David Dillow | 175859b | 2007-12-14 14:40:23 +0100 | [diff] [blame] | 1 | /* |
| 2 | * Driver for SiS7019 Audio Accelerator |
| 3 | * |
| 4 | * Copyright (C) 2004-2007, David Dillow |
| 5 | * Written by David Dillow <dave@thedillows.org> |
| 6 | * Inspired by the Trident 4D-WaveDX/NX driver. |
| 7 | * |
| 8 | * All rights reserved. |
| 9 | * |
| 10 | * This program is free software; you can redistribute it and/or modify |
| 11 | * it under the terms of the GNU General Public License as published by |
| 12 | * the Free Software Foundation, version 2. |
| 13 | * |
| 14 | * This program is distributed in the hope that it will be useful, |
| 15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 | * GNU General Public License for more details. |
| 18 | * |
| 19 | * You should have received a copy of the GNU General Public License |
| 20 | * along with this program; if not, write to the Free Software |
| 21 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 22 | */ |
| 23 | |
David Dillow | 175859b | 2007-12-14 14:40:23 +0100 | [diff] [blame] | 24 | #include <linux/init.h> |
| 25 | #include <linux/pci.h> |
| 26 | #include <linux/time.h> |
| 27 | #include <linux/moduleparam.h> |
| 28 | #include <linux/interrupt.h> |
| 29 | #include <linux/delay.h> |
| 30 | #include <sound/core.h> |
| 31 | #include <sound/ac97_codec.h> |
| 32 | #include <sound/initval.h> |
| 33 | #include "sis7019.h" |
| 34 | |
| 35 | MODULE_AUTHOR("David Dillow <dave@thedillows.org>"); |
| 36 | MODULE_DESCRIPTION("SiS7019"); |
| 37 | MODULE_LICENSE("GPL"); |
| 38 | MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}"); |
| 39 | |
| 40 | static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */ |
| 41 | static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */ |
| 42 | static int enable = 1; |
| 43 | |
| 44 | module_param(index, int, 0444); |
| 45 | MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator."); |
| 46 | module_param(id, charp, 0444); |
| 47 | MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator."); |
| 48 | module_param(enable, bool, 0444); |
| 49 | MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator."); |
| 50 | |
| 51 | static struct pci_device_id snd_sis7019_ids[] = { |
| 52 | { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) }, |
| 53 | { 0, } |
| 54 | }; |
| 55 | |
| 56 | MODULE_DEVICE_TABLE(pci, snd_sis7019_ids); |
| 57 | |
| 58 | /* There are three timing modes for the voices. |
| 59 | * |
| 60 | * For both playback and capture, when the buffer is one or two periods long, |
| 61 | * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt |
| 62 | * to let us know when the periods have ended. |
| 63 | * |
| 64 | * When performing playback with more than two periods per buffer, we set |
| 65 | * the "Stop Sample Offset" and tell the hardware to interrupt us when we |
| 66 | * reach it. We then update the offset and continue on until we are |
| 67 | * interrupted for the next period. |
| 68 | * |
| 69 | * Capture channels do not have a SSO, so we allocate a playback channel to |
| 70 | * use as a timer for the capture periods. We use the SSO on the playback |
| 71 | * channel to clock out virtual periods, and adjust the virtual period length |
| 72 | * to maintain synchronization. This algorithm came from the Trident driver. |
| 73 | * |
| 74 | * FIXME: It'd be nice to make use of some of the synth features in the |
| 75 | * hardware, but a woeful lack of documentation is a significant roadblock. |
| 76 | */ |
| 77 | struct voice { |
| 78 | u16 flags; |
| 79 | #define VOICE_IN_USE 1 |
| 80 | #define VOICE_CAPTURE 2 |
| 81 | #define VOICE_SSO_TIMING 4 |
| 82 | #define VOICE_SYNC_TIMING 8 |
| 83 | u16 sync_cso; |
| 84 | u16 period_size; |
| 85 | u16 buffer_size; |
| 86 | u16 sync_period_size; |
| 87 | u16 sync_buffer_size; |
| 88 | u32 sso; |
| 89 | u32 vperiod; |
| 90 | struct snd_pcm_substream *substream; |
| 91 | struct voice *timing; |
| 92 | void __iomem *ctrl_base; |
| 93 | void __iomem *wave_base; |
| 94 | void __iomem *sync_base; |
| 95 | int num; |
| 96 | }; |
| 97 | |
| 98 | /* We need four pages to store our wave parameters during a suspend. If |
| 99 | * we're not doing power management, we still need to allocate a page |
| 100 | * for the silence buffer. |
| 101 | */ |
| 102 | #ifdef CONFIG_PM |
| 103 | #define SIS_SUSPEND_PAGES 4 |
| 104 | #else |
| 105 | #define SIS_SUSPEND_PAGES 1 |
| 106 | #endif |
| 107 | |
| 108 | struct sis7019 { |
| 109 | unsigned long ioport; |
| 110 | void __iomem *ioaddr; |
| 111 | int irq; |
| 112 | int codecs_present; |
| 113 | |
| 114 | struct pci_dev *pci; |
| 115 | struct snd_pcm *pcm; |
| 116 | struct snd_card *card; |
| 117 | struct snd_ac97 *ac97[3]; |
| 118 | |
| 119 | /* Protect against more than one thread hitting the AC97 |
| 120 | * registers (in a more polite manner than pounding the hardware |
| 121 | * semaphore) |
| 122 | */ |
| 123 | struct mutex ac97_mutex; |
| 124 | |
| 125 | /* voice_lock protects allocation/freeing of the voice descriptions |
| 126 | */ |
| 127 | spinlock_t voice_lock; |
| 128 | |
| 129 | struct voice voices[64]; |
| 130 | struct voice capture_voice; |
| 131 | |
| 132 | /* Allocate pages to store the internal wave state during |
| 133 | * suspends. When we're operating, this can be used as a silence |
| 134 | * buffer for a timing channel. |
| 135 | */ |
| 136 | void *suspend_state[SIS_SUSPEND_PAGES]; |
| 137 | |
| 138 | int silence_users; |
| 139 | dma_addr_t silence_dma_addr; |
| 140 | }; |
| 141 | |
| 142 | #define SIS_PRIMARY_CODEC_PRESENT 0x0001 |
| 143 | #define SIS_SECONDARY_CODEC_PRESENT 0x0002 |
| 144 | #define SIS_TERTIARY_CODEC_PRESENT 0x0004 |
| 145 | |
| 146 | /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a |
| 147 | * documented range of 8-0xfff8 samples. Given that they are 0-based, |
| 148 | * that places our period/buffer range at 9-0xfff9 samples. That makes the |
| 149 | * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and |
| 150 | * max samples / min samples gives us the max periods in a buffer. |
| 151 | * |
| 152 | * We'll add a constraint upon open that limits the period and buffer sample |
| 153 | * size to values that are legal for the hardware. |
| 154 | */ |
| 155 | static struct snd_pcm_hardware sis_playback_hw_info = { |
| 156 | .info = (SNDRV_PCM_INFO_MMAP | |
| 157 | SNDRV_PCM_INFO_MMAP_VALID | |
| 158 | SNDRV_PCM_INFO_INTERLEAVED | |
| 159 | SNDRV_PCM_INFO_BLOCK_TRANSFER | |
| 160 | SNDRV_PCM_INFO_SYNC_START | |
| 161 | SNDRV_PCM_INFO_RESUME), |
| 162 | .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | |
| 163 | SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE), |
| 164 | .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS, |
| 165 | .rate_min = 4000, |
| 166 | .rate_max = 48000, |
| 167 | .channels_min = 1, |
| 168 | .channels_max = 2, |
| 169 | .buffer_bytes_max = (0xfff9 * 4), |
| 170 | .period_bytes_min = 9, |
| 171 | .period_bytes_max = (0xfff9 * 4), |
| 172 | .periods_min = 1, |
| 173 | .periods_max = (0xfff9 / 9), |
| 174 | }; |
| 175 | |
| 176 | static struct snd_pcm_hardware sis_capture_hw_info = { |
| 177 | .info = (SNDRV_PCM_INFO_MMAP | |
| 178 | SNDRV_PCM_INFO_MMAP_VALID | |
| 179 | SNDRV_PCM_INFO_INTERLEAVED | |
| 180 | SNDRV_PCM_INFO_BLOCK_TRANSFER | |
| 181 | SNDRV_PCM_INFO_SYNC_START | |
| 182 | SNDRV_PCM_INFO_RESUME), |
| 183 | .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 | |
| 184 | SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE), |
| 185 | .rates = SNDRV_PCM_RATE_48000, |
| 186 | .rate_min = 4000, |
| 187 | .rate_max = 48000, |
| 188 | .channels_min = 1, |
| 189 | .channels_max = 2, |
| 190 | .buffer_bytes_max = (0xfff9 * 4), |
| 191 | .period_bytes_min = 9, |
| 192 | .period_bytes_max = (0xfff9 * 4), |
| 193 | .periods_min = 1, |
| 194 | .periods_max = (0xfff9 / 9), |
| 195 | }; |
| 196 | |
| 197 | static void sis_update_sso(struct voice *voice, u16 period) |
| 198 | { |
| 199 | void __iomem *base = voice->ctrl_base; |
| 200 | |
| 201 | voice->sso += period; |
| 202 | if (voice->sso >= voice->buffer_size) |
| 203 | voice->sso -= voice->buffer_size; |
| 204 | |
| 205 | /* Enforce the documented hardware minimum offset */ |
| 206 | if (voice->sso < 8) |
| 207 | voice->sso = 8; |
| 208 | |
| 209 | /* The SSO is in the upper 16 bits of the register. */ |
| 210 | writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2); |
| 211 | } |
| 212 | |
| 213 | static void sis_update_voice(struct voice *voice) |
| 214 | { |
| 215 | if (voice->flags & VOICE_SSO_TIMING) { |
| 216 | sis_update_sso(voice, voice->period_size); |
| 217 | } else if (voice->flags & VOICE_SYNC_TIMING) { |
| 218 | int sync; |
| 219 | |
| 220 | /* If we've not hit the end of the virtual period, update |
| 221 | * our records and keep going. |
| 222 | */ |
| 223 | if (voice->vperiod > voice->period_size) { |
| 224 | voice->vperiod -= voice->period_size; |
| 225 | if (voice->vperiod < voice->period_size) |
| 226 | sis_update_sso(voice, voice->vperiod); |
| 227 | else |
| 228 | sis_update_sso(voice, voice->period_size); |
| 229 | return; |
| 230 | } |
| 231 | |
| 232 | /* Calculate our relative offset between the target and |
| 233 | * the actual CSO value. Since we're operating in a loop, |
| 234 | * if the value is more than half way around, we can |
| 235 | * consider ourselves wrapped. |
| 236 | */ |
| 237 | sync = voice->sync_cso; |
| 238 | sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO); |
| 239 | if (sync > (voice->sync_buffer_size / 2)) |
| 240 | sync -= voice->sync_buffer_size; |
| 241 | |
| 242 | /* If sync is positive, then we interrupted too early, and |
| 243 | * we'll need to come back in a few samples and try again. |
| 244 | * There's a minimum wait, as it takes some time for the DMA |
| 245 | * engine to startup, etc... |
| 246 | */ |
| 247 | if (sync > 0) { |
| 248 | if (sync < 16) |
| 249 | sync = 16; |
| 250 | sis_update_sso(voice, sync); |
| 251 | return; |
| 252 | } |
| 253 | |
| 254 | /* Ok, we interrupted right on time, or (hopefully) just |
| 255 | * a bit late. We'll adjst our next waiting period based |
| 256 | * on how close we got. |
| 257 | * |
| 258 | * We need to stay just behind the actual channel to ensure |
| 259 | * it really is past a period when we get our interrupt -- |
| 260 | * otherwise we'll fall into the early code above and have |
| 261 | * a minimum wait time, which makes us quite late here, |
| 262 | * eating into the user's time to refresh the buffer, esp. |
| 263 | * if using small periods. |
| 264 | * |
| 265 | * If we're less than 9 samples behind, we're on target. |
| 266 | */ |
| 267 | if (sync > -9) |
| 268 | voice->vperiod = voice->sync_period_size + 1; |
| 269 | else |
| 270 | voice->vperiod = voice->sync_period_size - 4; |
| 271 | |
| 272 | if (voice->vperiod < voice->buffer_size) { |
| 273 | sis_update_sso(voice, voice->vperiod); |
| 274 | voice->vperiod = 0; |
| 275 | } else |
| 276 | sis_update_sso(voice, voice->period_size); |
| 277 | |
| 278 | sync = voice->sync_cso + voice->sync_period_size; |
| 279 | if (sync >= voice->sync_buffer_size) |
| 280 | sync -= voice->sync_buffer_size; |
| 281 | voice->sync_cso = sync; |
| 282 | } |
| 283 | |
| 284 | snd_pcm_period_elapsed(voice->substream); |
| 285 | } |
| 286 | |
| 287 | static void sis_voice_irq(u32 status, struct voice *voice) |
| 288 | { |
| 289 | int bit; |
| 290 | |
| 291 | while (status) { |
| 292 | bit = __ffs(status); |
| 293 | status >>= bit + 1; |
| 294 | voice += bit; |
| 295 | sis_update_voice(voice); |
| 296 | voice++; |
| 297 | } |
| 298 | } |
| 299 | |
| 300 | static irqreturn_t sis_interrupt(int irq, void *dev) |
| 301 | { |
| 302 | struct sis7019 *sis = dev; |
| 303 | unsigned long io = sis->ioport; |
| 304 | struct voice *voice; |
| 305 | u32 intr, status; |
| 306 | |
| 307 | /* We only use the DMA interrupts, and we don't enable any other |
| 308 | * source of interrupts. But, it is possible to see an interupt |
| 309 | * status that didn't actually interrupt us, so eliminate anything |
| 310 | * we're not expecting to avoid falsely claiming an IRQ, and an |
| 311 | * ensuing endless loop. |
| 312 | */ |
| 313 | intr = inl(io + SIS_GISR); |
| 314 | intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS | |
| 315 | SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS; |
| 316 | if (!intr) |
| 317 | return IRQ_NONE; |
| 318 | |
| 319 | do { |
| 320 | status = inl(io + SIS_PISR_A); |
| 321 | if (status) { |
| 322 | sis_voice_irq(status, sis->voices); |
| 323 | outl(status, io + SIS_PISR_A); |
| 324 | } |
| 325 | |
| 326 | status = inl(io + SIS_PISR_B); |
| 327 | if (status) { |
| 328 | sis_voice_irq(status, &sis->voices[32]); |
| 329 | outl(status, io + SIS_PISR_B); |
| 330 | } |
| 331 | |
| 332 | status = inl(io + SIS_RISR); |
| 333 | if (status) { |
| 334 | voice = &sis->capture_voice; |
| 335 | if (!voice->timing) |
| 336 | snd_pcm_period_elapsed(voice->substream); |
| 337 | |
| 338 | outl(status, io + SIS_RISR); |
| 339 | } |
| 340 | |
| 341 | outl(intr, io + SIS_GISR); |
| 342 | intr = inl(io + SIS_GISR); |
| 343 | intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS | |
| 344 | SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS; |
| 345 | } while (intr); |
| 346 | |
| 347 | return IRQ_HANDLED; |
| 348 | } |
| 349 | |
| 350 | static u32 sis_rate_to_delta(unsigned int rate) |
| 351 | { |
| 352 | u32 delta; |
| 353 | |
| 354 | /* This was copied from the trident driver, but it seems its gotten |
| 355 | * around a bit... nevertheless, it works well. |
| 356 | * |
| 357 | * We special case 44100 and 8000 since rounding with the equation |
| 358 | * does not give us an accurate enough value. For 11025 and 22050 |
| 359 | * the equation gives us the best answer. All other frequencies will |
| 360 | * also use the equation. JDW |
| 361 | */ |
| 362 | if (rate == 44100) |
| 363 | delta = 0xeb3; |
| 364 | else if (rate == 8000) |
| 365 | delta = 0x2ab; |
| 366 | else if (rate == 48000) |
| 367 | delta = 0x1000; |
| 368 | else |
| 369 | delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff; |
| 370 | return delta; |
| 371 | } |
| 372 | |
| 373 | static void __sis_map_silence(struct sis7019 *sis) |
| 374 | { |
| 375 | /* Helper function: must hold sis->voice_lock on entry */ |
| 376 | if (!sis->silence_users) |
| 377 | sis->silence_dma_addr = pci_map_single(sis->pci, |
| 378 | sis->suspend_state[0], |
| 379 | 4096, PCI_DMA_TODEVICE); |
| 380 | sis->silence_users++; |
| 381 | } |
| 382 | |
| 383 | static void __sis_unmap_silence(struct sis7019 *sis) |
| 384 | { |
| 385 | /* Helper function: must hold sis->voice_lock on entry */ |
| 386 | sis->silence_users--; |
| 387 | if (!sis->silence_users) |
| 388 | pci_unmap_single(sis->pci, sis->silence_dma_addr, 4096, |
| 389 | PCI_DMA_TODEVICE); |
| 390 | } |
| 391 | |
| 392 | static void sis_free_voice(struct sis7019 *sis, struct voice *voice) |
| 393 | { |
| 394 | unsigned long flags; |
| 395 | |
| 396 | spin_lock_irqsave(&sis->voice_lock, flags); |
| 397 | if (voice->timing) { |
| 398 | __sis_unmap_silence(sis); |
| 399 | voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | |
| 400 | VOICE_SYNC_TIMING); |
| 401 | voice->timing = NULL; |
| 402 | } |
| 403 | voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING); |
| 404 | spin_unlock_irqrestore(&sis->voice_lock, flags); |
| 405 | } |
| 406 | |
| 407 | static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis) |
| 408 | { |
| 409 | /* Must hold the voice_lock on entry */ |
| 410 | struct voice *voice; |
| 411 | int i; |
| 412 | |
| 413 | for (i = 0; i < 64; i++) { |
| 414 | voice = &sis->voices[i]; |
| 415 | if (voice->flags & VOICE_IN_USE) |
| 416 | continue; |
| 417 | voice->flags |= VOICE_IN_USE; |
| 418 | goto found_one; |
| 419 | } |
| 420 | voice = NULL; |
| 421 | |
| 422 | found_one: |
| 423 | return voice; |
| 424 | } |
| 425 | |
| 426 | static struct voice *sis_alloc_playback_voice(struct sis7019 *sis) |
| 427 | { |
| 428 | struct voice *voice; |
| 429 | unsigned long flags; |
| 430 | |
| 431 | spin_lock_irqsave(&sis->voice_lock, flags); |
| 432 | voice = __sis_alloc_playback_voice(sis); |
| 433 | spin_unlock_irqrestore(&sis->voice_lock, flags); |
| 434 | |
| 435 | return voice; |
| 436 | } |
| 437 | |
| 438 | static int sis_alloc_timing_voice(struct snd_pcm_substream *substream, |
| 439 | struct snd_pcm_hw_params *hw_params) |
| 440 | { |
| 441 | struct sis7019 *sis = snd_pcm_substream_chip(substream); |
| 442 | struct snd_pcm_runtime *runtime = substream->runtime; |
| 443 | struct voice *voice = runtime->private_data; |
| 444 | unsigned int period_size, buffer_size; |
| 445 | unsigned long flags; |
| 446 | int needed; |
| 447 | |
| 448 | /* If there are one or two periods per buffer, we don't need a |
| 449 | * timing voice, as we can use the capture channel's interrupts |
| 450 | * to clock out the periods. |
| 451 | */ |
| 452 | period_size = params_period_size(hw_params); |
| 453 | buffer_size = params_buffer_size(hw_params); |
| 454 | needed = (period_size != buffer_size && |
| 455 | period_size != (buffer_size / 2)); |
| 456 | |
| 457 | if (needed && !voice->timing) { |
| 458 | spin_lock_irqsave(&sis->voice_lock, flags); |
| 459 | voice->timing = __sis_alloc_playback_voice(sis); |
| 460 | if (voice->timing) |
| 461 | __sis_map_silence(sis); |
| 462 | spin_unlock_irqrestore(&sis->voice_lock, flags); |
| 463 | if (!voice->timing) |
| 464 | return -ENOMEM; |
| 465 | voice->timing->substream = substream; |
| 466 | } else if (!needed && voice->timing) { |
| 467 | sis_free_voice(sis, voice); |
| 468 | voice->timing = NULL; |
| 469 | } |
| 470 | |
| 471 | return 0; |
| 472 | } |
| 473 | |
| 474 | static int sis_playback_open(struct snd_pcm_substream *substream) |
| 475 | { |
| 476 | struct sis7019 *sis = snd_pcm_substream_chip(substream); |
| 477 | struct snd_pcm_runtime *runtime = substream->runtime; |
| 478 | struct voice *voice; |
| 479 | |
| 480 | voice = sis_alloc_playback_voice(sis); |
| 481 | if (!voice) |
| 482 | return -EAGAIN; |
| 483 | |
| 484 | voice->substream = substream; |
| 485 | runtime->private_data = voice; |
| 486 | runtime->hw = sis_playback_hw_info; |
| 487 | snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, |
| 488 | 9, 0xfff9); |
| 489 | snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, |
| 490 | 9, 0xfff9); |
| 491 | snd_pcm_set_sync(substream); |
| 492 | return 0; |
| 493 | } |
| 494 | |
| 495 | static int sis_substream_close(struct snd_pcm_substream *substream) |
| 496 | { |
| 497 | struct sis7019 *sis = snd_pcm_substream_chip(substream); |
| 498 | struct snd_pcm_runtime *runtime = substream->runtime; |
| 499 | struct voice *voice = runtime->private_data; |
| 500 | |
| 501 | sis_free_voice(sis, voice); |
| 502 | return 0; |
| 503 | } |
| 504 | |
| 505 | static int sis_playback_hw_params(struct snd_pcm_substream *substream, |
| 506 | struct snd_pcm_hw_params *hw_params) |
| 507 | { |
| 508 | return snd_pcm_lib_malloc_pages(substream, |
| 509 | params_buffer_bytes(hw_params)); |
| 510 | } |
| 511 | |
| 512 | static int sis_hw_free(struct snd_pcm_substream *substream) |
| 513 | { |
| 514 | return snd_pcm_lib_free_pages(substream); |
| 515 | } |
| 516 | |
| 517 | static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream) |
| 518 | { |
| 519 | struct snd_pcm_runtime *runtime = substream->runtime; |
| 520 | struct voice *voice = runtime->private_data; |
| 521 | void __iomem *ctrl_base = voice->ctrl_base; |
| 522 | void __iomem *wave_base = voice->wave_base; |
| 523 | u32 format, dma_addr, control, sso_eso, delta, reg; |
| 524 | u16 leo; |
| 525 | |
| 526 | /* We rely on the PCM core to ensure that the parameters for this |
| 527 | * substream do not change on us while we're programming the HW. |
| 528 | */ |
| 529 | format = 0; |
| 530 | if (snd_pcm_format_width(runtime->format) == 8) |
| 531 | format |= SIS_PLAY_DMA_FORMAT_8BIT; |
| 532 | if (!snd_pcm_format_signed(runtime->format)) |
| 533 | format |= SIS_PLAY_DMA_FORMAT_UNSIGNED; |
| 534 | if (runtime->channels == 1) |
| 535 | format |= SIS_PLAY_DMA_FORMAT_MONO; |
| 536 | |
| 537 | /* The baseline setup is for a single period per buffer, and |
| 538 | * we add bells and whistles as needed from there. |
| 539 | */ |
| 540 | dma_addr = runtime->dma_addr; |
| 541 | leo = runtime->buffer_size - 1; |
| 542 | control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO; |
| 543 | sso_eso = leo; |
| 544 | |
| 545 | if (runtime->period_size == (runtime->buffer_size / 2)) { |
| 546 | control |= SIS_PLAY_DMA_INTR_AT_MLP; |
| 547 | } else if (runtime->period_size != runtime->buffer_size) { |
| 548 | voice->flags |= VOICE_SSO_TIMING; |
| 549 | voice->sso = runtime->period_size - 1; |
| 550 | voice->period_size = runtime->period_size; |
| 551 | voice->buffer_size = runtime->buffer_size; |
| 552 | |
| 553 | control &= ~SIS_PLAY_DMA_INTR_AT_LEO; |
| 554 | control |= SIS_PLAY_DMA_INTR_AT_SSO; |
| 555 | sso_eso |= (runtime->period_size - 1) << 16; |
| 556 | } |
| 557 | |
| 558 | delta = sis_rate_to_delta(runtime->rate); |
| 559 | |
| 560 | /* Ok, we're ready to go, set up the channel. |
| 561 | */ |
| 562 | writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO); |
| 563 | writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE); |
| 564 | writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL); |
| 565 | writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO); |
| 566 | |
| 567 | for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4) |
| 568 | writel(0, wave_base + reg); |
| 569 | |
| 570 | writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL); |
| 571 | writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION); |
| 572 | writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE | |
| 573 | SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE | |
| 574 | SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE, |
| 575 | wave_base + SIS_WAVE_CHANNEL_CONTROL); |
| 576 | |
| 577 | /* Force PCI writes to post. */ |
| 578 | readl(ctrl_base); |
| 579 | |
| 580 | return 0; |
| 581 | } |
| 582 | |
| 583 | static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd) |
| 584 | { |
| 585 | struct sis7019 *sis = snd_pcm_substream_chip(substream); |
| 586 | unsigned long io = sis->ioport; |
| 587 | struct snd_pcm_substream *s; |
| 588 | struct voice *voice; |
| 589 | void *chip; |
| 590 | int starting; |
| 591 | u32 record = 0; |
| 592 | u32 play[2] = { 0, 0 }; |
| 593 | |
| 594 | /* No locks needed, as the PCM core will hold the locks on the |
| 595 | * substreams, and the HW will only start/stop the indicated voices |
| 596 | * without changing the state of the others. |
| 597 | */ |
| 598 | switch (cmd) { |
| 599 | case SNDRV_PCM_TRIGGER_START: |
| 600 | case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: |
| 601 | case SNDRV_PCM_TRIGGER_RESUME: |
| 602 | starting = 1; |
| 603 | break; |
| 604 | case SNDRV_PCM_TRIGGER_STOP: |
| 605 | case SNDRV_PCM_TRIGGER_PAUSE_PUSH: |
| 606 | case SNDRV_PCM_TRIGGER_SUSPEND: |
| 607 | starting = 0; |
| 608 | break; |
| 609 | default: |
| 610 | return -EINVAL; |
| 611 | } |
| 612 | |
| 613 | snd_pcm_group_for_each_entry(s, substream) { |
| 614 | /* Make sure it is for us... */ |
| 615 | chip = snd_pcm_substream_chip(s); |
| 616 | if (chip != sis) |
| 617 | continue; |
| 618 | |
| 619 | voice = s->runtime->private_data; |
| 620 | if (voice->flags & VOICE_CAPTURE) { |
| 621 | record |= 1 << voice->num; |
| 622 | voice = voice->timing; |
| 623 | } |
| 624 | |
| 625 | /* voice could be NULL if this a recording stream, and it |
| 626 | * doesn't have an external timing channel. |
| 627 | */ |
| 628 | if (voice) |
| 629 | play[voice->num / 32] |= 1 << (voice->num & 0x1f); |
| 630 | |
| 631 | snd_pcm_trigger_done(s, substream); |
| 632 | } |
| 633 | |
| 634 | if (starting) { |
| 635 | if (record) |
| 636 | outl(record, io + SIS_RECORD_START_REG); |
| 637 | if (play[0]) |
| 638 | outl(play[0], io + SIS_PLAY_START_A_REG); |
| 639 | if (play[1]) |
| 640 | outl(play[1], io + SIS_PLAY_START_B_REG); |
| 641 | } else { |
| 642 | if (record) |
| 643 | outl(record, io + SIS_RECORD_STOP_REG); |
| 644 | if (play[0]) |
| 645 | outl(play[0], io + SIS_PLAY_STOP_A_REG); |
| 646 | if (play[1]) |
| 647 | outl(play[1], io + SIS_PLAY_STOP_B_REG); |
| 648 | } |
| 649 | return 0; |
| 650 | } |
| 651 | |
| 652 | static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream) |
| 653 | { |
| 654 | struct snd_pcm_runtime *runtime = substream->runtime; |
| 655 | struct voice *voice = runtime->private_data; |
| 656 | u32 cso; |
| 657 | |
| 658 | cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO); |
| 659 | cso &= 0xffff; |
| 660 | return cso; |
| 661 | } |
| 662 | |
| 663 | static int sis_capture_open(struct snd_pcm_substream *substream) |
| 664 | { |
| 665 | struct sis7019 *sis = snd_pcm_substream_chip(substream); |
| 666 | struct snd_pcm_runtime *runtime = substream->runtime; |
| 667 | struct voice *voice = &sis->capture_voice; |
| 668 | unsigned long flags; |
| 669 | |
| 670 | /* FIXME: The driver only supports recording from one channel |
| 671 | * at the moment, but it could support more. |
| 672 | */ |
| 673 | spin_lock_irqsave(&sis->voice_lock, flags); |
| 674 | if (voice->flags & VOICE_IN_USE) |
| 675 | voice = NULL; |
| 676 | else |
| 677 | voice->flags |= VOICE_IN_USE; |
| 678 | spin_unlock_irqrestore(&sis->voice_lock, flags); |
| 679 | |
| 680 | if (!voice) |
| 681 | return -EAGAIN; |
| 682 | |
| 683 | voice->substream = substream; |
| 684 | runtime->private_data = voice; |
| 685 | runtime->hw = sis_capture_hw_info; |
| 686 | runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC]; |
| 687 | snd_pcm_limit_hw_rates(runtime); |
| 688 | snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, |
| 689 | 9, 0xfff9); |
| 690 | snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, |
| 691 | 9, 0xfff9); |
| 692 | snd_pcm_set_sync(substream); |
| 693 | return 0; |
| 694 | } |
| 695 | |
| 696 | static int sis_capture_hw_params(struct snd_pcm_substream *substream, |
| 697 | struct snd_pcm_hw_params *hw_params) |
| 698 | { |
| 699 | struct sis7019 *sis = snd_pcm_substream_chip(substream); |
| 700 | int rc; |
| 701 | |
| 702 | rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE, |
| 703 | params_rate(hw_params)); |
| 704 | if (rc) |
| 705 | goto out; |
| 706 | |
| 707 | rc = snd_pcm_lib_malloc_pages(substream, |
| 708 | params_buffer_bytes(hw_params)); |
| 709 | if (rc < 0) |
| 710 | goto out; |
| 711 | |
| 712 | rc = sis_alloc_timing_voice(substream, hw_params); |
| 713 | |
| 714 | out: |
| 715 | return rc; |
| 716 | } |
| 717 | |
| 718 | static void sis_prepare_timing_voice(struct voice *voice, |
| 719 | struct snd_pcm_substream *substream) |
| 720 | { |
| 721 | struct sis7019 *sis = snd_pcm_substream_chip(substream); |
| 722 | struct snd_pcm_runtime *runtime = substream->runtime; |
| 723 | struct voice *timing = voice->timing; |
| 724 | void __iomem *play_base = timing->ctrl_base; |
| 725 | void __iomem *wave_base = timing->wave_base; |
| 726 | u16 buffer_size, period_size; |
| 727 | u32 format, control, sso_eso, delta; |
| 728 | u32 vperiod, sso, reg; |
| 729 | |
| 730 | /* Set our initial buffer and period as large as we can given a |
| 731 | * single page of silence. |
| 732 | */ |
| 733 | buffer_size = 4096 / runtime->channels; |
| 734 | buffer_size /= snd_pcm_format_size(runtime->format, 1); |
| 735 | period_size = buffer_size; |
| 736 | |
| 737 | /* Initially, we want to interrupt just a bit behind the end of |
| 738 | * the period we're clocking out. 10 samples seems to give a good |
| 739 | * delay. |
| 740 | * |
| 741 | * We want to spread our interrupts throughout the virtual period, |
| 742 | * so that we don't end up with two interrupts back to back at the |
| 743 | * end -- this helps minimize the effects of any jitter. Adjust our |
| 744 | * clocking period size so that the last period is at least a fourth |
| 745 | * of a full period. |
| 746 | * |
| 747 | * This is all moot if we don't need to use virtual periods. |
| 748 | */ |
| 749 | vperiod = runtime->period_size + 10; |
| 750 | if (vperiod > period_size) { |
| 751 | u16 tail = vperiod % period_size; |
| 752 | u16 quarter_period = period_size / 4; |
| 753 | |
| 754 | if (tail && tail < quarter_period) { |
| 755 | u16 loops = vperiod / period_size; |
| 756 | |
| 757 | tail = quarter_period - tail; |
| 758 | tail += loops - 1; |
| 759 | tail /= loops; |
| 760 | period_size -= tail; |
| 761 | } |
| 762 | |
| 763 | sso = period_size - 1; |
| 764 | } else { |
| 765 | /* The initial period will fit inside the buffer, so we |
| 766 | * don't need to use virtual periods -- disable them. |
| 767 | */ |
| 768 | period_size = runtime->period_size; |
| 769 | sso = vperiod - 1; |
| 770 | vperiod = 0; |
| 771 | } |
| 772 | |
| 773 | /* The interrupt handler implements the timing syncronization, so |
| 774 | * setup its state. |
| 775 | */ |
| 776 | timing->flags |= VOICE_SYNC_TIMING; |
| 777 | timing->sync_base = voice->ctrl_base; |
| 778 | timing->sync_cso = runtime->period_size - 1; |
| 779 | timing->sync_period_size = runtime->period_size; |
| 780 | timing->sync_buffer_size = runtime->buffer_size; |
| 781 | timing->period_size = period_size; |
| 782 | timing->buffer_size = buffer_size; |
| 783 | timing->sso = sso; |
| 784 | timing->vperiod = vperiod; |
| 785 | |
| 786 | /* Using unsigned samples with the all-zero silence buffer |
| 787 | * forces the output to the lower rail, killing playback. |
| 788 | * So ignore unsigned vs signed -- it doesn't change the timing. |
| 789 | */ |
| 790 | format = 0; |
| 791 | if (snd_pcm_format_width(runtime->format) == 8) |
| 792 | format = SIS_CAPTURE_DMA_FORMAT_8BIT; |
| 793 | if (runtime->channels == 1) |
| 794 | format |= SIS_CAPTURE_DMA_FORMAT_MONO; |
| 795 | |
| 796 | control = timing->buffer_size - 1; |
| 797 | control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO; |
| 798 | sso_eso = timing->buffer_size - 1; |
| 799 | sso_eso |= timing->sso << 16; |
| 800 | |
| 801 | delta = sis_rate_to_delta(runtime->rate); |
| 802 | |
| 803 | /* We've done the math, now configure the channel. |
| 804 | */ |
| 805 | writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO); |
| 806 | writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE); |
| 807 | writel(control, play_base + SIS_PLAY_DMA_CONTROL); |
| 808 | writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO); |
| 809 | |
| 810 | for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4) |
| 811 | writel(0, wave_base + reg); |
| 812 | |
| 813 | writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL); |
| 814 | writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION); |
| 815 | writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE | |
| 816 | SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE | |
| 817 | SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE, |
| 818 | wave_base + SIS_WAVE_CHANNEL_CONTROL); |
| 819 | } |
| 820 | |
| 821 | static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream) |
| 822 | { |
| 823 | struct snd_pcm_runtime *runtime = substream->runtime; |
| 824 | struct voice *voice = runtime->private_data; |
| 825 | void __iomem *rec_base = voice->ctrl_base; |
| 826 | u32 format, dma_addr, control; |
| 827 | u16 leo; |
| 828 | |
| 829 | /* We rely on the PCM core to ensure that the parameters for this |
| 830 | * substream do not change on us while we're programming the HW. |
| 831 | */ |
| 832 | format = 0; |
| 833 | if (snd_pcm_format_width(runtime->format) == 8) |
| 834 | format = SIS_CAPTURE_DMA_FORMAT_8BIT; |
| 835 | if (!snd_pcm_format_signed(runtime->format)) |
| 836 | format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED; |
| 837 | if (runtime->channels == 1) |
| 838 | format |= SIS_CAPTURE_DMA_FORMAT_MONO; |
| 839 | |
| 840 | dma_addr = runtime->dma_addr; |
| 841 | leo = runtime->buffer_size - 1; |
| 842 | control = leo | SIS_CAPTURE_DMA_LOOP; |
| 843 | |
| 844 | /* If we've got more than two periods per buffer, then we have |
| 845 | * use a timing voice to clock out the periods. Otherwise, we can |
| 846 | * use the capture channel's interrupts. |
| 847 | */ |
| 848 | if (voice->timing) { |
| 849 | sis_prepare_timing_voice(voice, substream); |
| 850 | } else { |
| 851 | control |= SIS_CAPTURE_DMA_INTR_AT_LEO; |
| 852 | if (runtime->period_size != runtime->buffer_size) |
| 853 | control |= SIS_CAPTURE_DMA_INTR_AT_MLP; |
| 854 | } |
| 855 | |
| 856 | writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO); |
| 857 | writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE); |
| 858 | writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL); |
| 859 | |
| 860 | /* Force the writes to post. */ |
| 861 | readl(rec_base); |
| 862 | |
| 863 | return 0; |
| 864 | } |
| 865 | |
| 866 | static struct snd_pcm_ops sis_playback_ops = { |
| 867 | .open = sis_playback_open, |
| 868 | .close = sis_substream_close, |
| 869 | .ioctl = snd_pcm_lib_ioctl, |
| 870 | .hw_params = sis_playback_hw_params, |
| 871 | .hw_free = sis_hw_free, |
| 872 | .prepare = sis_pcm_playback_prepare, |
| 873 | .trigger = sis_pcm_trigger, |
| 874 | .pointer = sis_pcm_pointer, |
| 875 | }; |
| 876 | |
| 877 | static struct snd_pcm_ops sis_capture_ops = { |
| 878 | .open = sis_capture_open, |
| 879 | .close = sis_substream_close, |
| 880 | .ioctl = snd_pcm_lib_ioctl, |
| 881 | .hw_params = sis_capture_hw_params, |
| 882 | .hw_free = sis_hw_free, |
| 883 | .prepare = sis_pcm_capture_prepare, |
| 884 | .trigger = sis_pcm_trigger, |
| 885 | .pointer = sis_pcm_pointer, |
| 886 | }; |
| 887 | |
| 888 | static int __devinit sis_pcm_create(struct sis7019 *sis) |
| 889 | { |
| 890 | struct snd_pcm *pcm; |
| 891 | int rc; |
| 892 | |
| 893 | /* We have 64 voices, and the driver currently records from |
| 894 | * only one channel, though that could change in the future. |
| 895 | */ |
| 896 | rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm); |
| 897 | if (rc) |
| 898 | return rc; |
| 899 | |
| 900 | pcm->private_data = sis; |
| 901 | strcpy(pcm->name, "SiS7019"); |
| 902 | sis->pcm = pcm; |
| 903 | |
| 904 | snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops); |
| 905 | snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops); |
| 906 | |
| 907 | /* Try to preallocate some memory, but it's not the end of the |
| 908 | * world if this fails. |
| 909 | */ |
| 910 | snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, |
| 911 | snd_dma_pci_data(sis->pci), 64*1024, 128*1024); |
| 912 | |
| 913 | return 0; |
| 914 | } |
| 915 | |
| 916 | static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd) |
| 917 | { |
| 918 | unsigned long io = sis->ioport; |
| 919 | unsigned short val = 0xffff; |
| 920 | u16 status; |
| 921 | u16 rdy; |
| 922 | int count; |
| 923 | const static u16 codec_ready[3] = { |
| 924 | SIS_AC97_STATUS_CODEC_READY, |
| 925 | SIS_AC97_STATUS_CODEC2_READY, |
| 926 | SIS_AC97_STATUS_CODEC3_READY, |
| 927 | }; |
| 928 | |
| 929 | rdy = codec_ready[codec]; |
| 930 | |
| 931 | |
| 932 | /* Get the AC97 semaphore -- software first, so we don't spin |
| 933 | * pounding out IO reads on the hardware semaphore... |
| 934 | */ |
| 935 | mutex_lock(&sis->ac97_mutex); |
| 936 | |
| 937 | count = 0xffff; |
| 938 | while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count) |
| 939 | udelay(1); |
| 940 | |
| 941 | if (!count) |
| 942 | goto timeout; |
| 943 | |
| 944 | /* ... and wait for any outstanding commands to complete ... |
| 945 | */ |
| 946 | count = 0xffff; |
| 947 | do { |
| 948 | status = inw(io + SIS_AC97_STATUS); |
| 949 | if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY)) |
| 950 | break; |
| 951 | |
| 952 | udelay(1); |
| 953 | } while (--count); |
| 954 | |
| 955 | if (!count) |
| 956 | goto timeout_sema; |
| 957 | |
| 958 | /* ... before sending our command and waiting for it to finish ... |
| 959 | */ |
| 960 | outl(cmd, io + SIS_AC97_CMD); |
| 961 | udelay(10); |
| 962 | |
| 963 | count = 0xffff; |
| 964 | while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count) |
| 965 | udelay(1); |
| 966 | |
| 967 | /* ... and reading the results (if any). |
| 968 | */ |
| 969 | val = inl(io + SIS_AC97_CMD) >> 16; |
| 970 | |
| 971 | timeout_sema: |
| 972 | outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA); |
| 973 | timeout: |
| 974 | mutex_unlock(&sis->ac97_mutex); |
| 975 | |
| 976 | if (!count) { |
| 977 | printk(KERN_ERR "sis7019: ac97 codec %d timeout cmd 0x%08x\n", |
| 978 | codec, cmd); |
| 979 | } |
| 980 | |
| 981 | return val; |
| 982 | } |
| 983 | |
| 984 | static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg, |
| 985 | unsigned short val) |
| 986 | { |
| 987 | const static u32 cmd[3] = { |
| 988 | SIS_AC97_CMD_CODEC_WRITE, |
| 989 | SIS_AC97_CMD_CODEC2_WRITE, |
| 990 | SIS_AC97_CMD_CODEC3_WRITE, |
| 991 | }; |
| 992 | sis_ac97_rw(ac97->private_data, ac97->num, |
| 993 | (val << 16) | (reg << 8) | cmd[ac97->num]); |
| 994 | } |
| 995 | |
| 996 | static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg) |
| 997 | { |
| 998 | const static u32 cmd[3] = { |
| 999 | SIS_AC97_CMD_CODEC_READ, |
| 1000 | SIS_AC97_CMD_CODEC2_READ, |
| 1001 | SIS_AC97_CMD_CODEC3_READ, |
| 1002 | }; |
| 1003 | return sis_ac97_rw(ac97->private_data, ac97->num, |
| 1004 | (reg << 8) | cmd[ac97->num]); |
| 1005 | } |
| 1006 | |
| 1007 | static int __devinit sis_mixer_create(struct sis7019 *sis) |
| 1008 | { |
| 1009 | struct snd_ac97_bus *bus; |
| 1010 | struct snd_ac97_template ac97; |
| 1011 | static struct snd_ac97_bus_ops ops = { |
| 1012 | .write = sis_ac97_write, |
| 1013 | .read = sis_ac97_read, |
| 1014 | }; |
| 1015 | int rc; |
| 1016 | |
| 1017 | memset(&ac97, 0, sizeof(ac97)); |
| 1018 | ac97.private_data = sis; |
| 1019 | |
| 1020 | rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus); |
| 1021 | if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) |
| 1022 | rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]); |
| 1023 | ac97.num = 1; |
| 1024 | if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)) |
| 1025 | rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]); |
| 1026 | ac97.num = 2; |
| 1027 | if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)) |
| 1028 | rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]); |
| 1029 | |
| 1030 | /* If we return an error here, then snd_card_free() should |
| 1031 | * free up any ac97 codecs that got created, as well as the bus. |
| 1032 | */ |
| 1033 | return rc; |
| 1034 | } |
| 1035 | |
| 1036 | static void sis_free_suspend(struct sis7019 *sis) |
| 1037 | { |
| 1038 | int i; |
| 1039 | |
| 1040 | for (i = 0; i < SIS_SUSPEND_PAGES; i++) |
| 1041 | kfree(sis->suspend_state[i]); |
| 1042 | } |
| 1043 | |
| 1044 | static int sis_chip_free(struct sis7019 *sis) |
| 1045 | { |
| 1046 | /* Reset the chip, and disable all interrputs. |
| 1047 | */ |
| 1048 | outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR); |
| 1049 | udelay(10); |
| 1050 | outl(0, sis->ioport + SIS_GCR); |
| 1051 | outl(0, sis->ioport + SIS_GIER); |
| 1052 | |
| 1053 | /* Now, free everything we allocated. |
| 1054 | */ |
| 1055 | if (sis->irq >= 0) |
| 1056 | free_irq(sis->irq, sis); |
| 1057 | |
| 1058 | if (sis->ioaddr) |
| 1059 | iounmap(sis->ioaddr); |
| 1060 | |
| 1061 | pci_release_regions(sis->pci); |
| 1062 | pci_disable_device(sis->pci); |
| 1063 | |
| 1064 | sis_free_suspend(sis); |
| 1065 | return 0; |
| 1066 | } |
| 1067 | |
| 1068 | static int sis_dev_free(struct snd_device *dev) |
| 1069 | { |
| 1070 | struct sis7019 *sis = dev->device_data; |
| 1071 | return sis_chip_free(sis); |
| 1072 | } |
| 1073 | |
| 1074 | static int sis_chip_init(struct sis7019 *sis) |
| 1075 | { |
| 1076 | unsigned long io = sis->ioport; |
| 1077 | void __iomem *ioaddr = sis->ioaddr; |
| 1078 | u16 status; |
| 1079 | int count; |
| 1080 | int i; |
| 1081 | |
| 1082 | /* Reset the audio controller |
| 1083 | */ |
| 1084 | outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR); |
| 1085 | udelay(10); |
| 1086 | outl(0, io + SIS_GCR); |
| 1087 | |
| 1088 | /* Get the AC-link semaphore, and reset the codecs |
| 1089 | */ |
| 1090 | count = 0xffff; |
| 1091 | while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count) |
| 1092 | udelay(1); |
| 1093 | |
| 1094 | if (!count) |
| 1095 | return -EIO; |
| 1096 | |
| 1097 | outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD); |
| 1098 | udelay(10); |
| 1099 | |
| 1100 | count = 0xffff; |
| 1101 | while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count) |
| 1102 | udelay(1); |
| 1103 | |
| 1104 | /* Now that we've finished the reset, find out what's attached. |
| 1105 | */ |
| 1106 | status = inl(io + SIS_AC97_STATUS); |
| 1107 | if (status & SIS_AC97_STATUS_CODEC_READY) |
| 1108 | sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT; |
| 1109 | if (status & SIS_AC97_STATUS_CODEC2_READY) |
| 1110 | sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT; |
| 1111 | if (status & SIS_AC97_STATUS_CODEC3_READY) |
| 1112 | sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT; |
| 1113 | |
| 1114 | /* All done, let go of the semaphore, and check for errors |
| 1115 | */ |
| 1116 | outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA); |
| 1117 | if (!sis->codecs_present || !count) |
| 1118 | return -EIO; |
| 1119 | |
| 1120 | /* Let the hardware know that the audio driver is alive, |
| 1121 | * and enable PCM slots on the AC-link for L/R playback (3 & 4) and |
| 1122 | * record channels. We're going to want to use Variable Rate Audio |
| 1123 | * for recording, to avoid needlessly resampling from 48kHZ. |
| 1124 | */ |
| 1125 | outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF); |
| 1126 | outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE | |
| 1127 | SIS_AC97_CONF_PCM_CAP_MIC_ENABLE | |
| 1128 | SIS_AC97_CONF_PCM_CAP_LR_ENABLE | |
| 1129 | SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF); |
| 1130 | |
| 1131 | /* All AC97 PCM slots should be sourced from sub-mixer 0. |
| 1132 | */ |
| 1133 | outl(0, io + SIS_AC97_PSR); |
| 1134 | |
| 1135 | /* There is only one valid DMA setup for a PCI environment. |
| 1136 | */ |
| 1137 | outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR); |
| 1138 | |
| 1139 | /* Reset the syncronization groups for all of the channels |
| 1140 | * to be asyncronous. If we start doing SPDIF or 5.1 sound, etc. |
| 1141 | * we'll need to change how we handle these. Until then, we just |
| 1142 | * assign sub-mixer 0 to all playback channels, and avoid any |
| 1143 | * attenuation on the audio. |
| 1144 | */ |
| 1145 | outl(0, io + SIS_PLAY_SYNC_GROUP_A); |
| 1146 | outl(0, io + SIS_PLAY_SYNC_GROUP_B); |
| 1147 | outl(0, io + SIS_PLAY_SYNC_GROUP_C); |
| 1148 | outl(0, io + SIS_PLAY_SYNC_GROUP_D); |
| 1149 | outl(0, io + SIS_MIXER_SYNC_GROUP); |
| 1150 | |
| 1151 | for (i = 0; i < 64; i++) { |
| 1152 | writel(i, SIS_MIXER_START_ADDR(ioaddr, i)); |
| 1153 | writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN | |
| 1154 | SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i)); |
| 1155 | } |
| 1156 | |
| 1157 | /* Don't attenuate any audio set for the wave amplifier. |
| 1158 | * |
| 1159 | * FIXME: Maximum attenuation is set for the music amp, which will |
| 1160 | * need to change if we start using the synth engine. |
| 1161 | */ |
| 1162 | outl(0xffff0000, io + SIS_WEVCR); |
| 1163 | |
| 1164 | /* Ensure that the wave engine is in normal operating mode. |
| 1165 | */ |
| 1166 | outl(0, io + SIS_WECCR); |
| 1167 | |
| 1168 | /* Go ahead and enable the DMA interrupts. They won't go live |
| 1169 | * until we start a channel. |
| 1170 | */ |
| 1171 | outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE | |
| 1172 | SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER); |
| 1173 | |
| 1174 | return 0; |
| 1175 | } |
| 1176 | |
| 1177 | #ifdef CONFIG_PM |
| 1178 | static int sis_suspend(struct pci_dev *pci, pm_message_t state) |
| 1179 | { |
| 1180 | struct snd_card *card = pci_get_drvdata(pci); |
| 1181 | struct sis7019 *sis = card->private_data; |
| 1182 | void __iomem *ioaddr = sis->ioaddr; |
| 1183 | int i; |
| 1184 | |
| 1185 | snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); |
| 1186 | snd_pcm_suspend_all(sis->pcm); |
| 1187 | if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) |
| 1188 | snd_ac97_suspend(sis->ac97[0]); |
| 1189 | if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT) |
| 1190 | snd_ac97_suspend(sis->ac97[1]); |
| 1191 | if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT) |
| 1192 | snd_ac97_suspend(sis->ac97[2]); |
| 1193 | |
| 1194 | /* snd_pcm_suspend_all() stopped all channels, so we're quiescent. |
| 1195 | */ |
| 1196 | if (sis->irq >= 0) { |
| 1197 | synchronize_irq(sis->irq); |
| 1198 | free_irq(sis->irq, sis); |
| 1199 | sis->irq = -1; |
| 1200 | } |
| 1201 | |
| 1202 | /* Save the internal state away |
| 1203 | */ |
| 1204 | for (i = 0; i < 4; i++) { |
| 1205 | memcpy_fromio(sis->suspend_state[i], ioaddr, 4096); |
| 1206 | ioaddr += 4096; |
| 1207 | } |
| 1208 | |
| 1209 | pci_disable_device(pci); |
| 1210 | pci_save_state(pci); |
| 1211 | pci_set_power_state(pci, pci_choose_state(pci, state)); |
| 1212 | return 0; |
| 1213 | } |
| 1214 | |
| 1215 | static int sis_resume(struct pci_dev *pci) |
| 1216 | { |
| 1217 | struct snd_card *card = pci_get_drvdata(pci); |
| 1218 | struct sis7019 *sis = card->private_data; |
| 1219 | void __iomem *ioaddr = sis->ioaddr; |
| 1220 | int i; |
| 1221 | |
| 1222 | pci_set_power_state(pci, PCI_D0); |
| 1223 | pci_restore_state(pci); |
| 1224 | |
| 1225 | if (pci_enable_device(pci) < 0) { |
| 1226 | printk(KERN_ERR "sis7019: unable to re-enable device\n"); |
| 1227 | goto error; |
| 1228 | } |
| 1229 | |
| 1230 | if (sis_chip_init(sis)) { |
| 1231 | printk(KERN_ERR "sis7019: unable to re-init controller\n"); |
| 1232 | goto error; |
| 1233 | } |
| 1234 | |
| 1235 | if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED, |
| 1236 | card->shortname, sis)) { |
| 1237 | printk(KERN_ERR "sis7019: unable to regain IRQ %d\n", pci->irq); |
| 1238 | goto error; |
| 1239 | } |
| 1240 | |
| 1241 | /* Restore saved state, then clear out the page we use for the |
| 1242 | * silence buffer. |
| 1243 | */ |
| 1244 | for (i = 0; i < 4; i++) { |
| 1245 | memcpy_toio(ioaddr, sis->suspend_state[i], 4096); |
| 1246 | ioaddr += 4096; |
| 1247 | } |
| 1248 | |
| 1249 | memset(sis->suspend_state[0], 0, 4096); |
| 1250 | |
| 1251 | sis->irq = pci->irq; |
| 1252 | pci_set_master(pci); |
| 1253 | |
| 1254 | if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT) |
| 1255 | snd_ac97_resume(sis->ac97[0]); |
| 1256 | if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT) |
| 1257 | snd_ac97_resume(sis->ac97[1]); |
| 1258 | if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT) |
| 1259 | snd_ac97_resume(sis->ac97[2]); |
| 1260 | |
| 1261 | snd_power_change_state(card, SNDRV_CTL_POWER_D0); |
| 1262 | return 0; |
| 1263 | |
| 1264 | error: |
| 1265 | snd_card_disconnect(card); |
| 1266 | return -EIO; |
| 1267 | } |
| 1268 | #endif /* CONFIG_PM */ |
| 1269 | |
| 1270 | static int sis_alloc_suspend(struct sis7019 *sis) |
| 1271 | { |
| 1272 | int i; |
| 1273 | |
| 1274 | /* We need 16K to store the internal wave engine state during a |
| 1275 | * suspend, but we don't need it to be contiguous, so play nice |
| 1276 | * with the memory system. We'll also use this area for a silence |
| 1277 | * buffer. |
| 1278 | */ |
| 1279 | for (i = 0; i < SIS_SUSPEND_PAGES; i++) { |
| 1280 | sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL); |
| 1281 | if (!sis->suspend_state[i]) |
| 1282 | return -ENOMEM; |
| 1283 | } |
| 1284 | memset(sis->suspend_state[0], 0, 4096); |
| 1285 | |
| 1286 | return 0; |
| 1287 | } |
| 1288 | |
| 1289 | static int __devinit sis_chip_create(struct snd_card *card, |
| 1290 | struct pci_dev *pci) |
| 1291 | { |
| 1292 | struct sis7019 *sis = card->private_data; |
| 1293 | struct voice *voice; |
| 1294 | static struct snd_device_ops ops = { |
| 1295 | .dev_free = sis_dev_free, |
| 1296 | }; |
| 1297 | int rc; |
| 1298 | int i; |
| 1299 | |
| 1300 | rc = pci_enable_device(pci); |
| 1301 | if (rc) |
| 1302 | goto error_out; |
| 1303 | |
| 1304 | if (pci_set_dma_mask(pci, DMA_30BIT_MASK) < 0) { |
| 1305 | printk(KERN_ERR "sis7019: architecture does not support " |
| 1306 | "30-bit PCI busmaster DMA"); |
| 1307 | goto error_out_enabled; |
| 1308 | } |
| 1309 | |
| 1310 | memset(sis, 0, sizeof(*sis)); |
| 1311 | mutex_init(&sis->ac97_mutex); |
| 1312 | spin_lock_init(&sis->voice_lock); |
| 1313 | sis->card = card; |
| 1314 | sis->pci = pci; |
| 1315 | sis->irq = -1; |
| 1316 | sis->ioport = pci_resource_start(pci, 0); |
| 1317 | |
| 1318 | rc = pci_request_regions(pci, "SiS7019"); |
| 1319 | if (rc) { |
| 1320 | printk(KERN_ERR "sis7019: unable request regions\n"); |
| 1321 | goto error_out_enabled; |
| 1322 | } |
| 1323 | |
| 1324 | rc = -EIO; |
| 1325 | sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000); |
| 1326 | if (!sis->ioaddr) { |
| 1327 | printk(KERN_ERR "sis7019: unable to remap MMIO, aborting\n"); |
| 1328 | goto error_out_cleanup; |
| 1329 | } |
| 1330 | |
| 1331 | rc = sis_alloc_suspend(sis); |
| 1332 | if (rc < 0) { |
| 1333 | printk(KERN_ERR "sis7019: unable to allocate state storage\n"); |
| 1334 | goto error_out_cleanup; |
| 1335 | } |
| 1336 | |
| 1337 | rc = sis_chip_init(sis); |
| 1338 | if (rc) |
| 1339 | goto error_out_cleanup; |
| 1340 | |
| 1341 | if (request_irq(pci->irq, sis_interrupt, IRQF_DISABLED|IRQF_SHARED, |
| 1342 | card->shortname, sis)) { |
| 1343 | printk(KERN_ERR "unable to allocate irq %d\n", sis->irq); |
| 1344 | goto error_out_cleanup; |
| 1345 | } |
| 1346 | |
| 1347 | sis->irq = pci->irq; |
| 1348 | pci_set_master(pci); |
| 1349 | |
| 1350 | for (i = 0; i < 64; i++) { |
| 1351 | voice = &sis->voices[i]; |
| 1352 | voice->num = i; |
| 1353 | voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i); |
| 1354 | voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i); |
| 1355 | } |
| 1356 | |
| 1357 | voice = &sis->capture_voice; |
| 1358 | voice->flags = VOICE_CAPTURE; |
| 1359 | voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN; |
| 1360 | voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num); |
| 1361 | |
| 1362 | rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops); |
| 1363 | if (rc) |
| 1364 | goto error_out_cleanup; |
| 1365 | |
| 1366 | snd_card_set_dev(card, &pci->dev); |
| 1367 | |
| 1368 | return 0; |
| 1369 | |
| 1370 | error_out_cleanup: |
| 1371 | sis_chip_free(sis); |
| 1372 | |
| 1373 | error_out_enabled: |
| 1374 | pci_disable_device(pci); |
| 1375 | |
| 1376 | error_out: |
| 1377 | return rc; |
| 1378 | } |
| 1379 | |
| 1380 | static int __devinit snd_sis7019_probe(struct pci_dev *pci, |
| 1381 | const struct pci_device_id *pci_id) |
| 1382 | { |
| 1383 | struct snd_card *card; |
| 1384 | struct sis7019 *sis; |
| 1385 | int rc; |
| 1386 | |
| 1387 | rc = -ENOENT; |
| 1388 | if (!enable) |
| 1389 | goto error_out; |
| 1390 | |
| 1391 | rc = -ENOMEM; |
| 1392 | card = snd_card_new(index, id, THIS_MODULE, sizeof(*sis)); |
| 1393 | if (!card) |
| 1394 | goto error_out; |
| 1395 | |
| 1396 | strcpy(card->driver, "SiS7019"); |
| 1397 | strcpy(card->shortname, "SiS7019"); |
| 1398 | rc = sis_chip_create(card, pci); |
| 1399 | if (rc) |
| 1400 | goto card_error_out; |
| 1401 | |
| 1402 | sis = card->private_data; |
| 1403 | |
| 1404 | rc = sis_mixer_create(sis); |
| 1405 | if (rc) |
| 1406 | goto card_error_out; |
| 1407 | |
| 1408 | rc = sis_pcm_create(sis); |
| 1409 | if (rc) |
| 1410 | goto card_error_out; |
| 1411 | |
| 1412 | snprintf(card->longname, sizeof(card->longname), |
| 1413 | "%s Audio Accelerator with %s at 0x%lx, irq %d", |
| 1414 | card->shortname, snd_ac97_get_short_name(sis->ac97[0]), |
| 1415 | sis->ioport, sis->irq); |
| 1416 | |
| 1417 | rc = snd_card_register(card); |
| 1418 | if (rc) |
| 1419 | goto card_error_out; |
| 1420 | |
| 1421 | pci_set_drvdata(pci, card); |
| 1422 | return 0; |
| 1423 | |
| 1424 | card_error_out: |
| 1425 | snd_card_free(card); |
| 1426 | |
| 1427 | error_out: |
| 1428 | return rc; |
| 1429 | } |
| 1430 | |
| 1431 | static void __devexit snd_sis7019_remove(struct pci_dev *pci) |
| 1432 | { |
| 1433 | snd_card_free(pci_get_drvdata(pci)); |
| 1434 | pci_set_drvdata(pci, NULL); |
| 1435 | } |
| 1436 | |
| 1437 | static struct pci_driver sis7019_driver = { |
| 1438 | .name = "SiS7019", |
| 1439 | .id_table = snd_sis7019_ids, |
| 1440 | .probe = snd_sis7019_probe, |
| 1441 | .remove = __devexit_p(snd_sis7019_remove), |
| 1442 | |
| 1443 | #ifdef CONFIG_PM |
| 1444 | .suspend = sis_suspend, |
| 1445 | .resume = sis_resume, |
| 1446 | #endif |
| 1447 | }; |
| 1448 | |
| 1449 | static int __init sis7019_init(void) |
| 1450 | { |
| 1451 | return pci_register_driver(&sis7019_driver); |
| 1452 | } |
| 1453 | |
| 1454 | static void __exit sis7019_exit(void) |
| 1455 | { |
| 1456 | pci_unregister_driver(&sis7019_driver); |
| 1457 | } |
| 1458 | |
| 1459 | module_init(sis7019_init); |
| 1460 | module_exit(sis7019_exit); |