 struct perf_cpu_context *cpuctx,
391 struct perf_event_context *ctx)
392{
393 if (event->state != PERF_EVENT_STATE_ACTIVE)
394 return;
395
396 event->state = PERF_EVENT_STATE_INACTIVE;
397 if (event->pending_disable) {
398 event->pending_disable = 0;
399 event->state = PERF_EVENT_STATE_OFF;
400 }
401 event->tstamp_stopped = ctx->time;
402 event->pmu->disable(event);
403 event->oncpu = -1;
404
405 if (!is_software_event(event))
406 cpuctx->active_oncpu--;
407 ctx->nr_active--;
408 if (event->attr.exclusive || !cpuctx->active_oncpu)
409 cpuctx->exclusive = 0;
410}
411
412static void
413group_sched_out(struct perf_event *group_event,
414 struct perf_cpu_context *cpuctx,
415 struct perf_event_context *ctx)
416{
417 struct perf_event *event;
418
419 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
420 return;
421
422 event_sched_out(group_event, cpuctx, ctx);
423
424 /*
425 * Schedule out siblings (if any):
426 */
427 list_for_each_entry(event, &group_event->sibling_list, group_entry)
428 event_sched_out(event, cpuctx, ctx);
429
430 if (group_event->attr.exclusive)
431 cpuctx->exclusive = 0;
432}
433
434/*
435 * Cross CPU call to remove a performance event
436 *
437 * We disable the event on the hardware level first. After that we
438 * remove it from the context list.
439 */
440static void __perf_event_remove_from_context(void *info)
441{
442 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
443 struct perf_event *event = info;
444 struct perf_event_context *ctx = event->ctx;
445
446 /*
447 * If this is a task context, we need to check whether it is
448 * the current task context of this cpu. If not it has been
449 * scheduled out before the smp call arrived.
450 */
451 if (ctx->task && cpuctx->task_ctx != ctx)
452 return;
453
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100454 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200455 /*
456 * Protect the list operation against NMI by disabling the
457 * events on a global level.
458 */
459 perf_disable();
460
461 event_sched_out(event, cpuctx, ctx);
462
463 list_del_event(event, ctx);
464
465 if (!ctx->task) {
466 /*
467 * Allow more per task events with respect to the
468 * reservation:
469 */
470 cpuctx->max_pertask =
471 min(perf_max_events - ctx->nr_events,
472 perf_max_events - perf_reserved_percpu);
473 }
474
475 perf_enable();
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100476 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200477}
478
479
480/*
481 * Remove the event from a task's (or a CPU's) list of events.
482 *
483 * Must be called with ctx->mutex held.
484 *
485 * CPU events are removed with a smp call. For task events we only
486 * call when the task is on a CPU.
487 *
488 * If event->ctx is a cloned context, callers must make sure that
489 * every task struct that event->ctx->task could possibly point to
490 * remains valid. This is OK when called from perf_release since
491 * that only calls us on the top-level context, which can't be a clone.
492 * When called from perf_event_exit_task, it's OK because the
493 * context has been detached from its task.
494 */
495static void perf_event_remove_from_context(struct perf_event *event)
496{
497 struct perf_event_context *ctx = event->ctx;
498 struct task_struct *task = ctx->task;
499
500 if (!task) {
501 /*
502 * Per cpu events are removed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200503 * the removal is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200504 */
505 smp_call_function_single(event->cpu,
506 __perf_event_remove_from_context,
507 event, 1);
508 return;
509 }
510
511retry:
512 task_oncpu_function_call(task, __perf_event_remove_from_context,
513 event);
514
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100515 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200516 /*
517 * If the context is active we need to retry the smp call.
518 */
519 if (ctx->nr_active && !list_empty(&event->group_entry)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100520 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200521 goto retry;
522 }
523
524 /*
525 * The lock prevents that this context is scheduled in so we
526 * can remove the event safely, if the call above did not
527 * succeed.
528 */
Peter Zijlstra6c2bfcb2009-11-23 11:37:24 +0100529 if (!list_empty(&event->group_entry))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200530 list_del_event(event, ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100531 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200532}
533
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200534/*
535 * Update total_time_enabled and total_time_running for all events in a group.
536 */
537static void update_group_times(struct perf_event *leader)
538{
539 struct perf_event *event;
540
541 update_event_times(leader);
542 list_for_each_entry(event, &leader->sibling_list, group_entry)
543 update_event_times(event);
544}
545
546/*
547 * Cross CPU call to disable a performance event
548 */
549static void __perf_event_disable(void *info)
550{
551 struct perf_event *event = info;
552 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
553 struct perf_event_context *ctx = event->ctx;
554
555 /*
556 * If this is a per-task event, need to check whether this
557 * event's task is the current task on this cpu.
558 */
559 if (ctx->task && cpuctx->task_ctx != ctx)
560 return;
561
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100562 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200563
564 /*
565 * If the event is on, turn it off.
566 * If it is in error state, leave it in error state.
567 */
568 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
569 update_context_time(ctx);
570 update_group_times(event);
571 if (event == event->group_leader)
572 group_sched_out(event, cpuctx, ctx);
573 else
574 event_sched_out(event, cpuctx, ctx);
575 event->state = PERF_EVENT_STATE_OFF;
576 }
577
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100578 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200579}
580
581/*
582 * Disable a event.
583 *
584 * If event->ctx is a cloned context, callers must make sure that
585 * every task struct that event->ctx->task could possibly point to
586 * remains valid. This condition is satisifed when called through
587 * perf_event_for_each_child or perf_event_for_each because they
588 * hold the top-level event's child_mutex, so any descendant that
589 * goes to exit will block in sync_child_event.
590 * When called from perf_pending_event it's OK because event->ctx
591 * is the current context on this CPU and preemption is disabled,
592 * hence we can't get into perf_event_task_sched_out for this context.
593 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100594void perf_event_disable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200595{
596 struct perf_event_context *ctx = event->ctx;
597 struct task_struct *task = ctx->task;
598
599 if (!task) {
600 /*
601 * Disable the event on the cpu that it's on
602 */
603 smp_call_function_single(event->cpu, __perf_event_disable,
604 event, 1);
605 return;
606 }
607
608 retry:
609 task_oncpu_function_call(task, __perf_event_disable, event);
610
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100611 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200612 /*
613 * If the event is still active, we need to retry the cross-call.
614 */
615 if (event->state == PERF_EVENT_STATE_ACTIVE) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100616 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200617 goto retry;
618 }
619
620 /*
621 * Since we have the lock this context can't be scheduled
622 * in, so we can change the state safely.
623 */
624 if (event->state == PERF_EVENT_STATE_INACTIVE) {
625 update_group_times(event);
626 event->state = PERF_EVENT_STATE_OFF;
627 }
628
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100629 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200630}
631
632static int
633event_sched_in(struct perf_event *event,
634 struct perf_cpu_context *cpuctx,
635 struct perf_event_context *ctx,
636 int cpu)
637{
638 if (event->state <= PERF_EVENT_STATE_OFF)
639 return 0;
640
641 event->state = PERF_EVENT_STATE_ACTIVE;
642 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
643 /*
644 * The new state must be visible before we turn it on in the hardware:
645 */
646 smp_wmb();
647
648 if (event->pmu->enable(event)) {
649 event->state = PERF_EVENT_STATE_INACTIVE;
650 event->oncpu = -1;
651 return -EAGAIN;
652 }
653
654 event->tstamp_running += ctx->time - event->tstamp_stopped;
655
656 if (!is_software_event(event))
657 cpuctx->active_oncpu++;
658 ctx->nr_active++;
659
660 if (event->attr.exclusive)
661 cpuctx->exclusive = 1;
662
663 return 0;
664}
665
666static int
667group_sched_in(struct perf_event *group_event,
668 struct perf_cpu_context *cpuctx,
669 struct perf_event_context *ctx,
670 int cpu)
671{
672 struct perf_event *event, *partial_group;
673 int ret;
674
675 if (group_event->state == PERF_EVENT_STATE_OFF)
676 return 0;
677
678 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
679 if (ret)
680 return ret < 0 ? ret : 0;
681
682 if (event_sched_in(group_event, cpuctx, ctx, cpu))
683 return -EAGAIN;
684
685 /*
686 * Schedule in siblings as one group (if any):
687 */
688 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
689 if (event_sched_in(event, cpuctx, ctx, cpu)) {
690 partial_group = event;
691 goto group_error;
692 }
693 }
694
695 return 0;
696
697group_error:
698 /*
699 * Groups can be scheduled in as one unit only, so undo any
700 * partial group before returning:
701 */
702 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
703 if (event == partial_group)
704 break;
705 event_sched_out(event, cpuctx, ctx);
706 }
707 event_sched_out(group_event, cpuctx, ctx);
708
709 return -EAGAIN;
710}
711
712/*
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200713 * Work out whether we can put this event group on the CPU now.
714 */
715static int group_can_go_on(struct perf_event *event,
716 struct perf_cpu_context *cpuctx,
717 int can_add_hw)
718{
719 /*
720 * Groups consisting entirely of software events can always go on.
721 */
Frederic Weisbeckerd6f962b2010-01-10 01:25:51 +0100722 if (event->group_flags & PERF_GROUP_SOFTWARE)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200723 return 1;
724 /*
725 * If an exclusive group is already on, no other hardware
726 * events can go on.
727 */
728 if (cpuctx->exclusive)
729 return 0;
730 /*
731 * If this group is exclusive and there are already
732 * events on the CPU, it can't go on.
733 */
734 if (event->attr.exclusive && cpuctx->active_oncpu)
735 return 0;
736 /*
737 * Otherwise, try to add it if all previous groups were able
738 * to go on.
739 */
740 return can_add_hw;
741}
742
743static void add_event_to_ctx(struct perf_event *event,
744 struct perf_event_context *ctx)
745{
746 list_add_event(event, ctx);
747 event->tstamp_enabled = ctx->time;
748 event->tstamp_running = ctx->time;
749 event->tstamp_stopped = ctx->time;
750}
751
752/*
753 * Cross CPU call to install and enable a performance event
754 *
755 * Must be called with ctx->mutex held
756 */
757static void __perf_install_in_context(void *info)
758{
759 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
760 struct perf_event *event = info;
761 struct perf_event_context *ctx = event->ctx;
762 struct perf_event *leader = event->group_leader;
763 int cpu = smp_processor_id();
764 int err;
765
766 /*
767 * If this is a task context, we need to check whether it is
768 * the current task context of this cpu. If not it has been
769 * scheduled out before the smp call arrived.
770 * Or possibly this is the right context but it isn't
771 * on this cpu because it had no events.
772 */
773 if (ctx->task && cpuctx->task_ctx != ctx) {
774 if (cpuctx->task_ctx || ctx->task != current)
775 return;
776 cpuctx->task_ctx = ctx;
777 }
778
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100779 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200780 ctx->is_active = 1;
781 update_context_time(ctx);
782
783 /*
784 * Protect the list operation against NMI by disabling the
785 * events on a global level. NOP for non NMI based events.
786 */
787 perf_disable();
788
789 add_event_to_ctx(event, ctx);
790
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100791 if (event->cpu != -1 && event->cpu != smp_processor_id())
792 goto unlock;
793
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200794 /*
795 * Don't put the event on if it is disabled or if
796 * it is in a group and the group isn't on.
797 */
798 if (event->state != PERF_EVENT_STATE_INACTIVE ||
799 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
800 goto unlock;
801
802 /*
803 * An exclusive event can't go on if there are already active
804 * hardware events, and no hardware event can go on if there
805 * is already an exclusive event on.
806 */
807 if (!group_can_go_on(event, cpuctx, 1))
808 err = -EEXIST;
809 else
810 err = event_sched_in(event, cpuctx, ctx, cpu);
811
812 if (err) {
813 /*
814 * This event couldn't go on. If it is in a group
815 * then we have to pull the whole group off.
816 * If the event group is pinned then put it in error state.
817 */
818 if (leader != event)
819 group_sched_out(leader, cpuctx, ctx);
820 if (leader->attr.pinned) {
821 update_group_times(leader);
822 leader->state = PERF_EVENT_STATE_ERROR;
823 }
824 }
825
826 if (!err && !ctx->task && cpuctx->max_pertask)
827 cpuctx->max_pertask--;
828
829 unlock:
830 perf_enable();
831
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100832 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200833}
834
835/*
836 * Attach a performance event to a context
837 *
838 * First we add the event to the list with the hardware enable bit
839 * in event->hw_config cleared.
840 *
841 * If the event is attached to a task which is on a CPU we use a smp
842 * call to enable it in the task context. The task might have been
843 * scheduled away, but we check this in the smp call again.
844 *
845 * Must be called with ctx->mutex held.
846 */
847static void
848perf_install_in_context(struct perf_event_context *ctx,
849 struct perf_event *event,
850 int cpu)
851{
852 struct task_struct *task = ctx->task;
853
854 if (!task) {
855 /*
856 * Per cpu events are installed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200857 * the install is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200858 */
859 smp_call_function_single(cpu, __perf_install_in_context,
860 event, 1);
861 return;
862 }
863
864retry:
865 task_oncpu_function_call(task, __perf_install_in_context,
866 event);
867
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100868 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200869 /*
870 * we need to retry the smp call.
871 */
872 if (ctx->is_active && list_empty(&event->group_entry)) {
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100873 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200874 goto retry;
875 }
876
877 /*
878 * The lock prevents that this context is scheduled in so we
879 * can add the event safely, if it the call above did not
880 * succeed.
881 */
882 if (list_empty(&event->group_entry))
883 add_event_to_ctx(event, ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100884 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200885}
886
887/*
888 * Put a event into inactive state and update time fields.
889 * Enabling the leader of a group effectively enables all
890 * the group members that aren't explicitly disabled, so we
891 * have to update their ->tstamp_enabled also.
892 * Note: this works for group members as well as group leaders
893 * since the non-leader members' sibling_lists will be empty.
894 */
895static void __perf_event_mark_enabled(struct perf_event *event,
896 struct perf_event_context *ctx)
897{
898 struct perf_event *sub;
899
900 event->state = PERF_EVENT_STATE_INACTIVE;
901 event->tstamp_enabled = ctx->time - event->total_time_enabled;
902 list_for_each_entry(sub, &event->sibling_list, group_entry)
903 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
904 sub->tstamp_enabled =
905 ctx->time - sub->total_time_enabled;
906}
907
908/*
909 * Cross CPU call to enable a performance event
910 */
911static void __perf_event_enable(void *info)
912{
913 struct perf_event *event = info;
914 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
915 struct perf_event_context *ctx = event->ctx;
916 struct perf_event *leader = event->group_leader;
917 int err;
918
919 /*
920 * If this is a per-task event, need to check whether this
921 * event's task is the current task on this cpu.
922 */
923 if (ctx->task && cpuctx->task_ctx != ctx) {
924 if (cpuctx->task_ctx || ctx->task != current)
925 return;
926 cpuctx->task_ctx = ctx;
927 }
928
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100929 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200930 ctx->is_active = 1;
931 update_context_time(ctx);
932
933 if (event->state >= PERF_EVENT_STATE_INACTIVE)
934 goto unlock;
935 __perf_event_mark_enabled(event, ctx);
936
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100937 if (event->cpu != -1 && event->cpu != smp_processor_id())
938 goto unlock;
939
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200940 /*
941 * If the event is in a group and isn't the group leader,
942 * then don't put it on unless the group is on.
943 */
944 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
945 goto unlock;
946
947 if (!group_can_go_on(event, cpuctx, 1)) {
948 err = -EEXIST;
949 } else {
950 perf_disable();
951 if (event == leader)
952 err = group_sched_in(event, cpuctx, ctx,
953 smp_processor_id());
954 else
955 err = event_sched_in(event, cpuctx, ctx,
956 smp_processor_id());
957 perf_enable();
958 }
959
960 if (err) {
961 /*
962 * If this event can't go on and it's part of a
963 * group, then the whole group has to come off.
964 */
965 if (leader != event)
966 group_sched_out(leader, cpuctx, ctx);
967 if (leader->attr.pinned) {
968 update_group_times(leader);
969 leader->state = PERF_EVENT_STATE_ERROR;
970 }
971 }
972
973 unlock:
Thomas Gleixnere625cce12009-11-17 18:02:06 +0100974 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200975}
976
977/*
978 * Enable a event.
979 *
980 * If event->ctx is a cloned context, callers must make sure that
981 * every task struct that event->ctx->task could possibly point to
982 * remains valid. This condition is satisfied when called through
983 * perf_event_for_each_child or perf_event_for_each as described
984 * for perf_event_disable.
985 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100986void perf_event_enable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200987{
988 struct perf_event_context *ctx = event->ctx;
989 struct task_struct *task = ctx->task;
990
991 if (!task) {
992 /*
993 * Enable the event on the cpu that it's on
994 */
995 smp_call_function_single(event->cpu, __perf_event_enable,
996 event, 1);
997 return;
998 }
999
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001000 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001001 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1002 goto out;
1003
1004 /*
1005 * If the event is in error state, clear that first.
1006 * That way, if we see the event in error state below, we
1007 * know that it has gone back into error state, as distinct
1008 * from the task having been scheduled away before the
1009 * cross-call arrived.
1010 */
1011 if (event->state == PERF_EVENT_STATE_ERROR)
1012 event->state = PERF_EVENT_STATE_OFF;
1013
1014 retry:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001015 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001016 task_oncpu_function_call(task, __perf_event_enable, event);
1017
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001018 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001019
1020 /*
1021 * If the context is active and the event is still off,
1022 * we need to retry the cross-call.
1023 */
1024 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1025 goto retry;
1026
1027 /*
1028 * Since we have the lock this context can't be scheduled
1029 * in, so we can change the state safely.
1030 */
1031 if (event->state == PERF_EVENT_STATE_OFF)
1032 __perf_event_mark_enabled(event, ctx);
1033
1034 out:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001035 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001036}
1037
1038static int perf_event_refresh(struct perf_event *event, int refresh)
1039{
1040 /*
1041 * not supported on inherited events
1042 */
1043 if (event->attr.inherit)
1044 return -EINVAL;
1045
1046 atomic_add(refresh, &event->event_limit);
1047 perf_event_enable(event);
1048
1049 return 0;
1050}
1051
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001052enum event_type_t {
1053 EVENT_FLEXIBLE = 0x1,
1054 EVENT_PINNED = 0x2,
1055 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1056};
1057
1058static void ctx_sched_out(struct perf_event_context *ctx,
1059 struct perf_cpu_context *cpuctx,
1060 enum event_type_t event_type)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001061{
1062 struct perf_event *event;
1063
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001064 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001065 ctx->is_active = 0;
1066 if (likely(!ctx->nr_events))
1067 goto out;
1068 update_context_time(ctx);
1069
1070 perf_disable();
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001071 if (!ctx->nr_active)
1072 goto out_enable;
1073
1074 if (event_type & EVENT_PINNED)
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001075 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1076 group_sched_out(event, cpuctx, ctx);
1077
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001078 if (event_type & EVENT_FLEXIBLE)
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001079 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001080 group_sched_out(event, cpuctx, ctx);
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001081
1082 out_enable:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001083 perf_enable();
1084 out:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001085 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001086}
1087
1088/*
1089 * Test whether two contexts are equivalent, i.e. whether they
1090 * have both been cloned from the same version of the same context
1091 * and they both have the same number of enabled events.
1092 * If the number of enabled events is the same, then the set
1093 * of enabled events should be the same, because these are both
1094 * inherited contexts, therefore we can't access individual events
1095 * in them directly with an fd; we can only enable/disable all
1096 * events via prctl, or enable/disable all events in a family
1097 * via ioctl, which will have the same effect on both contexts.
1098 */
1099static int context_equiv(struct perf_event_context *ctx1,
1100 struct perf_event_context *ctx2)
1101{
1102 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1103 && ctx1->parent_gen == ctx2->parent_gen
1104 && !ctx1->pin_count && !ctx2->pin_count;
1105}
1106
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001107static void __perf_event_sync_stat(struct perf_event *event,
1108 struct perf_event *next_event)
1109{
1110 u64 value;
1111
1112 if (!event->attr.inherit_stat)
1113 return;
1114
1115 /*
1116 * Update the event value, we cannot use perf_event_read()
1117 * because we're in the middle of a context switch and have IRQs
1118 * disabled, which upsets smp_call_function_single(), however
1119 * we know the event must be on the current CPU, therefore we
1120 * don't need to use it.
1121 */
1122 switch (event->state) {
1123 case PERF_EVENT_STATE_ACTIVE:
Peter Zijlstra3dbebf12009-11-20 22:19:52 +01001124 event->pmu->read(event);
1125 /* fall-through */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001126
1127 case PERF_EVENT_STATE_INACTIVE:
1128 update_event_times(event);
1129 break;
1130
1131 default:
1132 break;
1133 }
1134
1135 /*
1136 * In order to keep per-task stats reliable we need to flip the event
1137 * values when we flip the contexts.
1138 */
1139 value = atomic64_read(&next_event->count);
1140 value = atomic64_xchg(&event->count, value);
1141 atomic64_set(&next_event->count, value);
1142
1143 swap(event->total_time_enabled, next_event->total_time_enabled);
1144 swap(event->total_time_running, next_event->total_time_running);
1145
1146 /*
1147 * Since we swizzled the values, update the user visible data too.
1148 */
1149 perf_event_update_userpage(event);
1150 perf_event_update_userpage(next_event);
1151}
1152
1153#define list_next_entry(pos, member) \
1154 list_entry(pos->member.next, typeof(*pos), member)
1155
1156static void perf_event_sync_stat(struct perf_event_context *ctx,
1157 struct perf_event_context *next_ctx)
1158{
1159 struct perf_event *event, *next_event;
1160
1161 if (!ctx->nr_stat)
1162 return;
1163
Peter Zijlstra02ffdbc2009-11-20 22:19:50 +01001164 update_context_time(ctx);
1165
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001166 event = list_first_entry(&ctx->event_list,
1167 struct perf_event, event_entry);
1168
1169 next_event = list_first_entry(&next_ctx->event_list,
1170 struct perf_event, event_entry);
1171
1172 while (&event->event_entry != &ctx->event_list &&
1173 &next_event->event_entry != &next_ctx->event_list) {
1174
1175 __perf_event_sync_stat(event, next_event);
1176
1177 event = list_next_entry(event, event_entry);
1178 next_event = list_next_entry(next_event, event_entry);
1179 }
1180}
1181
1182/*
1183 * Called from scheduler to remove the events of the current task,
1184 * with interrupts disabled.
1185 *
1186 * We stop each event and update the event value in event->count.
1187 *
1188 * This does not protect us against NMI, but disable()
1189 * sets the disabled bit in the control field of event _before_
1190 * accessing the event control register. If a NMI hits, then it will
1191 * not restart the event.
1192 */
1193void perf_event_task_sched_out(struct task_struct *task,
Peter Zijlstra49f47432009-12-27 11:51:52 +01001194 struct task_struct *next)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001195{
Peter Zijlstra49f47432009-12-27 11:51:52 +01001196 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001197 struct perf_event_context *ctx = task->perf_event_ctxp;
1198 struct perf_event_context *next_ctx;
1199 struct perf_event_context *parent;
1200 struct pt_regs *regs;
1201 int do_switch = 1;
1202
1203 regs = task_pt_regs(task);
1204 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1205
1206 if (likely(!ctx || !cpuctx->task_ctx))
1207 return;
1208
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001209 rcu_read_lock();
1210 parent = rcu_dereference(ctx->parent_ctx);
1211 next_ctx = next->perf_event_ctxp;
1212 if (parent && next_ctx &&
1213 rcu_dereference(next_ctx->parent_ctx) == parent) {
1214 /*
1215 * Looks like the two contexts are clones, so we might be
1216 * able to optimize the context switch. We lock both
1217 * contexts and check that they are clones under the
1218 * lock (including re-checking that neither has been
1219 * uncloned in the meantime). It doesn't matter which
1220 * order we take the locks because no other cpu could
1221 * be trying to lock both of these tasks.
1222 */
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001223 raw_spin_lock(&ctx->lock);
1224 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001225 if (context_equiv(ctx, next_ctx)) {
1226 /*
1227 * XXX do we need a memory barrier of sorts
1228 * wrt to rcu_dereference() of perf_event_ctxp
1229 */
1230 task->perf_event_ctxp = next_ctx;
1231 next->perf_event_ctxp = ctx;
1232 ctx->task = next;
1233 next_ctx->task = task;
1234 do_switch = 0;
1235
1236 perf_event_sync_stat(ctx, next_ctx);
1237 }
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001238 raw_spin_unlock(&next_ctx->lock);
1239 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001240 }
1241 rcu_read_unlock();
1242
1243 if (do_switch) {
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001244 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001245 cpuctx->task_ctx = NULL;
1246 }
1247}
1248
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001249static void task_ctx_sched_out(struct perf_event_context *ctx,
1250 enum event_type_t event_type)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001251{
1252 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1253
1254 if (!cpuctx->task_ctx)
1255 return;
1256
1257 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1258 return;
1259
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001260 ctx_sched_out(ctx, cpuctx, event_type);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001261 cpuctx->task_ctx = NULL;
1262}
1263
1264/*
1265 * Called with IRQs disabled
1266 */
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001267static void __perf_event_task_sched_out(struct perf_event_context *ctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001268{
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001269 task_ctx_sched_out(ctx, EVENT_ALL);
1270}
1271
1272/*
1273 * Called with IRQs disabled
1274 */
1275static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1276 enum event_type_t event_type)
1277{
1278 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001279}
1280
1281static void
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001282ctx_pinned_sched_in(struct perf_event_context *ctx,
1283 struct perf_cpu_context *cpuctx,
1284 int cpu)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001285{
1286 struct perf_event *event;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001287
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001288 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1289 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001290 continue;
1291 if (event->cpu != -1 && event->cpu != cpu)
1292 continue;
1293
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001294 if (group_can_go_on(event, cpuctx, 1))
1295 group_sched_in(event, cpuctx, ctx, cpu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001296
1297 /*
1298 * If this pinned group hasn't been scheduled,
1299 * put it in error state.
1300 */
1301 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1302 update_group_times(event);
1303 event->state = PERF_EVENT_STATE_ERROR;
1304 }
1305 }
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001306}
1307
1308static void
1309ctx_flexible_sched_in(struct perf_event_context *ctx,
1310 struct perf_cpu_context *cpuctx,
1311 int cpu)
1312{
1313 struct perf_event *event;
1314 int can_add_hw = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001315
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001316 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1317 /* Ignore events in OFF or ERROR state */
1318 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001319 continue;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001320 /*
1321 * Listen to the 'cpu' scheduling filter constraint
1322 * of events:
1323 */
1324 if (event->cpu != -1 && event->cpu != cpu)
1325 continue;
1326
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001327 if (group_can_go_on(event, cpuctx, can_add_hw))
1328 if (group_sched_in(event, cpuctx, ctx, cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001329 can_add_hw = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001330 }
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001331}
1332
1333static void
1334ctx_sched_in(struct perf_event_context *ctx,
1335 struct perf_cpu_context *cpuctx,
1336 enum event_type_t event_type)
1337{
1338 int cpu = smp_processor_id();
1339
1340 raw_spin_lock(&ctx->lock);
1341 ctx->is_active = 1;
1342 if (likely(!ctx->nr_events))
1343 goto out;
1344
1345 ctx->timestamp = perf_clock();
1346
1347 perf_disable();
1348
1349 /*
1350 * First go through the list and put on any pinned groups
1351 * in order to give them the best chance of going on.
1352 */
1353 if (event_type & EVENT_PINNED)
1354 ctx_pinned_sched_in(ctx, cpuctx, cpu);
1355
1356 /* Then walk through the lower prio flexible groups */
1357 if (event_type & EVENT_FLEXIBLE)
1358 ctx_flexible_sched_in(ctx, cpuctx, cpu);
1359
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001360 perf_enable();
1361 out:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001362 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001363}
1364
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001365static void task_ctx_sched_in(struct task_struct *task,
1366 enum event_type_t event_type)
1367{
1368 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1369 struct perf_event_context *ctx = task->perf_event_ctxp;
1370
1371 if (likely(!ctx))
1372 return;
1373 if (cpuctx->task_ctx == ctx)
1374 return;
1375 ctx_sched_in(ctx, cpuctx, event_type);
1376 cpuctx->task_ctx = ctx;
1377}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001378/*
1379 * Called from scheduler to add the events of the current task
1380 * with interrupts disabled.
1381 *
1382 * We restore the event value and then enable it.
1383 *
1384 * This does not protect us against NMI, but enable()
1385 * sets the enabled bit in the control field of event _before_
1386 * accessing the event control register. If a NMI hits, then it will
1387 * keep the event running.
1388 */
Peter Zijlstra49f47432009-12-27 11:51:52 +01001389void perf_event_task_sched_in(struct task_struct *task)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001390{
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001391 task_ctx_sched_in(task, EVENT_ALL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001392}
1393
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001394static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1395 enum event_type_t event_type)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001396{
1397 struct perf_event_context *ctx = &cpuctx->ctx;
1398
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001399 ctx_sched_in(ctx, cpuctx, event_type);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001400}
1401
1402#define MAX_INTERRUPTS (~0ULL)
1403
1404static void perf_log_throttle(struct perf_event *event, int enable);
1405
1406static void perf_adjust_period(struct perf_event *event, u64 events)
1407{
1408 struct hw_perf_event *hwc = &event->hw;
1409 u64 period, sample_period;
1410 s64 delta;
1411
1412 events *= hwc->sample_period;
1413 period = div64_u64(events, event->attr.sample_freq);
1414
1415 delta = (s64)(period - hwc->sample_period);
1416 delta = (delta + 7) / 8; /* low pass filter */
1417
1418 sample_period = hwc->sample_period + delta;
1419
1420 if (!sample_period)
1421 sample_period = 1;
1422
1423 hwc->sample_period = sample_period;
1424}
1425
1426static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1427{
1428 struct perf_event *event;
1429 struct hw_perf_event *hwc;
1430 u64 interrupts, freq;
1431
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001432 raw_spin_lock(&ctx->lock);
Paul Mackerras03541f82009-10-14 16:58:03 +11001433 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001434 if (event->state != PERF_EVENT_STATE_ACTIVE)
1435 continue;
1436
Peter Zijlstra5d27c232009-12-17 13:16:32 +01001437 if (event->cpu != -1 && event->cpu != smp_processor_id())
1438 continue;
1439
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001440 hwc = &event->hw;
1441
1442 interrupts = hwc->interrupts;
1443 hwc->interrupts = 0;
1444
1445 /*
1446 * unthrottle events on the tick
1447 */
1448 if (interrupts == MAX_INTERRUPTS) {
1449 perf_log_throttle(event, 1);
1450 event->pmu->unthrottle(event);
1451 interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1452 }
1453
1454 if (!event->attr.freq || !event->attr.sample_freq)
1455 continue;
1456
1457 /*
1458 * if the specified freq < HZ then we need to skip ticks
1459 */
1460 if (event->attr.sample_freq < HZ) {
1461 freq = event->attr.sample_freq;
1462
1463 hwc->freq_count += freq;
1464 hwc->freq_interrupts += interrupts;
1465
1466 if (hwc->freq_count < HZ)
1467 continue;
1468
1469 interrupts = hwc->freq_interrupts;
1470 hwc->freq_interrupts = 0;
1471 hwc->freq_count -= HZ;
1472 } else
1473 freq = HZ;
1474
1475 perf_adjust_period(event, freq * interrupts);
1476
1477 /*
1478 * In order to avoid being stalled by an (accidental) huge
1479 * sample period, force reset the sample period if we didn't
1480 * get any events in this freq period.
1481 */
1482 if (!interrupts) {
1483 perf_disable();
1484 event->pmu->disable(event);
1485 atomic64_set(&hwc->period_left, 0);
1486 event->pmu->enable(event);
1487 perf_enable();
1488 }
1489 }
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001490 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001491}
1492
1493/*
1494 * Round-robin a context's events:
1495 */
1496static void rotate_ctx(struct perf_event_context *ctx)
1497{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001498 if (!ctx->nr_events)
1499 return;
1500
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001501 raw_spin_lock(&ctx->lock);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001502
Frederic Weisbeckere2864172010-01-09 21:05:28 +01001503 /* Rotate the first entry last of non-pinned groups */
1504 perf_disable();
1505
1506 list_rotate_left(&ctx->flexible_groups);
1507
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001508 perf_enable();
1509
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001510 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001511}
1512
Peter Zijlstra49f47432009-12-27 11:51:52 +01001513void perf_event_task_tick(struct task_struct *curr)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001514{
1515 struct perf_cpu_context *cpuctx;
1516 struct perf_event_context *ctx;
1517
1518 if (!atomic_read(&nr_events))
1519 return;
1520
Peter Zijlstra49f47432009-12-27 11:51:52 +01001521 cpuctx = &__get_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001522 ctx = curr->perf_event_ctxp;
1523
1524 perf_ctx_adjust_freq(&cpuctx->ctx);
1525 if (ctx)
1526 perf_ctx_adjust_freq(ctx);
1527
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001528 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001529 if (ctx)
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001530 task_ctx_sched_out(ctx, EVENT_ALL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001531
1532 rotate_ctx(&cpuctx->ctx);
1533 if (ctx)
1534 rotate_ctx(ctx);
1535
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001536 cpu_ctx_sched_in(cpuctx, EVENT_ALL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001537 if (ctx)
Frederic Weisbecker5b0311e2010-01-17 11:59:13 +01001538 task_ctx_sched_in(curr, EVENT_ALL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001539}
1540
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001541static int event_enable_on_exec(struct perf_event *event,
1542 struct perf_event_context *ctx)
1543{
1544 if (!event->attr.enable_on_exec)
1545 return 0;
1546
1547 event->attr.enable_on_exec = 0;
1548 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1549 return 0;
1550
1551 __perf_event_mark_enabled(event, ctx);
1552
1553 return 1;
1554}
1555
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001556/*
1557 * Enable all of a task's events that have been marked enable-on-exec.
1558 * This expects task == current.
1559 */
1560static void perf_event_enable_on_exec(struct task_struct *task)
1561{
1562 struct perf_event_context *ctx;
1563 struct perf_event *event;
1564 unsigned long flags;
1565 int enabled = 0;
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001566 int ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001567
1568 local_irq_save(flags);
1569 ctx = task->perf_event_ctxp;
1570 if (!ctx || !ctx->nr_events)
1571 goto out;
1572
1573 __perf_event_task_sched_out(ctx);
1574
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001575 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001576
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001577 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1578 ret = event_enable_on_exec(event, ctx);
1579 if (ret)
1580 enabled = 1;
1581 }
1582
1583 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1584 ret = event_enable_on_exec(event, ctx);
1585 if (ret)
1586 enabled = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001587 }
1588
1589 /*
1590 * Unclone this context if we enabled any event.
1591 */
1592 if (enabled)
1593 unclone_ctx(ctx);
1594
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001595 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001596
Peter Zijlstra49f47432009-12-27 11:51:52 +01001597 perf_event_task_sched_in(task);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001598 out:
1599 local_irq_restore(flags);
1600}
1601
1602/*
1603 * Cross CPU call to read the hardware event
1604 */
1605static void __perf_event_read(void *info)
1606{
1607 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1608 struct perf_event *event = info;
1609 struct perf_event_context *ctx = event->ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001610
1611 /*
1612 * If this is a task context, we need to check whether it is
1613 * the current task context of this cpu. If not it has been
1614 * scheduled out before the smp call arrived. In that case
1615 * event->count would have been updated to a recent sample
1616 * when the event was scheduled out.
1617 */
1618 if (ctx->task && cpuctx->task_ctx != ctx)
1619 return;
1620
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001621 raw_spin_lock(&ctx->lock);
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001622 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001623 update_event_times(event);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001624 raw_spin_unlock(&ctx->lock);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001625
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001626 event->pmu->read(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001627}
1628
1629static u64 perf_event_read(struct perf_event *event)
1630{
1631 /*
1632 * If event is enabled and currently active on a CPU, update the
1633 * value in the event structure:
1634 */
1635 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1636 smp_call_function_single(event->oncpu,
1637 __perf_event_read, event, 1);
1638 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001639 struct perf_event_context *ctx = event->ctx;
1640 unsigned long flags;
1641
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001642 raw_spin_lock_irqsave(&ctx->lock, flags);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001643 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001644 update_event_times(event);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001645 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001646 }
1647
1648 return atomic64_read(&event->count);
1649}
1650
1651/*
1652 * Initialize the perf_event context in a task_struct:
1653 */
1654static void
1655__perf_event_init_context(struct perf_event_context *ctx,
1656 struct task_struct *task)
1657{
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001658 raw_spin_lock_init(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001659 mutex_init(&ctx->mutex);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001660 INIT_LIST_HEAD(&ctx->pinned_groups);
1661 INIT_LIST_HEAD(&ctx->flexible_groups);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001662 INIT_LIST_HEAD(&ctx->event_list);
1663 atomic_set(&ctx->refcount, 1);
1664 ctx->task = task;
1665}
1666
1667static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1668{
1669 struct perf_event_context *ctx;
1670 struct perf_cpu_context *cpuctx;
1671 struct task_struct *task;
1672 unsigned long flags;
1673 int err;
1674
Peter Zijlstraf4c41762009-12-16 17:55:54 +01001675 if (pid == -1 && cpu != -1) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001676 /* Must be root to operate on a CPU event: */
1677 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1678 return ERR_PTR(-EACCES);
1679
Paul Mackerras0f624e72009-12-15 19:40:32 +11001680 if (cpu < 0 || cpu >= nr_cpumask_bits)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001681 return ERR_PTR(-EINVAL);
1682
1683 /*
1684 * We could be clever and allow to attach a event to an
1685 * offline CPU and activate it when the CPU comes up, but
1686 * that's for later.
1687 */
Rusty Russellf6325e32009-12-17 11:43:08 -06001688 if (!cpu_online(cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001689 return ERR_PTR(-ENODEV);
1690
1691 cpuctx = &per_cpu(perf_cpu_context, cpu);
1692 ctx = &cpuctx->ctx;
1693 get_ctx(ctx);
1694
1695 return ctx;
1696 }
1697
1698 rcu_read_lock();
1699 if (!pid)
1700 task = current;
1701 else
1702 task = find_task_by_vpid(pid);
1703 if (task)
1704 get_task_struct(task);
1705 rcu_read_unlock();
1706
1707 if (!task)
1708 return ERR_PTR(-ESRCH);
1709
1710 /*
1711 * Can't attach events to a dying task.
1712 */
1713 err = -ESRCH;
1714 if (task->flags & PF_EXITING)
1715 goto errout;
1716
1717 /* Reuse ptrace permission checks for now. */
1718 err = -EACCES;
1719 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1720 goto errout;
1721
1722 retry:
1723 ctx = perf_lock_task_context(task, &flags);
1724 if (ctx) {
1725 unclone_ctx(ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01001726 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001727 }
1728
1729 if (!ctx) {
Xiao Guangrongaa5452d2009-12-09 11:28:13 +08001730 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001731 err = -ENOMEM;
1732 if (!ctx)
1733 goto errout;
1734 __perf_event_init_context(ctx, task);
1735 get_ctx(ctx);
1736 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1737 /*
1738 * We raced with some other task; use
1739 * the context they set.
1740 */
1741 kfree(ctx);
1742 goto retry;
1743 }
1744 get_task_struct(task);
1745 }
1746
1747 put_task_struct(task);
1748 return ctx;
1749
1750 errout:
1751 put_task_struct(task);
1752 return ERR_PTR(err);
1753}
1754
Li Zefan6fb29152009-10-15 11:21:42 +08001755static void perf_event_free_filter(struct perf_event *event);
1756
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001757static void free_event_rcu(struct rcu_head *head)
1758{
1759 struct perf_event *event;
1760
1761 event = container_of(head, struct perf_event, rcu_head);
1762 if (event->ns)
1763 put_pid_ns(event->ns);
Li Zefan6fb29152009-10-15 11:21:42 +08001764 perf_event_free_filter(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001765 kfree(event);
1766}
1767
1768static void perf_pending_sync(struct perf_event *event);
1769
1770static void free_event(struct perf_event *event)
1771{
1772 perf_pending_sync(event);
1773
1774 if (!event->parent) {
1775 atomic_dec(&nr_events);
1776 if (event->attr.mmap)
1777 atomic_dec(&nr_mmap_events);
1778 if (event->attr.comm)
1779 atomic_dec(&nr_comm_events);
1780 if (event->attr.task)
1781 atomic_dec(&nr_task_events);
1782 }
1783
1784 if (event->output) {
1785 fput(event->output->filp);
1786 event->output = NULL;
1787 }
1788
1789 if (event->destroy)
1790 event->destroy(event);
1791
1792 put_ctx(event->ctx);
1793 call_rcu(&event->rcu_head, free_event_rcu);
1794}
1795
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001796int perf_event_release_kernel(struct perf_event *event)
1797{
1798 struct perf_event_context *ctx = event->ctx;
1799
1800 WARN_ON_ONCE(ctx->parent_ctx);
1801 mutex_lock(&ctx->mutex);
1802 perf_event_remove_from_context(event);
1803 mutex_unlock(&ctx->mutex);
1804
1805 mutex_lock(&event->owner->perf_event_mutex);
1806 list_del_init(&event->owner_entry);
1807 mutex_unlock(&event->owner->perf_event_mutex);
1808 put_task_struct(event->owner);
1809
1810 free_event(event);
1811
1812 return 0;
1813}
1814EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1815
Peter Zijlstraa66a3052009-11-23 11:37:23 +01001816/*
1817 * Called when the last reference to the file is gone.
1818 */
1819static int perf_release(struct inode *inode, struct file *file)
1820{
1821 struct perf_event *event = file->private_data;
1822
1823 file->private_data = NULL;
1824
1825 return perf_event_release_kernel(event);
1826}
1827
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001828static int perf_event_read_size(struct perf_event *event)
1829{
1830 int entry = sizeof(u64); /* value */
1831 int size = 0;
1832 int nr = 1;
1833
1834 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1835 size += sizeof(u64);
1836
1837 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1838 size += sizeof(u64);
1839
1840 if (event->attr.read_format & PERF_FORMAT_ID)
1841 entry += sizeof(u64);
1842
1843 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1844 nr += event->group_leader->nr_siblings;
1845 size += sizeof(u64);
1846 }
1847
1848 size += entry * nr;
1849
1850 return size;
1851}
1852
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001853u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001854{
1855 struct perf_event *child;
1856 u64 total = 0;
1857
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001858 *enabled = 0;
1859 *running = 0;
1860
Peter Zijlstra6f105812009-11-20 22:19:56 +01001861 mutex_lock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001862 total += perf_event_read(event);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001863 *enabled += event->total_time_enabled +
1864 atomic64_read(&event->child_total_time_enabled);
1865 *running += event->total_time_running +
1866 atomic64_read(&event->child_total_time_running);
1867
1868 list_for_each_entry(child, &event->child_list, child_list) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001869 total += perf_event_read(child);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001870 *enabled += child->total_time_enabled;
1871 *running += child->total_time_running;
1872 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001873 mutex_unlock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001874
1875 return total;
1876}
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001877EXPORT_SYMBOL_GPL(perf_event_read_value);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001878
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001879static int perf_event_read_group(struct perf_event *event,
1880 u64 read_format, char __user *buf)
1881{
1882 struct perf_event *leader = event->group_leader, *sub;
Peter Zijlstra6f105812009-11-20 22:19:56 +01001883 int n = 0, size = 0, ret = -EFAULT;
1884 struct perf_event_context *ctx = leader->ctx;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001885 u64 values[5];
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001886 u64 count, enabled, running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001887
Peter Zijlstra6f105812009-11-20 22:19:56 +01001888 mutex_lock(&ctx->mutex);
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001889 count = perf_event_read_value(leader, &enabled, &running);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001890
1891 values[n++] = 1 + leader->nr_siblings;
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001892 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1893 values[n++] = enabled;
1894 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1895 values[n++] = running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001896 values[n++] = count;
1897 if (read_format & PERF_FORMAT_ID)
1898 values[n++] = primary_event_id(leader);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001899
1900 size = n * sizeof(u64);
1901
1902 if (copy_to_user(buf, values, size))
Peter Zijlstra6f105812009-11-20 22:19:56 +01001903 goto unlock;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001904
Peter Zijlstra6f105812009-11-20 22:19:56 +01001905 ret = size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001906
1907 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
Peter Zijlstraabf48682009-11-20 22:19:49 +01001908 n = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001909
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001910 values[n++] = perf_event_read_value(sub, &enabled, &running);
Peter Zijlstraabf48682009-11-20 22:19:49 +01001911 if (read_format & PERF_FORMAT_ID)
1912 values[n++] = primary_event_id(sub);
1913
1914 size = n * sizeof(u64);
1915
Stephane Eranian184d3da2009-11-23 21:40:49 -08001916 if (copy_to_user(buf + ret, values, size)) {
Peter Zijlstra6f105812009-11-20 22:19:56 +01001917 ret = -EFAULT;
1918 goto unlock;
1919 }
Peter Zijlstraabf48682009-11-20 22:19:49 +01001920
1921 ret += size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001922 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001923unlock:
1924 mutex_unlock(&ctx->mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001925
Peter Zijlstraabf48682009-11-20 22:19:49 +01001926 return ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001927}
1928
1929static int perf_event_read_one(struct perf_event *event,
1930 u64 read_format, char __user *buf)
1931{
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001932 u64 enabled, running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001933 u64 values[4];
1934 int n = 0;
1935
Peter Zijlstra59ed4462009-11-20 22:19:55 +01001936 values[n++] = perf_event_read_value(event, &enabled, &running);
1937 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1938 values[n++] = enabled;
1939 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1940 values[n++] = running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001941 if (read_format & PERF_FORMAT_ID)
1942 values[n++] = primary_event_id(event);
1943
1944 if (copy_to_user(buf, values, n * sizeof(u64)))
1945 return -EFAULT;
1946
1947 return n * sizeof(u64);
1948}
1949
1950/*
1951 * Read the performance event - simple non blocking version for now
1952 */
1953static ssize_t
1954perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1955{
1956 u64 read_format = event->attr.read_format;
1957 int ret;
1958
1959 /*
1960 * Return end-of-file for a read on a event that is in
1961 * error state (i.e. because it was pinned but it couldn't be
1962 * scheduled on to the CPU at some point).
1963 */
1964 if (event->state == PERF_EVENT_STATE_ERROR)
1965 return 0;
1966
1967 if (count < perf_event_read_size(event))
1968 return -ENOSPC;
1969
1970 WARN_ON_ONCE(event->ctx->parent_ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001971 if (read_format & PERF_FORMAT_GROUP)
1972 ret = perf_event_read_group(event, read_format, buf);
1973 else
1974 ret = perf_event_read_one(event, read_format, buf);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001975
1976 return ret;
1977}
1978
1979static ssize_t
1980perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1981{
1982 struct perf_event *event = file->private_data;
1983
1984 return perf_read_hw(event, buf, count);
1985}
1986
1987static unsigned int perf_poll(struct file *file, poll_table *wait)
1988{
1989 struct perf_event *event = file->private_data;
1990 struct perf_mmap_data *data;
1991 unsigned int events = POLL_HUP;
1992
1993 rcu_read_lock();
1994 data = rcu_dereference(event->data);
1995 if (data)
1996 events = atomic_xchg(&data->poll, 0);
1997 rcu_read_unlock();
1998
1999 poll_wait(file, &event->waitq, wait);
2000
2001 return events;
2002}
2003
2004static void perf_event_reset(struct perf_event *event)
2005{
2006 (void)perf_event_read(event);
2007 atomic64_set(&event->count, 0);
2008 perf_event_update_userpage(event);
2009}
2010
2011/*
2012 * Holding the top-level event's child_mutex means that any
2013 * descendant process that has inherited this event will block
2014 * in sync_child_event if it goes to exit, thus satisfying the
2015 * task existence requirements of perf_event_enable/disable.
2016 */
2017static void perf_event_for_each_child(struct perf_event *event,
2018 void (*func)(struct perf_event *))
2019{
2020 struct perf_event *child;
2021
2022 WARN_ON_ONCE(event->ctx->parent_ctx);
2023 mutex_lock(&event->child_mutex);
2024 func(event);
2025 list_for_each_entry(child, &event->child_list, child_list)
2026 func(child);
2027 mutex_unlock(&event->child_mutex);
2028}
2029
2030static void perf_event_for_each(struct perf_event *event,
2031 void (*func)(struct perf_event *))
2032{
2033 struct perf_event_context *ctx = event->ctx;
2034 struct perf_event *sibling;
2035
2036 WARN_ON_ONCE(ctx->parent_ctx);
2037 mutex_lock(&ctx->mutex);
2038 event = event->group_leader;
2039
2040 perf_event_for_each_child(event, func);
2041 func(event);
2042 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2043 perf_event_for_each_child(event, func);
2044 mutex_unlock(&ctx->mutex);
2045}
2046
2047static int perf_event_period(struct perf_event *event, u64 __user *arg)
2048{
2049 struct perf_event_context *ctx = event->ctx;
2050 unsigned long size;
2051 int ret = 0;
2052 u64 value;
2053
2054 if (!event->attr.sample_period)
2055 return -EINVAL;
2056
2057 size = copy_from_user(&value, arg, sizeof(value));
2058 if (size != sizeof(value))
2059 return -EFAULT;
2060
2061 if (!value)
2062 return -EINVAL;
2063
Thomas Gleixnere625cce12009-11-17 18:02:06 +01002064 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002065 if (event->attr.freq) {
2066 if (value > sysctl_perf_event_sample_rate) {
2067 ret = -EINVAL;
2068 goto unlock;
2069 }
2070
2071 event->attr.sample_freq = value;
2072 } else {
2073 event->attr.sample_period = value;
2074 event->hw.sample_period = value;
2075 }
2076unlock:
Thomas Gleixnere625cce12009-11-17 18:02:06 +01002077 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002078
2079 return ret;
2080}
2081
Li Zefan6fb29152009-10-15 11:21:42 +08002082static int perf_event_set_output(struct perf_event *event, int output_fd);
2083static int perf_event_set_filter(struct perf_event *event, void __user *arg);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002084
2085static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2086{
2087 struct perf_event *event = file->private_data;
2088 void (*func)(struct perf_event *);
2089 u32 flags = arg;
2090
2091 switch (cmd) {
2092 case PERF_EVENT_IOC_ENABLE:
2093 func = perf_event_enable;
2094 break;
2095 case PERF_EVENT_IOC_DISABLE:
2096 func = perf_event_disable;
2097 break;
2098 case PERF_EVENT_IOC_RESET:
2099 func = perf_event_reset;
2100 break;
2101
2102 case PERF_EVENT_IOC_REFRESH:
2103 return perf_event_refresh(event, arg);
2104
2105 case PERF_EVENT_IOC_PERIOD:
2106 return perf_event_period(event, (u64 __user *)arg);
2107
2108 case PERF_EVENT_IOC_SET_OUTPUT:
2109 return perf_event_set_output(event, arg);
2110
Li Zefan6fb29152009-10-15 11:21:42 +08002111 case PERF_EVENT_IOC_SET_FILTER:
2112 return perf_event_set_filter(event, (void __user *)arg);
2113
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002114 default:
2115 return -ENOTTY;
2116 }
2117
2118 if (flags & PERF_IOC_FLAG_GROUP)
2119 perf_event_for_each(event, func);
2120 else
2121 perf_event_for_each_child(event, func);
2122
2123 return 0;
2124}
2125
2126int perf_event_task_enable(void)
2127{
2128 struct perf_event *event;
2129
2130 mutex_lock(&current->perf_event_mutex);
2131 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2132 perf_event_for_each_child(event, perf_event_enable);
2133 mutex_unlock(&current->perf_event_mutex);
2134
2135 return 0;
2136}
2137
2138int perf_event_task_disable(void)
2139{
2140 struct perf_event *event;
2141
2142 mutex_lock(&current->perf_event_mutex);
2143 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2144 perf_event_for_each_child(event, perf_event_disable);
2145 mutex_unlock(&current->perf_event_mutex);
2146
2147 return 0;
2148}
2149
2150#ifndef PERF_EVENT_INDEX_OFFSET
2151# define PERF_EVENT_INDEX_OFFSET 0
2152#endif
2153
2154static int perf_event_index(struct perf_event *event)
2155{
2156 if (event->state != PERF_EVENT_STATE_ACTIVE)
2157 return 0;
2158
2159 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2160}
2161
2162/*
2163 * Callers need to ensure there can be no nesting of this function, otherwise
2164 * the seqlock logic goes bad. We can not serialize this because the arch
2165 * code calls this from NMI context.
2166 */
2167void perf_event_update_userpage(struct perf_event *event)
2168{
2169 struct perf_event_mmap_page *userpg;
2170 struct perf_mmap_data *data;
2171
2172 rcu_read_lock();
2173 data = rcu_dereference(event->data);
2174 if (!data)
2175 goto unlock;
2176
2177 userpg = data->user_page;
2178
2179 /*
2180 * Disable preemption so as to not let the corresponding user-space
2181 * spin too long if we get preempted.
2182 */
2183 preempt_disable();
2184 ++userpg->lock;
2185 barrier();
2186 userpg->index = perf_event_index(event);
2187 userpg->offset = atomic64_read(&event->count);
2188 if (event->state == PERF_EVENT_STATE_ACTIVE)
2189 userpg->offset -= atomic64_read(&event->hw.prev_count);
2190
2191 userpg->time_enabled = event->total_time_enabled +
2192 atomic64_read(&event->child_total_time_enabled);
2193
2194 userpg->time_running = event->total_time_running +
2195 atomic64_read(&event->child_total_time_running);
2196
2197 barrier();
2198 ++userpg->lock;
2199 preempt_enable();
2200unlock:
2201 rcu_read_unlock();
2202}
2203
Peter Zijlstra906010b2009-09-21 16:08:49 +02002204static unsigned long perf_data_size(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002205{
Peter Zijlstra906010b2009-09-21 16:08:49 +02002206 return data->nr_pages << (PAGE_SHIFT + data->data_order);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002207}
2208
Peter Zijlstra906010b2009-09-21 16:08:49 +02002209#ifndef CONFIG_PERF_USE_VMALLOC
2210
2211/*
2212 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2213 */
2214
2215static struct page *
2216perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2217{
2218 if (pgoff > data->nr_pages)
2219 return NULL;
2220
2221 if (pgoff == 0)
2222 return virt_to_page(data->user_page);
2223
2224 return virt_to_page(data->data_pages[pgoff - 1]);
2225}
2226
2227static struct perf_mmap_data *
2228perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002229{
2230 struct perf_mmap_data *data;
2231 unsigned long size;
2232 int i;
2233
2234 WARN_ON(atomic_read(&event->mmap_count));
2235
2236 size = sizeof(struct perf_mmap_data);
2237 size += nr_pages * sizeof(void *);
2238
2239 data = kzalloc(size, GFP_KERNEL);
2240 if (!data)
2241 goto fail;
2242
2243 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2244 if (!data->user_page)
2245 goto fail_user_page;
2246
2247 for (i = 0; i < nr_pages; i++) {
2248 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2249 if (!data->data_pages[i])
2250 goto fail_data_pages;
2251 }
2252
Peter Zijlstra906010b2009-09-21 16:08:49 +02002253 data->data_order = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002254 data->nr_pages = nr_pages;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002255
Peter Zijlstra906010b2009-09-21 16:08:49 +02002256 return data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002257
2258fail_data_pages:
2259 for (i--; i >= 0; i--)
2260 free_page((unsigned long)data->data_pages[i]);
2261
2262 free_page((unsigned long)data->user_page);
2263
2264fail_user_page:
2265 kfree(data);
2266
2267fail:
Peter Zijlstra906010b2009-09-21 16:08:49 +02002268 return NULL;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002269}
2270
2271static void perf_mmap_free_page(unsigned long addr)
2272{
2273 struct page *page = virt_to_page((void *)addr);
2274
2275 page->mapping = NULL;
2276 __free_page(page);
2277}
2278
Peter Zijlstra906010b2009-09-21 16:08:49 +02002279static void perf_mmap_data_free(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002280{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002281 int i;
2282
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002283 perf_mmap_free_page((unsigned long)data->user_page);
2284 for (i = 0; i < data->nr_pages; i++)
2285 perf_mmap_free_page((unsigned long)data->data_pages[i]);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002286 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002287}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002288
Peter Zijlstra906010b2009-09-21 16:08:49 +02002289#else
2290
2291/*
2292 * Back perf_mmap() with vmalloc memory.
2293 *
2294 * Required for architectures that have d-cache aliasing issues.
2295 */
2296
2297static struct page *
2298perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2299{
2300 if (pgoff > (1UL << data->data_order))
2301 return NULL;
2302
2303 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2304}
2305
2306static void perf_mmap_unmark_page(void *addr)
2307{
2308 struct page *page = vmalloc_to_page(addr);
2309
2310 page->mapping = NULL;
2311}
2312
2313static void perf_mmap_data_free_work(struct work_struct *work)
2314{
2315 struct perf_mmap_data *data;
2316 void *base;
2317 int i, nr;
2318
2319 data = container_of(work, struct perf_mmap_data, work);
2320 nr = 1 << data->data_order;
2321
2322 base = data->user_page;
2323 for (i = 0; i < nr + 1; i++)
2324 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2325
2326 vfree(base);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002327 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002328}
2329
2330static void perf_mmap_data_free(struct perf_mmap_data *data)
2331{
2332 schedule_work(&data->work);
2333}
2334
2335static struct perf_mmap_data *
2336perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2337{
2338 struct perf_mmap_data *data;
2339 unsigned long size;
2340 void *all_buf;
2341
2342 WARN_ON(atomic_read(&event->mmap_count));
2343
2344 size = sizeof(struct perf_mmap_data);
2345 size += sizeof(void *);
2346
2347 data = kzalloc(size, GFP_KERNEL);
2348 if (!data)
2349 goto fail;
2350
2351 INIT_WORK(&data->work, perf_mmap_data_free_work);
2352
2353 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2354 if (!all_buf)
2355 goto fail_all_buf;
2356
2357 data->user_page = all_buf;
2358 data->data_pages[0] = all_buf + PAGE_SIZE;
2359 data->data_order = ilog2(nr_pages);
2360 data->nr_pages = 1;
2361
2362 return data;
2363
2364fail_all_buf:
2365 kfree(data);
2366
2367fail:
2368 return NULL;
2369}
2370
2371#endif
2372
2373static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2374{
2375 struct perf_event *event = vma->vm_file->private_data;
2376 struct perf_mmap_data *data;
2377 int ret = VM_FAULT_SIGBUS;
2378
2379 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2380 if (vmf->pgoff == 0)
2381 ret = 0;
2382 return ret;
2383 }
2384
2385 rcu_read_lock();
2386 data = rcu_dereference(event->data);
2387 if (!data)
2388 goto unlock;
2389
2390 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2391 goto unlock;
2392
2393 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2394 if (!vmf->page)
2395 goto unlock;
2396
2397 get_page(vmf->page);
2398 vmf->page->mapping = vma->vm_file->f_mapping;
2399 vmf->page->index = vmf->pgoff;
2400
2401 ret = 0;
2402unlock:
2403 rcu_read_unlock();
2404
2405 return ret;
2406}
2407
2408static void
2409perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2410{
2411 long max_size = perf_data_size(data);
2412
2413 atomic_set(&data->lock, -1);
2414
2415 if (event->attr.watermark) {
2416 data->watermark = min_t(long, max_size,
2417 event->attr.wakeup_watermark);
2418 }
2419
2420 if (!data->watermark)
Stephane Eranian8904b182009-11-20 22:19:57 +01002421 data->watermark = max_size / 2;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002422
2423
2424 rcu_assign_pointer(event->data, data);
2425}
2426
2427static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2428{
2429 struct perf_mmap_data *data;
2430
2431 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2432 perf_mmap_data_free(data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002433}
2434
Peter Zijlstra906010b2009-09-21 16:08:49 +02002435static void perf_mmap_data_release(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002436{
2437 struct perf_mmap_data *data = event->data;
2438
2439 WARN_ON(atomic_read(&event->mmap_count));
2440
2441 rcu_assign_pointer(event->data, NULL);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002442 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002443}
2444
2445static void perf_mmap_open(struct vm_area_struct *vma)
2446{
2447 struct perf_event *event = vma->vm_file->private_data;
2448
2449 atomic_inc(&event->mmap_count);
2450}
2451
2452static void perf_mmap_close(struct vm_area_struct *vma)
2453{
2454 struct perf_event *event = vma->vm_file->private_data;
2455
2456 WARN_ON_ONCE(event->ctx->parent_ctx);
2457 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002458 unsigned long size = perf_data_size(event->data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002459 struct user_struct *user = current_user();
2460
Peter Zijlstra906010b2009-09-21 16:08:49 +02002461 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002462 vma->vm_mm->locked_vm -= event->data->nr_locked;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002463 perf_mmap_data_release(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002464 mutex_unlock(&event->mmap_mutex);
2465 }
2466}
2467
Alexey Dobriyanf0f37e22009-09-27 22:29:37 +04002468static const struct vm_operations_struct perf_mmap_vmops = {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002469 .open = perf_mmap_open,
2470 .close = perf_mmap_close,
2471 .fault = perf_mmap_fault,
2472 .page_mkwrite = perf_mmap_fault,
2473};
2474
2475static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2476{
2477 struct perf_event *event = file->private_data;
2478 unsigned long user_locked, user_lock_limit;
2479 struct user_struct *user = current_user();
2480 unsigned long locked, lock_limit;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002481 struct perf_mmap_data *data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002482 unsigned long vma_size;
2483 unsigned long nr_pages;
2484 long user_extra, extra;
2485 int ret = 0;
2486
2487 if (!(vma->vm_flags & VM_SHARED))
2488 return -EINVAL;
2489
2490 vma_size = vma->vm_end - vma->vm_start;
2491 nr_pages = (vma_size / PAGE_SIZE) - 1;
2492
2493 /*
2494 * If we have data pages ensure they're a power-of-two number, so we
2495 * can do bitmasks instead of modulo.
2496 */
2497 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2498 return -EINVAL;
2499
2500 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2501 return -EINVAL;
2502
2503 if (vma->vm_pgoff != 0)
2504 return -EINVAL;
2505
2506 WARN_ON_ONCE(event->ctx->parent_ctx);
2507 mutex_lock(&event->mmap_mutex);
2508 if (event->output) {
2509 ret = -EINVAL;
2510 goto unlock;
2511 }
2512
2513 if (atomic_inc_not_zero(&event->mmap_count)) {
2514 if (nr_pages != event->data->nr_pages)
2515 ret = -EINVAL;
2516 goto unlock;
2517 }
2518
2519 user_extra = nr_pages + 1;
2520 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2521
2522 /*
2523 * Increase the limit linearly with more CPUs:
2524 */
2525 user_lock_limit *= num_online_cpus();
2526
2527 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2528
2529 extra = 0;
2530 if (user_locked > user_lock_limit)
2531 extra = user_locked - user_lock_limit;
2532
2533 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2534 lock_limit >>= PAGE_SHIFT;
2535 locked = vma->vm_mm->locked_vm + extra;
2536
2537 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2538 !capable(CAP_IPC_LOCK)) {
2539 ret = -EPERM;
2540 goto unlock;
2541 }
2542
2543 WARN_ON(event->data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002544
2545 data = perf_mmap_data_alloc(event, nr_pages);
2546 ret = -ENOMEM;
2547 if (!data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002548 goto unlock;
2549
Peter Zijlstra906010b2009-09-21 16:08:49 +02002550 ret = 0;
2551 perf_mmap_data_init(event, data);
2552
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002553 atomic_set(&event->mmap_count, 1);
2554 atomic_long_add(user_extra, &user->locked_vm);
2555 vma->vm_mm->locked_vm += extra;
2556 event->data->nr_locked = extra;
2557 if (vma->vm_flags & VM_WRITE)
2558 event->data->writable = 1;
2559
2560unlock:
2561 mutex_unlock(&event->mmap_mutex);
2562
2563 vma->vm_flags |= VM_RESERVED;
2564 vma->vm_ops = &perf_mmap_vmops;
2565
2566 return ret;
2567}
2568
2569static int perf_fasync(int fd, struct file *filp, int on)
2570{
2571 struct inode *inode = filp->f_path.dentry->d_inode;
2572 struct perf_event *event = filp->private_data;
2573 int retval;
2574
2575 mutex_lock(&inode->i_mutex);
2576 retval = fasync_helper(fd, filp, on, &event->fasync);
2577 mutex_unlock(&inode->i_mutex);
2578
2579 if (retval < 0)
2580 return retval;
2581
2582 return 0;
2583}
2584
2585static const struct file_operations perf_fops = {
2586 .release = perf_release,
2587 .read = perf_read,
2588 .poll = perf_poll,
2589 .unlocked_ioctl = perf_ioctl,
2590 .compat_ioctl = perf_ioctl,
2591 .mmap = perf_mmap,
2592 .fasync = perf_fasync,
2593};
2594
2595/*
2596 * Perf event wakeup
2597 *
2598 * If there's data, ensure we set the poll() state and publish everything
2599 * to user-space before waking everybody up.
2600 */
2601
2602void perf_event_wakeup(struct perf_event *event)
2603{
2604 wake_up_all(&event->waitq);
2605
2606 if (event->pending_kill) {
2607 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2608 event->pending_kill = 0;
2609 }
2610}
2611
2612/*
2613 * Pending wakeups
2614 *
2615 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2616 *
2617 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2618 * single linked list and use cmpxchg() to add entries lockless.
2619 */
2620
2621static void perf_pending_event(struct perf_pending_entry *entry)
2622{
2623 struct perf_event *event = container_of(entry,
2624 struct perf_event, pending);
2625
2626 if (event->pending_disable) {
2627 event->pending_disable = 0;
2628 __perf_event_disable(event);
2629 }
2630
2631 if (event->pending_wakeup) {
2632 event->pending_wakeup = 0;
2633 perf_event_wakeup(event);
2634 }
2635}
2636
2637#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2638
2639static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2640 PENDING_TAIL,
2641};
2642
2643static void perf_pending_queue(struct perf_pending_entry *entry,
2644 void (*func)(struct perf_pending_entry *))
2645{
2646 struct perf_pending_entry **head;
2647
2648 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2649 return;
2650
2651 entry->func = func;
2652
2653 head = &get_cpu_var(perf_pending_head);
2654
2655 do {
2656 entry->next = *head;
2657 } while (cmpxchg(head, entry->next, entry) != entry->next);
2658
2659 set_perf_event_pending();
2660
2661 put_cpu_var(perf_pending_head);
2662}
2663
2664static int __perf_pending_run(void)
2665{
2666 struct perf_pending_entry *list;
2667 int nr = 0;
2668
2669 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2670 while (list != PENDING_TAIL) {
2671 void (*func)(struct perf_pending_entry *);
2672 struct perf_pending_entry *entry = list;
2673
2674 list = list->next;
2675
2676 func = entry->func;
2677 entry->next = NULL;
2678 /*
2679 * Ensure we observe the unqueue before we issue the wakeup,
2680 * so that we won't be waiting forever.
2681 * -- see perf_not_pending().
2682 */
2683 smp_wmb();
2684
2685 func(entry);
2686 nr++;
2687 }
2688
2689 return nr;
2690}
2691
2692static inline int perf_not_pending(struct perf_event *event)
2693{
2694 /*
2695 * If we flush on whatever cpu we run, there is a chance we don't
2696 * need to wait.
2697 */
2698 get_cpu();
2699 __perf_pending_run();
2700 put_cpu();
2701
2702 /*
2703 * Ensure we see the proper queue state before going to sleep
2704 * so that we do not miss the wakeup. -- see perf_pending_handle()
2705 */
2706 smp_rmb();
2707 return event->pending.next == NULL;
2708}
2709
2710static void perf_pending_sync(struct perf_event *event)
2711{
2712 wait_event(event->waitq, perf_not_pending(event));
2713}
2714
2715void perf_event_do_pending(void)
2716{
2717 __perf_pending_run();
2718}
2719
2720/*
2721 * Callchain support -- arch specific
2722 */
2723
2724__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2725{
2726 return NULL;
2727}
2728
2729/*
2730 * Output
2731 */
2732static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2733 unsigned long offset, unsigned long head)
2734{
2735 unsigned long mask;
2736
2737 if (!data->writable)
2738 return true;
2739
Peter Zijlstra906010b2009-09-21 16:08:49 +02002740 mask = perf_data_size(data) - 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002741
2742 offset = (offset - tail) & mask;
2743 head = (head - tail) & mask;
2744
2745 if ((int)(head - offset) < 0)
2746 return false;
2747
2748 return true;
2749}
2750
2751static void perf_output_wakeup(struct perf_output_handle *handle)
2752{
2753 atomic_set(&handle->data->poll, POLL_IN);
2754
2755 if (handle->nmi) {
2756 handle->event->pending_wakeup = 1;
2757 perf_pending_queue(&handle->event->pending,
2758 perf_pending_event);
2759 } else
2760 perf_event_wakeup(handle->event);
2761}
2762
2763/*
2764 * Curious locking construct.
2765 *
2766 * We need to ensure a later event_id doesn't publish a head when a former
2767 * event_id isn't done writing. However since we need to deal with NMIs we
2768 * cannot fully serialize things.
2769 *
2770 * What we do is serialize between CPUs so we only have to deal with NMI
2771 * nesting on a single CPU.
2772 *
2773 * We only publish the head (and generate a wakeup) when the outer-most
2774 * event_id completes.
2775 */
2776static void perf_output_lock(struct perf_output_handle *handle)
2777{
2778 struct perf_mmap_data *data = handle->data;
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002779 int cur, cpu = get_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002780
2781 handle->locked = 0;
2782
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002783 for (;;) {
2784 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2785 if (cur == -1) {
2786 handle->locked = 1;
2787 break;
2788 }
2789 if (cur == cpu)
2790 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002791
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002792 cpu_relax();
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002793 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002794}
2795
2796static void perf_output_unlock(struct perf_output_handle *handle)
2797{
2798 struct perf_mmap_data *data = handle->data;
2799 unsigned long head;
2800 int cpu;
2801
2802 data->done_head = data->head;
2803
2804 if (!handle->locked)
2805 goto out;
2806
2807again:
2808 /*
2809 * The xchg implies a full barrier that ensures all writes are done
2810 * before we publish the new head, matched by a rmb() in userspace when
2811 * reading this position.
2812 */
2813 while ((head = atomic_long_xchg(&data->done_head, 0)))
2814 data->user_page->data_head = head;
2815
2816 /*
2817 * NMI can happen here, which means we can miss a done_head update.
2818 */
2819
2820 cpu = atomic_xchg(&data->lock, -1);
2821 WARN_ON_ONCE(cpu != smp_processor_id());
2822
2823 /*
2824 * Therefore we have to validate we did not indeed do so.
2825 */
2826 if (unlikely(atomic_long_read(&data->done_head))) {
2827 /*
2828 * Since we had it locked, we can lock it again.
2829 */
2830 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2831 cpu_relax();
2832
2833 goto again;
2834 }
2835
2836 if (atomic_xchg(&data->wakeup, 0))
2837 perf_output_wakeup(handle);
2838out:
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002839 put_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002840}
2841
2842void perf_output_copy(struct perf_output_handle *handle,
2843 const void *buf, unsigned int len)
2844{
2845 unsigned int pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002846 unsigned long offset;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002847 unsigned int size;
2848 void **pages;
2849
2850 offset = handle->offset;
2851 pages_mask = handle->data->nr_pages - 1;
2852 pages = handle->data->data_pages;
2853
2854 do {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002855 unsigned long page_offset;
2856 unsigned long page_size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002857 int nr;
2858
2859 nr = (offset >> PAGE_SHIFT) & pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002860 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2861 page_offset = offset & (page_size - 1);
2862 size = min_t(unsigned int, page_size - page_offset, len);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002863
2864 memcpy(pages[nr] + page_offset, buf, size);
2865
2866 len -= size;
2867 buf += size;
2868 offset += size;
2869 } while (len);
2870
2871 handle->offset = offset;
2872
2873 /*
2874 * Check we didn't copy past our reservation window, taking the
2875 * possible unsigned int wrap into account.
2876 */
2877 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2878}
2879
2880int perf_output_begin(struct perf_output_handle *handle,
2881 struct perf_event *event, unsigned int size,
2882 int nmi, int sample)
2883{
2884 struct perf_event *output_event;
2885 struct perf_mmap_data *data;
2886 unsigned long tail, offset, head;
2887 int have_lost;
2888 struct {
2889 struct perf_event_header header;
2890 u64 id;
2891 u64 lost;
2892 } lost_event;
2893
2894 rcu_read_lock();
2895 /*
2896 * For inherited events we send all the output towards the parent.
2897 */
2898 if (event->parent)
2899 event = event->parent;
2900
2901 output_event = rcu_dereference(event->output);
2902 if (output_event)
2903 event = output_event;
2904
2905 data = rcu_dereference(event->data);
2906 if (!data)
2907 goto out;
2908
2909 handle->data = data;
2910 handle->event = event;
2911 handle->nmi = nmi;
2912 handle->sample = sample;
2913
2914 if (!data->nr_pages)
2915 goto fail;
2916
2917 have_lost = atomic_read(&data->lost);
2918 if (have_lost)
2919 size += sizeof(lost_event);
2920
2921 perf_output_lock(handle);
2922
2923 do {
2924 /*
2925 * Userspace could choose to issue a mb() before updating the
2926 * tail pointer. So that all reads will be completed before the
2927 * write is issued.
2928 */
2929 tail = ACCESS_ONCE(data->user_page->data_tail);
2930 smp_rmb();
2931 offset = head = atomic_long_read(&data->head);
2932 head += size;
2933 if (unlikely(!perf_output_space(data, tail, offset, head)))
2934 goto fail;
2935 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2936
2937 handle->offset = offset;
2938 handle->head = head;
2939
2940 if (head - tail > data->watermark)
2941 atomic_set(&data->wakeup, 1);
2942
2943 if (have_lost) {
2944 lost_event.header.type = PERF_RECORD_LOST;
2945 lost_event.header.misc = 0;
2946 lost_event.header.size = sizeof(lost_event);
2947 lost_event.id = event->id;
2948 lost_event.lost = atomic_xchg(&data->lost, 0);
2949
2950 perf_output_put(handle, lost_event);
2951 }
2952
2953 return 0;
2954
2955fail:
2956 atomic_inc(&data->lost);
2957 perf_output_unlock(handle);
2958out:
2959 rcu_read_unlock();
2960
2961 return -ENOSPC;
2962}
2963
2964void perf_output_end(struct perf_output_handle *handle)
2965{
2966 struct perf_event *event = handle->event;
2967 struct perf_mmap_data *data = handle->data;
2968
2969 int wakeup_events = event->attr.wakeup_events;
2970
2971 if (handle->sample && wakeup_events) {
2972 int events = atomic_inc_return(&data->events);
2973 if (events >= wakeup_events) {
2974 atomic_sub(wakeup_events, &data->events);
2975 atomic_set(&data->wakeup, 1);
2976 }
2977 }
2978
2979 perf_output_unlock(handle);
2980 rcu_read_unlock();
2981}
2982
2983static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2984{
2985 /*
2986 * only top level events have the pid namespace they were created in
2987 */
2988 if (event->parent)
2989 event = event->parent;
2990
2991 return task_tgid_nr_ns(p, event->ns);
2992}
2993
2994static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2995{
2996 /*
2997 * only top level events have the pid namespace they were created in
2998 */
2999 if (event->parent)
3000 event = event->parent;
3001
3002 return task_pid_nr_ns(p, event->ns);
3003}
3004
3005static void perf_output_read_one(struct perf_output_handle *handle,
3006 struct perf_event *event)
3007{
3008 u64 read_format = event->attr.read_format;
3009 u64 values[4];
3010 int n = 0;
3011
3012 values[n++] = atomic64_read(&event->count);
3013 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3014 values[n++] = event->total_time_enabled +
3015 atomic64_read(&event->child_total_time_enabled);
3016 }
3017 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3018 values[n++] = event->total_time_running +
3019 atomic64_read(&event->child_total_time_running);
3020 }
3021 if (read_format & PERF_FORMAT_ID)
3022 values[n++] = primary_event_id(event);
3023
3024 perf_output_copy(handle, values, n * sizeof(u64));
3025}
3026
3027/*
3028 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3029 */
3030static void perf_output_read_group(struct perf_output_handle *handle,
3031 struct perf_event *event)
3032{
3033 struct perf_event *leader = event->group_leader, *sub;
3034 u64 read_format = event->attr.read_format;
3035 u64 values[5];
3036 int n = 0;
3037
3038 values[n++] = 1 + leader->nr_siblings;
3039
3040 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3041 values[n++] = leader->total_time_enabled;
3042
3043 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3044 values[n++] = leader->total_time_running;
3045
3046 if (leader != event)
3047 leader->pmu->read(leader);
3048
3049 values[n++] = atomic64_read(&leader->count);
3050 if (read_format & PERF_FORMAT_ID)
3051 values[n++] = primary_event_id(leader);
3052
3053 perf_output_copy(handle, values, n * sizeof(u64));
3054
3055 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3056 n = 0;
3057
3058 if (sub != event)
3059 sub->pmu->read(sub);
3060
3061 values[n++] = atomic64_read(&sub->count);
3062 if (read_format & PERF_FORMAT_ID)
3063 values[n++] = primary_event_id(sub);
3064
3065 perf_output_copy(handle, values, n * sizeof(u64));
3066 }
3067}
3068
3069static void perf_output_read(struct perf_output_handle *handle,
3070 struct perf_event *event)
3071{
3072 if (event->attr.read_format & PERF_FORMAT_GROUP)
3073 perf_output_read_group(handle, event);
3074 else
3075 perf_output_read_one(handle, event);
3076}
3077
3078void perf_output_sample(struct perf_output_handle *handle,
3079 struct perf_event_header *header,
3080 struct perf_sample_data *data,
3081 struct perf_event *event)
3082{
3083 u64 sample_type = data->type;
3084
3085 perf_output_put(handle, *header);
3086
3087 if (sample_type & PERF_SAMPLE_IP)
3088 perf_output_put(handle, data->ip);
3089
3090 if (sample_type & PERF_SAMPLE_TID)
3091 perf_output_put(handle, data->tid_entry);
3092
3093 if (sample_type & PERF_SAMPLE_TIME)
3094 perf_output_put(handle, data->time);
3095
3096 if (sample_type & PERF_SAMPLE_ADDR)
3097 perf_output_put(handle, data->addr);
3098
3099 if (sample_type & PERF_SAMPLE_ID)
3100 perf_output_put(handle, data->id);
3101
3102 if (sample_type & PERF_SAMPLE_STREAM_ID)
3103 perf_output_put(handle, data->stream_id);
3104
3105 if (sample_type & PERF_SAMPLE_CPU)
3106 perf_output_put(handle, data->cpu_entry);
3107
3108 if (sample_type & PERF_SAMPLE_PERIOD)
3109 perf_output_put(handle, data->period);
3110
3111 if (sample_type & PERF_SAMPLE_READ)
3112 perf_output_read(handle, event);
3113
3114 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3115 if (data->callchain) {
3116 int size = 1;
3117
3118 if (data->callchain)
3119 size += data->callchain->nr;
3120
3121 size *= sizeof(u64);
3122
3123 perf_output_copy(handle, data->callchain, size);
3124 } else {
3125 u64 nr = 0;
3126 perf_output_put(handle, nr);
3127 }
3128 }
3129
3130 if (sample_type & PERF_SAMPLE_RAW) {
3131 if (data->raw) {
3132 perf_output_put(handle, data->raw->size);
3133 perf_output_copy(handle, data->raw->data,
3134 data->raw->size);
3135 } else {
3136 struct {
3137 u32 size;
3138 u32 data;
3139 } raw = {
3140 .size = sizeof(u32),
3141 .data = 0,
3142 };
3143 perf_output_put(handle, raw);
3144 }
3145 }
3146}
3147
3148void perf_prepare_sample(struct perf_event_header *header,
3149 struct perf_sample_data *data,
3150 struct perf_event *event,
3151 struct pt_regs *regs)
3152{
3153 u64 sample_type = event->attr.sample_type;
3154
3155 data->type = sample_type;
3156
3157 header->type = PERF_RECORD_SAMPLE;
3158 header->size = sizeof(*header);
3159
3160 header->misc = 0;
3161 header->misc |= perf_misc_flags(regs);
3162
3163 if (sample_type & PERF_SAMPLE_IP) {
3164 data->ip = perf_instruction_pointer(regs);
3165
3166 header->size += sizeof(data->ip);
3167 }
3168
3169 if (sample_type & PERF_SAMPLE_TID) {
3170 /* namespace issues */
3171 data->tid_entry.pid = perf_event_pid(event, current);
3172 data->tid_entry.tid = perf_event_tid(event, current);
3173
3174 header->size += sizeof(data->tid_entry);
3175 }
3176
3177 if (sample_type & PERF_SAMPLE_TIME) {
3178 data->time = perf_clock();
3179
3180 header->size += sizeof(data->time);
3181 }
3182
3183 if (sample_type & PERF_SAMPLE_ADDR)
3184 header->size += sizeof(data->addr);
3185
3186 if (sample_type & PERF_SAMPLE_ID) {
3187 data->id = primary_event_id(event);
3188
3189 header->size += sizeof(data->id);
3190 }
3191
3192 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3193 data->stream_id = event->id;
3194
3195 header->size += sizeof(data->stream_id);
3196 }
3197
3198 if (sample_type & PERF_SAMPLE_CPU) {
3199 data->cpu_entry.cpu = raw_smp_processor_id();
3200 data->cpu_entry.reserved = 0;
3201
3202 header->size += sizeof(data->cpu_entry);
3203 }
3204
3205 if (sample_type & PERF_SAMPLE_PERIOD)
3206 header->size += sizeof(data->period);
3207
3208 if (sample_type & PERF_SAMPLE_READ)
3209 header->size += perf_event_read_size(event);
3210
3211 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3212 int size = 1;
3213
3214 data->callchain = perf_callchain(regs);
3215
3216 if (data->callchain)
3217 size += data->callchain->nr;
3218
3219 header->size += size * sizeof(u64);
3220 }
3221
3222 if (sample_type & PERF_SAMPLE_RAW) {
3223 int size = sizeof(u32);
3224
3225 if (data->raw)
3226 size += data->raw->size;
3227 else
3228 size += sizeof(u32);
3229
3230 WARN_ON_ONCE(size & (sizeof(u64)-1));
3231 header->size += size;
3232 }
3233}
3234
3235static void perf_event_output(struct perf_event *event, int nmi,
3236 struct perf_sample_data *data,
3237 struct pt_regs *regs)
3238{
3239 struct perf_output_handle handle;
3240 struct perf_event_header header;
3241
3242 perf_prepare_sample(&header, data, event, regs);
3243
3244 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3245 return;
3246
3247 perf_output_sample(&handle, &header, data, event);
3248
3249 perf_output_end(&handle);
3250}
3251
3252/*
3253 * read event_id
3254 */
3255
3256struct perf_read_event {
3257 struct perf_event_header header;
3258
3259 u32 pid;
3260 u32 tid;
3261};
3262
3263static void
3264perf_event_read_event(struct perf_event *event,
3265 struct task_struct *task)
3266{
3267 struct perf_output_handle handle;
3268 struct perf_read_event read_event = {
3269 .header = {
3270 .type = PERF_RECORD_READ,
3271 .misc = 0,
3272 .size = sizeof(read_event) + perf_event_read_size(event),
3273 },
3274 .pid = perf_event_pid(event, task),
3275 .tid = perf_event_tid(event, task),
3276 };
3277 int ret;
3278
3279 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3280 if (ret)
3281 return;
3282
3283 perf_output_put(&handle, read_event);
3284 perf_output_read(&handle, event);
3285
3286 perf_output_end(&handle);
3287}
3288
3289/*
3290 * task tracking -- fork/exit
3291 *
3292 * enabled by: attr.comm | attr.mmap | attr.task
3293 */
3294
3295struct perf_task_event {
3296 struct task_struct *task;
3297 struct perf_event_context *task_ctx;
3298
3299 struct {
3300 struct perf_event_header header;
3301
3302 u32 pid;
3303 u32 ppid;
3304 u32 tid;
3305 u32 ptid;
3306 u64 time;
3307 } event_id;
3308};
3309
3310static void perf_event_task_output(struct perf_event *event,
3311 struct perf_task_event *task_event)
3312{
3313 struct perf_output_handle handle;
3314 int size;
3315 struct task_struct *task = task_event->task;
3316 int ret;
3317
3318 size = task_event->event_id.header.size;
3319 ret = perf_output_begin(&handle, event, size, 0, 0);
3320
3321 if (ret)
3322 return;
3323
3324 task_event->event_id.pid = perf_event_pid(event, task);
3325 task_event->event_id.ppid = perf_event_pid(event, current);
3326
3327 task_event->event_id.tid = perf_event_tid(event, task);
3328 task_event->event_id.ptid = perf_event_tid(event, current);
3329
3330 task_event->event_id.time = perf_clock();
3331
3332 perf_output_put(&handle, task_event->event_id);
3333
3334 perf_output_end(&handle);
3335}
3336
3337static int perf_event_task_match(struct perf_event *event)
3338{
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003339 if (event->cpu != -1 && event->cpu != smp_processor_id())
3340 return 0;
3341
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003342 if (event->attr.comm || event->attr.mmap || event->attr.task)
3343 return 1;
3344
3345 return 0;
3346}
3347
3348static void perf_event_task_ctx(struct perf_event_context *ctx,
3349 struct perf_task_event *task_event)
3350{
3351 struct perf_event *event;
3352
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003353 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3354 if (perf_event_task_match(event))
3355 perf_event_task_output(event, task_event);
3356 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003357}
3358
3359static void perf_event_task_event(struct perf_task_event *task_event)
3360{
3361 struct perf_cpu_context *cpuctx;
3362 struct perf_event_context *ctx = task_event->task_ctx;
3363
Peter Zijlstrad6ff86c2009-11-20 22:19:46 +01003364 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003365 cpuctx = &get_cpu_var(perf_cpu_context);
3366 perf_event_task_ctx(&cpuctx->ctx, task_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003367 if (!ctx)
3368 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3369 if (ctx)
3370 perf_event_task_ctx(ctx, task_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003371 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003372 rcu_read_unlock();
3373}
3374
3375static void perf_event_task(struct task_struct *task,
3376 struct perf_event_context *task_ctx,
3377 int new)
3378{
3379 struct perf_task_event task_event;
3380
3381 if (!atomic_read(&nr_comm_events) &&
3382 !atomic_read(&nr_mmap_events) &&
3383 !atomic_read(&nr_task_events))
3384 return;
3385
3386 task_event = (struct perf_task_event){
3387 .task = task,
3388 .task_ctx = task_ctx,
3389 .event_id = {
3390 .header = {
3391 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3392 .misc = 0,
3393 .size = sizeof(task_event.event_id),
3394 },
3395 /* .pid */
3396 /* .ppid */
3397 /* .tid */
3398 /* .ptid */
3399 },
3400 };
3401
3402 perf_event_task_event(&task_event);
3403}
3404
3405void perf_event_fork(struct task_struct *task)
3406{
3407 perf_event_task(task, NULL, 1);
3408}
3409
3410/*
3411 * comm tracking
3412 */
3413
3414struct perf_comm_event {
3415 struct task_struct *task;
3416 char *comm;
3417 int comm_size;
3418
3419 struct {
3420 struct perf_event_header header;
3421
3422 u32 pid;
3423 u32 tid;
3424 } event_id;
3425};
3426
3427static void perf_event_comm_output(struct perf_event *event,
3428 struct perf_comm_event *comm_event)
3429{
3430 struct perf_output_handle handle;
3431 int size = comm_event->event_id.header.size;
3432 int ret = perf_output_begin(&handle, event, size, 0, 0);
3433
3434 if (ret)
3435 return;
3436
3437 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3438 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3439
3440 perf_output_put(&handle, comm_event->event_id);
3441 perf_output_copy(&handle, comm_event->comm,
3442 comm_event->comm_size);
3443 perf_output_end(&handle);
3444}
3445
3446static int perf_event_comm_match(struct perf_event *event)
3447{
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003448 if (event->cpu != -1 && event->cpu != smp_processor_id())
3449 return 0;
3450
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003451 if (event->attr.comm)
3452 return 1;
3453
3454 return 0;
3455}
3456
3457static void perf_event_comm_ctx(struct perf_event_context *ctx,
3458 struct perf_comm_event *comm_event)
3459{
3460 struct perf_event *event;
3461
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003462 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3463 if (perf_event_comm_match(event))
3464 perf_event_comm_output(event, comm_event);
3465 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003466}
3467
3468static void perf_event_comm_event(struct perf_comm_event *comm_event)
3469{
3470 struct perf_cpu_context *cpuctx;
3471 struct perf_event_context *ctx;
3472 unsigned int size;
3473 char comm[TASK_COMM_LEN];
3474
3475 memset(comm, 0, sizeof(comm));
Márton Németh96b02d72009-11-21 23:10:15 +01003476 strlcpy(comm, comm_event->task->comm, sizeof(comm));
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003477 size = ALIGN(strlen(comm)+1, sizeof(u64));
3478
3479 comm_event->comm = comm;
3480 comm_event->comm_size = size;
3481
3482 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3483
Peter Zijlstraf6595f32009-11-20 22:19:47 +01003484 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003485 cpuctx = &get_cpu_var(perf_cpu_context);
3486 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003487 ctx = rcu_dereference(current->perf_event_ctxp);
3488 if (ctx)
3489 perf_event_comm_ctx(ctx, comm_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003490 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003491 rcu_read_unlock();
3492}
3493
3494void perf_event_comm(struct task_struct *task)
3495{
3496 struct perf_comm_event comm_event;
3497
3498 if (task->perf_event_ctxp)
3499 perf_event_enable_on_exec(task);
3500
3501 if (!atomic_read(&nr_comm_events))
3502 return;
3503
3504 comm_event = (struct perf_comm_event){
3505 .task = task,
3506 /* .comm */
3507 /* .comm_size */
3508 .event_id = {
3509 .header = {
3510 .type = PERF_RECORD_COMM,
3511 .misc = 0,
3512 /* .size */
3513 },
3514 /* .pid */
3515 /* .tid */
3516 },
3517 };
3518
3519 perf_event_comm_event(&comm_event);
3520}
3521
3522/*
3523 * mmap tracking
3524 */
3525
3526struct perf_mmap_event {
3527 struct vm_area_struct *vma;
3528
3529 const char *file_name;
3530 int file_size;
3531
3532 struct {
3533 struct perf_event_header header;
3534
3535 u32 pid;
3536 u32 tid;
3537 u64 start;
3538 u64 len;
3539 u64 pgoff;
3540 } event_id;
3541};
3542
3543static void perf_event_mmap_output(struct perf_event *event,
3544 struct perf_mmap_event *mmap_event)
3545{
3546 struct perf_output_handle handle;
3547 int size = mmap_event->event_id.header.size;
3548 int ret = perf_output_begin(&handle, event, size, 0, 0);
3549
3550 if (ret)
3551 return;
3552
3553 mmap_event->event_id.pid = perf_event_pid(event, current);
3554 mmap_event->event_id.tid = perf_event_tid(event, current);
3555
3556 perf_output_put(&handle, mmap_event->event_id);
3557 perf_output_copy(&handle, mmap_event->file_name,
3558 mmap_event->file_size);
3559 perf_output_end(&handle);
3560}
3561
3562static int perf_event_mmap_match(struct perf_event *event,
3563 struct perf_mmap_event *mmap_event)
3564{
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003565 if (event->cpu != -1 && event->cpu != smp_processor_id())
3566 return 0;
3567
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003568 if (event->attr.mmap)
3569 return 1;
3570
3571 return 0;
3572}
3573
3574static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3575 struct perf_mmap_event *mmap_event)
3576{
3577 struct perf_event *event;
3578
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003579 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3580 if (perf_event_mmap_match(event, mmap_event))
3581 perf_event_mmap_output(event, mmap_event);
3582 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003583}
3584
3585static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3586{
3587 struct perf_cpu_context *cpuctx;
3588 struct perf_event_context *ctx;
3589 struct vm_area_struct *vma = mmap_event->vma;
3590 struct file *file = vma->vm_file;
3591 unsigned int size;
3592 char tmp[16];
3593 char *buf = NULL;
3594 const char *name;
3595
3596 memset(tmp, 0, sizeof(tmp));
3597
3598 if (file) {
3599 /*
3600 * d_path works from the end of the buffer backwards, so we
3601 * need to add enough zero bytes after the string to handle
3602 * the 64bit alignment we do later.
3603 */
3604 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3605 if (!buf) {
3606 name = strncpy(tmp, "//enomem", sizeof(tmp));
3607 goto got_name;
3608 }
3609 name = d_path(&file->f_path, buf, PATH_MAX);
3610 if (IS_ERR(name)) {
3611 name = strncpy(tmp, "//toolong", sizeof(tmp));
3612 goto got_name;
3613 }
3614 } else {
3615 if (arch_vma_name(mmap_event->vma)) {
3616 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3617 sizeof(tmp));
3618 goto got_name;
3619 }
3620
3621 if (!vma->vm_mm) {
3622 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3623 goto got_name;
3624 }
3625
3626 name = strncpy(tmp, "//anon", sizeof(tmp));
3627 goto got_name;
3628 }
3629
3630got_name:
3631 size = ALIGN(strlen(name)+1, sizeof(u64));
3632
3633 mmap_event->file_name = name;
3634 mmap_event->file_size = size;
3635
3636 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3637
Peter Zijlstraf6d9dd22009-11-20 22:19:48 +01003638 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003639 cpuctx = &get_cpu_var(perf_cpu_context);
3640 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003641 ctx = rcu_dereference(current->perf_event_ctxp);
3642 if (ctx)
3643 perf_event_mmap_ctx(ctx, mmap_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003644 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003645 rcu_read_unlock();
3646
3647 kfree(buf);
3648}
3649
3650void __perf_event_mmap(struct vm_area_struct *vma)
3651{
3652 struct perf_mmap_event mmap_event;
3653
3654 if (!atomic_read(&nr_mmap_events))
3655 return;
3656
3657 mmap_event = (struct perf_mmap_event){
3658 .vma = vma,
3659 /* .file_name */
3660 /* .file_size */
3661 .event_id = {
3662 .header = {
3663 .type = PERF_RECORD_MMAP,
3664 .misc = 0,
3665 /* .size */
3666 },
3667 /* .pid */
3668 /* .tid */
3669 .start = vma->vm_start,
3670 .len = vma->vm_end - vma->vm_start,
3671 .pgoff = vma->vm_pgoff,
3672 },
3673 };
3674
3675 perf_event_mmap_event(&mmap_event);
3676}
3677
3678/*
3679 * IRQ throttle logging
3680 */
3681
3682static void perf_log_throttle(struct perf_event *event, int enable)
3683{
3684 struct perf_output_handle handle;
3685 int ret;
3686
3687 struct {
3688 struct perf_event_header header;
3689 u64 time;
3690 u64 id;
3691 u64 stream_id;
3692 } throttle_event = {
3693 .header = {
3694 .type = PERF_RECORD_THROTTLE,
3695 .misc = 0,
3696 .size = sizeof(throttle_event),
3697 },
3698 .time = perf_clock(),
3699 .id = primary_event_id(event),
3700 .stream_id = event->id,
3701 };
3702
3703 if (enable)
3704 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3705
3706 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3707 if (ret)
3708 return;
3709
3710 perf_output_put(&handle, throttle_event);
3711 perf_output_end(&handle);
3712}
3713
3714/*
3715 * Generic event overflow handling, sampling.
3716 */
3717
3718static int __perf_event_overflow(struct perf_event *event, int nmi,
3719 int throttle, struct perf_sample_data *data,
3720 struct pt_regs *regs)
3721{
3722 int events = atomic_read(&event->event_limit);
3723 struct hw_perf_event *hwc = &event->hw;
3724 int ret = 0;
3725
3726 throttle = (throttle && event->pmu->unthrottle != NULL);
3727
3728 if (!throttle) {
3729 hwc->interrupts++;
3730 } else {
3731 if (hwc->interrupts != MAX_INTERRUPTS) {
3732 hwc->interrupts++;
3733 if (HZ * hwc->interrupts >
3734 (u64)sysctl_perf_event_sample_rate) {
3735 hwc->interrupts = MAX_INTERRUPTS;
3736 perf_log_throttle(event, 0);
3737 ret = 1;
3738 }
3739 } else {
3740 /*
3741 * Keep re-disabling events even though on the previous
3742 * pass we disabled it - just in case we raced with a
3743 * sched-in and the event got enabled again:
3744 */
3745 ret = 1;
3746 }
3747 }
3748
3749 if (event->attr.freq) {
3750 u64 now = perf_clock();
3751 s64 delta = now - hwc->freq_stamp;
3752
3753 hwc->freq_stamp = now;
3754
3755 if (delta > 0 && delta < TICK_NSEC)
3756 perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3757 }
3758
3759 /*
3760 * XXX event_limit might not quite work as expected on inherited
3761 * events
3762 */
3763
3764 event->pending_kill = POLL_IN;
3765 if (events && atomic_dec_and_test(&event->event_limit)) {
3766 ret = 1;
3767 event->pending_kill = POLL_HUP;
3768 if (nmi) {
3769 event->pending_disable = 1;
3770 perf_pending_queue(&event->pending,
3771 perf_pending_event);
3772 } else
3773 perf_event_disable(event);
3774 }
3775
Peter Zijlstra453f19e2009-11-20 22:19:43 +01003776 if (event->overflow_handler)
3777 event->overflow_handler(event, nmi, data, regs);
3778 else
3779 perf_event_output(event, nmi, data, regs);
3780
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003781 return ret;
3782}
3783
3784int perf_event_overflow(struct perf_event *event, int nmi,
3785 struct perf_sample_data *data,
3786 struct pt_regs *regs)
3787{
3788 return __perf_event_overflow(event, nmi, 1, data, regs);
3789}
3790
3791/*
3792 * Generic software event infrastructure
3793 */
3794
3795/*
3796 * We directly increment event->count and keep a second value in
3797 * event->hw.period_left to count intervals. This period event
3798 * is kept in the range [-sample_period, 0] so that we can use the
3799 * sign as trigger.
3800 */
3801
3802static u64 perf_swevent_set_period(struct perf_event *event)
3803{
3804 struct hw_perf_event *hwc = &event->hw;
3805 u64 period = hwc->last_period;
3806 u64 nr, offset;
3807 s64 old, val;
3808
3809 hwc->last_period = hwc->sample_period;
3810
3811again:
3812 old = val = atomic64_read(&hwc->period_left);
3813 if (val < 0)
3814 return 0;
3815
3816 nr = div64_u64(period + val, period);
3817 offset = nr * period;
3818 val -= offset;
3819 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3820 goto again;
3821
3822 return nr;
3823}
3824
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003825static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003826 int nmi, struct perf_sample_data *data,
3827 struct pt_regs *regs)
3828{
3829 struct hw_perf_event *hwc = &event->hw;
3830 int throttle = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003831
3832 data->period = event->hw.last_period;
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003833 if (!overflow)
3834 overflow = perf_swevent_set_period(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003835
3836 if (hwc->interrupts == MAX_INTERRUPTS)
3837 return;
3838
3839 for (; overflow; overflow--) {
3840 if (__perf_event_overflow(event, nmi, throttle,
3841 data, regs)) {
3842 /*
3843 * We inhibit the overflow from happening when
3844 * hwc->interrupts == MAX_INTERRUPTS.
3845 */
3846 break;
3847 }
3848 throttle = 1;
3849 }
3850}
3851
3852static void perf_swevent_unthrottle(struct perf_event *event)
3853{
3854 /*
3855 * Nothing to do, we already reset hwc->interrupts.
3856 */
3857}
3858
3859static void perf_swevent_add(struct perf_event *event, u64 nr,
3860 int nmi, struct perf_sample_data *data,
3861 struct pt_regs *regs)
3862{
3863 struct hw_perf_event *hwc = &event->hw;
3864
3865 atomic64_add(nr, &event->count);
3866
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003867 if (!regs)
3868 return;
3869
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003870 if (!hwc->sample_period)
3871 return;
3872
3873 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3874 return perf_swevent_overflow(event, 1, nmi, data, regs);
3875
3876 if (atomic64_add_negative(nr, &hwc->period_left))
3877 return;
3878
3879 perf_swevent_overflow(event, 0, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003880}
3881
3882static int perf_swevent_is_counting(struct perf_event *event)
3883{
3884 /*
3885 * The event is active, we're good!
3886 */
3887 if (event->state == PERF_EVENT_STATE_ACTIVE)
3888 return 1;
3889
3890 /*
3891 * The event is off/error, not counting.
3892 */
3893 if (event->state != PERF_EVENT_STATE_INACTIVE)
3894 return 0;
3895
3896 /*
3897 * The event is inactive, if the context is active
3898 * we're part of a group that didn't make it on the 'pmu',
3899 * not counting.
3900 */
3901 if (event->ctx->is_active)
3902 return 0;
3903
3904 /*
3905 * We're inactive and the context is too, this means the
3906 * task is scheduled out, we're counting events that happen
3907 * to us, like migration events.
3908 */
3909 return 1;
3910}
3911
Li Zefan6fb29152009-10-15 11:21:42 +08003912static int perf_tp_event_match(struct perf_event *event,
3913 struct perf_sample_data *data);
3914
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01003915static int perf_exclude_event(struct perf_event *event,
3916 struct pt_regs *regs)
3917{
3918 if (regs) {
3919 if (event->attr.exclude_user && user_mode(regs))
3920 return 1;
3921
3922 if (event->attr.exclude_kernel && !user_mode(regs))
3923 return 1;
3924 }
3925
3926 return 0;
3927}
3928
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003929static int perf_swevent_match(struct perf_event *event,
3930 enum perf_type_id type,
Li Zefan6fb29152009-10-15 11:21:42 +08003931 u32 event_id,
3932 struct perf_sample_data *data,
3933 struct pt_regs *regs)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003934{
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003935 if (event->cpu != -1 && event->cpu != smp_processor_id())
3936 return 0;
3937
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003938 if (!perf_swevent_is_counting(event))
3939 return 0;
3940
3941 if (event->attr.type != type)
3942 return 0;
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01003943
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003944 if (event->attr.config != event_id)
3945 return 0;
3946
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01003947 if (perf_exclude_event(event, regs))
3948 return 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003949
Li Zefan6fb29152009-10-15 11:21:42 +08003950 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
3951 !perf_tp_event_match(event, data))
3952 return 0;
3953
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003954 return 1;
3955}
3956
3957static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3958 enum perf_type_id type,
3959 u32 event_id, u64 nr, int nmi,
3960 struct perf_sample_data *data,
3961 struct pt_regs *regs)
3962{
3963 struct perf_event *event;
3964
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003965 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Li Zefan6fb29152009-10-15 11:21:42 +08003966 if (perf_swevent_match(event, type, event_id, data, regs))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003967 perf_swevent_add(event, nr, nmi, data, regs);
3968 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003969}
3970
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003971int perf_swevent_get_recursion_context(void)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003972{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003973 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3974 int rctx;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003975
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003976 if (in_nmi())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003977 rctx = 3;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003978 else if (in_irq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003979 rctx = 2;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003980 else if (in_softirq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003981 rctx = 1;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003982 else
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003983 rctx = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003984
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003985 if (cpuctx->recursion[rctx]) {
3986 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003987 return -1;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003988 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003989
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003990 cpuctx->recursion[rctx]++;
3991 barrier();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003992
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003993 return rctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003994}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01003995EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003996
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003997void perf_swevent_put_recursion_context(int rctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003998{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003999 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4000 barrier();
Frederic Weisbeckerfe612672009-11-24 20:38:22 +01004001 cpuctx->recursion[rctx]--;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004002 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004003}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01004004EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004005
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004006static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4007 u64 nr, int nmi,
4008 struct perf_sample_data *data,
4009 struct pt_regs *regs)
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004010{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004011 struct perf_cpu_context *cpuctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004012 struct perf_event_context *ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004013
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004014 cpuctx = &__get_cpu_var(perf_cpu_context);
Peter Zijlstra81520182009-11-20 22:19:45 +01004015 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004016 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4017 nr, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004018 /*
4019 * doesn't really matter which of the child contexts the
4020 * events ends up in.
4021 */
4022 ctx = rcu_dereference(current->perf_event_ctxp);
4023 if (ctx)
4024 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4025 rcu_read_unlock();
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004026}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004027
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004028void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4029 struct pt_regs *regs, u64 addr)
4030{
Ingo Molnara4234bf2009-11-23 10:57:59 +01004031 struct perf_sample_data data;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004032 int rctx;
4033
4034 rctx = perf_swevent_get_recursion_context();
4035 if (rctx < 0)
4036 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004037
Ingo Molnara4234bf2009-11-23 10:57:59 +01004038 data.addr = addr;
4039 data.raw = NULL;
4040
4041 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004042
4043 perf_swevent_put_recursion_context(rctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004044}
4045
4046static void perf_swevent_read(struct perf_event *event)
4047{
4048}
4049
4050static int perf_swevent_enable(struct perf_event *event)
4051{
4052 struct hw_perf_event *hwc = &event->hw;
4053
4054 if (hwc->sample_period) {
4055 hwc->last_period = hwc->sample_period;
4056 perf_swevent_set_period(event);
4057 }
4058 return 0;
4059}
4060
4061static void perf_swevent_disable(struct perf_event *event)
4062{
4063}
4064
4065static const struct pmu perf_ops_generic = {
4066 .enable = perf_swevent_enable,
4067 .disable = perf_swevent_disable,
4068 .read = perf_swevent_read,
4069 .unthrottle = perf_swevent_unthrottle,
4070};
4071
4072/*
4073 * hrtimer based swevent callback
4074 */
4075
4076static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4077{
4078 enum hrtimer_restart ret = HRTIMER_RESTART;
4079 struct perf_sample_data data;
4080 struct pt_regs *regs;
4081 struct perf_event *event;
4082 u64 period;
4083
4084 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4085 event->pmu->read(event);
4086
4087 data.addr = 0;
Xiao Guangrong21140f42009-12-10 14:00:51 +08004088 data.raw = NULL;
Xiao Guangrong59d069e2009-12-01 17:30:08 +08004089 data.period = event->hw.last_period;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004090 regs = get_irq_regs();
4091 /*
4092 * In case we exclude kernel IPs or are somehow not in interrupt
4093 * context, provide the next best thing, the user IP.
4094 */
4095 if ((event->attr.exclude_kernel || !regs) &&
4096 !event->attr.exclude_user)
4097 regs = task_pt_regs(current);
4098
4099 if (regs) {
Soeren Sandmann54f44072009-10-22 18:34:08 +02004100 if (!(event->attr.exclude_idle && current->pid == 0))
4101 if (perf_event_overflow(event, 0, &data, regs))
4102 ret = HRTIMER_NORESTART;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004103 }
4104
4105 period = max_t(u64, 10000, event->hw.sample_period);
4106 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4107
4108 return ret;
4109}
4110
Soeren Sandmann721a6692009-09-15 14:33:08 +02004111static void perf_swevent_start_hrtimer(struct perf_event *event)
4112{
4113 struct hw_perf_event *hwc = &event->hw;
4114
4115 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4116 hwc->hrtimer.function = perf_swevent_hrtimer;
4117 if (hwc->sample_period) {
4118 u64 period;
4119
4120 if (hwc->remaining) {
4121 if (hwc->remaining < 0)
4122 period = 10000;
4123 else
4124 period = hwc->remaining;
4125 hwc->remaining = 0;
4126 } else {
4127 period = max_t(u64, 10000, hwc->sample_period);
4128 }
4129 __hrtimer_start_range_ns(&hwc->hrtimer,
4130 ns_to_ktime(period), 0,
4131 HRTIMER_MODE_REL, 0);
4132 }
4133}
4134
4135static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4136{
4137 struct hw_perf_event *hwc = &event->hw;
4138
4139 if (hwc->sample_period) {
4140 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4141 hwc->remaining = ktime_to_ns(remaining);
4142
4143 hrtimer_cancel(&hwc->hrtimer);
4144 }
4145}
4146
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004147/*
4148 * Software event: cpu wall time clock
4149 */
4150
4151static void cpu_clock_perf_event_update(struct perf_event *event)
4152{
4153 int cpu = raw_smp_processor_id();
4154 s64 prev;
4155 u64 now;
4156
4157 now = cpu_clock(cpu);
Xiao Guangrongec89a06f2009-12-09 11:30:36 +08004158 prev = atomic64_xchg(&event->hw.prev_count, now);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004159 atomic64_add(now - prev, &event->count);
4160}
4161
4162static int cpu_clock_perf_event_enable(struct perf_event *event)
4163{
4164 struct hw_perf_event *hwc = &event->hw;
4165 int cpu = raw_smp_processor_id();
4166
4167 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
Soeren Sandmann721a6692009-09-15 14:33:08 +02004168 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004169
4170 return 0;
4171}
4172
4173static void cpu_clock_perf_event_disable(struct perf_event *event)
4174{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004175 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004176 cpu_clock_perf_event_update(event);
4177}
4178
4179static void cpu_clock_perf_event_read(struct perf_event *event)
4180{
4181 cpu_clock_perf_event_update(event);
4182}
4183
4184static const struct pmu perf_ops_cpu_clock = {
4185 .enable = cpu_clock_perf_event_enable,
4186 .disable = cpu_clock_perf_event_disable,
4187 .read = cpu_clock_perf_event_read,
4188};
4189
4190/*
4191 * Software event: task time clock
4192 */
4193
4194static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4195{
4196 u64 prev;
4197 s64 delta;
4198
4199 prev = atomic64_xchg(&event->hw.prev_count, now);
4200 delta = now - prev;
4201 atomic64_add(delta, &event->count);
4202}
4203
4204static int task_clock_perf_event_enable(struct perf_event *event)
4205{
4206 struct hw_perf_event *hwc = &event->hw;
4207 u64 now;
4208
4209 now = event->ctx->time;
4210
4211 atomic64_set(&hwc->prev_count, now);
Soeren Sandmann721a6692009-09-15 14:33:08 +02004212
4213 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004214
4215 return 0;
4216}
4217
4218static void task_clock_perf_event_disable(struct perf_event *event)
4219{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004220 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004221 task_clock_perf_event_update(event, event->ctx->time);
4222
4223}
4224
4225static void task_clock_perf_event_read(struct perf_event *event)
4226{
4227 u64 time;
4228
4229 if (!in_nmi()) {
4230 update_context_time(event->ctx);
4231 time = event->ctx->time;
4232 } else {
4233 u64 now = perf_clock();
4234 u64 delta = now - event->ctx->timestamp;
4235 time = event->ctx->time + delta;
4236 }
4237
4238 task_clock_perf_event_update(event, time);
4239}
4240
4241static const struct pmu perf_ops_task_clock = {
4242 .enable = task_clock_perf_event_enable,
4243 .disable = task_clock_perf_event_disable,
4244 .read = task_clock_perf_event_read,
4245};
4246
Li Zefan07b139c2009-12-21 14:27:35 +08004247#ifdef CONFIG_EVENT_TRACING
Li Zefan6fb29152009-10-15 11:21:42 +08004248
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004249void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4250 int entry_size)
4251{
4252 struct perf_raw_record raw = {
4253 .size = entry_size,
4254 .data = record,
4255 };
4256
4257 struct perf_sample_data data = {
4258 .addr = addr,
4259 .raw = &raw,
4260 };
4261
4262 struct pt_regs *regs = get_irq_regs();
4263
4264 if (!regs)
4265 regs = task_pt_regs(current);
4266
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004267 /* Trace events already protected against recursion */
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004268 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004269 &data, regs);
4270}
4271EXPORT_SYMBOL_GPL(perf_tp_event);
4272
Li Zefan6fb29152009-10-15 11:21:42 +08004273static int perf_tp_event_match(struct perf_event *event,
4274 struct perf_sample_data *data)
4275{
4276 void *record = data->raw->data;
4277
4278 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4279 return 1;
4280 return 0;
4281}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004282
4283static void tp_perf_event_destroy(struct perf_event *event)
4284{
4285 ftrace_profile_disable(event->attr.config);
4286}
4287
4288static const struct pmu *tp_perf_event_init(struct perf_event *event)
4289{
4290 /*
4291 * Raw tracepoint data is a severe data leak, only allow root to
4292 * have these.
4293 */
4294 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4295 perf_paranoid_tracepoint_raw() &&
4296 !capable(CAP_SYS_ADMIN))
4297 return ERR_PTR(-EPERM);
4298
4299 if (ftrace_profile_enable(event->attr.config))
4300 return NULL;
4301
4302 event->destroy = tp_perf_event_destroy;
4303
4304 return &perf_ops_generic;
4305}
Li Zefan6fb29152009-10-15 11:21:42 +08004306
4307static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4308{
4309 char *filter_str;
4310 int ret;
4311
4312 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4313 return -EINVAL;
4314
4315 filter_str = strndup_user(arg, PAGE_SIZE);
4316 if (IS_ERR(filter_str))
4317 return PTR_ERR(filter_str);
4318
4319 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4320
4321 kfree(filter_str);
4322 return ret;
4323}
4324
4325static void perf_event_free_filter(struct perf_event *event)
4326{
4327 ftrace_profile_free_filter(event);
4328}
4329
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004330#else
Li Zefan6fb29152009-10-15 11:21:42 +08004331
4332static int perf_tp_event_match(struct perf_event *event,
4333 struct perf_sample_data *data)
4334{
4335 return 1;
4336}
4337
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004338static const struct pmu *tp_perf_event_init(struct perf_event *event)
4339{
4340 return NULL;
4341}
Li Zefan6fb29152009-10-15 11:21:42 +08004342
4343static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4344{
4345 return -ENOENT;
4346}
4347
4348static void perf_event_free_filter(struct perf_event *event)
4349{
4350}
4351
Li Zefan07b139c2009-12-21 14:27:35 +08004352#endif /* CONFIG_EVENT_TRACING */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004353
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004354#ifdef CONFIG_HAVE_HW_BREAKPOINT
4355static void bp_perf_event_destroy(struct perf_event *event)
4356{
4357 release_bp_slot(event);
4358}
4359
4360static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4361{
4362 int err;
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004363
4364 err = register_perf_hw_breakpoint(bp);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004365 if (err)
4366 return ERR_PTR(err);
4367
4368 bp->destroy = bp_perf_event_destroy;
4369
4370 return &perf_ops_bp;
4371}
4372
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004373void perf_bp_event(struct perf_event *bp, void *data)
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004374{
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004375 struct perf_sample_data sample;
4376 struct pt_regs *regs = data;
4377
Xiao Guangrong5e855db2009-12-10 17:08:54 +08004378 sample.raw = NULL;
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004379 sample.addr = bp->attr.bp_addr;
4380
4381 if (!perf_exclude_event(bp, regs))
4382 perf_swevent_add(bp, 1, 1, &sample, regs);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004383}
4384#else
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004385static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4386{
4387 return NULL;
4388}
4389
4390void perf_bp_event(struct perf_event *bp, void *regs)
4391{
4392}
4393#endif
4394
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004395atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4396
4397static void sw_perf_event_destroy(struct perf_event *event)
4398{
4399 u64 event_id = event->attr.config;
4400
4401 WARN_ON(event->parent);
4402
4403 atomic_dec(&perf_swevent_enabled[event_id]);
4404}
4405
4406static const struct pmu *sw_perf_event_init(struct perf_event *event)
4407{
4408 const struct pmu *pmu = NULL;
4409 u64 event_id = event->attr.config;
4410
4411 /*
4412 * Software events (currently) can't in general distinguish
4413 * between user, kernel and hypervisor events.
4414 * However, context switches and cpu migrations are considered
4415 * to be kernel events, and page faults are never hypervisor
4416 * events.
4417 */
4418 switch (event_id) {
4419 case PERF_COUNT_SW_CPU_CLOCK:
4420 pmu = &perf_ops_cpu_clock;
4421
4422 break;
4423 case PERF_COUNT_SW_TASK_CLOCK:
4424 /*
4425 * If the user instantiates this as a per-cpu event,
4426 * use the cpu_clock event instead.
4427 */
4428 if (event->ctx->task)
4429 pmu = &perf_ops_task_clock;
4430 else
4431 pmu = &perf_ops_cpu_clock;
4432
4433 break;
4434 case PERF_COUNT_SW_PAGE_FAULTS:
4435 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4436 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4437 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4438 case PERF_COUNT_SW_CPU_MIGRATIONS:
Anton Blanchardf7d79862009-10-18 01:09:29 +00004439 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4440 case PERF_COUNT_SW_EMULATION_FAULTS:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004441 if (!event->parent) {
4442 atomic_inc(&perf_swevent_enabled[event_id]);
4443 event->destroy = sw_perf_event_destroy;
4444 }
4445 pmu = &perf_ops_generic;
4446 break;
4447 }
4448
4449 return pmu;
4450}
4451
4452/*
4453 * Allocate and initialize a event structure
4454 */
4455static struct perf_event *
4456perf_event_alloc(struct perf_event_attr *attr,
4457 int cpu,
4458 struct perf_event_context *ctx,
4459 struct perf_event *group_leader,
4460 struct perf_event *parent_event,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004461 perf_overflow_handler_t overflow_handler,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004462 gfp_t gfpflags)
4463{
4464 const struct pmu *pmu;
4465 struct perf_event *event;
4466 struct hw_perf_event *hwc;
4467 long err;
4468
4469 event = kzalloc(sizeof(*event), gfpflags);
4470 if (!event)
4471 return ERR_PTR(-ENOMEM);
4472
4473 /*
4474 * Single events are their own group leaders, with an
4475 * empty sibling list:
4476 */
4477 if (!group_leader)
4478 group_leader = event;
4479
4480 mutex_init(&event->child_mutex);
4481 INIT_LIST_HEAD(&event->child_list);
4482
4483 INIT_LIST_HEAD(&event->group_entry);
4484 INIT_LIST_HEAD(&event->event_entry);
4485 INIT_LIST_HEAD(&event->sibling_list);
4486 init_waitqueue_head(&event->waitq);
4487
4488 mutex_init(&event->mmap_mutex);
4489
4490 event->cpu = cpu;
4491 event->attr = *attr;
4492 event->group_leader = group_leader;
4493 event->pmu = NULL;
4494 event->ctx = ctx;
4495 event->oncpu = -1;
4496
4497 event->parent = parent_event;
4498
4499 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4500 event->id = atomic64_inc_return(&perf_event_id);
4501
4502 event->state = PERF_EVENT_STATE_INACTIVE;
4503
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004504 if (!overflow_handler && parent_event)
4505 overflow_handler = parent_event->overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004506
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004507 event->overflow_handler = overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004508
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004509 if (attr->disabled)
4510 event->state = PERF_EVENT_STATE_OFF;
4511
4512 pmu = NULL;
4513
4514 hwc = &event->hw;
4515 hwc->sample_period = attr->sample_period;
4516 if (attr->freq && attr->sample_freq)
4517 hwc->sample_period = 1;
4518 hwc->last_period = hwc->sample_period;
4519
4520 atomic64_set(&hwc->period_left, hwc->sample_period);
4521
4522 /*
4523 * we currently do not support PERF_FORMAT_GROUP on inherited events
4524 */
4525 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4526 goto done;
4527
4528 switch (attr->type) {
4529 case PERF_TYPE_RAW:
4530 case PERF_TYPE_HARDWARE:
4531 case PERF_TYPE_HW_CACHE:
4532 pmu = hw_perf_event_init(event);
4533 break;
4534
4535 case PERF_TYPE_SOFTWARE:
4536 pmu = sw_perf_event_init(event);
4537 break;
4538
4539 case PERF_TYPE_TRACEPOINT:
4540 pmu = tp_perf_event_init(event);
4541 break;
4542
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004543 case PERF_TYPE_BREAKPOINT:
4544 pmu = bp_perf_event_init(event);
4545 break;
4546
4547
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004548 default:
4549 break;
4550 }
4551done:
4552 err = 0;
4553 if (!pmu)
4554 err = -EINVAL;
4555 else if (IS_ERR(pmu))
4556 err = PTR_ERR(pmu);
4557
4558 if (err) {
4559 if (event->ns)
4560 put_pid_ns(event->ns);
4561 kfree(event);
4562 return ERR_PTR(err);
4563 }
4564
4565 event->pmu = pmu;
4566
4567 if (!event->parent) {
4568 atomic_inc(&nr_events);
4569 if (event->attr.mmap)
4570 atomic_inc(&nr_mmap_events);
4571 if (event->attr.comm)
4572 atomic_inc(&nr_comm_events);
4573 if (event->attr.task)
4574 atomic_inc(&nr_task_events);
4575 }
4576
4577 return event;
4578}
4579
4580static int perf_copy_attr(struct perf_event_attr __user *uattr,
4581 struct perf_event_attr *attr)
4582{
4583 u32 size;
4584 int ret;
4585
4586 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4587 return -EFAULT;
4588
4589 /*
4590 * zero the full structure, so that a short copy will be nice.
4591 */
4592 memset(attr, 0, sizeof(*attr));
4593
4594 ret = get_user(size, &uattr->size);
4595 if (ret)
4596 return ret;
4597
4598 if (size > PAGE_SIZE) /* silly large */
4599 goto err_size;
4600
4601 if (!size) /* abi compat */
4602 size = PERF_ATTR_SIZE_VER0;
4603
4604 if (size < PERF_ATTR_SIZE_VER0)
4605 goto err_size;
4606
4607 /*
4608 * If we're handed a bigger struct than we know of,
4609 * ensure all the unknown bits are 0 - i.e. new
4610 * user-space does not rely on any kernel feature
4611 * extensions we dont know about yet.
4612 */
4613 if (size > sizeof(*attr)) {
4614 unsigned char __user *addr;
4615 unsigned char __user *end;
4616 unsigned char val;
4617
4618 addr = (void __user *)uattr + sizeof(*attr);
4619 end = (void __user *)uattr + size;
4620
4621 for (; addr < end; addr++) {
4622 ret = get_user(val, addr);
4623 if (ret)
4624 return ret;
4625 if (val)
4626 goto err_size;
4627 }
4628 size = sizeof(*attr);
4629 }
4630
4631 ret = copy_from_user(attr, uattr, size);
4632 if (ret)
4633 return -EFAULT;
4634
4635 /*
4636 * If the type exists, the corresponding creation will verify
4637 * the attr->config.
4638 */
4639 if (attr->type >= PERF_TYPE_MAX)
4640 return -EINVAL;
4641
Peter Zijlstraf13c12c2009-12-15 19:43:11 +01004642 if (attr->__reserved_1 || attr->__reserved_2)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004643 return -EINVAL;
4644
4645 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4646 return -EINVAL;
4647
4648 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4649 return -EINVAL;
4650
4651out:
4652 return ret;
4653
4654err_size:
4655 put_user(sizeof(*attr), &uattr->size);
4656 ret = -E2BIG;
4657 goto out;
4658}
4659
Li Zefan6fb29152009-10-15 11:21:42 +08004660static int perf_event_set_output(struct perf_event *event, int output_fd)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004661{
4662 struct perf_event *output_event = NULL;
4663 struct file *output_file = NULL;
4664 struct perf_event *old_output;
4665 int fput_needed = 0;
4666 int ret = -EINVAL;
4667
4668 if (!output_fd)
4669 goto set;
4670
4671 output_file = fget_light(output_fd, &fput_needed);
4672 if (!output_file)
4673 return -EBADF;
4674
4675 if (output_file->f_op != &perf_fops)
4676 goto out;
4677
4678 output_event = output_file->private_data;
4679
4680 /* Don't chain output fds */
4681 if (output_event->output)
4682 goto out;
4683
4684 /* Don't set an output fd when we already have an output channel */
4685 if (event->data)
4686 goto out;
4687
4688 atomic_long_inc(&output_file->f_count);
4689
4690set:
4691 mutex_lock(&event->mmap_mutex);
4692 old_output = event->output;
4693 rcu_assign_pointer(event->output, output_event);
4694 mutex_unlock(&event->mmap_mutex);
4695
4696 if (old_output) {
4697 /*
4698 * we need to make sure no existing perf_output_*()
4699 * is still referencing this event.
4700 */
4701 synchronize_rcu();
4702 fput(old_output->filp);
4703 }
4704
4705 ret = 0;
4706out:
4707 fput_light(output_file, fput_needed);
4708 return ret;
4709}
4710
4711/**
4712 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4713 *
4714 * @attr_uptr: event_id type attributes for monitoring/sampling
4715 * @pid: target pid
4716 * @cpu: target cpu
4717 * @group_fd: group leader event fd
4718 */
4719SYSCALL_DEFINE5(perf_event_open,
4720 struct perf_event_attr __user *, attr_uptr,
4721 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4722{
4723 struct perf_event *event, *group_leader;
4724 struct perf_event_attr attr;
4725 struct perf_event_context *ctx;
4726 struct file *event_file = NULL;
4727 struct file *group_file = NULL;
4728 int fput_needed = 0;
4729 int fput_needed2 = 0;
4730 int err;
4731
4732 /* for future expandability... */
4733 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4734 return -EINVAL;
4735
4736 err = perf_copy_attr(attr_uptr, &attr);
4737 if (err)
4738 return err;
4739
4740 if (!attr.exclude_kernel) {
4741 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4742 return -EACCES;
4743 }
4744
4745 if (attr.freq) {
4746 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4747 return -EINVAL;
4748 }
4749
4750 /*
4751 * Get the target context (task or percpu):
4752 */
4753 ctx = find_get_context(pid, cpu);
4754 if (IS_ERR(ctx))
4755 return PTR_ERR(ctx);
4756
4757 /*
4758 * Look up the group leader (we will attach this event to it):
4759 */
4760 group_leader = NULL;
4761 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4762 err = -EINVAL;
4763 group_file = fget_light(group_fd, &fput_needed);
4764 if (!group_file)
4765 goto err_put_context;
4766 if (group_file->f_op != &perf_fops)
4767 goto err_put_context;
4768
4769 group_leader = group_file->private_data;
4770 /*
4771 * Do not allow a recursive hierarchy (this new sibling
4772 * becoming part of another group-sibling):
4773 */
4774 if (group_leader->group_leader != group_leader)
4775 goto err_put_context;
4776 /*
4777 * Do not allow to attach to a group in a different
4778 * task or CPU context:
4779 */
4780 if (group_leader->ctx != ctx)
4781 goto err_put_context;
4782 /*
4783 * Only a group leader can be exclusive or pinned
4784 */
4785 if (attr.exclusive || attr.pinned)
4786 goto err_put_context;
4787 }
4788
4789 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004790 NULL, NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004791 err = PTR_ERR(event);
4792 if (IS_ERR(event))
4793 goto err_put_context;
4794
Roland Dreier628ff7c2009-12-18 09:41:24 -08004795 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004796 if (err < 0)
4797 goto err_free_put_context;
4798
4799 event_file = fget_light(err, &fput_needed2);
4800 if (!event_file)
4801 goto err_free_put_context;
4802
4803 if (flags & PERF_FLAG_FD_OUTPUT) {
4804 err = perf_event_set_output(event, group_fd);
4805 if (err)
4806 goto err_fput_free_put_context;
4807 }
4808
4809 event->filp = event_file;
4810 WARN_ON_ONCE(ctx->parent_ctx);
4811 mutex_lock(&ctx->mutex);
4812 perf_install_in_context(ctx, event, cpu);
4813 ++ctx->generation;
4814 mutex_unlock(&ctx->mutex);
4815
4816 event->owner = current;
4817 get_task_struct(current);
4818 mutex_lock(&current->perf_event_mutex);
4819 list_add_tail(&event->owner_entry, &current->perf_event_list);
4820 mutex_unlock(&current->perf_event_mutex);
4821
4822err_fput_free_put_context:
4823 fput_light(event_file, fput_needed2);
4824
4825err_free_put_context:
4826 if (err < 0)
4827 kfree(event);
4828
4829err_put_context:
4830 if (err < 0)
4831 put_ctx(ctx);
4832
4833 fput_light(group_file, fput_needed);
4834
4835 return err;
4836}
4837
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004838/**
4839 * perf_event_create_kernel_counter
4840 *
4841 * @attr: attributes of the counter to create
4842 * @cpu: cpu in which the counter is bound
4843 * @pid: task to profile
4844 */
4845struct perf_event *
4846perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004847 pid_t pid,
4848 perf_overflow_handler_t overflow_handler)
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004849{
4850 struct perf_event *event;
4851 struct perf_event_context *ctx;
4852 int err;
4853
4854 /*
4855 * Get the target context (task or percpu):
4856 */
4857
4858 ctx = find_get_context(pid, cpu);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004859 if (IS_ERR(ctx)) {
4860 err = PTR_ERR(ctx);
4861 goto err_exit;
4862 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004863
4864 event = perf_event_alloc(attr, cpu, ctx, NULL,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004865 NULL, overflow_handler, GFP_KERNEL);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004866 if (IS_ERR(event)) {
4867 err = PTR_ERR(event);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004868 goto err_put_context;
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004869 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004870
4871 event->filp = NULL;
4872 WARN_ON_ONCE(ctx->parent_ctx);
4873 mutex_lock(&ctx->mutex);
4874 perf_install_in_context(ctx, event, cpu);
4875 ++ctx->generation;
4876 mutex_unlock(&ctx->mutex);
4877
4878 event->owner = current;
4879 get_task_struct(current);
4880 mutex_lock(&current->perf_event_mutex);
4881 list_add_tail(&event->owner_entry, &current->perf_event_list);
4882 mutex_unlock(&current->perf_event_mutex);
4883
4884 return event;
4885
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004886 err_put_context:
4887 put_ctx(ctx);
4888 err_exit:
4889 return ERR_PTR(err);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004890}
4891EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4892
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004893/*
4894 * inherit a event from parent task to child task:
4895 */
4896static struct perf_event *
4897inherit_event(struct perf_event *parent_event,
4898 struct task_struct *parent,
4899 struct perf_event_context *parent_ctx,
4900 struct task_struct *child,
4901 struct perf_event *group_leader,
4902 struct perf_event_context *child_ctx)
4903{
4904 struct perf_event *child_event;
4905
4906 /*
4907 * Instead of creating recursive hierarchies of events,
4908 * we link inherited events back to the original parent,
4909 * which has a filp for sure, which we use as the reference
4910 * count:
4911 */
4912 if (parent_event->parent)
4913 parent_event = parent_event->parent;
4914
4915 child_event = perf_event_alloc(&parent_event->attr,
4916 parent_event->cpu, child_ctx,
4917 group_leader, parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004918 NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004919 if (IS_ERR(child_event))
4920 return child_event;
4921 get_ctx(child_ctx);
4922
4923 /*
4924 * Make the child state follow the state of the parent event,
4925 * not its attr.disabled bit. We hold the parent's mutex,
4926 * so we won't race with perf_event_{en, dis}able_family.
4927 */
4928 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4929 child_event->state = PERF_EVENT_STATE_INACTIVE;
4930 else
4931 child_event->state = PERF_EVENT_STATE_OFF;
4932
4933 if (parent_event->attr.freq)
4934 child_event->hw.sample_period = parent_event->hw.sample_period;
4935
Peter Zijlstra453f19e2009-11-20 22:19:43 +01004936 child_event->overflow_handler = parent_event->overflow_handler;
4937
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004938 /*
4939 * Link it up in the child's context:
4940 */
4941 add_event_to_ctx(child_event, child_ctx);
4942
4943 /*
4944 * Get a reference to the parent filp - we will fput it
4945 * when the child event exits. This is safe to do because
4946 * we are in the parent and we know that the filp still
4947 * exists and has a nonzero count:
4948 */
4949 atomic_long_inc(&parent_event->filp->f_count);
4950
4951 /*
4952 * Link this into the parent event's child list
4953 */
4954 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4955 mutex_lock(&parent_event->child_mutex);
4956 list_add_tail(&child_event->child_list, &parent_event->child_list);
4957 mutex_unlock(&parent_event->child_mutex);
4958
4959 return child_event;
4960}
4961
4962static int inherit_group(struct perf_event *parent_event,
4963 struct task_struct *parent,
4964 struct perf_event_context *parent_ctx,
4965 struct task_struct *child,
4966 struct perf_event_context *child_ctx)
4967{
4968 struct perf_event *leader;
4969 struct perf_event *sub;
4970 struct perf_event *child_ctr;
4971
4972 leader = inherit_event(parent_event, parent, parent_ctx,
4973 child, NULL, child_ctx);
4974 if (IS_ERR(leader))
4975 return PTR_ERR(leader);
4976 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4977 child_ctr = inherit_event(sub, parent, parent_ctx,
4978 child, leader, child_ctx);
4979 if (IS_ERR(child_ctr))
4980 return PTR_ERR(child_ctr);
4981 }
4982 return 0;
4983}
4984
4985static void sync_child_event(struct perf_event *child_event,
4986 struct task_struct *child)
4987{
4988 struct perf_event *parent_event = child_event->parent;
4989 u64 child_val;
4990
4991 if (child_event->attr.inherit_stat)
4992 perf_event_read_event(child_event, child);
4993
4994 child_val = atomic64_read(&child_event->count);
4995
4996 /*
4997 * Add back the child's count to the parent's count:
4998 */
4999 atomic64_add(child_val, &parent_event->count);
5000 atomic64_add(child_event->total_time_enabled,
5001 &parent_event->child_total_time_enabled);
5002 atomic64_add(child_event->total_time_running,
5003 &parent_event->child_total_time_running);
5004
5005 /*
5006 * Remove this event from the parent's list
5007 */
5008 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5009 mutex_lock(&parent_event->child_mutex);
5010 list_del_init(&child_event->child_list);
5011 mutex_unlock(&parent_event->child_mutex);
5012
5013 /*
5014 * Release the parent event, if this was the last
5015 * reference to it.
5016 */
5017 fput(parent_event->filp);
5018}
5019
5020static void
5021__perf_event_exit_task(struct perf_event *child_event,
5022 struct perf_event_context *child_ctx,
5023 struct task_struct *child)
5024{
5025 struct perf_event *parent_event;
5026
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005027 perf_event_remove_from_context(child_event);
5028
5029 parent_event = child_event->parent;
5030 /*
5031 * It can happen that parent exits first, and has events
5032 * that are still around due to the child reference. These
5033 * events need to be zapped - but otherwise linger.
5034 */
5035 if (parent_event) {
5036 sync_child_event(child_event, child);
5037 free_event(child_event);
5038 }
5039}
5040
5041/*
5042 * When a child task exits, feed back event values to parent events.
5043 */
5044void perf_event_exit_task(struct task_struct *child)
5045{
5046 struct perf_event *child_event, *tmp;
5047 struct perf_event_context *child_ctx;
5048 unsigned long flags;
5049
5050 if (likely(!child->perf_event_ctxp)) {
5051 perf_event_task(child, NULL, 0);
5052 return;
5053 }
5054
5055 local_irq_save(flags);
5056 /*
5057 * We can't reschedule here because interrupts are disabled,
5058 * and either child is current or it is a task that can't be
5059 * scheduled, so we are now safe from rescheduling changing
5060 * our context.
5061 */
5062 child_ctx = child->perf_event_ctxp;
5063 __perf_event_task_sched_out(child_ctx);
5064
5065 /*
5066 * Take the context lock here so that if find_get_context is
5067 * reading child->perf_event_ctxp, we wait until it has
5068 * incremented the context's refcount before we do put_ctx below.
5069 */
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005070 raw_spin_lock(&child_ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005071 child->perf_event_ctxp = NULL;
5072 /*
5073 * If this context is a clone; unclone it so it can't get
5074 * swapped to another process while we're removing all
5075 * the events from it.
5076 */
5077 unclone_ctx(child_ctx);
Peter Zijlstra5e942bb2009-11-23 11:37:26 +01005078 update_context_time(child_ctx);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005079 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005080
5081 /*
5082 * Report the task dead after unscheduling the events so that we
5083 * won't get any samples after PERF_RECORD_EXIT. We can however still
5084 * get a few PERF_RECORD_READ events.
5085 */
5086 perf_event_task(child, child_ctx, 0);
5087
5088 /*
5089 * We can recurse on the same lock type through:
5090 *
5091 * __perf_event_exit_task()
5092 * sync_child_event()
5093 * fput(parent_event->filp)
5094 * perf_release()
5095 * mutex_lock(&ctx->mutex)
5096 *
5097 * But since its the parent context it won't be the same instance.
5098 */
5099 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5100
5101again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005102 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5103 group_entry)
5104 __perf_event_exit_task(child_event, child_ctx, child);
5105
5106 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005107 group_entry)
5108 __perf_event_exit_task(child_event, child_ctx, child);
5109
5110 /*
5111 * If the last event was a group event, it will have appended all
5112 * its siblings to the list, but we obtained 'tmp' before that which
5113 * will still point to the list head terminating the iteration.
5114 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005115 if (!list_empty(&child_ctx->pinned_groups) ||
5116 !list_empty(&child_ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005117 goto again;
5118
5119 mutex_unlock(&child_ctx->mutex);
5120
5121 put_ctx(child_ctx);
5122}
5123
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005124static void perf_free_event(struct perf_event *event,
5125 struct perf_event_context *ctx)
5126{
5127 struct perf_event *parent = event->parent;
5128
5129 if (WARN_ON_ONCE(!parent))
5130 return;
5131
5132 mutex_lock(&parent->child_mutex);
5133 list_del_init(&event->child_list);
5134 mutex_unlock(&parent->child_mutex);
5135
5136 fput(parent->filp);
5137
5138 list_del_event(event, ctx);
5139 free_event(event);
5140}
5141
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005142/*
5143 * free an unexposed, unused context as created by inheritance by
5144 * init_task below, used by fork() in case of fail.
5145 */
5146void perf_event_free_task(struct task_struct *task)
5147{
5148 struct perf_event_context *ctx = task->perf_event_ctxp;
5149 struct perf_event *event, *tmp;
5150
5151 if (!ctx)
5152 return;
5153
5154 mutex_lock(&ctx->mutex);
5155again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005156 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5157 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005158
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005159 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5160 group_entry)
5161 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005162
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005163 if (!list_empty(&ctx->pinned_groups) ||
5164 !list_empty(&ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005165 goto again;
5166
5167 mutex_unlock(&ctx->mutex);
5168
5169 put_ctx(ctx);
5170}
5171
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005172static int
5173inherit_task_group(struct perf_event *event, struct task_struct *parent,
5174 struct perf_event_context *parent_ctx,
5175 struct task_struct *child,
5176 int *inherited_all)
5177{
5178 int ret;
5179 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5180
5181 if (!event->attr.inherit) {
5182 *inherited_all = 0;
5183 return 0;
5184 }
5185
5186 if (!child_ctx) {
5187 /*
5188 * This is executed from the parent task context, so
5189 * inherit events that have been marked for cloning.
5190 * First allocate and initialize a context for the
5191 * child.
5192 */
5193
5194 child_ctx = kzalloc(sizeof(struct perf_event_context),
5195 GFP_KERNEL);
5196 if (!child_ctx)
5197 return -ENOMEM;
5198
5199 __perf_event_init_context(child_ctx, child);
5200 child->perf_event_ctxp = child_ctx;
5201 get_task_struct(child);
5202 }
5203
5204 ret = inherit_group(event, parent, parent_ctx,
5205 child, child_ctx);
5206
5207 if (ret)
5208 *inherited_all = 0;
5209
5210 return ret;
5211}
5212
5213
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005214/*
5215 * Initialize the perf_event context in task_struct
5216 */
5217int perf_event_init_task(struct task_struct *child)
5218{
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005219 struct perf_event_context *child_ctx, *parent_ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005220 struct perf_event_context *cloned_ctx;
5221 struct perf_event *event;
5222 struct task_struct *parent = current;
5223 int inherited_all = 1;
5224 int ret = 0;
5225
5226 child->perf_event_ctxp = NULL;
5227
5228 mutex_init(&child->perf_event_mutex);
5229 INIT_LIST_HEAD(&child->perf_event_list);
5230
5231 if (likely(!parent->perf_event_ctxp))
5232 return 0;
5233
5234 /*
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005235 * If the parent's context is a clone, pin it so it won't get
5236 * swapped under us.
5237 */
5238 parent_ctx = perf_pin_task_context(parent);
5239
5240 /*
5241 * No need to check if parent_ctx != NULL here; since we saw
5242 * it non-NULL earlier, the only reason for it to become NULL
5243 * is if we exit, and since we're currently in the middle of
5244 * a fork we can't be exiting at the same time.
5245 */
5246
5247 /*
5248 * Lock the parent list. No need to lock the child - not PID
5249 * hashed yet and not running, so nobody can access it.
5250 */
5251 mutex_lock(&parent_ctx->mutex);
5252
5253 /*
5254 * We dont have to disable NMIs - we are only looking at
5255 * the list, not manipulating it:
5256 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005257 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5258 ret = inherit_task_group(event, parent, parent_ctx, child,
5259 &inherited_all);
5260 if (ret)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005261 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005262 }
5263
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005264 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5265 ret = inherit_task_group(event, parent, parent_ctx, child,
5266 &inherited_all);
5267 if (ret)
5268 break;
5269 }
5270
5271 child_ctx = child->perf_event_ctxp;
5272
Peter Zijlstra05cbaa22009-12-30 16:00:35 +01005273 if (child_ctx && inherited_all) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005274 /*
5275 * Mark the child context as a clone of the parent
5276 * context, or of whatever the parent is a clone of.
5277 * Note that if the parent is a clone, it could get
5278 * uncloned at any point, but that doesn't matter
5279 * because the list of events and the generation
5280 * count can't have changed since we took the mutex.
5281 */
5282 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5283 if (cloned_ctx) {
5284 child_ctx->parent_ctx = cloned_ctx;
5285 child_ctx->parent_gen = parent_ctx->parent_gen;
5286 } else {
5287 child_ctx->parent_ctx = parent_ctx;
5288 child_ctx->parent_gen = parent_ctx->generation;
5289 }
5290 get_ctx(child_ctx->parent_ctx);
5291 }
5292
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005293 mutex_unlock(&parent_ctx->mutex);
5294
5295 perf_unpin_context(parent_ctx);
5296
5297 return ret;
5298}
5299
5300static void __cpuinit perf_event_init_cpu(int cpu)
5301{
5302 struct perf_cpu_context *cpuctx;
5303
5304 cpuctx = &per_cpu(perf_cpu_context, cpu);
5305 __perf_event_init_context(&cpuctx->ctx, NULL);
5306
5307 spin_lock(&perf_resource_lock);
5308 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5309 spin_unlock(&perf_resource_lock);
5310
5311 hw_perf_event_setup(cpu);
5312}
5313
5314#ifdef CONFIG_HOTPLUG_CPU
5315static void __perf_event_exit_cpu(void *info)
5316{
5317 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5318 struct perf_event_context *ctx = &cpuctx->ctx;
5319 struct perf_event *event, *tmp;
5320
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005321 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5322 __perf_event_remove_from_context(event);
5323 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005324 __perf_event_remove_from_context(event);
5325}
5326static void perf_event_exit_cpu(int cpu)
5327{
5328 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5329 struct perf_event_context *ctx = &cpuctx->ctx;
5330
5331 mutex_lock(&ctx->mutex);
5332 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5333 mutex_unlock(&ctx->mutex);
5334}
5335#else
5336static inline void perf_event_exit_cpu(int cpu) { }
5337#endif
5338
5339static int __cpuinit
5340perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5341{
5342 unsigned int cpu = (long)hcpu;
5343
5344 switch (action) {
5345
5346 case CPU_UP_PREPARE:
5347 case CPU_UP_PREPARE_FROZEN:
5348 perf_event_init_cpu(cpu);
5349 break;
5350
5351 case CPU_ONLINE:
5352 case CPU_ONLINE_FROZEN:
5353 hw_perf_event_setup_online(cpu);
5354 break;
5355
5356 case CPU_DOWN_PREPARE:
5357 case CPU_DOWN_PREPARE_FROZEN:
5358 perf_event_exit_cpu(cpu);
5359 break;
5360
5361 default:
5362 break;
5363 }
5364
5365 return NOTIFY_OK;
5366}
5367
5368/*
5369 * This has to have a higher priority than migration_notifier in sched.c.
5370 */
5371static struct notifier_block __cpuinitdata perf_cpu_nb = {
5372 .notifier_call = perf_cpu_notify,
5373 .priority = 20,
5374};
5375
5376void __init perf_event_init(void)
5377{
5378 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5379 (void *)(long)smp_processor_id());
5380 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5381 (void *)(long)smp_processor_id());
5382 register_cpu_notifier(&perf_cpu_nb);
5383}
5384
5385static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5386{
5387 return sprintf(buf, "%d\n", perf_reserved_percpu);
5388}
5389
5390static ssize_t
5391perf_set_reserve_percpu(struct sysdev_class *class,
5392 const char *buf,
5393 size_t count)
5394{
5395 struct perf_cpu_context *cpuctx;
5396 unsigned long val;
5397 int err, cpu, mpt;
5398
5399 err = strict_strtoul(buf, 10, &val);
5400 if (err)
5401 return err;
5402 if (val > perf_max_events)
5403 return -EINVAL;
5404
5405 spin_lock(&perf_resource_lock);
5406 perf_reserved_percpu = val;
5407 for_each_online_cpu(cpu) {
5408 cpuctx = &per_cpu(perf_cpu_context, cpu);
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005409 raw_spin_lock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005410 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5411 perf_max_events - perf_reserved_percpu);
5412 cpuctx->max_pertask = mpt;
Thomas Gleixnere625cce12009-11-17 18:02:06 +01005413 raw_spin_unlock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005414 }
5415 spin_unlock(&perf_resource_lock);
5416
5417 return count;
5418}
5419
5420static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5421{
5422 return sprintf(buf, "%d\n", perf_overcommit);
5423}
5424
5425static ssize_t
5426perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5427{
5428 unsigned long val;
5429 int err;
5430
5431 err = strict_strtoul(buf, 10, &val);
5432 if (err)
5433 return err;
5434 if (val > 1)
5435 return -EINVAL;
5436
5437 spin_lock(&perf_resource_lock);
5438 perf_overcommit = val;
5439 spin_unlock(&perf_resource_lock);
5440
5441 return count;
5442}
5443
5444static SYSDEV_CLASS_ATTR(
5445 reserve_percpu,
5446 0644,
5447 perf_show_reserve_percpu,
5448 perf_set_reserve_percpu
5449 );
5450
5451static SYSDEV_CLASS_ATTR(
5452 overcommit,
5453 0644,
5454 perf_show_overcommit,
5455 perf_set_overcommit
5456 );
5457
5458static struct attribute *perfclass_attrs[] = {
5459 &attr_reserve_percpu.attr,
5460 &attr_overcommit.attr,
5461 NULL
5462};
5463
5464static struct attribute_group perfclass_attr_group = {
5465 .attrs = perfclass_attrs,
5466 .name = "perf_events",
5467};
5468
5469static int __init perf_event_sysfs_init(void)
5470{
5471 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5472 &perfclass_attr_group);
5473}
5474device_initcall(perf_event_sysfs_init);