blob: 7e5bf593d386d5d6f5294187fc3196a4207612e3 [file] [log] [blame]
Ben Dooks5b7d70c2009-06-02 14:58:06 +01001/* linux/drivers/usb/gadget/s3c-hsotg.c
2 *
3 * Copyright 2008 Openmoko, Inc.
4 * Copyright 2008 Simtec Electronics
5 * Ben Dooks <ben@simtec.co.uk>
6 * http://armlinux.simtec.co.uk/
7 *
8 * S3C USB2.0 High-speed / OtG driver
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13*/
14
15#include <linux/kernel.h>
16#include <linux/module.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
19#include <linux/platform_device.h>
20#include <linux/dma-mapping.h>
21#include <linux/debugfs.h>
22#include <linux/seq_file.h>
23#include <linux/delay.h>
24#include <linux/io.h>
25
26#include <linux/usb/ch9.h>
27#include <linux/usb/gadget.h>
28
29#include <mach/map.h>
30
31#include <plat/regs-usb-hsotg-phy.h>
32#include <plat/regs-usb-hsotg.h>
33#include <plat/regs-sys.h>
34#include <plat/udc-hs.h>
35
36#define DMA_ADDR_INVALID (~((dma_addr_t)0))
37
38/* EP0_MPS_LIMIT
39 *
40 * Unfortunately there seems to be a limit of the amount of data that can
41 * be transfered by IN transactions on EP0. This is either 127 bytes or 3
42 * packets (which practially means 1 packet and 63 bytes of data) when the
43 * MPS is set to 64.
44 *
45 * This means if we are wanting to move >127 bytes of data, we need to
46 * split the transactions up, but just doing one packet at a time does
47 * not work (this may be an implicit DATA0 PID on first packet of the
48 * transaction) and doing 2 packets is outside the controller's limits.
49 *
50 * If we try to lower the MPS size for EP0, then no transfers work properly
51 * for EP0, and the system will fail basic enumeration. As no cause for this
52 * has currently been found, we cannot support any large IN transfers for
53 * EP0.
54 */
55#define EP0_MPS_LIMIT 64
56
57struct s3c_hsotg;
58struct s3c_hsotg_req;
59
60/**
61 * struct s3c_hsotg_ep - driver endpoint definition.
62 * @ep: The gadget layer representation of the endpoint.
63 * @name: The driver generated name for the endpoint.
64 * @queue: Queue of requests for this endpoint.
65 * @parent: Reference back to the parent device structure.
66 * @req: The current request that the endpoint is processing. This is
67 * used to indicate an request has been loaded onto the endpoint
68 * and has yet to be completed (maybe due to data move, or simply
69 * awaiting an ack from the core all the data has been completed).
70 * @debugfs: File entry for debugfs file for this endpoint.
71 * @lock: State lock to protect contents of endpoint.
72 * @dir_in: Set to true if this endpoint is of the IN direction, which
73 * means that it is sending data to the Host.
74 * @index: The index for the endpoint registers.
75 * @name: The name array passed to the USB core.
76 * @halted: Set if the endpoint has been halted.
77 * @periodic: Set if this is a periodic ep, such as Interrupt
78 * @sent_zlp: Set if we've sent a zero-length packet.
79 * @total_data: The total number of data bytes done.
80 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
81 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
82 * @last_load: The offset of data for the last start of request.
83 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
84 *
85 * This is the driver's state for each registered enpoint, allowing it
86 * to keep track of transactions that need doing. Each endpoint has a
87 * lock to protect the state, to try and avoid using an overall lock
88 * for the host controller as much as possible.
89 *
90 * For periodic IN endpoints, we have fifo_size and fifo_load to try
91 * and keep track of the amount of data in the periodic FIFO for each
92 * of these as we don't have a status register that tells us how much
93 * is in each of them.
94 */
95struct s3c_hsotg_ep {
96 struct usb_ep ep;
97 struct list_head queue;
98 struct s3c_hsotg *parent;
99 struct s3c_hsotg_req *req;
100 struct dentry *debugfs;
101
102 spinlock_t lock;
103
104 unsigned long total_data;
105 unsigned int size_loaded;
106 unsigned int last_load;
107 unsigned int fifo_load;
108 unsigned short fifo_size;
109
110 unsigned char dir_in;
111 unsigned char index;
112
113 unsigned int halted:1;
114 unsigned int periodic:1;
115 unsigned int sent_zlp:1;
116
117 char name[10];
118};
119
120#define S3C_HSOTG_EPS (8+1) /* limit to 9 for the moment */
121
122/**
123 * struct s3c_hsotg - driver state.
124 * @dev: The parent device supplied to the probe function
125 * @driver: USB gadget driver
126 * @plat: The platform specific configuration data.
127 * @regs: The memory area mapped for accessing registers.
128 * @regs_res: The resource that was allocated when claiming register space.
129 * @irq: The IRQ number we are using
130 * @debug_root: root directrory for debugfs.
131 * @debug_file: main status file for debugfs.
132 * @debug_fifo: FIFO status file for debugfs.
133 * @ep0_reply: Request used for ep0 reply.
134 * @ep0_buff: Buffer for EP0 reply data, if needed.
135 * @ctrl_buff: Buffer for EP0 control requests.
136 * @ctrl_req: Request for EP0 control packets.
137 * @eps: The endpoints being supplied to the gadget framework
138 */
139struct s3c_hsotg {
140 struct device *dev;
141 struct usb_gadget_driver *driver;
142 struct s3c_hsotg_plat *plat;
143
144 void __iomem *regs;
145 struct resource *regs_res;
146 int irq;
147
148 struct dentry *debug_root;
149 struct dentry *debug_file;
150 struct dentry *debug_fifo;
151
152 struct usb_request *ep0_reply;
153 struct usb_request *ctrl_req;
154 u8 ep0_buff[8];
155 u8 ctrl_buff[8];
156
157 struct usb_gadget gadget;
158 struct s3c_hsotg_ep eps[];
159};
160
161/**
162 * struct s3c_hsotg_req - data transfer request
163 * @req: The USB gadget request
164 * @queue: The list of requests for the endpoint this is queued for.
165 * @in_progress: Has already had size/packets written to core
166 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
167 */
168struct s3c_hsotg_req {
169 struct usb_request req;
170 struct list_head queue;
171 unsigned char in_progress;
172 unsigned char mapped;
173};
174
175/* conversion functions */
176static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
177{
178 return container_of(req, struct s3c_hsotg_req, req);
179}
180
181static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
182{
183 return container_of(ep, struct s3c_hsotg_ep, ep);
184}
185
186static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
187{
188 return container_of(gadget, struct s3c_hsotg, gadget);
189}
190
191static inline void __orr32(void __iomem *ptr, u32 val)
192{
193 writel(readl(ptr) | val, ptr);
194}
195
196static inline void __bic32(void __iomem *ptr, u32 val)
197{
198 writel(readl(ptr) & ~val, ptr);
199}
200
201/* forward decleration of functions */
202static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
203
204/**
205 * using_dma - return the DMA status of the driver.
206 * @hsotg: The driver state.
207 *
208 * Return true if we're using DMA.
209 *
210 * Currently, we have the DMA support code worked into everywhere
211 * that needs it, but the AMBA DMA implementation in the hardware can
212 * only DMA from 32bit aligned addresses. This means that gadgets such
213 * as the CDC Ethernet cannot work as they often pass packets which are
214 * not 32bit aligned.
215 *
216 * Unfortunately the choice to use DMA or not is global to the controller
217 * and seems to be only settable when the controller is being put through
218 * a core reset. This means we either need to fix the gadgets to take
219 * account of DMA alignment, or add bounce buffers (yuerk).
220 *
221 * Until this issue is sorted out, we always return 'false'.
222 */
223static inline bool using_dma(struct s3c_hsotg *hsotg)
224{
225 return false; /* support is not complete */
226}
227
228/**
229 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
230 * @hsotg: The device state
231 * @ints: A bitmask of the interrupts to enable
232 */
233static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
234{
235 u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
236 u32 new_gsintmsk;
237
238 new_gsintmsk = gsintmsk | ints;
239
240 if (new_gsintmsk != gsintmsk) {
241 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
242 writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
243 }
244}
245
246/**
247 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
248 * @hsotg: The device state
249 * @ints: A bitmask of the interrupts to enable
250 */
251static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
252{
253 u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
254 u32 new_gsintmsk;
255
256 new_gsintmsk = gsintmsk & ~ints;
257
258 if (new_gsintmsk != gsintmsk)
259 writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
260}
261
262/**
263 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
264 * @hsotg: The device state
265 * @ep: The endpoint index
266 * @dir_in: True if direction is in.
267 * @en: The enable value, true to enable
268 *
269 * Set or clear the mask for an individual endpoint's interrupt
270 * request.
271 */
272static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
273 unsigned int ep, unsigned int dir_in,
274 unsigned int en)
275{
276 unsigned long flags;
277 u32 bit = 1 << ep;
278 u32 daint;
279
280 if (!dir_in)
281 bit <<= 16;
282
283 local_irq_save(flags);
284 daint = readl(hsotg->regs + S3C_DAINTMSK);
285 if (en)
286 daint |= bit;
287 else
288 daint &= ~bit;
289 writel(daint, hsotg->regs + S3C_DAINTMSK);
290 local_irq_restore(flags);
291}
292
293/**
294 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
295 * @hsotg: The device instance.
296 */
297static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
298{
299 /* the ryu 2.6.24 release ahs
300 writel(0x1C0, hsotg->regs + S3C_GRXFSIZ);
301 writel(S3C_GNPTXFSIZ_NPTxFStAddr(0x200) |
302 S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
303 hsotg->regs + S3C_GNPTXFSIZ);
304 */
305
306 /* set FIFO sizes to 2048/0x1C0 */
307
308 writel(2048, hsotg->regs + S3C_GRXFSIZ);
309 writel(S3C_GNPTXFSIZ_NPTxFStAddr(2048) |
310 S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
311 hsotg->regs + S3C_GNPTXFSIZ);
312}
313
314/**
315 * @ep: USB endpoint to allocate request for.
316 * @flags: Allocation flags
317 *
318 * Allocate a new USB request structure appropriate for the specified endpoint
319 */
Mark Brown0978f8c2010-01-18 13:18:35 +0000320static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
321 gfp_t flags)
Ben Dooks5b7d70c2009-06-02 14:58:06 +0100322{
323 struct s3c_hsotg_req *req;
324
325 req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
326 if (!req)
327 return NULL;
328
329 INIT_LIST_HEAD(&req->queue);
330
331 req->req.dma = DMA_ADDR_INVALID;
332 return &req->req;
333}
334
335/**
336 * is_ep_periodic - return true if the endpoint is in periodic mode.
337 * @hs_ep: The endpoint to query.
338 *
339 * Returns true if the endpoint is in periodic mode, meaning it is being
340 * used for an Interrupt or ISO transfer.
341 */
342static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
343{
344 return hs_ep->periodic;
345}
346
347/**
348 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
349 * @hsotg: The device state.
350 * @hs_ep: The endpoint for the request
351 * @hs_req: The request being processed.
352 *
353 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
354 * of a request to ensure the buffer is ready for access by the caller.
355*/
356static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
357 struct s3c_hsotg_ep *hs_ep,
358 struct s3c_hsotg_req *hs_req)
359{
360 struct usb_request *req = &hs_req->req;
361 enum dma_data_direction dir;
362
363 dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
364
365 /* ignore this if we're not moving any data */
366 if (hs_req->req.length == 0)
367 return;
368
369 if (hs_req->mapped) {
370 /* we mapped this, so unmap and remove the dma */
371
372 dma_unmap_single(hsotg->dev, req->dma, req->length, dir);
373
374 req->dma = DMA_ADDR_INVALID;
375 hs_req->mapped = 0;
376 } else {
FUJITA Tomonori5b520252010-01-25 11:07:19 +0900377 dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
Ben Dooks5b7d70c2009-06-02 14:58:06 +0100378 }
379}
380
381/**
382 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
383 * @hsotg: The controller state.
384 * @hs_ep: The endpoint we're going to write for.
385 * @hs_req: The request to write data for.
386 *
387 * This is called when the TxFIFO has some space in it to hold a new
388 * transmission and we have something to give it. The actual setup of
389 * the data size is done elsewhere, so all we have to do is to actually
390 * write the data.
391 *
392 * The return value is zero if there is more space (or nothing was done)
393 * otherwise -ENOSPC is returned if the FIFO space was used up.
394 *
395 * This routine is only needed for PIO
396*/
397static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
398 struct s3c_hsotg_ep *hs_ep,
399 struct s3c_hsotg_req *hs_req)
400{
401 bool periodic = is_ep_periodic(hs_ep);
402 u32 gnptxsts = readl(hsotg->regs + S3C_GNPTXSTS);
403 int buf_pos = hs_req->req.actual;
404 int to_write = hs_ep->size_loaded;
405 void *data;
406 int can_write;
407 int pkt_round;
408
409 to_write -= (buf_pos - hs_ep->last_load);
410
411 /* if there's nothing to write, get out early */
412 if (to_write == 0)
413 return 0;
414
415 if (periodic) {
416 u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
417 int size_left;
418 int size_done;
419
420 /* work out how much data was loaded so we can calculate
421 * how much data is left in the fifo. */
422
423 size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
424
425 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
426 __func__, size_left,
427 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
428
429 /* how much of the data has moved */
430 size_done = hs_ep->size_loaded - size_left;
431
432 /* how much data is left in the fifo */
433 can_write = hs_ep->fifo_load - size_done;
434 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
435 __func__, can_write);
436
437 can_write = hs_ep->fifo_size - can_write;
438 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
439 __func__, can_write);
440
441 if (can_write <= 0) {
442 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
443 return -ENOSPC;
444 }
445 } else {
446 if (S3C_GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
447 dev_dbg(hsotg->dev,
448 "%s: no queue slots available (0x%08x)\n",
449 __func__, gnptxsts);
450
451 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
452 return -ENOSPC;
453 }
454
455 can_write = S3C_GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
456 }
457
458 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
459 __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);
460
461 /* limit to 512 bytes of data, it seems at least on the non-periodic
462 * FIFO, requests of >512 cause the endpoint to get stuck with a
463 * fragment of the end of the transfer in it.
464 */
465 if (can_write > 512)
466 can_write = 512;
467
468 /* see if we can write data */
469
470 if (to_write > can_write) {
471 to_write = can_write;
472 pkt_round = to_write % hs_ep->ep.maxpacket;
473
474 /* Not sure, but we probably shouldn't be writing partial
475 * packets into the FIFO, so round the write down to an
476 * exact number of packets.
477 *
478 * Note, we do not currently check to see if we can ever
479 * write a full packet or not to the FIFO.
480 */
481
482 if (pkt_round)
483 to_write -= pkt_round;
484
485 /* enable correct FIFO interrupt to alert us when there
486 * is more room left. */
487
488 s3c_hsotg_en_gsint(hsotg,
489 periodic ? S3C_GINTSTS_PTxFEmp :
490 S3C_GINTSTS_NPTxFEmp);
491 }
492
493 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
494 to_write, hs_req->req.length, can_write, buf_pos);
495
496 if (to_write <= 0)
497 return -ENOSPC;
498
499 hs_req->req.actual = buf_pos + to_write;
500 hs_ep->total_data += to_write;
501
502 if (periodic)
503 hs_ep->fifo_load += to_write;
504
505 to_write = DIV_ROUND_UP(to_write, 4);
506 data = hs_req->req.buf + buf_pos;
507
508 writesl(hsotg->regs + S3C_EPFIFO(hs_ep->index), data, to_write);
509
510 return (to_write >= can_write) ? -ENOSPC : 0;
511}
512
513/**
514 * get_ep_limit - get the maximum data legnth for this endpoint
515 * @hs_ep: The endpoint
516 *
517 * Return the maximum data that can be queued in one go on a given endpoint
518 * so that transfers that are too long can be split.
519 */
520static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
521{
522 int index = hs_ep->index;
523 unsigned maxsize;
524 unsigned maxpkt;
525
526 if (index != 0) {
527 maxsize = S3C_DxEPTSIZ_XferSize_LIMIT + 1;
528 maxpkt = S3C_DxEPTSIZ_PktCnt_LIMIT + 1;
529 } else {
530 if (hs_ep->dir_in) {
531 /* maxsize = S3C_DIEPTSIZ0_XferSize_LIMIT + 1; */
532 maxsize = 64+64+1;
533 maxpkt = S3C_DIEPTSIZ0_PktCnt_LIMIT + 1;
534 } else {
535 maxsize = 0x3f;
536 maxpkt = 2;
537 }
538 }
539
540 /* we made the constant loading easier above by using +1 */
541 maxpkt--;
542 maxsize--;
543
544 /* constrain by packet count if maxpkts*pktsize is greater
545 * than the length register size. */
546
547 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
548 maxsize = maxpkt * hs_ep->ep.maxpacket;
549
550 return maxsize;
551}
552
553/**
554 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
555 * @hsotg: The controller state.
556 * @hs_ep: The endpoint to process a request for
557 * @hs_req: The request to start.
558 * @continuing: True if we are doing more for the current request.
559 *
560 * Start the given request running by setting the endpoint registers
561 * appropriately, and writing any data to the FIFOs.
562 */
563static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
564 struct s3c_hsotg_ep *hs_ep,
565 struct s3c_hsotg_req *hs_req,
566 bool continuing)
567{
568 struct usb_request *ureq = &hs_req->req;
569 int index = hs_ep->index;
570 int dir_in = hs_ep->dir_in;
571 u32 epctrl_reg;
572 u32 epsize_reg;
573 u32 epsize;
574 u32 ctrl;
575 unsigned length;
576 unsigned packets;
577 unsigned maxreq;
578
579 if (index != 0) {
580 if (hs_ep->req && !continuing) {
581 dev_err(hsotg->dev, "%s: active request\n", __func__);
582 WARN_ON(1);
583 return;
584 } else if (hs_ep->req != hs_req && continuing) {
585 dev_err(hsotg->dev,
586 "%s: continue different req\n", __func__);
587 WARN_ON(1);
588 return;
589 }
590 }
591
592 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
593 epsize_reg = dir_in ? S3C_DIEPTSIZ(index) : S3C_DOEPTSIZ(index);
594
595 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
596 __func__, readl(hsotg->regs + epctrl_reg), index,
597 hs_ep->dir_in ? "in" : "out");
598
599 length = ureq->length - ureq->actual;
600
601 if (0)
602 dev_dbg(hsotg->dev,
603 "REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
604 ureq->buf, length, ureq->dma,
605 ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
606
607 maxreq = get_ep_limit(hs_ep);
608 if (length > maxreq) {
609 int round = maxreq % hs_ep->ep.maxpacket;
610
611 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
612 __func__, length, maxreq, round);
613
614 /* round down to multiple of packets */
615 if (round)
616 maxreq -= round;
617
618 length = maxreq;
619 }
620
621 if (length)
622 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
623 else
624 packets = 1; /* send one packet if length is zero. */
625
626 if (dir_in && index != 0)
627 epsize = S3C_DxEPTSIZ_MC(1);
628 else
629 epsize = 0;
630
631 if (index != 0 && ureq->zero) {
632 /* test for the packets being exactly right for the
633 * transfer */
634
635 if (length == (packets * hs_ep->ep.maxpacket))
636 packets++;
637 }
638
639 epsize |= S3C_DxEPTSIZ_PktCnt(packets);
640 epsize |= S3C_DxEPTSIZ_XferSize(length);
641
642 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
643 __func__, packets, length, ureq->length, epsize, epsize_reg);
644
645 /* store the request as the current one we're doing */
646 hs_ep->req = hs_req;
647
648 /* write size / packets */
649 writel(epsize, hsotg->regs + epsize_reg);
650
651 ctrl = readl(hsotg->regs + epctrl_reg);
652
653 if (ctrl & S3C_DxEPCTL_Stall) {
654 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
655
656 /* not sure what we can do here, if it is EP0 then we should
657 * get this cleared once the endpoint has transmitted the
658 * STALL packet, otherwise it needs to be cleared by the
659 * host.
660 */
661 }
662
663 if (using_dma(hsotg)) {
664 unsigned int dma_reg;
665
666 /* write DMA address to control register, buffer already
667 * synced by s3c_hsotg_ep_queue(). */
668
669 dma_reg = dir_in ? S3C_DIEPDMA(index) : S3C_DOEPDMA(index);
670 writel(ureq->dma, hsotg->regs + dma_reg);
671
672 dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
673 __func__, ureq->dma, dma_reg);
674 }
675
676 ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
677 ctrl |= S3C_DxEPCTL_USBActEp;
678 ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
679
680 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
681 writel(ctrl, hsotg->regs + epctrl_reg);
682
683 /* set these, it seems that DMA support increments past the end
684 * of the packet buffer so we need to calculate the length from
685 * this information. */
686 hs_ep->size_loaded = length;
687 hs_ep->last_load = ureq->actual;
688
689 if (dir_in && !using_dma(hsotg)) {
690 /* set these anyway, we may need them for non-periodic in */
691 hs_ep->fifo_load = 0;
692
693 s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
694 }
695
696 /* clear the INTknTXFEmpMsk when we start request, more as a aide
697 * to debugging to see what is going on. */
698 if (dir_in)
699 writel(S3C_DIEPMSK_INTknTXFEmpMsk,
700 hsotg->regs + S3C_DIEPINT(index));
701
702 /* Note, trying to clear the NAK here causes problems with transmit
703 * on the S3C6400 ending up with the TXFIFO becomming full. */
704
705 /* check ep is enabled */
706 if (!(readl(hsotg->regs + epctrl_reg) & S3C_DxEPCTL_EPEna))
707 dev_warn(hsotg->dev,
708 "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
709 index, readl(hsotg->regs + epctrl_reg));
710
711 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
712 __func__, readl(hsotg->regs + epctrl_reg));
713}
714
715/**
716 * s3c_hsotg_map_dma - map the DMA memory being used for the request
717 * @hsotg: The device state.
718 * @hs_ep: The endpoint the request is on.
719 * @req: The request being processed.
720 *
721 * We've been asked to queue a request, so ensure that the memory buffer
722 * is correctly setup for DMA. If we've been passed an extant DMA address
723 * then ensure the buffer has been synced to memory. If our buffer has no
724 * DMA memory, then we map the memory and mark our request to allow us to
725 * cleanup on completion.
726*/
727static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
728 struct s3c_hsotg_ep *hs_ep,
729 struct usb_request *req)
730{
731 enum dma_data_direction dir;
732 struct s3c_hsotg_req *hs_req = our_req(req);
733
734 dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
735
736 /* if the length is zero, ignore the DMA data */
737 if (hs_req->req.length == 0)
738 return 0;
739
740 if (req->dma == DMA_ADDR_INVALID) {
741 dma_addr_t dma;
742
743 dma = dma_map_single(hsotg->dev, req->buf, req->length, dir);
744
745 if (unlikely(dma_mapping_error(hsotg->dev, dma)))
746 goto dma_error;
747
748 if (dma & 3) {
749 dev_err(hsotg->dev, "%s: unaligned dma buffer\n",
750 __func__);
751
752 dma_unmap_single(hsotg->dev, dma, req->length, dir);
753 return -EINVAL;
754 }
755
756 hs_req->mapped = 1;
757 req->dma = dma;
758 } else {
FUJITA Tomonori5b520252010-01-25 11:07:19 +0900759 dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
Ben Dooks5b7d70c2009-06-02 14:58:06 +0100760 hs_req->mapped = 0;
761 }
762
763 return 0;
764
765dma_error:
766 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
767 __func__, req->buf, req->length);
768
769 return -EIO;
770}
771
772static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
773 gfp_t gfp_flags)
774{
775 struct s3c_hsotg_req *hs_req = our_req(req);
776 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
777 struct s3c_hsotg *hs = hs_ep->parent;
778 unsigned long irqflags;
779 bool first;
780
781 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
782 ep->name, req, req->length, req->buf, req->no_interrupt,
783 req->zero, req->short_not_ok);
784
785 /* initialise status of the request */
786 INIT_LIST_HEAD(&hs_req->queue);
787 req->actual = 0;
788 req->status = -EINPROGRESS;
789
790 /* if we're using DMA, sync the buffers as necessary */
791 if (using_dma(hs)) {
792 int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
793 if (ret)
794 return ret;
795 }
796
797 spin_lock_irqsave(&hs_ep->lock, irqflags);
798
799 first = list_empty(&hs_ep->queue);
800 list_add_tail(&hs_req->queue, &hs_ep->queue);
801
802 if (first)
803 s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
804
805 spin_unlock_irqrestore(&hs_ep->lock, irqflags);
806
807 return 0;
808}
809
810static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
811 struct usb_request *req)
812{
813 struct s3c_hsotg_req *hs_req = our_req(req);
814
815 kfree(hs_req);
816}
817
818/**
819 * s3c_hsotg_complete_oursetup - setup completion callback
820 * @ep: The endpoint the request was on.
821 * @req: The request completed.
822 *
823 * Called on completion of any requests the driver itself
824 * submitted that need cleaning up.
825 */
826static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
827 struct usb_request *req)
828{
829 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
830 struct s3c_hsotg *hsotg = hs_ep->parent;
831
832 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
833
834 s3c_hsotg_ep_free_request(ep, req);
835}
836
837/**
838 * ep_from_windex - convert control wIndex value to endpoint
839 * @hsotg: The driver state.
840 * @windex: The control request wIndex field (in host order).
841 *
842 * Convert the given wIndex into a pointer to an driver endpoint
843 * structure, or return NULL if it is not a valid endpoint.
844*/
845static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
846 u32 windex)
847{
848 struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
849 int dir = (windex & USB_DIR_IN) ? 1 : 0;
850 int idx = windex & 0x7F;
851
852 if (windex >= 0x100)
853 return NULL;
854
855 if (idx > S3C_HSOTG_EPS)
856 return NULL;
857
858 if (idx && ep->dir_in != dir)
859 return NULL;
860
861 return ep;
862}
863
864/**
865 * s3c_hsotg_send_reply - send reply to control request
866 * @hsotg: The device state
867 * @ep: Endpoint 0
868 * @buff: Buffer for request
869 * @length: Length of reply.
870 *
871 * Create a request and queue it on the given endpoint. This is useful as
872 * an internal method of sending replies to certain control requests, etc.
873 */
874static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
875 struct s3c_hsotg_ep *ep,
876 void *buff,
877 int length)
878{
879 struct usb_request *req;
880 int ret;
881
882 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
883
884 req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
885 hsotg->ep0_reply = req;
886 if (!req) {
887 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
888 return -ENOMEM;
889 }
890
891 req->buf = hsotg->ep0_buff;
892 req->length = length;
893 req->zero = 1; /* always do zero-length final transfer */
894 req->complete = s3c_hsotg_complete_oursetup;
895
896 if (length)
897 memcpy(req->buf, buff, length);
898 else
899 ep->sent_zlp = 1;
900
901 ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
902 if (ret) {
903 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
904 return ret;
905 }
906
907 return 0;
908}
909
910/**
911 * s3c_hsotg_process_req_status - process request GET_STATUS
912 * @hsotg: The device state
913 * @ctrl: USB control request
914 */
915static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
916 struct usb_ctrlrequest *ctrl)
917{
918 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
919 struct s3c_hsotg_ep *ep;
920 __le16 reply;
921 int ret;
922
923 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
924
925 if (!ep0->dir_in) {
926 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
927 return -EINVAL;
928 }
929
930 switch (ctrl->bRequestType & USB_RECIP_MASK) {
931 case USB_RECIP_DEVICE:
932 reply = cpu_to_le16(0); /* bit 0 => self powered,
933 * bit 1 => remote wakeup */
934 break;
935
936 case USB_RECIP_INTERFACE:
937 /* currently, the data result should be zero */
938 reply = cpu_to_le16(0);
939 break;
940
941 case USB_RECIP_ENDPOINT:
942 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
943 if (!ep)
944 return -ENOENT;
945
946 reply = cpu_to_le16(ep->halted ? 1 : 0);
947 break;
948
949 default:
950 return 0;
951 }
952
953 if (le16_to_cpu(ctrl->wLength) != 2)
954 return -EINVAL;
955
956 ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
957 if (ret) {
958 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
959 return ret;
960 }
961
962 return 1;
963}
964
965static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
966
967/**
968 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
969 * @hsotg: The device state
970 * @ctrl: USB control request
971 */
972static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
973 struct usb_ctrlrequest *ctrl)
974{
975 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
976 struct s3c_hsotg_ep *ep;
977
978 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
979 __func__, set ? "SET" : "CLEAR");
980
981 if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
982 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
983 if (!ep) {
984 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
985 __func__, le16_to_cpu(ctrl->wIndex));
986 return -ENOENT;
987 }
988
989 switch (le16_to_cpu(ctrl->wValue)) {
990 case USB_ENDPOINT_HALT:
991 s3c_hsotg_ep_sethalt(&ep->ep, set);
992 break;
993
994 default:
995 return -ENOENT;
996 }
997 } else
998 return -ENOENT; /* currently only deal with endpoint */
999
1000 return 1;
1001}
1002
1003/**
1004 * s3c_hsotg_process_control - process a control request
1005 * @hsotg: The device state
1006 * @ctrl: The control request received
1007 *
1008 * The controller has received the SETUP phase of a control request, and
1009 * needs to work out what to do next (and whether to pass it on to the
1010 * gadget driver).
1011 */
1012static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
1013 struct usb_ctrlrequest *ctrl)
1014{
1015 struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1016 int ret = 0;
1017 u32 dcfg;
1018
1019 ep0->sent_zlp = 0;
1020
1021 dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
1022 ctrl->bRequest, ctrl->bRequestType,
1023 ctrl->wValue, ctrl->wLength);
1024
1025 /* record the direction of the request, for later use when enquing
1026 * packets onto EP0. */
1027
1028 ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
1029 dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
1030
1031 /* if we've no data with this request, then the last part of the
1032 * transaction is going to implicitly be IN. */
1033 if (ctrl->wLength == 0)
1034 ep0->dir_in = 1;
1035
1036 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1037 switch (ctrl->bRequest) {
1038 case USB_REQ_SET_ADDRESS:
1039 dcfg = readl(hsotg->regs + S3C_DCFG);
1040 dcfg &= ~S3C_DCFG_DevAddr_MASK;
1041 dcfg |= ctrl->wValue << S3C_DCFG_DevAddr_SHIFT;
1042 writel(dcfg, hsotg->regs + S3C_DCFG);
1043
1044 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1045
1046 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1047 return;
1048
1049 case USB_REQ_GET_STATUS:
1050 ret = s3c_hsotg_process_req_status(hsotg, ctrl);
1051 break;
1052
1053 case USB_REQ_CLEAR_FEATURE:
1054 case USB_REQ_SET_FEATURE:
1055 ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
1056 break;
1057 }
1058 }
1059
1060 /* as a fallback, try delivering it to the driver to deal with */
1061
1062 if (ret == 0 && hsotg->driver) {
1063 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1064 if (ret < 0)
1065 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1066 }
1067
1068 if (ret > 0) {
1069 if (!ep0->dir_in) {
1070 /* need to generate zlp in reply or take data */
1071 /* todo - deal with any data we might be sent? */
1072 ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
1073 }
1074 }
1075
1076 /* the request is either unhandlable, or is not formatted correctly
1077 * so respond with a STALL for the status stage to indicate failure.
1078 */
1079
1080 if (ret < 0) {
1081 u32 reg;
1082 u32 ctrl;
1083
1084 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1085 reg = (ep0->dir_in) ? S3C_DIEPCTL0 : S3C_DOEPCTL0;
1086
1087 /* S3C_DxEPCTL_Stall will be cleared by EP once it has
1088 * taken effect, so no need to clear later. */
1089
1090 ctrl = readl(hsotg->regs + reg);
1091 ctrl |= S3C_DxEPCTL_Stall;
1092 ctrl |= S3C_DxEPCTL_CNAK;
1093 writel(ctrl, hsotg->regs + reg);
1094
1095 dev_dbg(hsotg->dev,
1096 "writen DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
1097 ctrl, reg, readl(hsotg->regs + reg));
1098
1099 /* don't belive we need to anything more to get the EP
1100 * to reply with a STALL packet */
1101 }
1102}
1103
1104static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1105
1106/**
1107 * s3c_hsotg_complete_setup - completion of a setup transfer
1108 * @ep: The endpoint the request was on.
1109 * @req: The request completed.
1110 *
1111 * Called on completion of any requests the driver itself submitted for
1112 * EP0 setup packets
1113 */
1114static void s3c_hsotg_complete_setup(struct usb_ep *ep,
1115 struct usb_request *req)
1116{
1117 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1118 struct s3c_hsotg *hsotg = hs_ep->parent;
1119
1120 if (req->status < 0) {
1121 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1122 return;
1123 }
1124
1125 if (req->actual == 0)
1126 s3c_hsotg_enqueue_setup(hsotg);
1127 else
1128 s3c_hsotg_process_control(hsotg, req->buf);
1129}
1130
1131/**
1132 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
1133 * @hsotg: The device state.
1134 *
1135 * Enqueue a request on EP0 if necessary to received any SETUP packets
1136 * received from the host.
1137 */
1138static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
1139{
1140 struct usb_request *req = hsotg->ctrl_req;
1141 struct s3c_hsotg_req *hs_req = our_req(req);
1142 int ret;
1143
1144 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1145
1146 req->zero = 0;
1147 req->length = 8;
1148 req->buf = hsotg->ctrl_buff;
1149 req->complete = s3c_hsotg_complete_setup;
1150
1151 if (!list_empty(&hs_req->queue)) {
1152 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1153 return;
1154 }
1155
1156 hsotg->eps[0].dir_in = 0;
1157
1158 ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
1159 if (ret < 0) {
1160 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1161 /* Don't think there's much we can do other than watch the
1162 * driver fail. */
1163 }
1164}
1165
1166/**
1167 * get_ep_head - return the first request on the endpoint
1168 * @hs_ep: The controller endpoint to get
1169 *
1170 * Get the first request on the endpoint.
1171*/
1172static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
1173{
1174 if (list_empty(&hs_ep->queue))
1175 return NULL;
1176
1177 return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
1178}
1179
1180/**
1181 * s3c_hsotg_complete_request - complete a request given to us
1182 * @hsotg: The device state.
1183 * @hs_ep: The endpoint the request was on.
1184 * @hs_req: The request to complete.
1185 * @result: The result code (0 => Ok, otherwise errno)
1186 *
1187 * The given request has finished, so call the necessary completion
1188 * if it has one and then look to see if we can start a new request
1189 * on the endpoint.
1190 *
1191 * Note, expects the ep to already be locked as appropriate.
1192*/
1193static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
1194 struct s3c_hsotg_ep *hs_ep,
1195 struct s3c_hsotg_req *hs_req,
1196 int result)
1197{
1198 bool restart;
1199
1200 if (!hs_req) {
1201 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1202 return;
1203 }
1204
1205 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1206 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1207
1208 /* only replace the status if we've not already set an error
1209 * from a previous transaction */
1210
1211 if (hs_req->req.status == -EINPROGRESS)
1212 hs_req->req.status = result;
1213
1214 hs_ep->req = NULL;
1215 list_del_init(&hs_req->queue);
1216
1217 if (using_dma(hsotg))
1218 s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1219
1220 /* call the complete request with the locks off, just in case the
1221 * request tries to queue more work for this endpoint. */
1222
1223 if (hs_req->req.complete) {
1224 spin_unlock(&hs_ep->lock);
1225 hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1226 spin_lock(&hs_ep->lock);
1227 }
1228
1229 /* Look to see if there is anything else to do. Note, the completion
1230 * of the previous request may have caused a new request to be started
1231 * so be careful when doing this. */
1232
1233 if (!hs_ep->req && result >= 0) {
1234 restart = !list_empty(&hs_ep->queue);
1235 if (restart) {
1236 hs_req = get_ep_head(hs_ep);
1237 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1238 }
1239 }
1240}
1241
1242/**
1243 * s3c_hsotg_complete_request_lock - complete a request given to us (locked)
1244 * @hsotg: The device state.
1245 * @hs_ep: The endpoint the request was on.
1246 * @hs_req: The request to complete.
1247 * @result: The result code (0 => Ok, otherwise errno)
1248 *
1249 * See s3c_hsotg_complete_request(), but called with the endpoint's
1250 * lock held.
1251*/
1252static void s3c_hsotg_complete_request_lock(struct s3c_hsotg *hsotg,
1253 struct s3c_hsotg_ep *hs_ep,
1254 struct s3c_hsotg_req *hs_req,
1255 int result)
1256{
1257 unsigned long flags;
1258
1259 spin_lock_irqsave(&hs_ep->lock, flags);
1260 s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1261 spin_unlock_irqrestore(&hs_ep->lock, flags);
1262}
1263
1264/**
1265 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
1266 * @hsotg: The device state.
1267 * @ep_idx: The endpoint index for the data
1268 * @size: The size of data in the fifo, in bytes
1269 *
1270 * The FIFO status shows there is data to read from the FIFO for a given
1271 * endpoint, so sort out whether we need to read the data into a request
1272 * that has been made for that endpoint.
1273 */
1274static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
1275{
1276 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
1277 struct s3c_hsotg_req *hs_req = hs_ep->req;
1278 void __iomem *fifo = hsotg->regs + S3C_EPFIFO(ep_idx);
1279 int to_read;
1280 int max_req;
1281 int read_ptr;
1282
1283 if (!hs_req) {
1284 u32 epctl = readl(hsotg->regs + S3C_DOEPCTL(ep_idx));
1285 int ptr;
1286
1287 dev_warn(hsotg->dev,
1288 "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
1289 __func__, size, ep_idx, epctl);
1290
1291 /* dump the data from the FIFO, we've nothing we can do */
1292 for (ptr = 0; ptr < size; ptr += 4)
1293 (void)readl(fifo);
1294
1295 return;
1296 }
1297
1298 spin_lock(&hs_ep->lock);
1299
1300 to_read = size;
1301 read_ptr = hs_req->req.actual;
1302 max_req = hs_req->req.length - read_ptr;
1303
1304 if (to_read > max_req) {
1305 /* more data appeared than we where willing
1306 * to deal with in this request.
1307 */
1308
1309 /* currently we don't deal this */
1310 WARN_ON_ONCE(1);
1311 }
1312
1313 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1314 __func__, to_read, max_req, read_ptr, hs_req->req.length);
1315
1316 hs_ep->total_data += to_read;
1317 hs_req->req.actual += to_read;
1318 to_read = DIV_ROUND_UP(to_read, 4);
1319
1320 /* note, we might over-write the buffer end by 3 bytes depending on
1321 * alignment of the data. */
1322 readsl(fifo, hs_req->req.buf + read_ptr, to_read);
1323
1324 spin_unlock(&hs_ep->lock);
1325}
1326
1327/**
1328 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
1329 * @hsotg: The device instance
1330 * @req: The request currently on this endpoint
1331 *
1332 * Generate a zero-length IN packet request for terminating a SETUP
1333 * transaction.
1334 *
1335 * Note, since we don't write any data to the TxFIFO, then it is
1336 * currently belived that we do not need to wait for any space in
1337 * the TxFIFO.
1338 */
1339static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
1340 struct s3c_hsotg_req *req)
1341{
1342 u32 ctrl;
1343
1344 if (!req) {
1345 dev_warn(hsotg->dev, "%s: no request?\n", __func__);
1346 return;
1347 }
1348
1349 if (req->req.length == 0) {
1350 hsotg->eps[0].sent_zlp = 1;
1351 s3c_hsotg_enqueue_setup(hsotg);
1352 return;
1353 }
1354
1355 hsotg->eps[0].dir_in = 1;
1356 hsotg->eps[0].sent_zlp = 1;
1357
1358 dev_dbg(hsotg->dev, "sending zero-length packet\n");
1359
1360 /* issue a zero-sized packet to terminate this */
1361 writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
1362 S3C_DxEPTSIZ_XferSize(0), hsotg->regs + S3C_DIEPTSIZ(0));
1363
1364 ctrl = readl(hsotg->regs + S3C_DIEPCTL0);
1365 ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
1366 ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
1367 ctrl |= S3C_DxEPCTL_USBActEp;
1368 writel(ctrl, hsotg->regs + S3C_DIEPCTL0);
1369}
1370
1371/**
1372 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1373 * @hsotg: The device instance
1374 * @epnum: The endpoint received from
1375 * @was_setup: Set if processing a SetupDone event.
1376 *
1377 * The RXFIFO has delivered an OutDone event, which means that the data
1378 * transfer for an OUT endpoint has been completed, either by a short
1379 * packet or by the finish of a transfer.
1380*/
1381static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
1382 int epnum, bool was_setup)
1383{
1384 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
1385 struct s3c_hsotg_req *hs_req = hs_ep->req;
1386 struct usb_request *req = &hs_req->req;
1387 int result = 0;
1388
1389 if (!hs_req) {
1390 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1391 return;
1392 }
1393
1394 if (using_dma(hsotg)) {
1395 u32 epsize = readl(hsotg->regs + S3C_DOEPTSIZ(epnum));
1396 unsigned size_done;
1397 unsigned size_left;
1398
1399 /* Calculate the size of the transfer by checking how much
1400 * is left in the endpoint size register and then working it
1401 * out from the amount we loaded for the transfer.
1402 *
1403 * We need to do this as DMA pointers are always 32bit aligned
1404 * so may overshoot/undershoot the transfer.
1405 */
1406
1407 size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
1408
1409 size_done = hs_ep->size_loaded - size_left;
1410 size_done += hs_ep->last_load;
1411
1412 req->actual = size_done;
1413 }
1414
1415 if (req->actual < req->length && req->short_not_ok) {
1416 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1417 __func__, req->actual, req->length);
1418
1419 /* todo - what should we return here? there's no one else
1420 * even bothering to check the status. */
1421 }
1422
1423 if (epnum == 0) {
1424 if (!was_setup && req->complete != s3c_hsotg_complete_setup)
1425 s3c_hsotg_send_zlp(hsotg, hs_req);
1426 }
1427
1428 s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, result);
1429}
1430
1431/**
1432 * s3c_hsotg_read_frameno - read current frame number
1433 * @hsotg: The device instance
1434 *
1435 * Return the current frame number
1436*/
1437static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
1438{
1439 u32 dsts;
1440
1441 dsts = readl(hsotg->regs + S3C_DSTS);
1442 dsts &= S3C_DSTS_SOFFN_MASK;
1443 dsts >>= S3C_DSTS_SOFFN_SHIFT;
1444
1445 return dsts;
1446}
1447
1448/**
1449 * s3c_hsotg_handle_rx - RX FIFO has data
1450 * @hsotg: The device instance
1451 *
1452 * The IRQ handler has detected that the RX FIFO has some data in it
1453 * that requires processing, so find out what is in there and do the
1454 * appropriate read.
1455 *
1456 * The RXFIFO is a true FIFO, the packets comming out are still in packet
1457 * chunks, so if you have x packets received on an endpoint you'll get x
1458 * FIFO events delivered, each with a packet's worth of data in it.
1459 *
1460 * When using DMA, we should not be processing events from the RXFIFO
1461 * as the actual data should be sent to the memory directly and we turn
1462 * on the completion interrupts to get notifications of transfer completion.
1463 */
Mark Brown0978f8c2010-01-18 13:18:35 +00001464static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
Ben Dooks5b7d70c2009-06-02 14:58:06 +01001465{
1466 u32 grxstsr = readl(hsotg->regs + S3C_GRXSTSP);
1467 u32 epnum, status, size;
1468
1469 WARN_ON(using_dma(hsotg));
1470
1471 epnum = grxstsr & S3C_GRXSTS_EPNum_MASK;
1472 status = grxstsr & S3C_GRXSTS_PktSts_MASK;
1473
1474 size = grxstsr & S3C_GRXSTS_ByteCnt_MASK;
1475 size >>= S3C_GRXSTS_ByteCnt_SHIFT;
1476
1477 if (1)
1478 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1479 __func__, grxstsr, size, epnum);
1480
1481#define __status(x) ((x) >> S3C_GRXSTS_PktSts_SHIFT)
1482
1483 switch (status >> S3C_GRXSTS_PktSts_SHIFT) {
1484 case __status(S3C_GRXSTS_PktSts_GlobalOutNAK):
1485 dev_dbg(hsotg->dev, "GlobalOutNAK\n");
1486 break;
1487
1488 case __status(S3C_GRXSTS_PktSts_OutDone):
1489 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1490 s3c_hsotg_read_frameno(hsotg));
1491
1492 if (!using_dma(hsotg))
1493 s3c_hsotg_handle_outdone(hsotg, epnum, false);
1494 break;
1495
1496 case __status(S3C_GRXSTS_PktSts_SetupDone):
1497 dev_dbg(hsotg->dev,
1498 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1499 s3c_hsotg_read_frameno(hsotg),
1500 readl(hsotg->regs + S3C_DOEPCTL(0)));
1501
1502 s3c_hsotg_handle_outdone(hsotg, epnum, true);
1503 break;
1504
1505 case __status(S3C_GRXSTS_PktSts_OutRX):
1506 s3c_hsotg_rx_data(hsotg, epnum, size);
1507 break;
1508
1509 case __status(S3C_GRXSTS_PktSts_SetupRX):
1510 dev_dbg(hsotg->dev,
1511 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1512 s3c_hsotg_read_frameno(hsotg),
1513 readl(hsotg->regs + S3C_DOEPCTL(0)));
1514
1515 s3c_hsotg_rx_data(hsotg, epnum, size);
1516 break;
1517
1518 default:
1519 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1520 __func__, grxstsr);
1521
1522 s3c_hsotg_dump(hsotg);
1523 break;
1524 }
1525}
1526
1527/**
1528 * s3c_hsotg_ep0_mps - turn max packet size into register setting
1529 * @mps: The maximum packet size in bytes.
1530*/
1531static u32 s3c_hsotg_ep0_mps(unsigned int mps)
1532{
1533 switch (mps) {
1534 case 64:
1535 return S3C_D0EPCTL_MPS_64;
1536 case 32:
1537 return S3C_D0EPCTL_MPS_32;
1538 case 16:
1539 return S3C_D0EPCTL_MPS_16;
1540 case 8:
1541 return S3C_D0EPCTL_MPS_8;
1542 }
1543
1544 /* bad max packet size, warn and return invalid result */
1545 WARN_ON(1);
1546 return (u32)-1;
1547}
1548
1549/**
1550 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1551 * @hsotg: The driver state.
1552 * @ep: The index number of the endpoint
1553 * @mps: The maximum packet size in bytes
1554 *
1555 * Configure the maximum packet size for the given endpoint, updating
1556 * the hardware control registers to reflect this.
1557 */
1558static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
1559 unsigned int ep, unsigned int mps)
1560{
1561 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
1562 void __iomem *regs = hsotg->regs;
1563 u32 mpsval;
1564 u32 reg;
1565
1566 if (ep == 0) {
1567 /* EP0 is a special case */
1568 mpsval = s3c_hsotg_ep0_mps(mps);
1569 if (mpsval > 3)
1570 goto bad_mps;
1571 } else {
1572 if (mps >= S3C_DxEPCTL_MPS_LIMIT+1)
1573 goto bad_mps;
1574
1575 mpsval = mps;
1576 }
1577
1578 hs_ep->ep.maxpacket = mps;
1579
1580 /* update both the in and out endpoint controldir_ registers, even
1581 * if one of the directions may not be in use. */
1582
1583 reg = readl(regs + S3C_DIEPCTL(ep));
1584 reg &= ~S3C_DxEPCTL_MPS_MASK;
1585 reg |= mpsval;
1586 writel(reg, regs + S3C_DIEPCTL(ep));
1587
1588 reg = readl(regs + S3C_DOEPCTL(ep));
1589 reg &= ~S3C_DxEPCTL_MPS_MASK;
1590 reg |= mpsval;
1591 writel(reg, regs + S3C_DOEPCTL(ep));
1592
1593 return;
1594
1595bad_mps:
1596 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1597}
1598
1599
1600/**
1601 * s3c_hsotg_trytx - check to see if anything needs transmitting
1602 * @hsotg: The driver state
1603 * @hs_ep: The driver endpoint to check.
1604 *
1605 * Check to see if there is a request that has data to send, and if so
1606 * make an attempt to write data into the FIFO.
1607 */
1608static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
1609 struct s3c_hsotg_ep *hs_ep)
1610{
1611 struct s3c_hsotg_req *hs_req = hs_ep->req;
1612
1613 if (!hs_ep->dir_in || !hs_req)
1614 return 0;
1615
1616 if (hs_req->req.actual < hs_req->req.length) {
1617 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1618 hs_ep->index);
1619 return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1620 }
1621
1622 return 0;
1623}
1624
1625/**
1626 * s3c_hsotg_complete_in - complete IN transfer
1627 * @hsotg: The device state.
1628 * @hs_ep: The endpoint that has just completed.
1629 *
1630 * An IN transfer has been completed, update the transfer's state and then
1631 * call the relevant completion routines.
1632 */
1633static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
1634 struct s3c_hsotg_ep *hs_ep)
1635{
1636 struct s3c_hsotg_req *hs_req = hs_ep->req;
1637 u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
1638 int size_left, size_done;
1639
1640 if (!hs_req) {
1641 dev_dbg(hsotg->dev, "XferCompl but no req\n");
1642 return;
1643 }
1644
1645 /* Calculate the size of the transfer by checking how much is left
1646 * in the endpoint size register and then working it out from
1647 * the amount we loaded for the transfer.
1648 *
1649 * We do this even for DMA, as the transfer may have incremented
1650 * past the end of the buffer (DMA transfers are always 32bit
1651 * aligned).
1652 */
1653
1654 size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
1655
1656 size_done = hs_ep->size_loaded - size_left;
1657 size_done += hs_ep->last_load;
1658
1659 if (hs_req->req.actual != size_done)
1660 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1661 __func__, hs_req->req.actual, size_done);
1662
1663 hs_req->req.actual = size_done;
1664
1665 /* if we did all of the transfer, and there is more data left
1666 * around, then try restarting the rest of the request */
1667
1668 if (!size_left && hs_req->req.actual < hs_req->req.length) {
1669 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1670 s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1671 } else
1672 s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, 0);
1673}
1674
1675/**
1676 * s3c_hsotg_epint - handle an in/out endpoint interrupt
1677 * @hsotg: The driver state
1678 * @idx: The index for the endpoint (0..15)
1679 * @dir_in: Set if this is an IN endpoint
1680 *
1681 * Process and clear any interrupt pending for an individual endpoint
1682*/
1683static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
1684 int dir_in)
1685{
1686 struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1687 u32 epint_reg = dir_in ? S3C_DIEPINT(idx) : S3C_DOEPINT(idx);
1688 u32 epctl_reg = dir_in ? S3C_DIEPCTL(idx) : S3C_DOEPCTL(idx);
1689 u32 epsiz_reg = dir_in ? S3C_DIEPTSIZ(idx) : S3C_DOEPTSIZ(idx);
1690 u32 ints;
1691 u32 clear = 0;
1692
1693 ints = readl(hsotg->regs + epint_reg);
1694
1695 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1696 __func__, idx, dir_in ? "in" : "out", ints);
1697
1698 if (ints & S3C_DxEPINT_XferCompl) {
1699 dev_dbg(hsotg->dev,
1700 "%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
1701 __func__, readl(hsotg->regs + epctl_reg),
1702 readl(hsotg->regs + epsiz_reg));
1703
1704 /* we get OutDone from the FIFO, so we only need to look
1705 * at completing IN requests here */
1706 if (dir_in) {
1707 s3c_hsotg_complete_in(hsotg, hs_ep);
1708
1709 if (idx == 0)
1710 s3c_hsotg_enqueue_setup(hsotg);
1711 } else if (using_dma(hsotg)) {
1712 /* We're using DMA, we need to fire an OutDone here
1713 * as we ignore the RXFIFO. */
1714
1715 s3c_hsotg_handle_outdone(hsotg, idx, false);
1716 }
1717
1718 clear |= S3C_DxEPINT_XferCompl;
1719 }
1720
1721 if (ints & S3C_DxEPINT_EPDisbld) {
1722 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
1723 clear |= S3C_DxEPINT_EPDisbld;
1724 }
1725
1726 if (ints & S3C_DxEPINT_AHBErr) {
1727 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
1728 clear |= S3C_DxEPINT_AHBErr;
1729 }
1730
1731 if (ints & S3C_DxEPINT_Setup) { /* Setup or Timeout */
1732 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
1733
1734 if (using_dma(hsotg) && idx == 0) {
1735 /* this is the notification we've received a
1736 * setup packet. In non-DMA mode we'd get this
1737 * from the RXFIFO, instead we need to process
1738 * the setup here. */
1739
1740 if (dir_in)
1741 WARN_ON_ONCE(1);
1742 else
1743 s3c_hsotg_handle_outdone(hsotg, 0, true);
1744 }
1745
1746 clear |= S3C_DxEPINT_Setup;
1747 }
1748
1749 if (ints & S3C_DxEPINT_Back2BackSetup) {
1750 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
1751 clear |= S3C_DxEPINT_Back2BackSetup;
1752 }
1753
1754 if (dir_in) {
1755 /* not sure if this is important, but we'll clear it anyway
1756 */
1757 if (ints & S3C_DIEPMSK_INTknTXFEmpMsk) {
1758 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
1759 __func__, idx);
1760 clear |= S3C_DIEPMSK_INTknTXFEmpMsk;
1761 }
1762
1763 /* this probably means something bad is happening */
1764 if (ints & S3C_DIEPMSK_INTknEPMisMsk) {
1765 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
1766 __func__, idx);
1767 clear |= S3C_DIEPMSK_INTknEPMisMsk;
1768 }
1769 }
1770
1771 writel(clear, hsotg->regs + epint_reg);
1772}
1773
1774/**
1775 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
1776 * @hsotg: The device state.
1777 *
1778 * Handle updating the device settings after the enumeration phase has
1779 * been completed.
1780*/
1781static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
1782{
1783 u32 dsts = readl(hsotg->regs + S3C_DSTS);
1784 int ep0_mps = 0, ep_mps;
1785
1786 /* This should signal the finish of the enumeration phase
1787 * of the USB handshaking, so we should now know what rate
1788 * we connected at. */
1789
1790 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
1791
1792 /* note, since we're limited by the size of transfer on EP0, and
1793 * it seems IN transfers must be a even number of packets we do
1794 * not advertise a 64byte MPS on EP0. */
1795
1796 /* catch both EnumSpd_FS and EnumSpd_FS48 */
1797 switch (dsts & S3C_DSTS_EnumSpd_MASK) {
1798 case S3C_DSTS_EnumSpd_FS:
1799 case S3C_DSTS_EnumSpd_FS48:
1800 hsotg->gadget.speed = USB_SPEED_FULL;
1801 dev_info(hsotg->dev, "new device is full-speed\n");
1802
1803 ep0_mps = EP0_MPS_LIMIT;
1804 ep_mps = 64;
1805 break;
1806
1807 case S3C_DSTS_EnumSpd_HS:
1808 dev_info(hsotg->dev, "new device is high-speed\n");
1809 hsotg->gadget.speed = USB_SPEED_HIGH;
1810
1811 ep0_mps = EP0_MPS_LIMIT;
1812 ep_mps = 512;
1813 break;
1814
1815 case S3C_DSTS_EnumSpd_LS:
1816 hsotg->gadget.speed = USB_SPEED_LOW;
1817 dev_info(hsotg->dev, "new device is low-speed\n");
1818
1819 /* note, we don't actually support LS in this driver at the
1820 * moment, and the documentation seems to imply that it isn't
1821 * supported by the PHYs on some of the devices.
1822 */
1823 break;
1824 }
1825
1826 /* we should now know the maximum packet size for an
1827 * endpoint, so set the endpoints to a default value. */
1828
1829 if (ep0_mps) {
1830 int i;
1831 s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1832 for (i = 1; i < S3C_HSOTG_EPS; i++)
1833 s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
1834 }
1835
1836 /* ensure after enumeration our EP0 is active */
1837
1838 s3c_hsotg_enqueue_setup(hsotg);
1839
1840 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1841 readl(hsotg->regs + S3C_DIEPCTL0),
1842 readl(hsotg->regs + S3C_DOEPCTL0));
1843}
1844
1845/**
1846 * kill_all_requests - remove all requests from the endpoint's queue
1847 * @hsotg: The device state.
1848 * @ep: The endpoint the requests may be on.
1849 * @result: The result code to use.
1850 * @force: Force removal of any current requests
1851 *
1852 * Go through the requests on the given endpoint and mark them
1853 * completed with the given result code.
1854 */
1855static void kill_all_requests(struct s3c_hsotg *hsotg,
1856 struct s3c_hsotg_ep *ep,
1857 int result, bool force)
1858{
1859 struct s3c_hsotg_req *req, *treq;
1860 unsigned long flags;
1861
1862 spin_lock_irqsave(&ep->lock, flags);
1863
1864 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
1865 /* currently, we can't do much about an already
1866 * running request on an in endpoint */
1867
1868 if (ep->req == req && ep->dir_in && !force)
1869 continue;
1870
1871 s3c_hsotg_complete_request(hsotg, ep, req,
1872 result);
1873 }
1874
1875 spin_unlock_irqrestore(&ep->lock, flags);
1876}
1877
1878#define call_gadget(_hs, _entry) \
1879 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
1880 (_hs)->driver && (_hs)->driver->_entry) \
1881 (_hs)->driver->_entry(&(_hs)->gadget);
1882
1883/**
1884 * s3c_hsotg_disconnect_irq - disconnect irq service
1885 * @hsotg: The device state.
1886 *
1887 * A disconnect IRQ has been received, meaning that the host has
1888 * lost contact with the bus. Remove all current transactions
1889 * and signal the gadget driver that this has happened.
1890*/
1891static void s3c_hsotg_disconnect_irq(struct s3c_hsotg *hsotg)
1892{
1893 unsigned ep;
1894
1895 for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
1896 kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
1897
1898 call_gadget(hsotg, disconnect);
1899}
1900
1901/**
1902 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
1903 * @hsotg: The device state:
1904 * @periodic: True if this is a periodic FIFO interrupt
1905 */
1906static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
1907{
1908 struct s3c_hsotg_ep *ep;
1909 int epno, ret;
1910
1911 /* look through for any more data to transmit */
1912
1913 for (epno = 0; epno < S3C_HSOTG_EPS; epno++) {
1914 ep = &hsotg->eps[epno];
1915
1916 if (!ep->dir_in)
1917 continue;
1918
1919 if ((periodic && !ep->periodic) ||
1920 (!periodic && ep->periodic))
1921 continue;
1922
1923 ret = s3c_hsotg_trytx(hsotg, ep);
1924 if (ret < 0)
1925 break;
1926 }
1927}
1928
1929static struct s3c_hsotg *our_hsotg;
1930
1931/* IRQ flags which will trigger a retry around the IRQ loop */
1932#define IRQ_RETRY_MASK (S3C_GINTSTS_NPTxFEmp | \
1933 S3C_GINTSTS_PTxFEmp | \
1934 S3C_GINTSTS_RxFLvl)
1935
1936/**
1937 * s3c_hsotg_irq - handle device interrupt
1938 * @irq: The IRQ number triggered
1939 * @pw: The pw value when registered the handler.
1940 */
1941static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
1942{
1943 struct s3c_hsotg *hsotg = pw;
1944 int retry_count = 8;
1945 u32 gintsts;
1946 u32 gintmsk;
1947
1948irq_retry:
1949 gintsts = readl(hsotg->regs + S3C_GINTSTS);
1950 gintmsk = readl(hsotg->regs + S3C_GINTMSK);
1951
1952 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
1953 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
1954
1955 gintsts &= gintmsk;
1956
1957 if (gintsts & S3C_GINTSTS_OTGInt) {
1958 u32 otgint = readl(hsotg->regs + S3C_GOTGINT);
1959
1960 dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
1961
1962 writel(otgint, hsotg->regs + S3C_GOTGINT);
1963 writel(S3C_GINTSTS_OTGInt, hsotg->regs + S3C_GINTSTS);
1964 }
1965
1966 if (gintsts & S3C_GINTSTS_DisconnInt) {
1967 dev_dbg(hsotg->dev, "%s: DisconnInt\n", __func__);
1968 writel(S3C_GINTSTS_DisconnInt, hsotg->regs + S3C_GINTSTS);
1969
1970 s3c_hsotg_disconnect_irq(hsotg);
1971 }
1972
1973 if (gintsts & S3C_GINTSTS_SessReqInt) {
1974 dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
1975 writel(S3C_GINTSTS_SessReqInt, hsotg->regs + S3C_GINTSTS);
1976 }
1977
1978 if (gintsts & S3C_GINTSTS_EnumDone) {
1979 s3c_hsotg_irq_enumdone(hsotg);
1980 writel(S3C_GINTSTS_EnumDone, hsotg->regs + S3C_GINTSTS);
1981 }
1982
1983 if (gintsts & S3C_GINTSTS_ConIDStsChng) {
1984 dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
1985 readl(hsotg->regs + S3C_DSTS),
1986 readl(hsotg->regs + S3C_GOTGCTL));
1987
1988 writel(S3C_GINTSTS_ConIDStsChng, hsotg->regs + S3C_GINTSTS);
1989 }
1990
1991 if (gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt)) {
1992 u32 daint = readl(hsotg->regs + S3C_DAINT);
1993 u32 daint_out = daint >> S3C_DAINT_OutEP_SHIFT;
1994 u32 daint_in = daint & ~(daint_out << S3C_DAINT_OutEP_SHIFT);
1995 int ep;
1996
1997 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
1998
1999 for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
2000 if (daint_out & 1)
2001 s3c_hsotg_epint(hsotg, ep, 0);
2002 }
2003
2004 for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
2005 if (daint_in & 1)
2006 s3c_hsotg_epint(hsotg, ep, 1);
2007 }
2008
2009 writel(daint, hsotg->regs + S3C_DAINT);
2010 writel(gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt),
2011 hsotg->regs + S3C_GINTSTS);
2012 }
2013
2014 if (gintsts & S3C_GINTSTS_USBRst) {
2015 dev_info(hsotg->dev, "%s: USBRst\n", __func__);
2016 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2017 readl(hsotg->regs + S3C_GNPTXSTS));
2018
2019 kill_all_requests(hsotg, &hsotg->eps[0], -ECONNRESET, true);
2020
2021 /* it seems after a reset we can end up with a situation
2022 * where the TXFIFO still has data in it... try flushing
2023 * it to remove anything that may still be in it.
2024 */
2025
2026 if (1) {
2027 writel(S3C_GRSTCTL_TxFNum(0) | S3C_GRSTCTL_TxFFlsh,
2028 hsotg->regs + S3C_GRSTCTL);
2029
2030 dev_info(hsotg->dev, "GNPTXSTS=%08x\n",
2031 readl(hsotg->regs + S3C_GNPTXSTS));
2032 }
2033
2034 s3c_hsotg_enqueue_setup(hsotg);
2035
2036 writel(S3C_GINTSTS_USBRst, hsotg->regs + S3C_GINTSTS);
2037 }
2038
2039 /* check both FIFOs */
2040
2041 if (gintsts & S3C_GINTSTS_NPTxFEmp) {
2042 dev_dbg(hsotg->dev, "NPTxFEmp\n");
2043
2044 /* Disable the interrupt to stop it happening again
2045 * unless one of these endpoint routines decides that
2046 * it needs re-enabling */
2047
2048 s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
2049 s3c_hsotg_irq_fifoempty(hsotg, false);
2050
2051 writel(S3C_GINTSTS_NPTxFEmp, hsotg->regs + S3C_GINTSTS);
2052 }
2053
2054 if (gintsts & S3C_GINTSTS_PTxFEmp) {
2055 dev_dbg(hsotg->dev, "PTxFEmp\n");
2056
2057 /* See note in S3C_GINTSTS_NPTxFEmp */
2058
2059 s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
2060 s3c_hsotg_irq_fifoempty(hsotg, true);
2061
2062 writel(S3C_GINTSTS_PTxFEmp, hsotg->regs + S3C_GINTSTS);
2063 }
2064
2065 if (gintsts & S3C_GINTSTS_RxFLvl) {
2066 /* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2067 * we need to retry s3c_hsotg_handle_rx if this is still
2068 * set. */
2069
2070 s3c_hsotg_handle_rx(hsotg);
2071 writel(S3C_GINTSTS_RxFLvl, hsotg->regs + S3C_GINTSTS);
2072 }
2073
2074 if (gintsts & S3C_GINTSTS_ModeMis) {
2075 dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2076 writel(S3C_GINTSTS_ModeMis, hsotg->regs + S3C_GINTSTS);
2077 }
2078
2079 if (gintsts & S3C_GINTSTS_USBSusp) {
2080 dev_info(hsotg->dev, "S3C_GINTSTS_USBSusp\n");
2081 writel(S3C_GINTSTS_USBSusp, hsotg->regs + S3C_GINTSTS);
2082
2083 call_gadget(hsotg, suspend);
2084 }
2085
2086 if (gintsts & S3C_GINTSTS_WkUpInt) {
2087 dev_info(hsotg->dev, "S3C_GINTSTS_WkUpIn\n");
2088 writel(S3C_GINTSTS_WkUpInt, hsotg->regs + S3C_GINTSTS);
2089
2090 call_gadget(hsotg, resume);
2091 }
2092
2093 if (gintsts & S3C_GINTSTS_ErlySusp) {
2094 dev_dbg(hsotg->dev, "S3C_GINTSTS_ErlySusp\n");
2095 writel(S3C_GINTSTS_ErlySusp, hsotg->regs + S3C_GINTSTS);
2096 }
2097
2098 /* these next two seem to crop-up occasionally causing the core
2099 * to shutdown the USB transfer, so try clearing them and logging
2100 * the occurence. */
2101
2102 if (gintsts & S3C_GINTSTS_GOUTNakEff) {
2103 dev_info(hsotg->dev, "GOUTNakEff triggered\n");
2104
2105 s3c_hsotg_dump(hsotg);
2106
2107 writel(S3C_DCTL_CGOUTNak, hsotg->regs + S3C_DCTL);
2108 writel(S3C_GINTSTS_GOUTNakEff, hsotg->regs + S3C_GINTSTS);
2109 }
2110
2111 if (gintsts & S3C_GINTSTS_GINNakEff) {
2112 dev_info(hsotg->dev, "GINNakEff triggered\n");
2113
2114 s3c_hsotg_dump(hsotg);
2115
2116 writel(S3C_DCTL_CGNPInNAK, hsotg->regs + S3C_DCTL);
2117 writel(S3C_GINTSTS_GINNakEff, hsotg->regs + S3C_GINTSTS);
2118 }
2119
2120 /* if we've had fifo events, we should try and go around the
2121 * loop again to see if there's any point in returning yet. */
2122
2123 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2124 goto irq_retry;
2125
2126 return IRQ_HANDLED;
2127}
2128
2129/**
2130 * s3c_hsotg_ep_enable - enable the given endpoint
2131 * @ep: The USB endpint to configure
2132 * @desc: The USB endpoint descriptor to configure with.
2133 *
2134 * This is called from the USB gadget code's usb_ep_enable().
2135*/
2136static int s3c_hsotg_ep_enable(struct usb_ep *ep,
2137 const struct usb_endpoint_descriptor *desc)
2138{
2139 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2140 struct s3c_hsotg *hsotg = hs_ep->parent;
2141 unsigned long flags;
2142 int index = hs_ep->index;
2143 u32 epctrl_reg;
2144 u32 epctrl;
2145 u32 mps;
2146 int dir_in;
2147
2148 dev_dbg(hsotg->dev,
2149 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2150 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2151 desc->wMaxPacketSize, desc->bInterval);
2152
2153 /* not to be called for EP0 */
2154 WARN_ON(index == 0);
2155
2156 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2157 if (dir_in != hs_ep->dir_in) {
2158 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2159 return -EINVAL;
2160 }
2161
2162 mps = le16_to_cpu(desc->wMaxPacketSize);
2163
2164 /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
2165
2166 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
2167 epctrl = readl(hsotg->regs + epctrl_reg);
2168
2169 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2170 __func__, epctrl, epctrl_reg);
2171
2172 spin_lock_irqsave(&hs_ep->lock, flags);
2173
2174 epctrl &= ~(S3C_DxEPCTL_EPType_MASK | S3C_DxEPCTL_MPS_MASK);
2175 epctrl |= S3C_DxEPCTL_MPS(mps);
2176
2177 /* mark the endpoint as active, otherwise the core may ignore
2178 * transactions entirely for this endpoint */
2179 epctrl |= S3C_DxEPCTL_USBActEp;
2180
2181 /* set the NAK status on the endpoint, otherwise we might try and
2182 * do something with data that we've yet got a request to process
2183 * since the RXFIFO will take data for an endpoint even if the
2184 * size register hasn't been set.
2185 */
2186
2187 epctrl |= S3C_DxEPCTL_SNAK;
2188
2189 /* update the endpoint state */
2190 hs_ep->ep.maxpacket = mps;
2191
2192 /* default, set to non-periodic */
2193 hs_ep->periodic = 0;
2194
2195 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2196 case USB_ENDPOINT_XFER_ISOC:
2197 dev_err(hsotg->dev, "no current ISOC support\n");
2198 return -EINVAL;
2199
2200 case USB_ENDPOINT_XFER_BULK:
2201 epctrl |= S3C_DxEPCTL_EPType_Bulk;
2202 break;
2203
2204 case USB_ENDPOINT_XFER_INT:
2205 if (dir_in) {
2206 /* Allocate our TxFNum by simply using the index
2207 * of the endpoint for the moment. We could do
2208 * something better if the host indicates how
2209 * many FIFOs we are expecting to use. */
2210
2211 hs_ep->periodic = 1;
2212 epctrl |= S3C_DxEPCTL_TxFNum(index);
2213 }
2214
2215 epctrl |= S3C_DxEPCTL_EPType_Intterupt;
2216 break;
2217
2218 case USB_ENDPOINT_XFER_CONTROL:
2219 epctrl |= S3C_DxEPCTL_EPType_Control;
2220 break;
2221 }
2222
2223 /* for non control endpoints, set PID to D0 */
2224 if (index)
2225 epctrl |= S3C_DxEPCTL_SetD0PID;
2226
2227 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2228 __func__, epctrl);
2229
2230 writel(epctrl, hsotg->regs + epctrl_reg);
2231 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2232 __func__, readl(hsotg->regs + epctrl_reg));
2233
2234 /* enable the endpoint interrupt */
2235 s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2236
2237 spin_unlock_irqrestore(&hs_ep->lock, flags);
2238 return 0;
2239}
2240
2241static int s3c_hsotg_ep_disable(struct usb_ep *ep)
2242{
2243 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2244 struct s3c_hsotg *hsotg = hs_ep->parent;
2245 int dir_in = hs_ep->dir_in;
2246 int index = hs_ep->index;
2247 unsigned long flags;
2248 u32 epctrl_reg;
2249 u32 ctrl;
2250
2251 dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2252
2253 if (ep == &hsotg->eps[0].ep) {
2254 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2255 return -EINVAL;
2256 }
2257
2258 epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
2259
2260 /* terminate all requests with shutdown */
2261 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
2262
2263 spin_lock_irqsave(&hs_ep->lock, flags);
2264
2265 ctrl = readl(hsotg->regs + epctrl_reg);
2266 ctrl &= ~S3C_DxEPCTL_EPEna;
2267 ctrl &= ~S3C_DxEPCTL_USBActEp;
2268 ctrl |= S3C_DxEPCTL_SNAK;
2269
2270 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2271 writel(ctrl, hsotg->regs + epctrl_reg);
2272
2273 /* disable endpoint interrupts */
2274 s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2275
2276 spin_unlock_irqrestore(&hs_ep->lock, flags);
2277 return 0;
2278}
2279
2280/**
2281 * on_list - check request is on the given endpoint
2282 * @ep: The endpoint to check.
2283 * @test: The request to test if it is on the endpoint.
2284*/
2285static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
2286{
2287 struct s3c_hsotg_req *req, *treq;
2288
2289 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2290 if (req == test)
2291 return true;
2292 }
2293
2294 return false;
2295}
2296
2297static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2298{
2299 struct s3c_hsotg_req *hs_req = our_req(req);
2300 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2301 struct s3c_hsotg *hs = hs_ep->parent;
2302 unsigned long flags;
2303
2304 dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2305
2306 if (hs_req == hs_ep->req) {
2307 dev_dbg(hs->dev, "%s: already in progress\n", __func__);
2308 return -EINPROGRESS;
2309 }
2310
2311 spin_lock_irqsave(&hs_ep->lock, flags);
2312
2313 if (!on_list(hs_ep, hs_req)) {
2314 spin_unlock_irqrestore(&hs_ep->lock, flags);
2315 return -EINVAL;
2316 }
2317
2318 s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2319 spin_unlock_irqrestore(&hs_ep->lock, flags);
2320
2321 return 0;
2322}
2323
2324static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2325{
2326 struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2327 struct s3c_hsotg *hs = hs_ep->parent;
2328 int index = hs_ep->index;
2329 unsigned long irqflags;
2330 u32 epreg;
2331 u32 epctl;
2332
2333 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2334
2335 spin_lock_irqsave(&hs_ep->lock, irqflags);
2336
2337 /* write both IN and OUT control registers */
2338
2339 epreg = S3C_DIEPCTL(index);
2340 epctl = readl(hs->regs + epreg);
2341
2342 if (value)
2343 epctl |= S3C_DxEPCTL_Stall;
2344 else
2345 epctl &= ~S3C_DxEPCTL_Stall;
2346
2347 writel(epctl, hs->regs + epreg);
2348
2349 epreg = S3C_DOEPCTL(index);
2350 epctl = readl(hs->regs + epreg);
2351
2352 if (value)
2353 epctl |= S3C_DxEPCTL_Stall;
2354 else
2355 epctl &= ~S3C_DxEPCTL_Stall;
2356
2357 writel(epctl, hs->regs + epreg);
2358
2359 spin_unlock_irqrestore(&hs_ep->lock, irqflags);
2360
2361 return 0;
2362}
2363
2364static struct usb_ep_ops s3c_hsotg_ep_ops = {
2365 .enable = s3c_hsotg_ep_enable,
2366 .disable = s3c_hsotg_ep_disable,
2367 .alloc_request = s3c_hsotg_ep_alloc_request,
2368 .free_request = s3c_hsotg_ep_free_request,
2369 .queue = s3c_hsotg_ep_queue,
2370 .dequeue = s3c_hsotg_ep_dequeue,
2371 .set_halt = s3c_hsotg_ep_sethalt,
2372 /* note, don't belive we have any call for the fifo routines */
2373};
2374
2375/**
2376 * s3c_hsotg_corereset - issue softreset to the core
2377 * @hsotg: The device state
2378 *
2379 * Issue a soft reset to the core, and await the core finishing it.
2380*/
2381static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
2382{
2383 int timeout;
2384 u32 grstctl;
2385
2386 dev_dbg(hsotg->dev, "resetting core\n");
2387
2388 /* issue soft reset */
2389 writel(S3C_GRSTCTL_CSftRst, hsotg->regs + S3C_GRSTCTL);
2390
2391 timeout = 1000;
2392 do {
2393 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
2394 } while (!(grstctl & S3C_GRSTCTL_CSftRst) && timeout-- > 0);
2395
Roel Kluinb7800212009-07-15 20:12:30 +02002396 if (!(grstctl & S3C_GRSTCTL_CSftRst)) {
Ben Dooks5b7d70c2009-06-02 14:58:06 +01002397 dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
2398 return -EINVAL;
2399 }
2400
2401 timeout = 1000;
2402
2403 while (1) {
2404 u32 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
2405
2406 if (timeout-- < 0) {
2407 dev_info(hsotg->dev,
2408 "%s: reset failed, GRSTCTL=%08x\n",
2409 __func__, grstctl);
2410 return -ETIMEDOUT;
2411 }
2412
2413 if (grstctl & S3C_GRSTCTL_CSftRst)
2414 continue;
2415
2416 if (!(grstctl & S3C_GRSTCTL_AHBIdle))
2417 continue;
2418
2419 break; /* reset done */
2420 }
2421
2422 dev_dbg(hsotg->dev, "reset successful\n");
2423 return 0;
2424}
2425
2426int usb_gadget_register_driver(struct usb_gadget_driver *driver)
2427{
2428 struct s3c_hsotg *hsotg = our_hsotg;
2429 int ret;
2430
2431 if (!hsotg) {
2432 printk(KERN_ERR "%s: called with no device\n", __func__);
2433 return -ENODEV;
2434 }
2435
2436 if (!driver) {
2437 dev_err(hsotg->dev, "%s: no driver\n", __func__);
2438 return -EINVAL;
2439 }
2440
2441 if (driver->speed != USB_SPEED_HIGH &&
2442 driver->speed != USB_SPEED_FULL) {
2443 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
2444 }
2445
2446 if (!driver->bind || !driver->setup) {
2447 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
2448 return -EINVAL;
2449 }
2450
2451 WARN_ON(hsotg->driver);
2452
2453 driver->driver.bus = NULL;
2454 hsotg->driver = driver;
2455 hsotg->gadget.dev.driver = &driver->driver;
2456 hsotg->gadget.dev.dma_mask = hsotg->dev->dma_mask;
2457 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2458
2459 ret = device_add(&hsotg->gadget.dev);
2460 if (ret) {
2461 dev_err(hsotg->dev, "failed to register gadget device\n");
2462 goto err;
2463 }
2464
2465 ret = driver->bind(&hsotg->gadget);
2466 if (ret) {
2467 dev_err(hsotg->dev, "failed bind %s\n", driver->driver.name);
2468
2469 hsotg->gadget.dev.driver = NULL;
2470 hsotg->driver = NULL;
2471 goto err;
2472 }
2473
2474 /* we must now enable ep0 ready for host detection and then
2475 * set configuration. */
2476
2477 s3c_hsotg_corereset(hsotg);
2478
2479 /* set the PLL on, remove the HNP/SRP and set the PHY */
2480 writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) |
2481 (0x5 << 10), hsotg->regs + S3C_GUSBCFG);
2482
2483 /* looks like soft-reset changes state of FIFOs */
2484 s3c_hsotg_init_fifo(hsotg);
2485
2486 __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2487
2488 writel(1 << 18 | S3C_DCFG_DevSpd_HS, hsotg->regs + S3C_DCFG);
2489
2490 writel(S3C_GINTSTS_DisconnInt | S3C_GINTSTS_SessReqInt |
2491 S3C_GINTSTS_ConIDStsChng | S3C_GINTSTS_USBRst |
2492 S3C_GINTSTS_EnumDone | S3C_GINTSTS_OTGInt |
2493 S3C_GINTSTS_USBSusp | S3C_GINTSTS_WkUpInt |
2494 S3C_GINTSTS_GOUTNakEff | S3C_GINTSTS_GINNakEff |
2495 S3C_GINTSTS_ErlySusp,
2496 hsotg->regs + S3C_GINTMSK);
2497
2498 if (using_dma(hsotg))
2499 writel(S3C_GAHBCFG_GlblIntrEn | S3C_GAHBCFG_DMAEn |
2500 S3C_GAHBCFG_HBstLen_Incr4,
2501 hsotg->regs + S3C_GAHBCFG);
2502 else
2503 writel(S3C_GAHBCFG_GlblIntrEn, hsotg->regs + S3C_GAHBCFG);
2504
2505 /* Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
2506 * up being flooded with interrupts if the host is polling the
2507 * endpoint to try and read data. */
2508
2509 writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
2510 S3C_DIEPMSK_INTknEPMisMsk |
2511 S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
2512 hsotg->regs + S3C_DIEPMSK);
2513
2514 /* don't need XferCompl, we get that from RXFIFO in slave mode. In
2515 * DMA mode we may need this. */
2516 writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
2517 S3C_DOEPMSK_EPDisbldMsk |
Roel Kluinb7800212009-07-15 20:12:30 +02002518 (using_dma(hsotg) ? (S3C_DIEPMSK_XferComplMsk |
2519 S3C_DIEPMSK_TimeOUTMsk) : 0),
Ben Dooks5b7d70c2009-06-02 14:58:06 +01002520 hsotg->regs + S3C_DOEPMSK);
2521
2522 writel(0, hsotg->regs + S3C_DAINTMSK);
2523
2524 dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2525 readl(hsotg->regs + S3C_DIEPCTL0),
2526 readl(hsotg->regs + S3C_DOEPCTL0));
2527
2528 /* enable in and out endpoint interrupts */
2529 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt);
2530
2531 /* Enable the RXFIFO when in slave mode, as this is how we collect
2532 * the data. In DMA mode, we get events from the FIFO but also
2533 * things we cannot process, so do not use it. */
2534 if (!using_dma(hsotg))
2535 s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_RxFLvl);
2536
2537 /* Enable interrupts for EP0 in and out */
2538 s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2539 s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2540
2541 __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
2542 udelay(10); /* see openiboot */
2543 __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
2544
2545 dev_info(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + S3C_DCTL));
2546
2547 /* S3C_DxEPCTL_USBActEp says RO in manual, but seems to be set by
2548 writing to the EPCTL register.. */
2549
2550 /* set to read 1 8byte packet */
2551 writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
2552 S3C_DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
2553
2554 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2555 S3C_DxEPCTL_CNAK | S3C_DxEPCTL_EPEna |
2556 S3C_DxEPCTL_USBActEp,
2557 hsotg->regs + S3C_DOEPCTL0);
2558
2559 /* enable, but don't activate EP0in */
2560 writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2561 S3C_DxEPCTL_USBActEp, hsotg->regs + S3C_DIEPCTL0);
2562
2563 s3c_hsotg_enqueue_setup(hsotg);
2564
2565 dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2566 readl(hsotg->regs + S3C_DIEPCTL0),
2567 readl(hsotg->regs + S3C_DOEPCTL0));
2568
2569 /* clear global NAKs */
2570 writel(S3C_DCTL_CGOUTNak | S3C_DCTL_CGNPInNAK,
2571 hsotg->regs + S3C_DCTL);
2572
2573 /* remove the soft-disconnect and let's go */
2574 __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
2575
2576 /* report to the user, and return */
2577
2578 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2579 return 0;
2580
2581err:
2582 hsotg->driver = NULL;
2583 hsotg->gadget.dev.driver = NULL;
2584 return ret;
2585}
Mark Brown6feb63b2010-01-18 13:18:34 +00002586EXPORT_SYMBOL(usb_gadget_register_driver);
Ben Dooks5b7d70c2009-06-02 14:58:06 +01002587
2588int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
2589{
2590 struct s3c_hsotg *hsotg = our_hsotg;
2591 int ep;
2592
2593 if (!hsotg)
2594 return -ENODEV;
2595
2596 if (!driver || driver != hsotg->driver || !driver->unbind)
2597 return -EINVAL;
2598
2599 /* all endpoints should be shutdown */
2600 for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
2601 s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
2602
2603 call_gadget(hsotg, disconnect);
2604
2605 driver->unbind(&hsotg->gadget);
2606 hsotg->driver = NULL;
2607 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2608
2609 device_del(&hsotg->gadget.dev);
2610
2611 dev_info(hsotg->dev, "unregistered gadget driver '%s'\n",
2612 driver->driver.name);
2613
2614 return 0;
2615}
2616EXPORT_SYMBOL(usb_gadget_unregister_driver);
2617
2618static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
2619{
2620 return s3c_hsotg_read_frameno(to_hsotg(gadget));
2621}
2622
2623static struct usb_gadget_ops s3c_hsotg_gadget_ops = {
2624 .get_frame = s3c_hsotg_gadget_getframe,
2625};
2626
2627/**
2628 * s3c_hsotg_initep - initialise a single endpoint
2629 * @hsotg: The device state.
2630 * @hs_ep: The endpoint to be initialised.
2631 * @epnum: The endpoint number
2632 *
2633 * Initialise the given endpoint (as part of the probe and device state
2634 * creation) to give to the gadget driver. Setup the endpoint name, any
2635 * direction information and other state that may be required.
2636 */
2637static void __devinit s3c_hsotg_initep(struct s3c_hsotg *hsotg,
2638 struct s3c_hsotg_ep *hs_ep,
2639 int epnum)
2640{
2641 u32 ptxfifo;
2642 char *dir;
2643
2644 if (epnum == 0)
2645 dir = "";
2646 else if ((epnum % 2) == 0) {
2647 dir = "out";
2648 } else {
2649 dir = "in";
2650 hs_ep->dir_in = 1;
2651 }
2652
2653 hs_ep->index = epnum;
2654
2655 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
2656
2657 INIT_LIST_HEAD(&hs_ep->queue);
2658 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
2659
2660 spin_lock_init(&hs_ep->lock);
2661
2662 /* add to the list of endpoints known by the gadget driver */
2663 if (epnum)
2664 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
2665
2666 hs_ep->parent = hsotg;
2667 hs_ep->ep.name = hs_ep->name;
2668 hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
2669 hs_ep->ep.ops = &s3c_hsotg_ep_ops;
2670
2671 /* Read the FIFO size for the Periodic TX FIFO, even if we're
2672 * an OUT endpoint, we may as well do this if in future the
2673 * code is changed to make each endpoint's direction changeable.
2674 */
2675
2676 ptxfifo = readl(hsotg->regs + S3C_DPTXFSIZn(epnum));
2677 hs_ep->fifo_size = S3C_DPTXFSIZn_DPTxFSize_GET(ptxfifo);
2678
2679 /* if we're using dma, we need to set the next-endpoint pointer
2680 * to be something valid.
2681 */
2682
2683 if (using_dma(hsotg)) {
2684 u32 next = S3C_DxEPCTL_NextEp((epnum + 1) % 15);
2685 writel(next, hsotg->regs + S3C_DIEPCTL(epnum));
2686 writel(next, hsotg->regs + S3C_DOEPCTL(epnum));
2687 }
2688}
2689
2690/**
2691 * s3c_hsotg_otgreset - reset the OtG phy block
2692 * @hsotg: The host state.
2693 *
2694 * Power up the phy, set the basic configuration and start the PHY.
2695 */
2696static void s3c_hsotg_otgreset(struct s3c_hsotg *hsotg)
2697{
2698 u32 osc;
2699
2700 writel(0, S3C_PHYPWR);
2701 mdelay(1);
2702
2703 osc = hsotg->plat->is_osc ? S3C_PHYCLK_EXT_OSC : 0;
2704
2705 writel(osc | 0x10, S3C_PHYCLK);
2706
2707 /* issue a full set of resets to the otg and core */
2708
2709 writel(S3C_RSTCON_PHY, S3C_RSTCON);
2710 udelay(20); /* at-least 10uS */
2711 writel(0, S3C_RSTCON);
2712}
2713
2714
2715static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
2716{
2717 /* unmask subset of endpoint interrupts */
2718
2719 writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
2720 S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
2721 hsotg->regs + S3C_DIEPMSK);
2722
2723 writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
2724 S3C_DOEPMSK_EPDisbldMsk | S3C_DOEPMSK_XferComplMsk,
2725 hsotg->regs + S3C_DOEPMSK);
2726
2727 writel(0, hsotg->regs + S3C_DAINTMSK);
2728
2729 if (0) {
2730 /* post global nak until we're ready */
2731 writel(S3C_DCTL_SGNPInNAK | S3C_DCTL_SGOUTNak,
2732 hsotg->regs + S3C_DCTL);
2733 }
2734
2735 /* setup fifos */
2736
2737 dev_info(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2738 readl(hsotg->regs + S3C_GRXFSIZ),
2739 readl(hsotg->regs + S3C_GNPTXFSIZ));
2740
2741 s3c_hsotg_init_fifo(hsotg);
2742
2743 /* set the PLL on, remove the HNP/SRP and set the PHY */
2744 writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) | (0x5 << 10),
2745 hsotg->regs + S3C_GUSBCFG);
2746
2747 writel(using_dma(hsotg) ? S3C_GAHBCFG_DMAEn : 0x0,
2748 hsotg->regs + S3C_GAHBCFG);
2749}
2750
2751static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
2752{
2753 struct device *dev = hsotg->dev;
2754 void __iomem *regs = hsotg->regs;
2755 u32 val;
2756 int idx;
2757
2758 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
2759 readl(regs + S3C_DCFG), readl(regs + S3C_DCTL),
2760 readl(regs + S3C_DIEPMSK));
2761
2762 dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
2763 readl(regs + S3C_GAHBCFG), readl(regs + 0x44));
2764
2765 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2766 readl(regs + S3C_GRXFSIZ), readl(regs + S3C_GNPTXFSIZ));
2767
2768 /* show periodic fifo settings */
2769
2770 for (idx = 1; idx <= 15; idx++) {
2771 val = readl(regs + S3C_DPTXFSIZn(idx));
2772 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
2773 val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
2774 val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
2775 }
2776
2777 for (idx = 0; idx < 15; idx++) {
2778 dev_info(dev,
2779 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
2780 readl(regs + S3C_DIEPCTL(idx)),
2781 readl(regs + S3C_DIEPTSIZ(idx)),
2782 readl(regs + S3C_DIEPDMA(idx)));
2783
2784 val = readl(regs + S3C_DOEPCTL(idx));
2785 dev_info(dev,
2786 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
2787 idx, readl(regs + S3C_DOEPCTL(idx)),
2788 readl(regs + S3C_DOEPTSIZ(idx)),
2789 readl(regs + S3C_DOEPDMA(idx)));
2790
2791 }
2792
2793 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
2794 readl(regs + S3C_DVBUSDIS), readl(regs + S3C_DVBUSPULSE));
2795}
2796
2797
2798/**
2799 * state_show - debugfs: show overall driver and device state.
2800 * @seq: The seq file to write to.
2801 * @v: Unused parameter.
2802 *
2803 * This debugfs entry shows the overall state of the hardware and
2804 * some general information about each of the endpoints available
2805 * to the system.
2806 */
2807static int state_show(struct seq_file *seq, void *v)
2808{
2809 struct s3c_hsotg *hsotg = seq->private;
2810 void __iomem *regs = hsotg->regs;
2811 int idx;
2812
2813 seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
2814 readl(regs + S3C_DCFG),
2815 readl(regs + S3C_DCTL),
2816 readl(regs + S3C_DSTS));
2817
2818 seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
2819 readl(regs + S3C_DIEPMSK), readl(regs + S3C_DOEPMSK));
2820
2821 seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
2822 readl(regs + S3C_GINTMSK),
2823 readl(regs + S3C_GINTSTS));
2824
2825 seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
2826 readl(regs + S3C_DAINTMSK),
2827 readl(regs + S3C_DAINT));
2828
2829 seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
2830 readl(regs + S3C_GNPTXSTS),
2831 readl(regs + S3C_GRXSTSR));
2832
2833 seq_printf(seq, "\nEndpoint status:\n");
2834
2835 for (idx = 0; idx < 15; idx++) {
2836 u32 in, out;
2837
2838 in = readl(regs + S3C_DIEPCTL(idx));
2839 out = readl(regs + S3C_DOEPCTL(idx));
2840
2841 seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
2842 idx, in, out);
2843
2844 in = readl(regs + S3C_DIEPTSIZ(idx));
2845 out = readl(regs + S3C_DOEPTSIZ(idx));
2846
2847 seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
2848 in, out);
2849
2850 seq_printf(seq, "\n");
2851 }
2852
2853 return 0;
2854}
2855
2856static int state_open(struct inode *inode, struct file *file)
2857{
2858 return single_open(file, state_show, inode->i_private);
2859}
2860
2861static const struct file_operations state_fops = {
2862 .owner = THIS_MODULE,
2863 .open = state_open,
2864 .read = seq_read,
2865 .llseek = seq_lseek,
2866 .release = single_release,
2867};
2868
2869/**
2870 * fifo_show - debugfs: show the fifo information
2871 * @seq: The seq_file to write data to.
2872 * @v: Unused parameter.
2873 *
2874 * Show the FIFO information for the overall fifo and all the
2875 * periodic transmission FIFOs.
2876*/
2877static int fifo_show(struct seq_file *seq, void *v)
2878{
2879 struct s3c_hsotg *hsotg = seq->private;
2880 void __iomem *regs = hsotg->regs;
2881 u32 val;
2882 int idx;
2883
2884 seq_printf(seq, "Non-periodic FIFOs:\n");
2885 seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + S3C_GRXFSIZ));
2886
2887 val = readl(regs + S3C_GNPTXFSIZ);
2888 seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
2889 val >> S3C_GNPTXFSIZ_NPTxFDep_SHIFT,
2890 val & S3C_GNPTXFSIZ_NPTxFStAddr_MASK);
2891
2892 seq_printf(seq, "\nPeriodic TXFIFOs:\n");
2893
2894 for (idx = 1; idx <= 15; idx++) {
2895 val = readl(regs + S3C_DPTXFSIZn(idx));
2896
2897 seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
2898 val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
2899 val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
2900 }
2901
2902 return 0;
2903}
2904
2905static int fifo_open(struct inode *inode, struct file *file)
2906{
2907 return single_open(file, fifo_show, inode->i_private);
2908}
2909
2910static const struct file_operations fifo_fops = {
2911 .owner = THIS_MODULE,
2912 .open = fifo_open,
2913 .read = seq_read,
2914 .llseek = seq_lseek,
2915 .release = single_release,
2916};
2917
2918
2919static const char *decode_direction(int is_in)
2920{
2921 return is_in ? "in" : "out";
2922}
2923
2924/**
2925 * ep_show - debugfs: show the state of an endpoint.
2926 * @seq: The seq_file to write data to.
2927 * @v: Unused parameter.
2928 *
2929 * This debugfs entry shows the state of the given endpoint (one is
2930 * registered for each available).
2931*/
2932static int ep_show(struct seq_file *seq, void *v)
2933{
2934 struct s3c_hsotg_ep *ep = seq->private;
2935 struct s3c_hsotg *hsotg = ep->parent;
2936 struct s3c_hsotg_req *req;
2937 void __iomem *regs = hsotg->regs;
2938 int index = ep->index;
2939 int show_limit = 15;
2940 unsigned long flags;
2941
2942 seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n",
2943 ep->index, ep->ep.name, decode_direction(ep->dir_in));
2944
2945 /* first show the register state */
2946
2947 seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
2948 readl(regs + S3C_DIEPCTL(index)),
2949 readl(regs + S3C_DOEPCTL(index)));
2950
2951 seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
2952 readl(regs + S3C_DIEPDMA(index)),
2953 readl(regs + S3C_DOEPDMA(index)));
2954
2955 seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
2956 readl(regs + S3C_DIEPINT(index)),
2957 readl(regs + S3C_DOEPINT(index)));
2958
2959 seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
2960 readl(regs + S3C_DIEPTSIZ(index)),
2961 readl(regs + S3C_DOEPTSIZ(index)));
2962
2963 seq_printf(seq, "\n");
2964 seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
2965 seq_printf(seq, "total_data=%ld\n", ep->total_data);
2966
2967 seq_printf(seq, "request list (%p,%p):\n",
2968 ep->queue.next, ep->queue.prev);
2969
2970 spin_lock_irqsave(&ep->lock, flags);
2971
2972 list_for_each_entry(req, &ep->queue, queue) {
2973 if (--show_limit < 0) {
2974 seq_printf(seq, "not showing more requests...\n");
2975 break;
2976 }
2977
2978 seq_printf(seq, "%c req %p: %d bytes @%p, ",
2979 req == ep->req ? '*' : ' ',
2980 req, req->req.length, req->req.buf);
2981 seq_printf(seq, "%d done, res %d\n",
2982 req->req.actual, req->req.status);
2983 }
2984
2985 spin_unlock_irqrestore(&ep->lock, flags);
2986
2987 return 0;
2988}
2989
2990static int ep_open(struct inode *inode, struct file *file)
2991{
2992 return single_open(file, ep_show, inode->i_private);
2993}
2994
2995static const struct file_operations ep_fops = {
2996 .owner = THIS_MODULE,
2997 .open = ep_open,
2998 .read = seq_read,
2999 .llseek = seq_lseek,
3000 .release = single_release,
3001};
3002
3003/**
3004 * s3c_hsotg_create_debug - create debugfs directory and files
3005 * @hsotg: The driver state
3006 *
3007 * Create the debugfs files to allow the user to get information
3008 * about the state of the system. The directory name is created
3009 * with the same name as the device itself, in case we end up
3010 * with multiple blocks in future systems.
3011*/
3012static void __devinit s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3013{
3014 struct dentry *root;
3015 unsigned epidx;
3016
3017 root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
3018 hsotg->debug_root = root;
3019 if (IS_ERR(root)) {
3020 dev_err(hsotg->dev, "cannot create debug root\n");
3021 return;
3022 }
3023
3024 /* create general state file */
3025
3026 hsotg->debug_file = debugfs_create_file("state", 0444, root,
3027 hsotg, &state_fops);
3028
3029 if (IS_ERR(hsotg->debug_file))
3030 dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
3031
3032 hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
3033 hsotg, &fifo_fops);
3034
3035 if (IS_ERR(hsotg->debug_fifo))
3036 dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
3037
3038 /* create one file for each endpoint */
3039
3040 for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
3041 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3042
3043 ep->debugfs = debugfs_create_file(ep->name, 0444,
3044 root, ep, &ep_fops);
3045
3046 if (IS_ERR(ep->debugfs))
3047 dev_err(hsotg->dev, "failed to create %s debug file\n",
3048 ep->name);
3049 }
3050}
3051
3052/**
3053 * s3c_hsotg_delete_debug - cleanup debugfs entries
3054 * @hsotg: The driver state
3055 *
3056 * Cleanup (remove) the debugfs files for use on module exit.
3057*/
3058static void __devexit s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3059{
3060 unsigned epidx;
3061
3062 for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
3063 struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
3064 debugfs_remove(ep->debugfs);
3065 }
3066
3067 debugfs_remove(hsotg->debug_file);
3068 debugfs_remove(hsotg->debug_fifo);
3069 debugfs_remove(hsotg->debug_root);
3070}
3071
3072/**
3073 * s3c_hsotg_gate - set the hardware gate for the block
3074 * @pdev: The device we bound to
3075 * @on: On or off.
3076 *
3077 * Set the hardware gate setting into the block. If we end up on
3078 * something other than an S3C64XX, then we might need to change this
3079 * to using a platform data callback, or some other mechanism.
3080 */
3081static void s3c_hsotg_gate(struct platform_device *pdev, bool on)
3082{
3083 unsigned long flags;
3084 u32 others;
3085
3086 local_irq_save(flags);
3087
3088 others = __raw_readl(S3C64XX_OTHERS);
3089 if (on)
3090 others |= S3C64XX_OTHERS_USBMASK;
3091 else
3092 others &= ~S3C64XX_OTHERS_USBMASK;
3093 __raw_writel(others, S3C64XX_OTHERS);
3094
3095 local_irq_restore(flags);
3096}
3097
Mark Brown0978f8c2010-01-18 13:18:35 +00003098static struct s3c_hsotg_plat s3c_hsotg_default_pdata;
Ben Dooks5b7d70c2009-06-02 14:58:06 +01003099
3100static int __devinit s3c_hsotg_probe(struct platform_device *pdev)
3101{
3102 struct s3c_hsotg_plat *plat = pdev->dev.platform_data;
3103 struct device *dev = &pdev->dev;
3104 struct s3c_hsotg *hsotg;
3105 struct resource *res;
3106 int epnum;
3107 int ret;
3108
3109 if (!plat)
3110 plat = &s3c_hsotg_default_pdata;
3111
3112 hsotg = kzalloc(sizeof(struct s3c_hsotg) +
3113 sizeof(struct s3c_hsotg_ep) * S3C_HSOTG_EPS,
3114 GFP_KERNEL);
3115 if (!hsotg) {
3116 dev_err(dev, "cannot get memory\n");
3117 return -ENOMEM;
3118 }
3119
3120 hsotg->dev = dev;
3121 hsotg->plat = plat;
3122
3123 platform_set_drvdata(pdev, hsotg);
3124
3125 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3126 if (!res) {
3127 dev_err(dev, "cannot find register resource 0\n");
3128 ret = -EINVAL;
3129 goto err_mem;
3130 }
3131
3132 hsotg->regs_res = request_mem_region(res->start, resource_size(res),
3133 dev_name(dev));
3134 if (!hsotg->regs_res) {
3135 dev_err(dev, "cannot reserve registers\n");
3136 ret = -ENOENT;
3137 goto err_mem;
3138 }
3139
3140 hsotg->regs = ioremap(res->start, resource_size(res));
3141 if (!hsotg->regs) {
3142 dev_err(dev, "cannot map registers\n");
3143 ret = -ENXIO;
3144 goto err_regs_res;
3145 }
3146
3147 ret = platform_get_irq(pdev, 0);
3148 if (ret < 0) {
3149 dev_err(dev, "cannot find IRQ\n");
3150 goto err_regs;
3151 }
3152
3153 hsotg->irq = ret;
3154
3155 ret = request_irq(ret, s3c_hsotg_irq, 0, dev_name(dev), hsotg);
3156 if (ret < 0) {
3157 dev_err(dev, "cannot claim IRQ\n");
3158 goto err_regs;
3159 }
3160
3161 dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
3162
3163 device_initialize(&hsotg->gadget.dev);
3164
3165 dev_set_name(&hsotg->gadget.dev, "gadget");
3166
3167 hsotg->gadget.is_dualspeed = 1;
3168 hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
3169 hsotg->gadget.name = dev_name(dev);
3170
3171 hsotg->gadget.dev.parent = dev;
3172 hsotg->gadget.dev.dma_mask = dev->dma_mask;
3173
3174 /* setup endpoint information */
3175
3176 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3177 hsotg->gadget.ep0 = &hsotg->eps[0].ep;
3178
3179 /* allocate EP0 request */
3180
3181 hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
3182 GFP_KERNEL);
3183 if (!hsotg->ctrl_req) {
3184 dev_err(dev, "failed to allocate ctrl req\n");
3185 goto err_regs;
3186 }
3187
3188 /* reset the system */
3189
3190 s3c_hsotg_gate(pdev, true);
3191
3192 s3c_hsotg_otgreset(hsotg);
3193 s3c_hsotg_corereset(hsotg);
3194 s3c_hsotg_init(hsotg);
3195
3196 /* initialise the endpoints now the core has been initialised */
3197 for (epnum = 0; epnum < S3C_HSOTG_EPS; epnum++)
3198 s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
3199
3200 s3c_hsotg_create_debug(hsotg);
3201
3202 s3c_hsotg_dump(hsotg);
3203
3204 our_hsotg = hsotg;
3205 return 0;
3206
3207err_regs:
3208 iounmap(hsotg->regs);
3209
3210err_regs_res:
3211 release_resource(hsotg->regs_res);
3212 kfree(hsotg->regs_res);
3213
3214err_mem:
3215 kfree(hsotg);
3216 return ret;
3217}
3218
3219static int __devexit s3c_hsotg_remove(struct platform_device *pdev)
3220{
3221 struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
3222
3223 s3c_hsotg_delete_debug(hsotg);
3224
3225 usb_gadget_unregister_driver(hsotg->driver);
3226
3227 free_irq(hsotg->irq, hsotg);
3228 iounmap(hsotg->regs);
3229
3230 release_resource(hsotg->regs_res);
3231 kfree(hsotg->regs_res);
3232
3233 s3c_hsotg_gate(pdev, false);
3234
3235 kfree(hsotg);
3236 return 0;
3237}
3238
3239#if 1
3240#define s3c_hsotg_suspend NULL
3241#define s3c_hsotg_resume NULL
3242#endif
3243
3244static struct platform_driver s3c_hsotg_driver = {
3245 .driver = {
3246 .name = "s3c-hsotg",
3247 .owner = THIS_MODULE,
3248 },
3249 .probe = s3c_hsotg_probe,
3250 .remove = __devexit_p(s3c_hsotg_remove),
3251 .suspend = s3c_hsotg_suspend,
3252 .resume = s3c_hsotg_resume,
3253};
3254
3255static int __init s3c_hsotg_modinit(void)
3256{
3257 return platform_driver_register(&s3c_hsotg_driver);
3258}
3259
3260static void __exit s3c_hsotg_modexit(void)
3261{
3262 platform_driver_unregister(&s3c_hsotg_driver);
3263}
3264
3265module_init(s3c_hsotg_modinit);
3266module_exit(s3c_hsotg_modexit);
3267
3268MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
3269MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
3270MODULE_LICENSE("GPL");
3271MODULE_ALIAS("platform:s3c-hsotg");